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Abstract

A wave-ice interaction model for the marginal ice zone (MIZ) is reported
that calculates the attenuation of ocean surface waves by sea ice and the
concomitant breaking of the ice into smaller floes by the waves. Physical
issues are highlighted that must be considered when ice breakage and wave
attenuation are embedded in a numerical wave model or an ice/ocean model.

The theoretical foundations of the model are introduced in this paper,
forming the first of a two-part series. The wave spectrum is transported
through the ice-covered ocean according to the wave energy balance equation,
which includes a term to parameterize the wave dissipation that arises from
the presence of the ice cover. The rate of attenuation is calculated using a
thin elastic plate scattering model and a probabilistic approach is used to
derive a breaking criterion in terms of the significant strain. This determines
if the local wave field is sufficient to break the ice cover. An estimate of the
maximum allowable floe size when ice breakage occurs is used as a parameter
in a floe size distribution model, and the MIZ is defined in the model as the
area of broken ice cover. Key uncertainties in the model are discussed.
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1. Introduction1

Access to the seasonally ice-covered seas is increasing due to the impact of2

climate change (see, e.g., Stephenson et al., 2011) and commercial activities3

there are proliferating as a result. High precision forecasts of these regions4

are therefore in great demand. This paper and its companion (referred to as5

Part 2, Williams et al., submitted, ) is a step towards making those forecasts6

as accurate as practicable, by including additional physics that is currently7

absent in today’s ice/ocean models.8

Improved spatial resolution has significantly enhanced how models rep-9

resent the mean sea state and its variability, but it has also highlighted a10

number of problems that have previously remained hidden. One of them11

concerns the role of surface gravity waves in shaping the so-called marginal12

ice zone (MIZ), an important region between the open ocean and the inte-13

rior pack ice where intense coupling between waves, sea ice, ocean and the14

atmosphere occurs. The MIZ is identified visually as a collection of relatively15

small floes. Surface waves are the main agent responsible for ice fragmenta-16

tion and, depending upon wave and sea ice properties, they can propagate17

long distances into the ice field and still contribute to fracture. Indeed,18

Prinsenberg and Peterson (2011) recorded flexural failure induced by swell19

propagating within multiyear pack ice during the summer of 2009, even at20

very large distances from the ice edge in the Beaufort Sea. (Asplin et al.,21

2012, further analyzed this event.) While the local sea ice there qualified as22

being heavily decayed by melting (Barber et al., 2009), and thus more frag-23

ile, these observations suggest that such events could occur more frequently24

deep within the ice pack in a warmer Arctic that is no longer protected by a25

durable, extensive shield of sea ice.26

Interactions between ocean waves and sea ice occur on small to medium27

scales, but they have a profound effect on the large-scale dynamics and ther-28

modynamics of the sea ice. On a large scale the ice cover deforms in response29

to stresses imposed by winds and currents. It is customary to model pack ice30

as a uniform viscous-plastic (VP) material (Hibler, 1979; Hunke and Dukow-31

icz, 1997), but alternatives such as the elasto-brittle rheology of Girard et al.32

(2010) have been proposed to account for the discrepancies in spatial and33
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temporal scalings of ice deformations between VP model predictions and ob-34

servations (Rampal et al., 2008; Girard et al., 2009). These models, however,35

function best when the sea ice is highly compact and sustains large internal36

stresses with deformation primarily along failure lines.37

In contrast, floe sizes in the MIZ are generally smaller due to wave-induced38

ice breakage and the ice cover is therefore normally less compact, internal39

stresses are less important than other forcing because the ice floes are freer40

to move laterally, and deformations occur more fluently compared to the41

plastic-like, discontinuous deformation of the compact central ice pack. In42

this regime, internal stresses arise more from floe-floe contact forces than43

from any connate constitutive relation that embodies the behaviour of sea44

ice at large scales. Evidently, a model of the MIZ requires knowledge of45

how waves control the floe size distribution (FSD). Recognizing this, Shen46

et al. (1986) and Feltham (2005) have proposed granular-type rheologies for47

the MIZ that contain an explicit dependence on floe size, while others have48

presented direct numerical simulations of the MIZ using granular models with49

either a single floe diameter (e.g. Shen and Sankaran, 2004; Herman, 2011),50

or with floe diameters sampled from a power-law type FSD (Herman, 2013).51

Parameterizations for floe size-dependent thermodynamical processes have52

also been developed (Steele et al., 1989; Steele, 1992).53

The distance over which waves induce the sea ice to break, i.e. the width54

of the MIZ, is controlled by exponential attenuation of the waves imposed55

by the presence of ice-cover. The rate of wave attenuation depends on wave56

period and the properties of the ice cover (Squire and Moore, 1980; Wadhams57

et al., 1988). Wave attenuation is modeled using multiple wave scattering58

theory or by models in which the ice cover is a viscous fluid or a viscoelastic59

material. In scattering models, wave energy is reduced with distance trav-60

eled into the ice-covered ocean by an accumulation of the partial reflections61

that occur when a wave encounters a floe edge (Bennetts and Squire, 2012b).62

Scattering models are hence strongly dependent on the FSD. In viscous mod-63

els (e.g. Weber, 1987; Keller, 1998; Wang and Shen, 2011a) wave energy is64

lost to viscous dissipation, so these models are essentially independent of the65

FSD. We will use an attenuation model that includes both multiple wave66

scattering and viscous dissipation of wave energy. This means that there is a67

feedback between the FSD and wave attenuation, since the amount of break-68

ing depends on how much incoming waves are attenuated, and the amount69

of scattering depends on how much breaking there is.70

The notion and importance of integrating wave-ice interactions into an71
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ice/ocean model is not new; indeed it was broached by the third author (VAS)72

more than two decades ago. Since then, several authors have presented nu-73

merical models for transporting wave energy into ice-covered fluids. Masson74

and LeBlond (1989) were the first to incorporate the effects of ice into the75

wave energy transport/balance equation that had previously been only used76

to model waves in open water (Gelci et al., 1957; Hasselmann, 1960; WAMDI77

Group, 1988; Ardhuin et al., 2010). Masson and LeBlond (1989) studied the78

evolution of the wave spectrum with time and distance into the ice and their79

theory was used subsequently by Perrie and Hu (1996) to compare the at-80

tenuation occurring in the ice field with experimental data. Meylan et al.81

(1997) derived a similar transport equation to that of Masson and LeBlond82

(1989) using the work of Howells (1960), and concentrated on the evolution83

of the directional spectrum. While, like us, they neglected non-linearity and84

the effects of wind and dissipation due to wave breaking, they improved the85

floe model by representing the ice as a thin elastic plate rather than as a86

rigid body. Doble and Bidlot (submitted) have also recently extended the87

operational wave model WAM into the ice in the Weddell Sea, Antarctica,88

using the attenuation model of Kohout and Meylan (2008). While this model89

does not allow for directional scattering, it does include the usual open-water90

