Localisation of Rayleigh-Bloch waves and stability of resonant loads on arrays of bottom-mounted cylinders with respect to positional disorder

Luke Bennetts
University of Adelaide, Australia
Collaborators

Malte Peter
Uni Augsburg, Germany

Fabien Montiel
Uni Otago, NZ
Resonant loads on an array of cylinders

Maniar & Newman (1997, JFM)

\[\psi = 0 \]
\[N = 9 \]
\[d/a = 4 \]
Resonant loads on an array of cylinders

\[kd = \frac{2\pi}{3} \]

\[kd = 2.7814 \]

\[kd = \pi \]

Loads

Neumann trapped modes

\[kd = 2.7826 \]
Since Maniar & Newman (1997)

177 citations, including...

- Porter & Evans (1998, Quarterly Journal on Mechanics & Applied Mathematics)
- Walker & Eatock-Taylor (2005, Ocean Engineering)
- Thompson, Linton & Porter (2007, Quarterly Journal on Mechanics & Applied Mathematics)
Since Maniar & Newman (1997)

177 citations, including...

- Porter & Evans (1998, Quarterly Journal on Mechanics & Applied Mathematics)
- Walker & Eatock-Taylor (2005, Ocean Engineering)
- Thompson, Linton & Porter (2007, Quarterly Journal on Mechanics & Applied Mathematics)
Mathematical model: solitary cylinder

Linear potential-flow theory:

\[
\text{velocity field} = \nabla \cdot \text{Re}\left\{ \frac{g}{i\omega} \Phi(x, y, z)e^{-i\omega t} \right\}
\]

where \(\phi = \) velocity potential; \(\omega = \) frequency; \(g = \) gravity.
Mathematical model: solitary cylinder

Linear potential-flow theory:

\[
\text{velocity field} = \nabla \cdot \text{Re}\left\{ \frac{g}{i\omega} \Phi(x, y, z)e^{-i\omega t} \right\}
\]

where \(\phi = \) velocity potential; \(\omega = \) frequency; \(g = \) gravity.

\[\nabla^2 \Phi = 0\]

\[\Phi_z = 0\]

\[z = -h\]
Mathematical model: solitary cylinder

Linear potential-flow theory:

\[
\text{velocity field} = \nabla \cdot \text{Re} \left\{ \frac{g}{i\omega} \Phi(x, y, z) e^{-i\omega t} \right\}
\]

where \(\phi = \) velocity potential; \(\omega = \) frequency; \(g = \) gravity.

\[\Phi_z = \frac{\omega^2 \Phi}{g} \]

\[\nabla^2 \Phi = 0 \]

\[\Phi_z = 0 \]

\[z = -h \]
Vertical eigenfunctions

\[\Phi = \phi(x, y) \cosh k(z + h) + \sum_{n=1}^{\infty} \phi_n(x, y) \cos k_n(z + h) \]

where

\[k \tanh(kh) = \frac{\omega^2}{g} \]
Vertical eigenfunctions

\[\Phi = \phi(x, y) \cosh k(z + h) + \sum_{n=1}^{\infty} \phi_n(x, y) \cos k_n(z + h) \]

where

\[k \tanh(kh) = \frac{\omega^2}{g} \]
Vertical eigenfunctions

\[\Phi = \phi(x, y) \cosh k(z + h) \]

\[\phi_{inc}(x, y : \psi) \cosh k(z + h) \rightarrow \Phi = \phi(x, y) \cosh k(z + h) \]
Problem in horizontal plane

\[\phi_n = 0 \]

\[\nabla^2 \phi + k^2 \phi = 0 \]
Problem in horizontal plane

\[\nabla^2 \phi + k^2 \phi = 0 \]
Problem in horizontal plane

\[\phi_{n} = 0 \]

\[\nabla^{2} \phi + k^{2} \phi = 0 \]

\[\phi = \phi_{\text{inc}} + \phi_{\text{sca}} \]
Horizontal eigenfunctions

- Local polar coordinates \((r, \theta)\)

