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Low-frequency noise

Problem
Low-frequency noise travels farthest.
Most difficult to isolate (or damp).
AMMs are designed to isolate low-frequency noise. 3

Typically require heavy elements. 7



AMMs using lightweight attachments

Frandsen et al, J Appl Phys, 2016

Idea from J-dampers in F1 racing car suspension systems.



AMM as 1D chain

Metamaterials — according to Wikipedia

"A material engineered to have a property that is not
found in nature"

1D chain

black boxblack box black box
vibration in vibration out

where something "meta" happens in the boxes.



Simple starting point for analysis

Monatomic chain: Not an AMM
Infinite chain with parameters m = mass and k = spring

mm m
k k

uj(t)uj−1(t) uj+1(t)

Equations of motion

m üj + k (2 uj − uj−1 − uj+1) = 0 for j ∈ Z

Fourier transform, i.e. write uj(t) = ûj exp(−iω t).
Apply Bloch–Floquet condition (quasi-periodicity)

ûj = U exp(i q j) where q = wavenumber ∈ (−π.π].
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Simple starting point for analysis

Monatomic chain: Not an AMM
Infinite chain with parameters m = mass and k = spring

mm m
k k

uj(t)uj−1(t) uj+1(t)

Dispersion relation

mω2 = 2 k (1− cos q)

Fourier transform, i.e. write uj(t) = ûj exp(−iω t).
Apply Bloch–Floquet condition (quasi-periodicity)

ûj = U exp(i q j) where q = wavenumber ∈ (−π.π].



m = 1; k = π2/4; ω/π = 0.6 (top), 1.2 (bottom)
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Band diagrams: m = 1; k = π2/4

q/π
0 1-1

ω
/π

0

1

ω/π

1 20

Re(q)/π

Im(q)



Turn it into a metamaterial

Standard AMM: Mass-in-mass chain

mm m

MM M

k k

K K K

uj(t)uj−1(t) uj+1(t)

vj(t)vj−1(t) vj+1(t)

Equations of motion

m üj + k (2 uj − uj−1 − uj+1) + K (uj − vj)= 0

M v̈j + K (vj − uj)= 0
Dispersion relation

m M ω4 − {K (m + M) + 2 k (1− cos q)} ω2 + 2 (1− cos q) = 0



Band diagrams: M = m = 1; K = k = π2/4
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Band diagrams: M = m = 1; K = k = π2/4
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Band diagrams: m = 1; K = k = π2/4
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Band diagrams: m = 1; K = k = π2/4

M = 4m
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Band diagrams: m = 1; K = k = π2/4

M = 9m
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But mass increases



Why is mass-in-mass chain an AMM?

". . . a property that is not found in nature"

Mass-in-mass chain 7→ "effective" monatomic chain

meffmeff meff
k k

with dispersion relation (from earlier)

meff ω
2

k
= 2 (1− cos q) ∈ [0,4] for q ∈ R

where

meff = m +
M ω2

∗
ω2
∗ − ω2 : |ω∗| � 1 for ω ∼ ω∗



AMM with lightweight attachments (+ geometry)

Simplest variant (Yilmaz & Hulbert, Phys. Lett. A, 2010)

mm m

M M

uj−1(t)

α

rigid truss

Equation of motion(
m +

1
4

M (1 + cot2 α)
)

üj +
1
4

M (1− cot2 α) (üj−1 + üj+1)

+ k (2 uj − uj−1 − uj+1) = 0



Mass-in-mass: M = m/10; ω = 6π/10

mm m

M
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Yilmaz & Hulbert: M = m/9; ω/π = 0.6; α = π/16

mm m

M M
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Final slide

Summary
Attached masses excite resonance/anti-resonance to
suppress low-frequency vibrations.

Lightweight attachments can achieve this using geometry.

Next
Nonlinearity (physical or geometrical) to transfer energy to
higher frequencies (and damp).

Modulational instability between acoustical and optical
branches for efficient energy transfer.
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