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Abstract

The problem of wave scattering by sea-ice of varying thickness and non-zero draught
floating on water of finite depth is considered. To do so, the common idealisation of
the ice as a thin-elastic plate, which is static in all but its flexural response, is adopted.
Furthermore, the assumptions of linear and time harmonic motions are made.

The physical situation is initially formulated as a boundary-value problem but is sub-
sequently reformulated as a variational principle. Here, the geometry is unconstrained
and the ice covering may be either complete or partial. Additionally, the bed profile is
permitted to undulate.

The solution method proceeds via application of the Rayleigh-Ritz method in conjunc-
tion with the variational principle. This restricts the vertical component of the velocity
potential that represents the fluid motion to a finite-dimensional subspace and the station-
ary point of the variational principle over this finite space is sought. As the dimension of
the subspace is increased, a sequence of approximations is generated, which can be made
arbitrarily close to the full linear solution.

A judicious selection of the modes that span this subspace is given through a pointwise
correspondence to the analogous problem in which the surrounding geometry is uniform.
However, there are non-trivial issues related to this selection that require exploration.

Explicit solution methods are given for a number of specific geometries. Waves that
are obliquely incident on two-dimensional geometries involving a finite interval of varying
geometry, a finite ice floe, a semi-infinite ice sheet and an interval of periodic geometrical
variations in an otherwise uniform ice sheet are all considered. A numerical formulation
is also made for a three-dimensional axisymmetric floe. In all cases, comparisons are
made to existing work before the scattering properties of geometries that fully exploit the

generality of our solution method are investigated.
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Chapter 1
Introduction

Beginning in earnest with Weitz & Keller in 1950, the mathematical study of the transfer
of ocean wave energy into motion through a domain of ice-covered fluid has been an area
of sustained research interest and much progress. Analysis of this problem can actually
be traced back to a far earlier stage, with the work of Greenhill (1887) well-known.

However, the model adopted by Weitz & Keller, and other contemporaries such as
Shapiro & Simpson (1953), was deficient in its view of the role of the ice covering as being
that of an additional mass on the fluid surface. This ‘mass-loading’ model considered
an area of ice-cover to be composed of a set of disconnected points and contained no
information about its elastic response, which is now accepted as the leading component
in the formation of motion in its presence (see Robin, 1963, and Squire, 1978).

At the present time, it is common practice to treat the ice as a ‘thin-elastic plate’,
which forms a cohesive upper boundary of the fluid domain. Many authors cite the work
of Evans & Davies (1968) as an early benchmark for the mathematical analysis of such
a model. As with the majority of subsequent authors, Evans & Davies linearised the
problem and considered it under time harmonic conditions.

Through the definition of a flexural rigidity, using a thin-elastic plate gives a more
realistic view of the ice as having a horizontal structure. Such a description was conceived
by the aforementioned Greenhill (1887), who was the first to consider the way that waves
disperse in the presence of ice-cover.

Although a tremendous improvement on the mass-loading model, the use of an elastic
plate still represents a substantial idealisation of the ice-cover. Notably, the plate has
no vertical structure. That is, it is considered to be comprised of vertical strips that
expand and contract without deformation. In contrast, a real sheet of ice will have a
complicated vertical structure due to the differing states at its upper and lower surfaces
that cause, for example, a temperature gradient to run through it (Fox & Squire, 1994).
As an independent body with its own equations of motion, its hydrodynamic response will

depend on this vertical structure. However, tests have indicated that its flexural response



may be included by considering the properties in a vertically integrated fashion (Kerr &
Palmer, 1972), which is consistent with its description as a thin plate.

The description ‘thin’ is a relative term that imposes some restrictions on the thickness
of the plate in relation to the waves that pass through it. In particular, the plate must
remain uniform under the deformation caused by its displacement. Essentially, this means
that the strain imposed by the the passing wave cannot be too large. A complete theory
of thin-elastic plates is outlined in Timoshenko & Woinowsky-Krieger (1959).

By using a thin plate to model the ice, it is possible to consider all of the motion within
the plate in terms of the position of its lower surface, which is in contact with the fluid.
Moreover, all of the stresses experienced by the ice may be calculated from knowledge
of this interface. As we will discover in the following chapter, the problem presented by
an elastic plate coupled to a fluid domain is formidable. In particular, the coupling at
the interface between these two media requires a high-order boundary condition to be
satisfied there.