sources of wave generation and dissipation in the same way that Masson and91

LeBlond (1989) and Perrie and Hu (1996) did.92

The above papers give the framework and demonstrate some implementa-93

tions of wave energy transport into the sea ice, but all neglect ice breakage.94

In fact, it is only recently that this effect was included by Dumont et al.95

(2011) (hereafter referred to as DKB) in a wave transport problem. Previ-96

ous papers modeling ice fracture are those by Langhorne et al. (2001) and97

Vaughan and Squire (2011). However, those authors only looked at general98

properties of the ice cover, such as the lifetimes of ice sheets and the width99

of the MIZ. The method used involved modeling the attenuation of an in-100

cident wave spectrum and defining probabilistic breaking criteria to decide101

when the strains in the ice would exceed a breaking strain. The model of102

DKB provides a fuller description of the resulting ice cover: it estimates the103

spatial variation of floe sizes throughout the entire region where breaking oc-104

curs and also allows the temporal evolution to be investigated. In addition,105

it considers the coupling between the breaking and the transport of wave106

energy.107

Although the DKB model is one-dimensional, i.e. it only considers a tran-108

sect of the ocean, it is theoretically generalizable to include the second hori-109
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zontal dimension. Before this geometrical restriction is tackled, however, im-110

portant themes have been identified for discussion and investigation, which is111

the purpose of this paper. Firstly, we put the work of DKB into the context112

of previous work on modeling wave energy in ice (Masson and LeBlond, 1989;113

Perrie and Hu, 1996; Meylan and Masson, 2006) and we correct their interpre-114

tation of the spectral density function. Secondly, we revise the floe-breaking115

criteria based on monochromatic wave amplitudes employed by DKB, and116

propose one that is based on wave statistics instead. Numerical issues, sen-117

sitivity analyses and model results are reserved until Part 2.118

2. Description of the waves-in-ice model119

2.1. Overview120

Figure B.1 shows the flow of information into and out of the waves-in-ice121

model (WIM), whose three components, namely advection, attenuation and122

ice breakage, are discussed in more detail in §3. We briefly describe their123

relationship to the inputs and outputs here.124

The advection and attenuation steps depend on the group velocity, cg,125

and the attenuation coefficient, α̂. Both cg and α̂ depend on frequency in126

addition to the ice properties. The advection and attenuation steps describe127

how the wave energy is transported into the ice-covered ocean. The WIM128

therefore extends contemporary external wave models (EWMs, e.g. WAM,129

WAVEWATCH III), which typically do not operate in ice-covered oceans.130

The presence of waves in ice-covered oceans causes ice breakage to occur in131

the MIZ, thereby altering the local FSD.132

The outputs will, of course, have follow-on effects on the ice properties133

when they are fed back into the ice-ocean model. For instance, we use the134

FSD to distinguish between interior pack ice and the MIZ. Consequently, the135

FSD determines which ice rheology applies to different areas and thus how136

the ice drifts. It can also be used to change the thermodynamics of the ice137

by increasing melting or freezing due to the extra surface area exposed to138

the air and water (Steele, 1992).139

Another important follow-on/coupling effect is the momentum/energy ex-140

change between the waves, the ocean and the atmosphere. Even without the141

complicating presence of sea ice, the question of how to couple ocean mod-142

els to the wave field is not yet resolved (e.g. Babanin et al., 2009; Ardhuin143

et al., 2008). With attendant sea ice as well, wave attenuation occurs which144

we include in our model by considering two processes. Part of the energy145
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lost by the waves as they travel into an ice field is attributed to scattering.146

In our model the scattering process is conservative and so energy lost in this147

way must be reflected back into the open ocean. The proportion of reflected148

energy can be calculated. The remaining energy loss is parameterized in the149

model by adding a damping pressure, which resists particle motion at the150

ice-water interface (see Appendix A). The actual mechanisms responsible151

for this energy loss are poorly understood and inadequately parameterized152

at present, and further investigation will be required to balance momen-153

tum/energy in a fully coupled model. Notwithstanding, it is important to154

include damping in the WIM to accurately predict the distance waves travel155

into the ice-covered ocean, and hence the region of ice broken by the waves,156

i.e. the width of the MIZ.157

2.2. Inputs and outputs158

The inputs to the WIM are the ice properties, the incident wave field and159

the initial FSD. Technically the FSD is also an ice property, but we treat it160

separately due to the special role it plays in the WIM.161

The ice properties are all considered to vary spatially but not to vary in162

time. The ice concentration (c) and thickness (h) are standard variables of163

ice/ocean models, and so estimates for them can be easily obtained. How-164

ever, the effective Young’s modulus (Y ∗), Poisson’s ratio (ν) and breaking165

strain (εc) are non-standard and must be estimated (see §4.3). A value for166

the damping coefficient Γ, which is included to increase the attenuation of167

long waves as this is underpredicted by conservative scattering theory, is ex-168

tracted from the attenuation measurements of Squire and Moore (1980) (see169

Appendix A and §4.2).170

The wave energy is described by the spectral density function (SDF)171

S(ω, x, t), where ω = 2π/T is the angular frequency and T is the wave172

period. (For brevity, the SDF is sometimes written S = S(ω), taking the173

spatial (x) and temporal (t) dependencies to be implicit.) The wave spectrum174

may be defined either in the open ocean or within the sea ice, after having175

undergone some attenuation. However, most EWMs only predict S inside176

a region known as a wave mask, which currently stops at a conservative177

distance from the ice edge. If x = 0 is the edge of the wave mask, the EWM178

provides the initial boundary condition for the WIM, S(ω, 0, t) = S0(ω, t),179

where S0 is known. The WIM advects this initial spectrum across the gap180

between the wave mask and the ice mask, and then into the ice-covered ocean.181
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The wave spectrum is advected according to the energy transport equations182

in §3.1—numerical details are given in Part 2.183

The FSD is characterized by two spatially varying floe length parameters,184

Dmax(x, t) and 〈D〉(x, t), which also evolve with time. These are the max-185

imum floe length and average floe length, respectively. The initial FSD is186

generally unknown. In our experiments we assume that prior to wave-induced187

ice breakage all floe lengths have a large value (e.g. 500m; the precise value188

turns out to be relatively unimportant). After the waves have traveled into189

the ice and caused ice breakage, the FSD is parameterized as in §4.1190

3. Model components191

3.1. Advection and attenuation192

The waves are advected according the energy balance equation, namely193

1

cg
DtS(ω; x, t) = Rin −Rice − Rother − Rnl, (1)

(Masson and LeBlond, 1989; Meylan and Masson, 2006; Ardhuin et al., 2010),194

where cg is the group velocity andDt ≡ (∂t+cg∂x). The source terms Rin, Rice195

and Rother represent respectively the wind energy input, rates of energy loss to196

(or due to) the ice and the total of all other dissipation sources (e.g. friction at197

the bottom of the sea, losses from wave breaking or white-capping, Ardhuin198

et al., 2010). These are all quasi-linear in S. The Rnl term incorporates fully199

non-linear energy exchanges between frequencies (Hasselmann, 1962, 1963).200

For the WIM, we set Rother = Rnl = 0 and Rice = α̂S, i.e.201

1

cg
DtS(ω; x, t) = −α̂(ω, c, h, 〈D〉)S(ω; x, t). (2)

