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- Seek low-frequency structural vibration 1solation
- Using AMMs
- Components that cause noise pollution

- Without using heavy elements
- Heavy = impractical for applications

Inertial amplification using geometry

Two main groups working on this:
1. Yilmaz et al, Dept Mech Eng, Bogazici Uni, Istanbul
2. Jensen et al, Dept Mech Eng, DTU, Copenhagen




AMMs using lightweight attachments

Frandsen et al, J Appl Phys, 2016

“... band gaps that are exceedingly wide and deep
... as much as 20 times less added mass
compared to what is needed in a standard
local resonator configuration”




Mass-in-mass chain

Equation of motions (jth masses):




Homogenised “etfective” chain
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System 1s “inertially amplified” around @x




Band diagram: i = K = 7%/4

M/m =0




Band diagram: k=K =7%/4




Band diagram: k=K =7%/4

[ower resonance

Lower bandgap




Band diagram: k=K =7%/4

[ower resonance

Lower bandgap

But at expense of
increased mass




Bobrovnitskii (Acoust Phys, 2014)*

*Milton & Seppecher (2012)
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Yilamz & Hulbert (Phys Lett A, 2010)
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Hybrid chain

Basic element

Eqns of Motion (assuming e'®?)
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with geometrical parameter y = cota




Hybrid chain

Basic element
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Hybrid chain

Unat cell
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“Eftective” hybrid chain
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Equating unit mass

general
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“Eftective” hybrid chain
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Band diagrams: k=K = z*/4;M = m/10




Hybrid chain: limits

Bob’skil limit: m,k — O

> s, Wy = 0

Pushes acoustic branch to w(g) = 0.




Transmission: Mass-in-mass chain

* 30-unit AMM embedded in monatomic chain
- AMM has fixed added mass 3m = M/m = 0.1
+ Incident wave packet with central frequency w/7z = 0.45




Transmission: Hybrid chain

* 30-unit AMM embedded in monatomic chain
- AMM has fixed added mass 3m = M/m = 0.1
+ Incident wave packet with central frequency w/7z = 0.45




Cubically nonlinear mass-in-mass chain

Equations of motion
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Long-wavelength limit: ¢ — 0

i/i—cgu”+a)3%(u—v)+l"(u—v)3 =0
V+wlf(v—uw)+T MO —u)y =0
where ¢, = \/k/m = linear wave speed

Wy = \/ K,/M = anti-resonant frequency

M= mIM
I' = K;/m = nonlinearity parameter

Weakly nonlinear quasi-monochromatic waves
multi-scale analysis

u(x, 1) = uAy(X;, X, T) e 4=20 4 | etc.

where X, = u'x, T=ut, uy < 1




Long-wavelength limit: ¢ — 0

u(x,t) = puAy(X;, X, T) e 420 4 (X.=pu'x, T=pt

Nonlinear-Schrodinger Egn
Ay, +iaA::+ipA|AI" =0
for A(S, X;) = Ag(X, X5, T) with ¢ = X| — ¢, T
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group velocity
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Envelope soliton on acoustical branch




Summary

- AMM chains with lightweight attachments
- Effective mass controlled by geometry
- Generates low-frequency bandgaps
-+ anti-resonance generates deep bandgaps

Future: Nonlinear chains

»+ Mass-1n-mass
»  Optical branch, modulational instability, etc
» Branch coupling???

 Repeat for Bob’skii, etc
» Noting control over group velocity sign
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