There are also many properties of the ice which have no analogue in thin-elastic plate
theory, such as dissipative effects, compressive stresses, rotational and shearing forces.
These properties can and have been incorporated in more sophisticated idealisations of the
ice, which allow for ‘non-thin’ ice for example. The dynamics of these plates, like the thin
plate, may be entirely defined through the position of their lower surface. However, results
calculated so far using these advanced models have provided no evidence to suggest that
their inclusion is warranted in relation to the complexity they introduce (see Balmforth
& Craster, 1999).

With the ice in the guise of an elastic plate, waves travel through the fluid-ice system
in the form of flexural-gravity waves and are manifest as the transverse oscillations that
appear at the horizontal interface between the two media. These waves are driven by
the pressure disparity between the upper and lower surfaces of the ice sheet, which is
generated by motion in the fluid-ice system. In our work we will consider this motion to
be caused by ocean waves. A combination of gravity and the flexural rigidity of the plate
is the counterbalance that attempts to restore the system towards its equilibrium state.

Like all other floating bodies, an ice sheet may respond to fluid motion with six degrees
of freedom, namely heave, surge, sway, pitch, yaw and roll (Squire et al., 1995). These
are in addition to its ability to flex. For even the most simple geometry, to contemplate
such a system would constitute a massive undertaking.

Fortunately, our wish is not to model the dynamics of large bodies of ice, such as
the icebergs that calve from land masses, and for which the use of a thin plate would
be inappropriate. Rather, we consider large expanses of ice whose spatial dimensions
are such that their thickness is negligible in comparison to their width and breadth.

Specifically, our interest is in these expanses as a source of scattering of wave energy. As



we assume the horizontal dimensions of the ice that we focus on are vastly greater than
its vertical dimensions, its displacement as an independent body is considered negligible
in comparison with its ability to flex. Therefore, to investigate the way in which energy
travels through an ice sheet, the scattering model we use assumes the ice to be static in
all of its rigid-body motions and respond only with a transverse flexural displacement.

The type of ice sheets in which we are interested are formed, often on a seasonal
basis, when the surface of the sea water freezes to produce a layer of ice covering. Such
a phenomenon is prevalent in the polar and sub-polar seas. Any ice originating from
freezing of sea water is termed ‘sea-ice’ and each contiguous frozen area is known as a
‘floe’.

The structure of sea-ice is highly dependent on a number of factors. Primarily, the
survival of sea-ice is dictated by the protection it receives from ocean waves, which if they
are of sufficient strength may generate flexure that cracks, breaks, splits and even destroys
weaker ice. The frequencies of the ocean waves that are incident on areas of sea-ice will
vary from region to region. For example, Robin (1963) reports a normal wave spectrum of
4secs-24secs in the Weddell Sea in the Antarctic zone, although periods of as low as 2secs
are recorded. In contrast, Hunkins (1962) reports that typically only waves of greater
than 6sec periods penetrate the Arctic region. Fox (2001), on the other hand, who has
contributed much to the work in the area of sea-ice, quotes the spectrum 2secs-20secs
for typical sea-ice. We will use these figures only as a rough guide for our mathematical
investigation.

In those situations in which the sea-ice receives protection from waves incident from the
open ocean, say by the surrounding land mass near the coast or by other packs of ice, sea-
ice may grow into sheets which extend for hundreds of kilometres (Squire, 2007). Smaller
floes are then often created by the break-up of these larger expanses (Squire, 1984b). As it
ages, sea-ice also becomes thicker, with ice that survives a single year typically 30cm-2m
in thickness (WMO, 1970). Ice that survives for longer than a year, which is mainly a
feature of the Arctic region, may develop to even greater thickness. Furthermore, non-
thermodynamic processes, such as ridging, which will be discussed presently, can generate
protrusions in the ice of thicknesses that far exceed those that could otherwise be created
over time.

Despite the attenuation that occurs beneath sea-ice (Squire et al., 1995), it is recog-
nised that waves may propagate large distances into ice-covered waters in the form of
flexural-gravity waves (Hunkins, 1962; Robin, 1963). It is also known that the wave en-
ergy that reaches the interior of an expanse of ice is of lower intensity and a higher pack
period than that which exists at the edge (Squire et al., 1995).

On encountering an ice-covered region from the open water, a wave is scattered by

the ice edge, so that only a proportion of its energy transmits into the ice and part of it



is reflected. During this scattering process a number of other motions, in addition to the
transmitted wave and the reflected wave, are generated.

The stress that is induced within the ice by the scattering motion at an ice edge is
regarded as the primary cause of fracture and subsequent break-up of the ice (Squire,
1984a). It is therefore of interest to construct a model which describes the hydroelastic
process and will allow a theoretical insight into the fracturing phenomenon.