The quantity α̂ is the dimensional attenuation coefficient, given by202

α̂ =
αc

〈D〉 , (3)

where α is the non-dimensional attenuation coefficient, i.e. the (average)203

amount of attenuation per individual floe, which is a function of ice thick-204

ness and wave period. The definition Rice = α̂S does not allow transfer of205

energy between directions (via diffraction by ice floes), as done by Masson206

and LeBlond (1989), Perrie and Hu (1996), and Meylan et al. (1997). This207

is a necessary limitation of the one-dimensional numerical model outlined in208
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Part 2. Rice is quasi-linear since an S that is sufficiently large to cause break-209

ing lowers the average floe size 〈D〉 and subsequently increases α̂, according210

to (3).211

The effects of neglecting Rother and Rnl are not clear. They may be212

important in moving the energy across the gap between the wave and ice213

masks, although we note that as the resolution of the EWMs increases, this214

will become less of an issue. It is difficult to say how much effect these215

terms will have once the waves are in the ice-covered ocean, or how they216

should change to represent the different environment there. Masson and217

LeBlond (1989), Perrie and Hu (1996) and Doble and Bidlot (submitted)218

assumed some of the effects (like wind generation) were proportional to the219

open water fraction, and that Rnl was the same in the ice-covered ocean as in220

open water. (Polnikov and Lavrenov, 2007, recently confirmed the validity221

of this last assumption.) We note that by including wind generation in the222

ice, Perrie and Hu (1996) were able to reproduce (qualitatively at least) the223

observed ‘rollover’ in the effective attenuation coefficient. That is, instead of224

attenuation increasing monotonically with frequency, it reaches a maximum225

value before starting to drop again.226

The operator Dt is the material derivative, or the time derivative in a227

reference frame moving with the wave (the Lagrangian reference frame) at228

the group velocity cg. We can also reconfigure the above problem, in between229

breaking events, in the Lagrangian frame, as230

dx

dt
= cg(ω, x, t∗), (4a)

d

dx
S(ω; x, t) = −α̂(ω; x, t∗, S∗)S(ω; x, t), (4b)

where t∗ is the last time ice breakage occurred at x, and S∗(ω, x) = S(ω; x, t∗).231

Thus we have separated the problem into an advection problem and an at-232

tenuation one, and in our numerical scheme presented in Part 2, we solve (2)233

by alternately advecting and attenuating.234

3.2. Ice breakage235

We take a probabilistic approach to define a criterion for ice breakage.236

It is therefore helpful to revise some relationships between the SDF (S) and237

different wave statistics, before defining the breaking criterion itself.238
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3.2.1. Wave energy and statistics239

We assume that the sea surface elevation, η, follows a Gaussian distribu-240

tion, and neglect non-linear effects that cause slight asymmetry (Cartwright241

and Longuet-Higgins, 1956; Vaughan and Squire, 2011). The mean square242

sea surface elevation (vertical displacement from the mean water level), or the243

variance in the position of a water particle at the sea surface, 〈η2〉 = m0[η],244

can be obtained from S via the formula245

mn[η] =

∫

∞

0

ωnS(ω)dω, (5)

(WMO, 1998). (We will also use the second spectral moment, m2, later on.)246

The significant wave height is defined by Hs = 4
√

m0[η].247

Wave heights generally follow a Rayleigh distribution, for which the prob-248

ability of a wave amplitude A exceeding a certain value Ac is approximately249

P(A > Ac) = exp
(

−A2
c/〈A2〉

)

, (6)

(Longuet-Higgins, 1952, 1980), where 〈A2〉 denotes the mean square ampli-250

tude. If the wave spectrum has a narrow bandwidth and non-linear effects251

are negligible (low wave steepness), then 〈A2〉 = 2m0[η], so252

P(A > Ac) = exp
(

−A2
c/2m0[η]

)

. (7)

The mean square displacement of the ice is approximately 〈η2ice〉 = m0[ηice],253

where254

mn[ηice] =

∫

∞

0

ωnS(ω)W 2(ω)dω. (8)

Here W (ω) ≈ kice|T |/k, where T is the transmission coefficient for a wave255

traveling from water into ice (e.g. Williams and Porter, 2009), represents the256

amplitude response at each frequency of an ice floe to forcing from a wave of257

unit amplitude in the water surrounding it. The wave number k(ω) = ω2/g is258

the usual deep water propagating wave number, while kice(ω) is the positive259

real root of (A.7), the dispersion relation for a section of ice-covered ocean.260

The probability of Aice exceeding a certain value Ac is261

P(Aice > Ac) = exp(−A2
c/2m0[ηice]), (9)

which is analogous to equation (7). In addition, we can also estimate the262

number of waves we expect in a given time interval ∆t, NW, as263

NW =
∆t

2π

√

m2[ηice]

m0[ηice]
, (10)
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(WMO, 1998). (Note that factors in equations 7 and 10 have been corrected264

from their counterparts in Cartwright and Longuet-Higgins, 1956.) More265

precisely, this is the number of times we can expect a particle to cross its266

point of mean displacement in a downward direction. The quantity NW also267

defines a representative wave period268

TW =
∆t

NW

= 2π

√

m0[ηice]

m2[ηice]
, (11)

for the spectrum S at a given point and a representative (ice-coupled) wave-269

length of λW = 2π/kW, where kW = kice(2π/Tω). The symbol TW is some-270

times written Tm0,2
but we use the former to avoid clutter in our equations.271

Also note the factor of 2π is necessary since we define the moments mn in272

terms of ω, rather than the frequency 1/T .273

We can also define analogous quantities for the strain, which for a thin274

elastic plate is defined as ε = (h/2)∂2
xηice. Therefore, its mean square value275

is 〈ε2〉 = m0[ε], where276

mn[ε] =

∫

∞

0

ωnS(ω)E2(ω)dω, E(ω) =
h

2
k2
iceW (ω). (12)

The latter is the approximate strain amplitude per metre of water displace-277

ment amplitude for a monochromatic wave of the form ηice = Aice cos(kicex−278

ωt) (with A = 1m, so Aice = W m). It does not account for non-linear279

interactions between frequencies, which could potentially be important ap-280

proaching an ice breakage event. For now we assume brittle failure of the ice,281

so that a linear stress-strain law applies right up to the point where the ice282

breaks. If we now define the significant strain amplitude to be Es = 2
√

m0[ε],283

which is two standard deviations in strain, then the probability of the maxi-284

mum strain from a passing wave EW exceeding a breaking strain εc is285

Pε = P(EW > εc) = exp(−ε2c/2m0[ε]) = exp(−2ε2c/E
2
s ). (13)

3.2.2. Breaking criterion286

To determine whether the ice will be broken by waves, we define a critical287

probability threshold Pc such that if Pε > Pc the ice will break. If it breaks,288

the maximum floe size is set to Dmax = max(λW/2, Dmin) where Dmin is the289

size below which waves are not significantly attenuated and is set to 20m290

(Kohout, 2008). These two quantities Dmin and Dmax determine the FSD291

(see §4.1).292
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From (13), the criterion Pε > Pc can be written in terms of Es, εc and Pc293

as294

Es > Ec = εc

√

−2
/

log
(

Pc

)

. (14)

