

Using geometry to control bandgaps along acoustic metamaterial chains

Luke Bennetts, Uni Adelaide; Malte Peter, Uni Augsburg Paul Dylejko, Alex Skvortsov, Maritime Division, DST Group, Melbourne

Setting

- Seek low-frequency structural vibration isolation
 - Using AMMs
 - Components that cause noise pollution
- Without using heavy elements
 - Heavy = impractical for applications

Inertial amplification using geometry

Two main groups working on this:

- 1. Yilmaz et al, Dept Mech Eng, Bogazici Uni, Istanbul
- 2. Jensen et al, Dept Mech Eng, DTU, Copenhagen

AMMs using lightweight attachments

"... band gaps that are exceedingly wide and deep ... as much as 20 times less added mass compared to what is needed in a standard local resonator configuration"

Mass-in-mass chain

Equation of motions (*j*th masses):

$$m \ddot{u}_{j} + k (2 u_{j} - u_{j-1} - u_{j+1}) + K(u_{j} - v_{j}) = 0$$
$$M \ddot{v}_{j} + K (v_{j} - u_{j}) = 0$$

Homogenised "effective" chain

Lower resonance = Lower bandgap

Lower resonance = Lower bandgap

But at expense of increased mass

Bobrovnitskii (Acoust Phys, 2014)* *Milton & Seppecher (2012)

Yilamz & Hulbert (Phys Lett A, 2010)

$$M/m = 0.1$$

Eqns of Motion (assuming $e^{i\omega t}$)

$$-f_{1} = \omega^{2} \left(m + \frac{M}{2} (1 + \gamma^{2}) \right) u_{1} + \frac{\omega^{2} M}{2} (1 - \gamma^{2}) u_{2} + k (u_{2} - u_{1})$$

$$-f_{2} = \frac{\omega^{2} M}{2} (1 - \gamma^{2}) u_{1} + \omega^{2} \left(m + \frac{M}{2} (1 + \gamma^{2}) \right) u_{2} + k (u_{1} - u_{2})$$

with geometrical parameter $\gamma = \cot \alpha$

Compliance and stiffness matrices

$$\begin{bmatrix} f_1 \\ f_2 \end{bmatrix} = C_0 \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \implies \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = D_0 \begin{bmatrix} f_1 \\ f_2 \end{bmatrix} \text{ where } D_0 = C_0^{-1}$$

Compliance and stiffness matrices

$$\begin{bmatrix} f_1 \\ f_2 \end{bmatrix} = C_0 \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \implies \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = D_0 \begin{bmatrix} f_1 \\ f_2 \end{bmatrix} \text{ where } D_0 = C_0^{-1}$$
$$\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = D \begin{bmatrix} g_1 \\ g_2 \end{bmatrix} \implies \begin{bmatrix} g_1 \\ g_2 \end{bmatrix} = C \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}; \quad C = \begin{bmatrix} c_1 & c_2 \\ c_2 & c_1 \end{bmatrix}$$
$$\underbrace{D = D_0 + \frac{1}{2K}I} \qquad \underbrace{C = D^{-1}} \qquad \text{symmetry}$$

"Effective" hybrid chain

"Effective" hybrid chain

$$m_{\rm eff} = \frac{2(m+M)\omega_*^2 \{(1+K/k)\omega_0^2 - \omega^2\}}{\omega_0^2 (\omega_*^2 - \omega^2)}$$

$$\omega_*^2 = \frac{2k}{M(\gamma^2 - 1)} \quad \text{anti-resonance} \\ \downarrow \text{ if } \gamma > 1 \\ \text{ i.e. } \alpha < \pi/4$$

 $\omega_0^2 = \frac{2k}{m + M\gamma^2}$ out-of-phase band edge

$$c_2 = d_2 = 0$$

no propagation

 $\int_{-\infty}^{c_1 = c_2} \det C_0 = 0$

Band diagrams: $k = K = \pi^2/4; M = m/10$

Hybrid chain: limits

Bob'skii limit: $m, k \rightarrow 0$

 $\Rightarrow \omega_*, \omega_0 \rightarrow 0$

Pushes acoustic branch to $\omega(q) = 0$.