Once within an ice-covered region, the form of a travelling wave is highly dependent
on the properties of the ice cover. As the properties of the ice change so do the waves. Ad-
ditionally, irregularities or obstructions in the ice, the specifics of which will be discussed
presently, provide extra sources of wave scattering, which further hinder the passage of a
progressing wave.

In terms of the linear model, an ice edge, or any other source of scattering, produces
a set of exponentially decaying ‘evanescent’ waves in its vicinity. Also, beneath the ice a
pair of heavily damped progressing waves are generated. The dynamics of the ice edge
itself are subject to two ‘free-edge’ conditions, which dictate that at this location the
vertical shearing force and rotational bending moment it experiences both vanish.

Many different types and configurations of sea-ice have been observed and have their
own scattering properties. The area of sea-ice in which we are interested in is termed the
‘marginal ice zone’ (MIZ). This description refers to “the parts of the ice cover which are
close enough to the open ocean to be affected by its presence” (Wadhams, 1986). Two
main divisions of the MIZ exist: those parts in which the ice is contiguous or in which the
floes are close enough to act in unison, and areas in which a pack of smaller floes exist at
a lower concentration so that the open water between them has an effect (Squire, 2007).

Near shorelines ice often forms a near-continuous covering and may extend over great
distances. If these expanses are attached to the shore then they are described as ‘shore-
fast’ sea-ice. Large expanses of ice may equally be found out to sea (Squire, 2007). Floes of
a significant size may arise independently but are typically formed as a conglomeration of
smaller floes and are hence very heterogeneous both in terms of their material properties
and their geometrical structure (Chung & Fox, 2002). For example, the force of floes
‘butting together’ can form ‘pressure ridges’ where the ice bulges both at its upper surface
but particularly at its lower surface. The former, a protrusion at the upper surface, is
known as a ‘sail’, and the latter, a protrusion at the lower surface, which is in contact with
the fluid, is known as a ‘keel’. Pressure ridges have commonly been recorded at heights
of around 10m (Vaughan & Squire, 2007).

Large floes also contain inhomogeneities in the form of cracks, which, as indicated
earlier, form under the strain imposed by the flexing motion of the sheet. Under increasing
pressure, these cracks extend to lengths up to many kilometres (WMO, 1970). Forced by

currents and winds, cracks will separate to leave an area of clear water, which is loosely



termed an ‘open lead’ (Squire, 2007). These leads may then quickly refreeze to produce
an area of new ice within an expanse of thicker ice, a situation described as a ‘refrozen
lead’. All of these features affect the passage of flexural-gravity waves through the fluid-ice
system.

Rather than taking the form of a continuous sheet, ice-coverings are frequently com-
posed of a number of individual ice floes. This often occurs at the edge of a larger floe,
where the ice fractures into smaller parts, with the properties and dynamics of the ocean
being the principle factor in determining the shape and alignment of the floes (Squire
et al., 1995). These packs of ice floes then serve as a barrier between the ocean waves
and the inner ice. Scattering properties of such configurations depend not only on the
response of the floes in isolation but also on the interaction of these responses.

The thin-elastic plate model has another important application, that of ‘pontoon-type
very large floating structures’ (VLFSs). VLFSs are currently of high interest due to their
use as a relatively cheap and environmentally friendly means of land reclamation. Exam-
ples of VLFSs already exist, particularly in Japan, where a proposal is in place for their
use as an airport terminal and airstrip. The methods used by authors in the sea-ice and
VLFSs areas are interchangeable in many aspects, although particular model geometries
and parameters differ according to their application. In our work, for instance, we will
concentrate on the role of geometrical variations in the vertical structure of the elastic
plate, which are of a greater relevance to the case of sea-ice due to its inherent hetero-
geneity. However, the undulation of the sea-bed, which is only a secondary consideration
in our work but is nevertheless a feature that is included in our model, is something that
is of interest over the large horizontal scales of VLFSs (Wang & Meylan, 2002).

There exists a large catalogue of literature into the study of VLFSs, which is closely
related to our research. In this field we note the work of Andrianov (2005), Andrianov
& Hermans (2003, 2004), Belibassakis & Athanassoulis (2005), Hermans (2003a-b, 2004),
Kaskiwagi (1998), Khabakhpasheva & Korobkin (2002), Sturova (2001), Takagi (2002),
Takagi et al. (2000), Tkacheva (2001, 2004), and Wu et al. (1995) as being of particular
relevance to the related study of sea-ice. A thorough appraisal of the work in the area of
pontoon-type VLFSs may be found in the literature survey of Watanabe et al. (2003).