Thus the single parameter Ec combines the effects of both εc and Pc. Note295

that Pc = e−2 ≈ 0.14 corresponds to the criterion of Langhorne et al. (2001),296

i.e. Es > εc, and the upper limit tested by Vaughan and Squire (2011).297

The default value for Pc that will be used in our numerical results is based298

on the condition for a narrow spectrum. For a monochromatic wave that299

produces a strain amplitude EW, the breaking condition would be EW >300

εc. Therefore, since 〈ε2〉 = E2
W/2 in that case, the breaking condition is301

Es > εc
√
2. This corresponds to choosing Pc = e−1 ≈ 0.37 in (14). We302

note that this value is easily changed in our model when better observational303

information becomes available.304

4. Model sub-components305

4.1. Floe size distribution306

Prior to 2006, numerous researchers (e.g. Weeks et al., 1980; Rothrock307

and Thorndike, 1984; Matsushita, 1985; Holt and Martin, 2001; Toyota and308

Enomoto, 2002) made observations of floe sizes in Arctic areas. It was found309

that the FSD generally obeyed a power-law (Pareto) distribution, where the310

probability of finding a floe diameter D greater than D∗ is given by311

P(D > D∗) = P (D) = (Dmin/D∗)
γ for D > Dmin, (15)

where Dmin is the minimum floe diameter. The expected value of Dn is312

therefore313

〈

Dn
〉

= −
∫

∞

Dmin

Dn∂DP (D)dD =
γ

γ − n
Dn

min.

The fitted exponent γ was usually found to be greater than 2, which implies314

that the expected diameter and area are defined. However, there are problems315

with trying to treat small floes with the above distribution, i.e. if we try to316

let Dmin → 0. Therefore Toyota et al. (2006) investigated the FSD of small317

floes of diameter 1m–1.5 km, using data obtained from the southern Sea of318

Okhotsk. They found that floes smaller than about 40m still obeyed a power319

law, but were best fitted by a smaller value of γ (about 1.15). This regime320

shift was also observed in Antarctica in the late winter of 2006 and 2007 by321

Toyota et al. (2011), based on observations in the northwestern Weddell Sea322
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and off Wilkes Land (around 64◦S, 117◦E) with a helicopter-borne digital323

video camera. Concurrent ice thickness measurements were also made, using324

a helicopter-borne electromagnetic (EM) sensor above the Weddell Sea and a325

video system off Wilkes land. The regime shift was consistent with the value326

Dc =

(

π4Y h3

48ρg(1− ν2)

)1/4

, (16)

which corresponds to the diameter below which flexural failure cannot occur327

(Mellor, 1986).328

Toyota et al. (2011) proposed an explanation of the exponent governing329

the smaller floes in terms of a breaking probability Π, related to γ by330

Π = ξγ−2 or γ = 2 + logξ Π, (17)

where Π is the probability that a floe will break into ξ2 pieces. A similar331

explanation was suggested by Herman (2010), who proposed a generalised332

Lotka-Volterra model for the implementation of breaking. Such models pro-333

duce distributions that are asymptotically like power-law distributions, but334

with better behaviour near D = 0 (i.e. Dmin can be zero).335

Note that the model of Toyota et al. (2011) always predicts γ < 2, so336

other mechanisms are required to explain the exponent for the larger floes337

being greater than 2. Toyota et al. suggested herding with subsequent freez-338

ing together of floes could be one explanation. The simulations of Herman339

(2011) lent credibility to this as they showed that floes tended to group to-340

gether in clusters, and that the diameter of these clusters obeyed power-law341

distributions with exponents often greater than 2 (depending on the concen-342

tration).343

We use the simpler approach of DKB, who restricted themselves to small344

floes and took the FSD to be over the finite interval of Dmin < D < Dmax.345

The distribution inside was based on the ideas and parameters of Toyota346

et al. (2011), deriving a novel formula for the mean floe size 〈D〉. We set347

(as they did), the fixed values of Dmin = 20m, ξ = 2, and Π = 0.9. It348

is important that Dmin is not too small as α̂, as given by (3), will be very349

large when 〈D〉 is small. However, Kohout and Meylan (2008) found that350

floes with lengths less than 20m produced negligible scattering, so this value351

of Dmin is a reasonable choice. It may also be possible to relate Π to our352

breaking probabilities in the future.353
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4.2. Attenuation models354

As discussed in §1, attenuation models based on multiple wave scattering355

are closely linked to the FSD since waves encounter more floe edges after ice356

breakage occurs, and hence more scattering events occur. Viscosity models357

only depend on the concentration and are unaffected by ice breakage. We358

implement an attenuation model in which wave scattering is the dominant359

attenuation mechanism, but we also include additional attenuation provided360

by a particular damping model due to Robinson and Palmer (1990). Ac-361

cordingly, the dimensional and non-dimensional attenuation coefficients are362

written, respectively,363

α = αscat + αvisc and α̂ = α̂scat + α̂visc. (18)

4.2.1. Multiple wave scattering attenuation models364

The multiple scattering model is based on linear wave theory. The model365

predicts the spatial profile of time-harmonic waves in a fluid domain, which366

has a surface that is partially covered by a large number of floes. The floes367

are represented by thin-elastic plates and respond to fluid motion in flexure368

only. The wave number for the ice-covered ocean is kice and for the open369

ocean is k. In general kice 6= k, so scattering is produced by an impedance370

change when a wave moves from the open ocean into a patch of ice-covered371

ocean, or vice versa, at a floe edge.372

Attenuation due to multiple wave scattering by floe edges alone is suffi-373

cient for the present investigation (Bennetts and Squire, 2012b), but exten-374

sions to scattering by other features in the ice cover, e.g. cracks and pressure375

ridges, are possible (see Bennetts and Squire, 2012a).376

The model is confined to two-dimensional transects, i.e. one horizontal di-377

mension and one depth dimension (see Appendix A). It cannot yet account378

for lateral energy leakage or directional evolution of the waves. Attenuation379

models capable of describing these features are being developed (Bennetts380

et al., 2010), but are not yet sufficiently robust to be integrated into the381

WIM. Even with the restriction to only one horizontal dimension, compu-382

tational expense can be large as there is an infinite sum of reflections and383

transmissions of the wave between each pair of adjacent floe edges. In the384

full multiple scattering problem exponential decay is a product of localization385

theory, which relies on positional disorder and requires proper consideration386

of wave phases.387

Reliance on disorder implies the use of an averaging approach. The atten-388

uation coefficient due to multiple wave scattering is hence calculated as an389
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ensemble average of the attenuation rates produced in simulations that are390

randomly selected from prescribed distributions. It is natural to calculate a391

non-dimensional attenuation coefficient, αscat (i.e. per floe), for these types of392

problem, but this is easily mapped onto the dimensional attenuation coeffi-393

cient α̂scat (i.e. per meter) for use in the WIM. The distribution of floes used394

in the model has a large impact on the predicted attenuation and hence the395

width of the MIZ. This will be demonstrated using numerical results below,396

and the underlying reasons will discussed at that point.397

4.2.2. Viscosity-based attenuation models398

Recent model-data comparisons (Perrie and Hu, 1996; Kohout and Mey-399

lan, 2008; Bennetts et al., 2010) have shown that multiple wave scattering400

models give good agreement with data for mid-range periods (6–15 s quoted401

by Kohout and Meylan, 2008). For large periods, however, scattering is402

negligible and other unmodeled dissipative mechanisms are more important,403

although it is unclear which mechanism is dominant in this regime. Plausible404

candidates include secondary creep occurring when flexural strain rates are405

slower, and frictional dissipation at the ice-water interface. While this issue406

remains unresolved, the attenuation of large period waves is modeled here407

with the damped thin elastic plate model of Robinson and Palmer (1990) (see408

Appendix A). It contains a single damping coefficient Γ, which produces a409

drag force that damps particle oscillations at the ice-water interface.410

In practice, we solve the dispersion relation (A.7) and use the imagi-411

nary part of the damped-propagating wavenumber K(ω,Γ) ≈ kice + iδ (see412

Appendix A), and set the viscous attenuation coefficients to be413

αvisc = 2δ〈D〉 and α̂visc = 2δc. (19)