Bessel-Fourier Expansions

<table>
<thead>
<tr>
<th>Field Type</th>
<th>Expansion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incident Field</td>
<td>[\phi_{\text{inc}}(r, \theta) = \sum_{m=-\infty}^{\infty} b_m J_m(kr) e^{im\theta}]</td>
</tr>
<tr>
<td>Scattered Field</td>
<td>[\phi_{\text{sca}}(r, \theta) = \sum_{m=-\infty}^{\infty} Z_m b_m H_m(kr) e^{im\theta}]</td>
</tr>
</tbody>
</table>

- \(J_m\) and \(H_m\) are Bessel and Hankel functions of 1st kind, resp.
- \(Z_m = -J'_m(ka)/H'_m(ka)\)
Multiple cylinders: general setting

- Scattered waves force (become incident) on other cylinders.
- E.g. below:
 \[\phi_{\text{inc}}^{(1)} = \phi_{\text{amb}} + \phi_{\text{sca}}^{(2)} + \phi_{\text{sca}}^{(3)} + \phi_{\text{sca}}^{(4)} \]

Assign local polars \((r_p, \theta_p)\) to \(C_p\).

Map scattered to incident:

\[
\phi_{\text{sca}}^{(p)} = \sum_{j=\infty}^{\infty} Z_j b_j^{(p)} H_j(kr_p) e^{ij\theta_p} \\
= \sum_{j=\infty}^{\infty} Z_j b_j^{(p)} \times \sum_{m=\infty}^{\infty} g_{jm}^{(p1)} J_m(kr_1) e^{im\theta_1} \\
\text{for known } g_{jm}^{(p1)}
\]
Multiple cylinders: general setting

- Scattered waves force (become incident) on other cylinders.
- E.g. below:
 \[\phi^{(1)}_{\text{inc}} = \phi_{\text{amb}} + \phi^{(2)}_{\text{sca}} + \phi^{(3)}_{\text{sca}} + \phi^{(4)}_{\text{sca}} \]

Assign local polars \((r_p, \theta_p)\) to \(C_p\).

Map scattered to incident:

\[\phi^{(p)}_{\text{sca}} = \sum_{j=-\infty}^{\infty} Z_j b_j^{(p)} H_j(kr_p) e^{ij\theta_p} \]

\[= \sum_{m=-\infty}^{\infty} \left\{ \sum_{j=-\infty}^{\infty} Z_j b_j^{(p)} \times \right\} J_m(kr_1) e^{im\theta_1} \]
Multiple cylinders: general setting

- Scattered waves force (become incident) on other cylinders.
- E.g. below: \(\phi_{\text{inc}}^{(1)} = \phi_{\text{amb}} + \phi_{\text{sca}}^{(2)} + \phi_{\text{sca}}^{(3)} + \phi_{\text{sca}}^{(4)} \)

Then express ambient field

\[
\phi_{\text{amb}} = \sum_{m=-\infty}^{\infty} c_m^{(1)} J_m(k r_1) e^{im \theta_1}
\]

Matching modal amplitudes gives

\[
b_m^{(1)} = c_m^{(1)} + \sum_{p=2}^{4} \sum_{j=-\infty}^{\infty} Z_j b_j^{(p)} g_{jm}^{(p1)}
\]

for \(m = 0, \pm 1, \pm 2, \ldots \).
Multiple cylinders: general setting

- Scattered waves force (become incident) on other cylinders.
- E.g. below: \[\phi_{inc}^{(1)} = \phi_{amb} + \phi_{sca}^{(2)} + \phi_{sca}^{(3)} + \phi_{sca}^{(4)} \]

- Repeat for \(C_2, C_3 \) and \(C_4 \) and solve.
- But, computational limit is \(O(100) \) cylinders.
Infinite line of eqispaced cylinders

Quasi-periodicity implies there exists Q such that

$$b_m^{(p)} = e^{iQdp} b_m.$$

Hence

$$b_m = c_m^{(?)} + \sum_{j=-\infty}^{\infty} Z_j b_j \sigma_{j-m}(Qd)$$

where

$$\sigma_n(Qd) = \sum_{p=1}^{\infty} \left\{ (-1)^n e^{ipQd} - e^{-ipQd} \right\} H_n(kp)$$
Infinite line of eqispaced cylinders

