Acoustic metamaterial chains involving inertial amplification: Linear case

Luke Bennetts

University of Adelaide

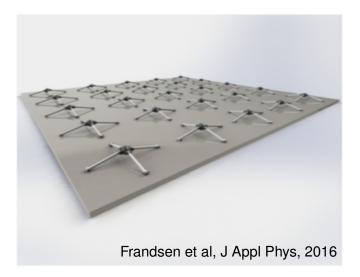
◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Low-frequency noise

Problem

- Low-frequency noise travels farthest.
- Most difficult to isolate (or damp).
- AMMs are designed to isolate low-frequency noise.
- Typically require heavy elements. X

AMMs using lightweight attachments

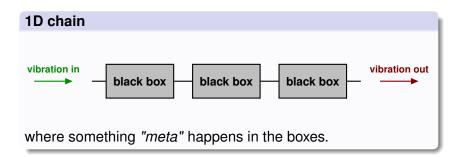


Idea from J-dampers in F1 racing car suspension systems.

AMM as 1D chain

Metamaterials — according to Wikipedia

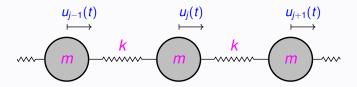
"A material engineered to have a property that is not found in nature"



Simple starting point for analysis

Monatomic chain: Not an AMM

Infinite chain with parameters m = mass and k = spring



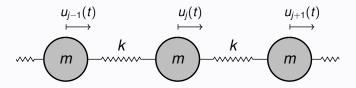
Equations of motion

$$m \ddot{u}_j + k (2 u_j - u_{j-1} - u_{j+1}) = 0$$
 for $j \in \mathbb{Z}$

Simple starting point for analysis

Monatomic chain: Not an AMM

Infinite chain with parameters m = mass and k = spring



Equations of motion

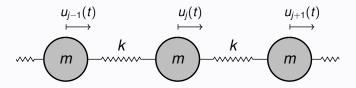
$$-\omega^2 \, m \, \widehat{u}_j + k \, (2 \, \widehat{u}_j - \widehat{u}_{j-1} - \widehat{u}_{j+1}) = 0$$

• Fourier transform, i.e. write $u_j(t) = \hat{u}_j \exp(-i \omega t)$.

Simple starting point for analysis

Monatomic chain: Not an AMM

Infinite chain with parameters m = mass and k = spring



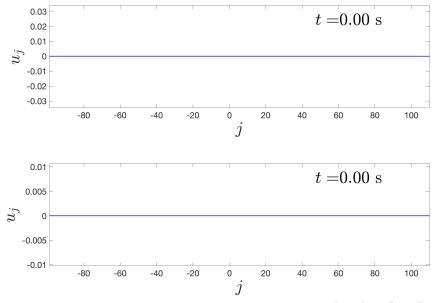
Dispersion relation

$$m\omega^2 = 2k (1 - \cos q)$$

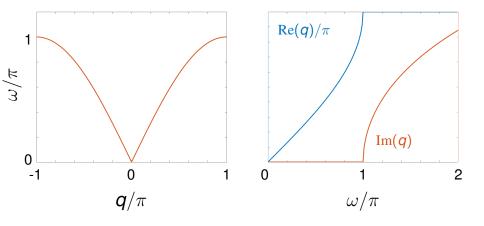
- Fourier transform, i.e. write $u_j(t) = \hat{u}_j \exp(-i \omega t)$.
- Apply Bloch–Floquet condition (quasi-periodicity)

 $\widehat{u}_j = U \exp(i q j)$ where $q = wavenumber \in (-\pi.\pi]$.

m = 1; $k = \pi^2/4$; $\omega/\pi = 0.6$ (top), 1.2 (bottom)