The magnitude of the damping coefficient, Γ, is set using data from the most414

complete single experiment on wave attenuation available at present, that of415

Squire and Moore (1980). More experimental data, with detailed descriptions416

of prevailing ice properties and wave conditions, would help to tune Γ or to417

compare different models of wave dissipation.418

Most other viscosity-based attenuation models take a similar but more419

complicated approach and model the ice as being an incompressible viscous420

fluid or viscoelastic medium of finite thickness, with constitutive relations421

involving tuned viscosity parameters. The attenuation rate from these mod-422

els is also typically predicted by solving a dispersion relation and finding the423

analogous parameter to δ.424
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Weber (1987) assumed that the ice was so viscous that it was in quasi-425

static equilibrium, with pressure and friction balancing each other out. The426

ocean was also given a viscosity which was tuned to roughly agree with427

observations. De Carolis and Desiderio (2002) developed this model further428

by letting the ice viscosity take a finite value. Wang and Shen (2011b) used429

a viscoelastic model for the sea ice, but with the underlying ocean taken to430

be inviscid.431

An associated model in which attenuation is produced by drag due to the432

bottom roughness of floes was proposed by Kohout et al. (2011). This also433

has a drag coefficient which requires tuning. However, it is notable that the434

model of Kohout et al. (2011) does not predict exponential attenuation.435

4.2.3. Comparison of two attenuation models436

FigureB.2 shows comparisons of predictions made by two different ver-437

sions of the attenuation model. The first model considered, denoted A and438

constructed for this paper only, uses a seemingly plausible choice for the dis-439

tributions. The FSD is based on a power law discussed in §4.1, which was ob-440

served for small floes (. 20–40m) in Antarctic locations (Toyota et al., 2011).441

Floe separations are arbitrarily generated from an exponential distribution442

P(G > g) = exp (−g/〈G〉), with 〈G〉 = 〈D〉(c−1 − 1) and in this example the443

ice concentration is c = 0.9, although the discussion applies equally well to444

any concentration. The attenuation coefficient α = αscat (αvisc = 0 for this445

model) is calculated as the average of 100 randomly generated simulations.446

The second model, denoted B, is based on the recent work of Bennetts447

and Squire (2012b). Rather than considering spatial distributions, Bennetts448

and Squire considered the wave phases as uniformly-distributed random vari-449

ables and averaged over all possibilities. They argued that the model is not450

intended as a true replica of the MIZ, so detailed predictions about the ex-451

act distribution of wave phases cannot be relied upon. An assumption of452

uniformity is thus the simplest possible in the absence of a more realistic453

model. In this setting the attenuation coefficient may be calculated ana-454

lytically rather than relying on a numerical approximation. The expression455

for the attenuation coefficient can be simplified further if the floes are as-456

sumed to be long, so that only the reflection produced by a single floe edge457

is required, and the attenuation coefficient due to scattering is then given by458

αscat = −2 log(1−|R|2), where R is the reflection coefficient by the edge of a459

semi-infinite floe of the specified thickness (calculated here using the method460

of Williams and Porter, 2009). Model B is also adapted to include the effect461
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of viscous scattering (for different values of Γ), i.e.462

α ≡ αscat + αvisc = −2 log(1− |R|2) + 2δ〈D〉. (20)

Figures B.2(a, b) show the attenuation coefficients produced by the dif-463

ferent attenuation models, computed for two different ice thicknesses, and464

different values of the viscosity parameter (model B only). Because the B465

curves with Γ = 13Pa sm−1 include an empirical inelastic contribution, they466

produce the greatest attenuation for large periods. As expected from Ap-467

pendix A, the damping is also less pronounced as the thickness increases.468

The value Γ = 13Pa sm−1 was fitted using the attenuation coefficients for469

the three largest periods of Squire and Moore (1980) (see Table 2). They470

were measured for thinner (h ∼ 0.5m) Bering Sea ice, so we used h = 0.5m471

in our tuning procedure.472

Curves corresponding to model A are markedly different from the other473

curves. Due to the small values of average floe length 〈D〉 (in Figure B.2a,474

〈D〉 is approximately 40m, while in Figures B.2b-d it is about 64m), the475

attenuation of large period waves is several orders of magnitude too small,476

which qualitatively contradicts the observations of Squire and Moore (1980)477

mentioned above. There is also some additional fine structure in the atten-478

uation from model A for lower periods. In particular, there is an interval of479

periods between about 6 s and 12 s (the interval moves to higher periods as480

ice thickness increases), where there is much less attenuation than the other481

models. This has a profound effect on the ice breakage that is able to be482

produced by model A, as waves from that range of periods can produce very483

large strains if they remain unattenuated.484

In Figures B.2(c-d), we show the effects of the different attenuation mod-485

els on the signficant wave height Hs and the significant strain Es as they486

travel into an ice field. As a simple example spectrum, we take the initial487

wave spectrum, S0, to be a Bretschneider spectrum, i.e.488

S0(ω) =
1.25H2

s T
5

8πT 4
p

e−1.25(T/Tp)4 , (21)

where T = 2π/ω is the period, Tp is the peak period (7 s in this example).489

Initially Hs = 1m, but in general, after traveling past N floes it and Es are490

given by491

Hs = 4

√

m
(N)
0 [ηice], Es = 2

√

m
(N)
0 [ε], (22)

where492
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m
(N)
0 [ηice] =

∫

S0(ω)W
2(ω)e−α(ω)Ndω, (23a)

m
(N)
0 [ε] =

∫

S0(ω)E
2(ω)e−α(ω)Ndω. (23b)