Quasi-periodicity implies there exists Q such that

$$b_m^{(p)} = e^{iQdp} b_m.$$

Hence

$$b_m = c_m + \sum_{j=-\infty}^{\infty} Z_j b_j \sigma_{j-m}(Qd)$$

where

$$\sigma_n(Qd) = \sum_{p=1}^{\infty} \left\{ (-1)^n e^{ipQd} - e^{-ipQd} \right\} H_n(kp)$$
Forced problem

\[T_0 e^{ik(x \cos \psi_0 + y \sin \psi_0)} \]

\[T_1 e^{ik(x \cos \psi_1 + y \sin \psi_1)} \]

\[\phi_{\text{amb}} = e^{ik(x \cos \psi + y \sin \psi)} \]

Incident amplitudes

\[c_m^{(p)} = e^{i2kd \cos \psi} c_m \quad \Rightarrow \quad Q = 2k \cos \psi \]

Transmitted field (similar for reflected)

\[\phi = \sum_{n=-\infty}^{\infty} T_n e^{ik(x \cos \psi_n + y \sin \psi_n)} \]

where

\[\cos \psi_n = \cos \psi_0 + n\pi / kd \quad \Rightarrow \quad \psi_0 = \psi \]
Forced problem

\[T_0 e^{i k(x \cos \psi_0 + y \sin \psi_0)} = \phi_{\text{amb}} = e^{i k(x \cos \psi + y \sin \psi)} \]

Incident amplitudes

\[c_m^{(p)} = e^{i 2 k d p \cos \psi} c_m \Rightarrow Q = 2 k \cos \psi \]

Transmitted field (similar for reflected)

\[\phi = \sum_{n=-\infty}^{\infty} T_n e^{i k(x \cos \psi_n + y \sin \psi_n)} \]

where

\[\cos \psi_n = \cos \psi_0 + n \pi / kd \Rightarrow \psi_0 = \psi \]
Forced problem

\[\phi_{\text{amb}} = e^{ik(x \cos \psi + y \sin \psi)} \]

\[T_0 e^{ik(x \cos \psi_0 + y \sin \psi_0)} \]

\[T_1 e^{ik(x \cos \psi_1 + y \sin \psi_1)} \]

Incident amplitudes

\[c_m^{(p)} = e^{i2kdp \cos \psi} c_m \implies Q = 2k \cos \psi \]

Transmitted field (similar for reflected)

\[\phi = \sum_{n=-\infty}^{\infty} T_n e^{ik(x \cos \psi_n + y \sin \psi_n)} \]

\[\psi_n \in \mathbb{R} \quad \text{travelling waves}; \quad \psi_n \in \mathbb{C} \quad \text{decaying waves} \]
Unforced problem (e.g. Porter & Evans, 1999)

Rayleigh-Bloch wave modes

- Incident amplitudes \(c_m = 0 \)
- Seek eigenvalues \(e^{i Q^{RB} d} \) and associated eigenfunctions
- RB modes bound to array
- (In general) solutions exist for \(kd < Q^{RB} d < \pi \)
- Incident wave cannot excite them

Peter & Meylan (JFM, 2007)
Semi-infinite problem (e.g. Peter & Meylan, 2007)

Solution method

Write

\[b_m^{(p)} = e^{i2kdp \cos \psi} b_m^\psi \]
\[+ \alpha e^{iQ^{RB} dp} b_m^{RB} \]
\[+ \tilde{b}_m^{(p)} \]

where

- \(b_m^\psi \) are amplitudes for forced problem with incident angle \(\psi \).
- \(b_m^{RB} \) are amplitudes for unforced problem and \(\alpha \) is a constant.
- \(\tilde{b}_m^{(p)} \rightarrow 0 \) as \(p \rightarrow \infty \).
Semi-infinite problem (e.g. Peter & Meylan, 2007)

Solution method

Write

\[b_m^{(p)} = e^{i2kdp \cos \psi} b_{\psi}^m + \alpha e^{iQ_{RB} dp} b_{RB}^m + \tilde{b}_{m}^{(p)} \]

where

- \(b_{\psi}^m \) are amplitudes for forced problem with incident angle \(\psi \).
- \(b_{RB}^m \) are amplitudes for unforced problem and \(\alpha \) is a constant.
- \(\tilde{b}_{m}^{(p)} \rightarrow 0 \) as \(p \rightarrow \infty \).