<u>Yilmaz limit</u>: $K \to \infty$; $m \to m/2$; and $M \to M/2$

Transmission: Mass-in-mass chain

- 30-unit AMM embedded in monatomic chain
- AMM has fixed added mass $3 m \Rightarrow M/m = 0.1$
- Incident wave packet with central frequency $\omega/\pi = 0.45$

Transmission: Hybrid chain

- 30-unit AMM embedded in monatomic chain
- AMM has fixed added mass $3 m \Rightarrow M/m = 0.1$
- Incident wave packet with central frequency $\omega/\pi = 0.45$

Cubically nonlinear mass-in-mass chain

Equations of motion

$$m \ddot{u}_{j} + k (2 u_{j} - u_{j-1} - u_{j+1}) + K_{1}(u_{j} - v_{j}) + K_{3}(u_{j} - v_{j})^{3} = 0$$
$$M \ddot{v}_{j} + K_{1} (v_{j} - u_{j}) + K_{3} (v_{j} - u_{j})^{3} = 0$$

Long-wavelength limit: $q \rightarrow 0$

$$\begin{split} \ddot{u} - c_0^2 u'' + \omega_*^2 \,\mathscr{M} \,(u - v) + \Gamma(u - v)^3 &= 0\\ \ddot{v} + \omega_*^2 \,(v - u) + \Gamma \,\mathscr{M} \,(v - u)^3 &= 0 \end{split}$$

where $c_0 &= \sqrt{k/m} = \text{linear wave speed}\\ \omega_* &= \sqrt{K_1/M} = \text{anti-resonant frequency}\\ \mathscr{M} &= m/M\\ \Gamma &= K_3/m = \text{nonlinearity parameter} \end{split}$

Weakly nonlinear quasi-monochromatic waves + multi-scale analysis

$$u(x,t) = \mu A_0(X_1, X_2, T) e^{i(q x - \omega t)} + \dots, \text{ etc.}$$

where $X_i = \mu^i x$, $T = \mu t$, $\mu \ll 1$

Long-wavelength limit: $q \rightarrow 0$

$$u(x,t) = \mu A_0(X_1, X_2, T) e^{i(q x - \omega t)} + \dots \quad (X_i = \mu^i x, T = \mu t)$$

Nonlinear-Schrodinger Eqn

$$A_{X_{2}} + i \alpha A_{\xi\xi} + i \beta A |A|^{2} = 0$$

for $A(\xi, X_{2}) \equiv A_{0}(X_{1}, X_{2}, T)$ with $\xi = X_{1} - c_{g}T$
 $c_{g} = \frac{c_{0}^{2} q (\omega^{2} - \omega_{*}^{2})^{2}}{\omega \{ (\omega^{2} - \omega_{*}^{2})^{2} + \omega_{*}^{4} \mathcal{M} \}} \qquad \text{group velocity}$
 $\alpha = -\frac{(c_{0}^{2} - c_{g}^{2}) (\omega^{2} - \omega_{*}^{2})^{3} + \mathcal{M} c_{g}^{2} \omega_{*}^{4} (3 \omega^{2} + \omega_{*}^{2})}{2 c_{0}^{2} q (\omega^{2} - \omega_{*}^{2})^{3}}$
 $\beta = \frac{3\Gamma \omega^{6} \{ \omega^{2} - \omega_{*}^{2} (1 - \mathcal{M}) \}}{2 c_{0}^{2} q (\omega^{2} - \omega_{*}^{2})^{4}}$

Envelope soliton on acoustical branch

Summary

- AMM chains with lightweight attachments
- Effective mass controlled by geometry
- Generates low-frequency bandgaps
 - + anti-resonance generates deep bandgaps

Future: Nonlinear chains

- Mass-in-mass
 - Optical branch, modulational instability, etc
 - Branch coupling???
- Repeat for Bob'skii, etc
 - Noting control over group velocity sign