The significant effect of the FSD on the attenuation model is further493

illustrated in Figures B.2(c-d), which show how both the signficant wave494

height Hs and the significant strain Es decay with N , the number of floes495

that the waves have passed. After only a small number of floes it can be seen496

that Hs and Es for model A (chained curve) are several orders of magnitude497

larger than for the other two curves, which are roughly the same.498

We can also see that for model A, Es remains very close to the approxi-499

mate breaking strain for the range of values of N that are plotted. Both Es500

curves produced by model B drop below Ec after a relatively small number501

of floes. This suggests that the width of the MIZ, LMIZ, will be similarly502

small under either of these models but will be significantly larger for model503

A if strain failure is the main breakage mechanism. In fact, in simulations504

involving model A (not presented), we found that a 450-km transect was505

almost always entirely broken, when the expected range is about 50–200 km.506

We therefore disregard model A for the numerical results presented in Part 2,507

on the basis that the predicted attenuation rates are insufficient to replicate508

what is observed. Note that the power-law FSD model is still used for the509

WIM itself.510

4.3. Ice properties511

Timco and O’Brien (1994) collate and analyse nearly a thousand flexural512

strength measurements conducted by 14 different investigators under a vari-513

ety of conditions and test types, namely, in situ cantilever tests and simple514

beam tests with 3- or 4-point loading, to show that the flexural strength σc515

has the following very simple dependence on brine volume fraction υb:516

σc = σ0 exp (−5.88
√
υb) , (24)

where σ0 = 1.76MPa. This is plotted in Figure B.3(a), and shows a mono-517

tonic decrease from σ0 as υb increases. Brine volume is often a parameter518

in ice-ocean models but, if necessary, it can also be calculated from the ice519

temperature and salinity, using the formula of Frankenstein and Gardner520

(1967).521

Flexural strength tests are normally analyzed by means of Euler-Bernoulli522

beam theory, in which the stress normal to the beam cross section is related523
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to the analogous strain. In principle, therefore, to convert flexural strength524

into a breaking strain εc for a beam of sea ice, all we require is the Young’s525

modulus Y for sea ice.526

In the course of a typical flexural strength test and during the recurring527

cyclic flexure imparted by ocean surface gravity waves, it is expected that the528

sea ice will experience stress levels and rates such that the total recoverable529

strain εT ≈ εi + εd, where εi is the instantaneous elastic strain and εd is530

the delayed elastic (i.e. anelastic) strain, also known as primary, recoverable531

creep. This suggests a variation on the instantaneous elastic Young’s modulus532

Y which allows for delayed elasticity to act, which is often called the effective533

modulus or the strain modulus and that we shall denote by Y ∗.534

Timco and Weeks (2010) report a linear relationship for Y (υb) of the form535

Y = Y0(1−3.51υb), where Y0 ≈ 10GPa is roughly the value for freshwater ice536

at high loading rates. But, whilst increased brine volume leads to a reduction537

in the effective modulus Y ∗, the data are too scattered for an empirical538

relationship for Y ∗(υb) to be expressed. For “average” brine volumes ranging539

from 50 to 100 ppt (υb = 0.05 to 0.1, Frankenstein and Gardner, 1967), this540

suggests Y will reduce to between ∼ 6–8GPa.541

As we have noted above, the effect of brine volume on Y ∗ is more dif-542

ficult to pin down, but we believe the same kind of reduction would not543

be unreasonable. More challenging is determining the effect of anelasticity544

(delayed elasticity) on reducing Y to Y ∗. The mechanisms that achieve this545

power-law primary creep with no microcracking cause relaxation processes546

to occur during cyclical loading, so the rate of loading is important. Few547

data can help us here but Figure 4 of Cole (1998) shows model predictions548

for the effective modulus at four loading frequencies that include those as-549

sociated with surface gravity wave periods, i.e. 10−2–100Hz (or 0.01–1 Hz),550

and, incidentally, the reduction in Y due to total porosity, i.e. air plus brine.551

The latter effects are comparable in magnitude to the reductions in Y given552

above; the effect of rate is about 0.5GPa as wave period is changed from 1 s553

to 10 s, and about 1GPa from 10 s to 100 s. We therefore consider a reduction554

of 1GPa is reasonable in our model, and in summary we use555

Y ∗ = Y0(1− 3.51υb)− 1GPa, (25a)

εc =
σc

Y ∗
. (25b)

The effective Young’s modulus and breaking strain given by equation556

(25) are plotted as functions of brine volume fraction in Figure B.3(b, c).557
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We observe that an appropriate choice of a value for the effective Young’s558

modulus is important from the wave modeling perspective, as the higher Y ∗
559

becomes the more energy is reflected at each floe present and the greater the560

attenuation experienced by the wave train. However, because the same value561

of Y ∗ is used to convert from flexural stress to failure strain, the analysis is562

self-consistent.563

The breaking strain has a minimum value of approximately 4.8 × 10−5
564

when υb = 0.15 (Y ∗ = 3.8GPa). The value is approximately constant for565

υb ∈ [0.1, 0.2]. It shows an increase for both higher and lower brine volumes566

— the less porous ice is predictably stronger, while the more porous ice is567

more compliant so will be able to sustain more bending before breaking. If568

υb = 0.05, εc ≈ 6.5 × 10−5 (Y ∗ = 7.2GPa), while if υb = 0.1, the breaking569

strain drops to εc ≈ 5.0 × 10−5 (Y ∗ = 5.5GPa). Although lower values570

of Y ∗ have been measured in the field, (e.g. by Marchenko et al., 2011, in571

the Svalbard fjords), the temporal and spatial variability of sea ice, and the572

origin and special character of the ice floes in the East Greenland Current,573

suggests it is wiser to use the value for Y ∗ we have deduced, noting that it574

is a straightforward matter to change it.575

The final property we will need to consider in our wave modeling is576

Poisson’s ratio. Langleben and Pounder (1963) determined it to be ν =577

0.295 ± 0.009 from seismic measurements, so in most wave calculations in-578

volving ice (e.g. Fox and Squire, 1991) it is simply taken to be 0.3.579

5. Summary and discussion580

We have set the theoretical foundations of a waves-in-ice model (WIM) in581

this, Part 1 of a two-part series. The WIM will provide the first link between582

wave models, e.g. WAM, WAVEWATCH III, and sea ice models, e.g. CICE,583

LIM. The primary output of the WIM is a floe size distribution (FSD), which584

can be used to define the marginal ice zone (MIZ) as a subregion of the ice585

mask. The FSD will then be available as an input for MIZ-specific dynamic586

and thermodynamic models in future research.587

Wave-ice interactions occurring in an MIZ comprise588

(i) the attenuation of the waves due to the presence of ice cover; and589

(ii) the breaking of the ice cover due to wave motion.590

The WIM proposed in this work includes both components. It is a more591

developed version of the WIM proposed by Dumont et al. (2011), which, to592
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our knowledge, was the first published model to combine attenuation and ice593

breakage.594

We advect the wave spectrum, S, through the ice-covered ocean using595

a modified version of the energy balance equation. We neglected param-596

eterizations of dissipation due to all conventional sources, e.g. winds and597

white-capping, and also non-linear interactions. However, we included a new598

term, Rice = α̂S, which parameterizes dissipation due to the ice cover.599

We used an attenuation model to calculate the attenuation coefficient, α̂,600

which defines the rate of exponential decay of the waves. The multiple wave601

scattering, attenuation model of Bennetts and Squire (2012b) was summa-602

rized. We noted striking differences in the attenuation coefficient when using603

a seemingly plausible power-law FSD in the attenuation model, rather than604

the random wave phase model proposed by Bennetts and Squire (2012b).605

Furthermore, we included viscous damping to simulate the unmodeled at-606

tenuation of large period waves.607

We considered the attenuation coefficient to be a function of wave fre-608

quency and also to depend on the properties of the ice cover, including the609

FSD. The power-law FSD model of Toyota et al. (2011) was used for local re-610

gions of the ice cover in the WIM. We created a link between the FSD model611

and the local wave spectrum by setting the maximum floe size to be half the612

dominant wavelength if the wave spectrum was sufficient to cause the ice to613

break. Breakage would therefore abruply alter the FSD, and consequently614

the attenuation coefficient, in the WIM.615

We outlined a criterion to determine the occurrence of ice breakage. The616

criterion was based on the integrated strains imposed on the ice by the passing617