Scattered field \(\phi_{sca} \)

Linton et al. (2007)
Solution method

\[b_m^{(p)} = e^{i2kdp \cos \psi} b_m^\psi \]

\[+ \alpha_+ e^{iQ^{RB} dp} b_m^{RB} + \alpha_- e^{-iQ^{RB} dp} (-1)^m b_m^{RB} \]

\[+ \tilde{b}_m^{(p)+} + \tilde{b}_m^{(p)-} \]

where

\[\tilde{b}_m^{(p)+} \rightarrow 0 \text{ as } p \rightarrow N. \]

\[\tilde{b}_m^{(p)-} \rightarrow 0 \text{ as } p \rightarrow 1. \]
Resonance requires

1. **Strong excitation** of Rayleigh-Bloch mode.
2. **Strong reflection** of Rayleigh-Bloch mode at ends.
3. **Coherence** of Rayleigh-Bloch modes.
A different approach

Motivation

- Plane wave with amplitude A and at angle χ

$$\varphi(x, y : \chi) \equiv A e^{ik(x \cos \chi + y \sin \chi)}$$

is a solution of $\varphi_{xx} + \varphi_{yy} + k^2 \varphi = 0$

- Where are the plane waves in the direct formulation?

$$J_n(kr)e^{in\theta} = \frac{(-i)^n}{2\pi} \int_{-\pi}^{\pi} e^{inx} \varphi(\chi) \, d\chi$$

$$H_n(kr)e^{in\theta} = \frac{(-i)^n}{\pi} \int_{\gamma+\theta}^{\gamma} e^{inx} \varphi(\chi) \, d\chi$$
A different approach

Motivation

- Plane wave with amplitude A and at angle χ
 \[\phi(x, y : \chi) \equiv A e^{ik(x \cos \chi + y \sin \chi)} \]
 is a solution of $\phi_{xx} + \phi_{yy} + k^2 \phi = 0$
- Where are the plane waves in the direct formulation?

\[J_n(kr) e^{in\theta} = \frac{(-i)^n}{2\pi} \int_{-\pi}^{\pi} e^{in\chi} \phi(\chi) \, d\chi \]
\[H_n(kr) e^{in\theta} = \frac{(-i)^n}{\pi} \int_{\gamma + \theta}^{-\pi} e^{in\chi} \phi(\chi) \, d\chi \]
\[\chi \in C \]
A different approach

Motivation

- Plane wave with amplitude A and at angle χ

\[\varphi(x, y : \chi) \equiv A e^{ik(x \cos \chi + y \sin \chi)} \]

is a solution of $\varphi_{xx} + \varphi_{yy} + k^2 \varphi = 0$

- Where are the plane waves in the direct formulation?

\[
J_n(kr)e^{in\theta} = \frac{(-i)^n}{2\pi} \int_{-\pi}^{\pi} e^{inx} \varphi(\chi) \, d\chi
\]

\[
H_n(kr)e^{in\theta} = \frac{(-i)^n}{\pi} \int_{\gamma + \theta} \rho e^{inx} \varphi(\chi) \, d\chi
\]

$\chi \in \mathbb{C}$
A different approach

Motivation

- Plane wave with amplitude A and at angle χ

$$\varphi(x, y : \chi) \equiv A e^{i k (x \cos \chi + y \sin \chi)}$$

is a solution of $\varphi_{xx} + \varphi_{yy} + k^2 \varphi = 0$

- Where are the plane waves in the direct formulation?

\[
J_n(kr)e^{in\theta} = \frac{(-i)^n}{2\pi} \int_{-\pi}^{\pi} e^{inx} \varphi(\chi) \, d\chi
\]

\[
H_n(kr)e^{in\theta} = \frac{(-i)^n}{\pi} \int_{\gamma+\theta}^{\gamma} e^{inx} \varphi(\chi) \, d\chi
\]
A different approach