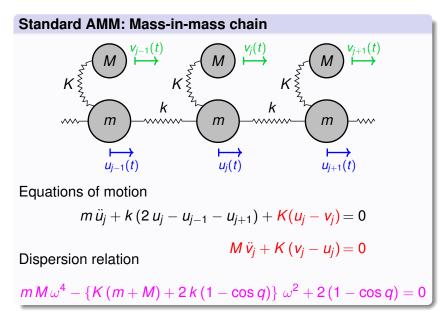


 Band diagrams: m = 1; $k = \pi^2/4$

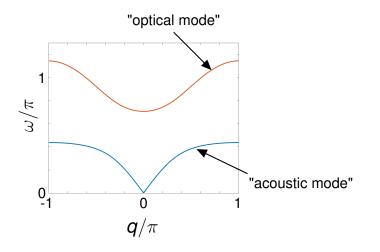


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Turn it into a metamaterial

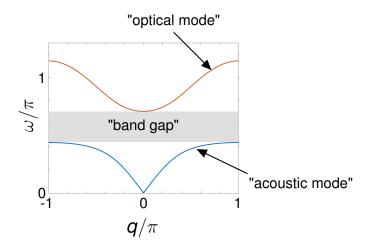


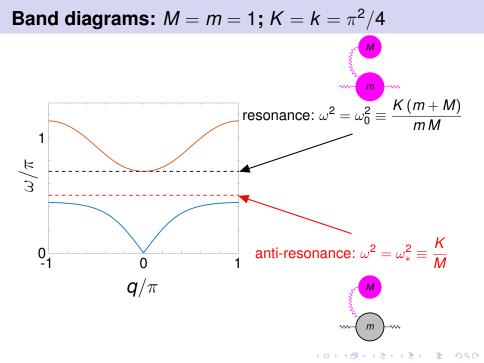
Band diagrams: M = m = 1; $K = k = \pi^2/4$



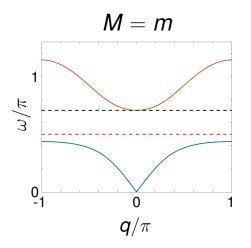
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Band diagrams: M = m = 1; $K = k = \pi^2/4$



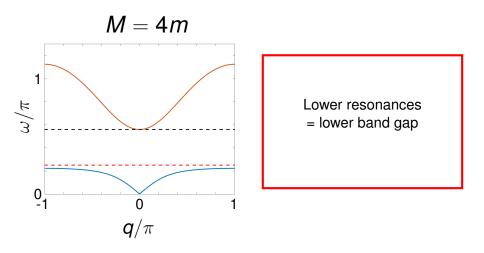


Band diagrams: m = 1; $K = k = \pi^2/4$



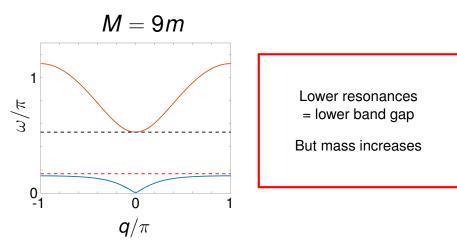
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Band diagrams: m = 1; $K = k = \pi^2/4$



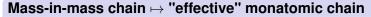
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Band diagrams: m = 1; $K = k = \pi^2/4$



▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Why is mass-in-mass chain an AMM?



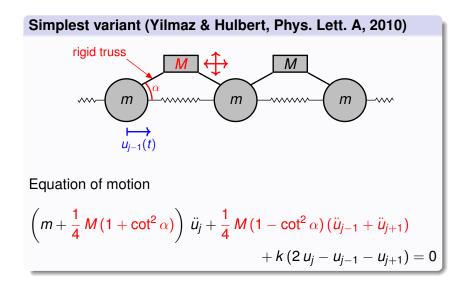
with dispersion relation (from earlier)

$$rac{m_{\mathsf{eff}}\,\omega^2}{k}=$$
 2 (1 $-\cos q)\in [0,4] \quad ext{for} \quad q\in \mathbb{R}$

where

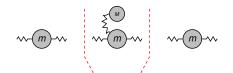
$$m_{
m eff} = m + rac{M \, \omega_*^2}{\omega_*^2 - \omega^2}: \quad |\omega_*| \gg 1 \quad {
m for} \quad \omega \sim \omega_*$$

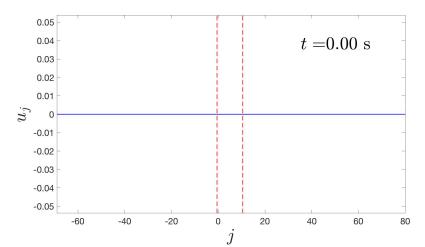
AMM with lightweight attachments (+ geometry)



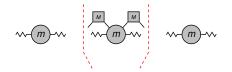
▲□▶▲□▶▲□▶▲□▶ □ のへで

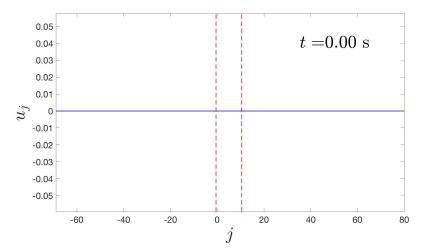
Mass-in-mass: M = m/10; $\omega = 6\pi/10$





Yilmaz & Hulbert: M = m/9; $\omega/\pi = 0.6$; $\alpha = \pi/16$





900

Final slide

Summary

- Attached masses excite resonance/anti-resonance to suppress low-frequency vibrations.
- Lightweight attachments can achieve this using geometry.

Next

- Nonlinearity (physical or geometrical) to transfer energy to higher frequencies (and damp).
- Modulational instability between acoustical and optical branches for efficient energy transfer.