wave spectrum. We derived a critical strain, which incorporates a critical618

probability and a breaking strain, above which ice breakage was applied.619

In the absence of experimental or theoretical data, the value of the critical620

probability was set according to the limit for monochromatic waves.621

The mechanical properties of the ice cover provide important input pa-622

rameters for the attenuation model and the ice breakage criterion. We for-623

mulated an expression for the breaking strain, by means of a relationship for624

flexural strength due to Timco and O’Brien (1994) using an Euler-Bernoulli625

beam model for the sea ice. Further, we also proposed the use of an effective626

Young’s modulus in this relationship, so that both instantaneous and delayed627

elasticity are incorporated, and derived an expression for this quantity.628

The above summary highlights the presence of uncertainties in the model.629

These are: (i) the viscosity parameter that determines the attenuation of630
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large period waves; (ii) the breaking strain of the ice cover; and (iii) the631

critical probability above which the ice will break. Sensitivity studies are632

therefore required with respect to these quantities, and this forms the kernel633

of the numerical study that follows in Part 2. An additional uncertainty in the634

model is the amount of wave energy lost during ice breakage. Our treatment635

of the energy loss is closely related to the numerical implementation of the636

WIM, and its discussion is therefore contained entirely in Part 2.637

The numerical implementation of the WIM itself is non-trivial and a full638

description of our methods are given in Part 2.639
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Appendix A. Thin elastic plate model with the inclusion of damp-837

ing838

In this appendix we present the physical basis behind the dispersion re-839

lation of Robinson and Palmer (1990) (hereafter denoted RP90), which is840
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derived by adding a damping coefficient to the usual thin elastic plate equa-841

tion. Let z = 0 be the mean position of the ice-water interface and let z = ηice842

be the position of the interface (the z coordinate axis points upwards, and843

the single horizontal coordinate axis, the x-axis, points to the right). We844

assume that ηice is small enough that we can linearise about z = 0. In the845

formulation of RP90, the thin plate equation is modified to:846
(

F∂4
x + ρiceh∂

2
t

)

ηice = P
∣

∣

z=ηice
− Γ∂tηice, (A.1)

where F is the flexural rigidity of the plate, ρice is the ice density, h is the847

ice thickness, Γ is the damping coefficient and P is the water pressure. The848

parameter Γ contributes to a drag pressure (−Γ∂tη) that is proportional to849

the particle velocity—this is usually absent from the thin plate formulation.850

The rigidity is given by F = Y ∗h3/12(1 − ν2), where Y ∗ is the effective851

Young’s Modulus (see §4.3) and ν = 0.3 is the Poisson’s ratio.852

If we assume that the water is inviscid and incompressible and its flow853

is irrotational we can write the fluid particle velocity as u = (u, w)T = ∇φ,854

where ∇ = (∂x, ∂z)
T . The pressure P is related to φ through the linearized855

Bernoulli equation, and φ satisfies Laplace’s equation (incompressibility) and856

the sea floor condition for infinitely deep water:857

P − Patm = −ρ
(

gz + ∂tφ
)

, (A.2a)

∇2φ = 0, (A.2b)

lim
z→−∞

∂zφ(x, z, t) = 0, (A.2c)

where Patm is the atmospheric pressure, ρ = 1025 kgm−3 is the water density858

and g = 9.81m s−2 is the gravitational acceleration. We also need to apply859

a (linearized) kinematic condition at the surface:860

∂tηice = w(x, ηice, t) ≈ w(x, 0) = ∂zφ(x, 0, t). (A.3)

Thus861

∂tP
∣

∣

z=ηice
= −ρ∂t

(

gηice + ∂tφ(x, ηice, t)
)

≈ −ρ
(

g∂z + ∂2
t

)

φ(x, 0, t), (A.4)

which, when combined with the time-derivative of (A.1), implies that862
(

F∂4
x + ρ(g − d∂2

t ) + Γ∂t
)

∂zφ(x, 0, t) = −ρ∂2
t φ(x, 0, t), (A.5)

where d = ρiceh/ρ = 0.9h is the draft of the ice.863
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We now look for harmonic waves that obey (A.3) and (A.5) when the864

water depth is infinite:865

ηice(x, t) = Re
[

Aicee
i(κx−ωt)

]

, (A.6a)

φ(x, z, t) = Re
[

Aice
ω

iκ
ei(κx−ωt)+κz

]

, (A.6b)

where Aice is the amplitude of the ice displacement, ω = 2π/T is the radial866

frequency (T is the wave period), and κ is a complex wavenumber. A non-867

zero amplitude is only possible if κ satisfies the dispersion relation of RP90:868
(

Fκ4 + ρ(g − dω2)− iωΓ
)

κ = ρω2. (A.7)

When Γ = 0, the primary root of interest, which we denote kice, is positive and869

real. For non-zero Γ, we denote the root closest to kice by K(ω,Γ) = k̃ice+iδ,870

where k̃ice, δ > 0. For physical ranges of Γ (Γ . 15Pa sm−1) this is a unique871

choice, and kice = K(ω, 0).872

To give us some idea of the important non-dimensional quantities we can873

let L5 = F/(ρω2), and κ̄ = κL. This turns (A.7) into874
(

κ̄4 + (a− ib)
)

κ̄ = 1, (A.8)

where875

a =
g

Lω2
− d

L
, b =

Γ

ρωL
=

Γ

ρ0.8ω0.6F 0.2
.

The non-dimensional viscosity parameter b, which is O(10−4) for higher fre-876

quencies, but is slightly bigger (O(10−3)) for lower frequencies, measures the877

importance of the damping effects. As well as decreasing with frequency, it878

also decreases with thickness (h) through the rigidity F .879

Some asymptotic analysis shows that:880

K(ω,Γ) = kice

(

1 +
ib(kiceL)

4(kiceL)5 + 1

)

+O(b2),

so effectively k̃ice ≈ kice. Also δ is approximately O(10−8m−1) for higher881

frequencies but increases to O(10−6m−1) for smaller frequencies. Therefore882

the effects of Γ can be neglected for small scale calculations such as the883

estimation of the strain in a single floe, or the reflection by a single ice edge.884

However, it is important in large scale calculations such as the attenuation885

by a large number of floes, so δ needs to be included to produce enough886

attenuation of long waves (Bennetts and Squire, 2012b).887
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Appendix B. The WIM of Dumont et al. (2011)888

Appendix B.1. Amplitude spectrum889

Dumont et al. (2011) (hereafter called DKB) considered small frequency890

intervals, ∆ω wide, and set891

1

2
A

2(ω) =

∫ ω+ 1
2
∆ω

ω− 1
2
∆ω

S(ω′)dω′ ≈ ∆ωS(ω). (B.1)