Hankel functions

\[H_n(kr)e^{in\theta} = \frac{(-i)^n}{\pi} \left\{ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} + \int_{\frac{\pi}{2}}^{i\infty} + \int_{\frac{-\pi}{2} + i\infty}^{\pi} \right\} e^{in\chi} \varphi(\chi) \, d\chi \]

if \(x \geq 0 \)

i.e. right travelling/decaying waves (real/complex branches)

\[H_n(kr)e^{in\theta} = \frac{(-i)^n}{\pi} \left\{ \int_{\frac{\pi}{2}}^{3\pi/2} + \int_{3\pi/2}^{\infty} + \int_{3\pi/2}^{\pi/2 + i\infty} \right\} e^{in\chi} \varphi(\chi) \, d\chi \]

if \(x \leq 0 \)

i.e. left travelling/decaying waves (real/complex branches)
Decompose geometry

\[d \]
Single cylinder

\[\phi_{\text{inc}}^- = \int_{-\frac{\pi}{2} + i\infty}^{\frac{\pi}{2} - i\infty} c_-(\chi)\varphi(\chi) \, d\chi \]
\[\phi_{\text{sca}}^- = \int_{\frac{\pi}{2} + i\infty}^{\frac{3\pi}{2} - i\infty} b_-(\chi)\varphi(\chi) \, d\chi \]
\[\phi_{\text{sca}}^+ = \int_{-\frac{\pi}{2} + i\infty}^{\frac{\pi}{2} - i\infty} b_+(\chi)\varphi(\chi) \, d\chi \]
\[\phi_{\text{inc}}^+ = \int_{\frac{\pi}{2} + i\infty}^{\frac{3\pi}{2} - i\infty} c_+(\chi)\varphi(\chi) \, d\chi \]

- \(c_\pm(\chi) \) are incident amplitude functions
- \(b_\pm(\chi) \) are scattered amplitude functions
Single slab

- Introduce scattering kernels R and T:

 $$b_-(\chi) = \int_{-\frac{\pi}{2} + i\infty}^{\frac{\pi}{2} - i\infty} R(\chi|\psi)c_-(\psi) \, d\psi + \int_{\frac{\pi}{2} + i\infty}^{\frac{3\pi}{2} - i\infty} T(\chi|\psi)c_+(\psi) \, d\psi$$

 $$b_+(\chi) = \int_{-\frac{\pi}{2} + i\infty}^{\frac{\pi}{2} - i\infty} T(\chi|\psi)c_-(\psi) \, d\psi + \int_{\frac{\pi}{2} + i\infty}^{\frac{3\pi}{2} - i\infty} R(\chi|\psi)c_+(\psi) \, d\psi$$

- Truncate complex branches and sample (discretise) χ-space. Gives array expressions:

 $$b_- = Rc_- + Tc_+ \quad \text{and} \quad b_+ = Tc_- + Rc_+$$

- Associated transfer matrix (left-to-right map)

 $$P = \begin{pmatrix} T - RT^{-1}R & RT^{-1} \\ -T^{-1}R & T^{-1} \end{pmatrix}$$

 \rightarrow calculating transfer matrix \equiv solving problem.
Spectrum of transfer matrix

Rayleigh-Bloch mode

Eigenvalues

|Eigenfunction|

\[e^{iQ^{RB}d} \]

\[\text{Re}(\chi)/\pi - \text{Im}(\chi) \]

rightward

leftward
Spectrum of transfer matrix

Forced mode

| Eigenvalues | | Eigenfunction |
|-------------|-----------------|
| $e^{ikd\cos(0)}$ | | rightward, leftward |

Graphs showing eigenvalues and eigenfunctions.
Summary of new approach

Strengths
- Solving for infinite, semi-infinite and finite arrays requires linear algebra only.
- Straightforward to incorporate disorder

\[P_{1,N} = P_N P_{N-1} \ldots P_1. \]

- Bounded system size (independent of num. of cylinders).

Weaknesses
- Relies on discretisation and truncation.
- Involves exponentially growing/decaying terms.
Wave localisation

- Appears in all (?) branches on wave science.
- Disorder can localise waves in space without dissipation.
- Manifest as exponential attenuation of wave amplitude.
- Due to interference between scattered waves.
- Attenuation rate depends on frequency and medium properties.

\[\log_{10} |\text{amplitude}| \]

Distance
Positional disorder damps resonance

Introduce positional disorder

Perturbations chosen randomly.