This was based on the arguments that wave groups around the central fre-892

quency would separate as they traveled into the ice due to dispersion, and893

so the different wave groups would not interfere with each other. It was894

partly done in response to the numerical issue that ocean spectra produced895

by external wave models, if they weren’t given parametrically, would only be896

given at discrete values.897

However, approximation (B.1) has the fundamental flaw that, as the fre-898

quency resolution tends to zero, ∆ω → 0, the amplitude also tends to zero,899

A → 0. Therefore, as a rough approximation, ∆ω was replaced by ω, i.e.900

S =
1

2ω
A

2. (B.2)

This clearly causes problems when ω is significantly higher than ∆ω. How-901

ever, we resolve the issue of the frequency resolution by considering numerical902

integrals of S which actually converge better as ∆ω → 0.903

Appendix B.2. Energy transport904

Substituting (B.2) into the energy balance equation for waves in the MIZ905

(2) gives906

1

cg
DtA = − α̂

2
A . (B.3)

This is the continuous version of the equation used by DKB to advect wave907

energy, so the two equations are equivalent. However, advecting S is more908

natural since it adds linearly, unlike A .909

Appendix B.3. Breaking criterion910

The breaking criterion used by DKB in connection with the amplitude911

spectrum (B.2) was that the ice would break if A (ω) > Ac(ω) where Ac912

was a critical wave amplitude, applied for any of the frequencies in the range913

appropriate to water waves. As mentioned above, this assumed wave groups914
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would separate in the ice, and does not allow for the possibility of constructive915

interference between waves of different frequencies. By integrating S over all916

frequency space when determining the breaking probability of §3.2, we allow917

for the latter possibility implicitly.918

The value used for the critical amplitude Ac was Ac = min{Aε
c, A

σ
c}. The919

condition A (ω) > Aε
c represents one standard deviation in the strain for the920

wave group centered at frequency ω being greater than their breaking strain921

εc, while the condition A (ω) > Aσ
c represents one standard deviation in the922

stress being greater than the flexural strength σc. Our breaking criterion ap-923

plies the strain criterion in a different way (in order to allow for constructive924

interference, as discussed above), but we do not apply a stress criterion.925

The method used by DKB to estimate the stress was intended to allow for926

the effects of cavitation and wetting. During cavitation, the ice floe does not927

follow the wave profile exactly and potentially causes a strong localized stress928

on the floe. However, the criterion predicts greater stress when the waves are929

longer than when they are shorter. This is unphysical in this regime as ice930

is relatively unaffected by long waves because of their low slope/curvature,931

normally small amplitude, and the low velocities they force surface objects to932

move at. As long waves also experience the least attenuation in the presence933

of ice cover, the stress criterion results in an unphysically wide MIZ. As a934

result, our parameterization does not invoke the stress criterion of DKB.935

However, a different method of allowing for cavitation and wetting could still936

be considered in the future.937

We also note that Marchenko et al. (2011) derived an ice breakage crite-938

rion based on measured sea floor water pressure during an observed breakage939

event. Breakage was attributed to an increase in wave amplitudes (and hence940

stress and strain) produced by shoaling, so that the ice would break if the941

water depth H was less than a certain critical depth. This critical depth942

agrees with the one calculated using our method (adjusted for shallow wa-943

ter instead of infinitely deep water) to within reasonable uncertainty limits944

(∼ 11%).945

Appendix B.3.1. Fatigue946

The discussion of the anelastic response of sea ice in §4.3 does not pre-947

clude the possibility that floes can gradually fatigue due to repeated bending948

imposed by passing waves. Fatigue, whether of the high-cycle type associated949

with elastic behavior and growth of microscopic cracks that eventually reach950

a critical size for fracture, or low cycle fatigue where the stress is sufficient for951
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plastic deformation, is characterized by cumulative damage such that mate-952

rials do not recover when rested, i.e. they behave inelastically as opposed to953

anelastically. Accordingly, the effective modulus approach described above,954

which includes only fully recoverable elastic deformation, cannot accommo-955

date fatigue. There is, however, a suggestion (Langhorne et al., 1998) that956

an endurance limit, i.e. a value of stress for which a material will retain its957

integrity even when subjected to an infinite number of load cycles, exists for958

sea ice. This value, 0.6, was determined on stationary shore fast sea ice in959

McMurdo Sound, Antarctica. DKB therefore reduced their flexural strength960

by a factor of 0.6. We, on the other hand, have chosen not to do this be-961

cause (i) the ice and wave conditions change rapidly in the MIZ so, while a962

stress greater than 0.6σc can cause failure in principle, it may still occur at a963

timescale that is well beyond that associated with the local dynamics (recall964

that the endurance limit is for infinite time), (ii) fatigue strictly negates the965

use of an effective modulus, as permanent irrecoverable damage is gradually966

done to the sea ice either by the nucleation and propagation of cracks or by967

secondary and tertiary creep, and (iii) the fast ice data of Langhorne et al.968

(1998) show considerable scatter, which is a common feature of fatigue ex-969

periments even for simple materials. We rest content, therefore, with the970

expression for Y ∗ defined in equation (25a), noting that fatigue can easily be971

added at a later point if results indicate that it plays a role.972
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INPUTS WIM OUTPUTS

Ice properties
c, h, Y ∗, ν, ǫc, Γ

Initial FSD

Incident wave
spectrum
S0(ω, t)

Advection of
waves into ice

Attenuation of
waves by ice

Breaking of
ice by waves

Ice properties
c, h, Y ∗, ν, ǫc, Γ

Updated FSD

Extended wave
spectrum
S(ω, x, t)

Figure B.1: The information flow in and out of the waves-in-ice model (WIM). An inci-
dent wave spectrum with density function S0(ω, t) is prescribed at x = 0, where ω is the
radial frequency (2π multiplied by the frequency), t is time, and x is the spatial variable.
The ice properties shown as inputs—respectively the concentration, thickness, effective
Young’s modulus, Poisson’s ratio and breaking strain of the ice, and the viscous damping
parameter—combine with the initial floe size distribution (FSD) to affect the three com-
ponents of the WIM itself: advection, attenuation and ice breakage. This results in the
wave spectral density function S(ω, x, t) being extended into the ice (i.e. into the x > 0
region), and in the FSD changing.

33



5 10 15 20

10
−6

10
−3

10
0

(a)

5 10 15 20

10
−6

10
−3

10
0

(b)

10
0

10
1

10
2

10
3

10
−4

10
−2

10
0

(c)

10
0

10
1

10
2

10
3

10
−8

10
−6

10
−4

(d)

αα

Wave period, sWave period, s

H
s
,
m

E
s

NN

Figure B.2: Behavior of the different attenuation models (A: − · −; B, Γ = 0Pa sm−1:
−−; B, Γ = 13Pa sm−1: −) (a, b): α is plotted against period for thicknesses 1m (a) and
2m (b). (c, d): The drop in Hs (c) and Es (d) as a Bretschneider spectrum with peak
period 7 s and initial Hs of 1m travels past N floes of thickness 2m. In (d), the strain
that Es must exceed to produce breaking, Ec, is plotted as a dotted line. (Here we have
used εc = 4.99× 10−5 and Pc = e−1, so Ec = 7.06× 10−5.)
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Figure B.3: Behavior of the flexural strength (a), and our models for the effective Young’s
modulus (b) and the breaking strain (c) with the brine volume fraction υb.
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