$|\epsilon_n| \in \mathcal{U}(0, \epsilon)$ for prescribed ϵ.

Max Load

$\psi = 0$

$N = 100$

$d/a = 4$

$\epsilon = 0; \epsilon = 0.1; \epsilon = 0.2; \epsilon = 0.4$
Are Rayleigh-Bloch waves localised?

Question
- Does positional disorder localise Rayleigh-Bloch waves?
 → Is this the process that damps the resonant loads?

Idea
- Excite motions with Rayleigh-Bloch waves rather than plane incident wave.
- Assume Rayleigh-Bloch wave modes dominate.
 → Positional disorder expected to perturb RB modes.
- Extract Rayleigh-Bloch wavenumber $Q_{RB}(\epsilon)$.
 → $Q_{RB}(\epsilon) \in \mathbb{C}$ implies localisation.

Problem
- Can’t excite rightward/leftward travelling RB wave only.
Are Rayleigh-Bloch waves localised?

Question
- Does positional disorder localise Rayleigh-Bloch waves?
 → Is this the process that damps the resonant loads?

Idea
- Excite motions with Rayleigh-Bloch waves rather than plane incident wave.
- Assume Rayleigh-Bloch wave modes dominate.
 → Positional disorder expected to perturb RB modes.
- Extract Rayleigh-Bloch wavenumber $Q^{RB}(\epsilon)$.
 → $Q^{RB}(\epsilon) \in \mathbb{C}$ implies localisation.

Problem
- Can’t excite rightward/leftward travelling RB wave only.
Are Rayleigh-Bloch waves localised?

Question
- Does positional disorder localise Rayleigh-Bloch waves?
 → Is this the process that damps the resonant loads?

Idea
- Excite motions with Rayleigh-Bloch waves rather than plane incident wave.
- Assume Rayleigh-Bloch wave modes dominate.
 → Positional disorder expected to perturb RB modes.
- Extract Rayleigh-Bloch wavenumber $Q_{RB}(\epsilon)$.
 → $Q_{RB}(\epsilon) \in \mathbb{C}$ implies localisation.

Problem
- Can’t excite rightward/leftward travelling RB wave only.
Are Rayleigh-Bloch waves localised?

Method

1. Solve 2 problems:
 1. With forward RB incident wave from left of array.
 2. With backward RB incident wave from right of array.

2. Use ansatz for amplitude spectra

\[
\begin{pmatrix}
 c_n \\
 b_n
\end{pmatrix}
\rightarrow
\begin{pmatrix}
 c_n \\
 b_n
\end{pmatrix}
= \alpha_+ e^{iQ_{RB} n} v_{RB}^+ + \alpha_- e^{iQ_{RB} (N+1-n)} v_{RB}^- ,
\]

through the array \(n = 0, \ldots, N \).

3. Combine solutions to separate rightward and leftward modes.
Example results: no disorder

\(kd = 2.7814; \; d/a = 4; \; N = 100; \; \epsilon = 0 \)

\[\pm Q^{RB} d \approx \pm 3.104 \pm 0.001i \quad (Q^{RB} d = 3.11003) \]
Example results: with disorder

\[kd = 2.7814; \ d/a = 4; \ N = 100; \ \epsilon = 0.2 \]

\[Q^{\text{RB}} d \approx 3.012 + 0.019i \]

\[-Q^{\text{RB}} d \approx -2.699 - 0.022i \]
Example results: ensemble runs

$\varepsilon = 0.2$; ensemble size 500

$\text{Re}(Q^{RB}d) \approx \pm 2.73$

$\text{Im}(Q^{RB}d) \approx \pm 0.017$
Localisation of Rayleigh-Bloch waves…
Evidence of this.

…and stability of resonant loads on arrays of bottom mounted cylinders with respect to positional disorder
Disorder damps/eliminates resonance.

Still to do
Make the link undeniable.
University of Adelaide
Sunday 6th – Wednesday 9th December 2015