To date, the mathematical progress into the problem of ice covering has advanced to a
stage at which numerical methods have been created for models that incorporate many of
the sources of scattering, obstructions and heterogeneities discussed above, with differing
degrees of generality. A number of the most relevant pieces of work in this area will now
be discussed. Detailed reviews may be found in Squire et al. (1995) and the forthcoming
article by Squire (2007).

Due mainly to the difficulty presented by the high-order condition imposed at the

interface between the fluid and ice, many authors have chosen to investigate problems in



which the geometry is piecewise uniform. These models consider regions or intervals of ice
that are of constant thickness over a bed that is either flat or infinitely deep. Additionally,
a zero draught, i.e. ice resting on the fluid surface, is often assumed to facilitate solution
methods. Scattering is then caused by either the change from an ice-free state to an
ice-covered state, or between states of ice-cover with differing properties, for example a
change in thickness.

One example that has been repeatedly studied is the classic two-dimensional problem
of ocean waves that are obliquely incident from a semi-infinite interval of ice-free fluid
on a semi-infinite interval of ice-covered fluid, over a bed of finite depth. This may
be considered a model of shore-fast sea-ice and was the problem that was studied by
Evans & Davies (1968). These authors solved this problem via Fourier transforms and
the Wiener-Hopf technique; unfortunately though, they deemed the complexity of the
evaluation of certain integrals required in the solution procedure to be beyond their means.
This meant that they were only able to conduct numerical calculations for shallow-water
approximations.

Building on their earlier work (Fox & Squire, 1990, 1991), Fox & Squire (1994) were
able to provide the first explicit calculations for the semi-infinite ice sheet problem con-
sidered by Evans & Davies, without the need to resort to simplified geometries. The
solution method of these authors is different to that of Evans & Davies and is based on
more numerical means. Fox & Squire used eigenfunction expansions of the solution in the
ice-free and ice-covered domains and then matched these representations at the interface
in an integral which minimised the jump in the pressure and velocity of the solution,
subject to the free-edge conditions.

Further investigation of the semi-infinite ice sheet problem has been made by Balm-
forth & Craster (1999) and Linton & Chung (2003). Balmforth & Craster pursued the
Wiener-Hopf method in the way suggested by Evans & Davies. These authors explicitly
incorporate the ice edge conditions and show that the integrals considered difficult by
Evans & Davies may be computed via quadrature. This method enables simple approx-
imations to be derived in certain limits. On the other hand, Linton & Chung derive a
method based on a mode-matching approach. Rather than turning to numerical methods
though, they utilise integrals whose residues correspond to the unknown amplitudes, a
method which is known as the ‘residue calculus technique’.

A smaller ice floe was treated as a two-dimensional model in which the ice-cover
occupies a finite interval in an otherwise infinite interval of ice-free fluid by Wadhams
(1973). Wadhams was, however, unable to provide a complete solution to this problem.
This was later achieved by Meylan & Squire (1994), who considered cases of a finite
and an infinite bed depth as well as the inclusion of a second floe. Their method of

solution is to express the vertical derivative of the potential on the underside of the



floe as an integral of the potential itself over this surface, which contains the ice edge
conditions. This representation is then combined with the Green’s function for the free-
surface problem to produce a linear Fredholm integral equation of the second kind, which
is solved numerically.

Instances of both cracks and leads that are approximately straight and long have been
modelled in the style of piecewise uniform problems in two-dimensions. In such problems
a crack is represented by a point at which two coupled ice regions meet. At this point
the free-edge conditions apply to both sheets. An open lead is similarly represented by
a non-zero finite interval of open water with ice-cover on either side. In contrast, for a
refrozen lead the finite interval contains ice of a different property to the outer ice and
the ice is connected throughout.

Investigations into the problem of leads have been less noteworthy than their crack
problem counterparts. The case of an open lead, between two ice sheets of equal thickness
and over a finite bed depth, was solved by Chung & Linton (2005) using the residue
calculus technique that they applied to the semi-infinite ice sheet problem. Williams &
Squire (2006) considered the same problem but one in which the central interval could
contain ice, and the ice in the three intervals were of arbitrary thicknesses. This model is
therefore clearly also applicable to a refrozen lead.

The two-dimensional crack problem has been solved by Evans & Porter (2003) for
oblique incidence and a finite bed depth. This is accomplished by two means, the first
being via a Green’s function approach. Here, the solution is decomposed into its symmet-
ric and antisymmetric parts and Green’s identity, with an appropriate Green’s function,
is applied to each. Then, repeatedly applying integration by parts together with the edge
conditions produces explicit expressions for the solution. The second method again de-
composes the solution into odd and even functions but uses an eigenfunction expansion to
represent these functions. As an aside, Evans & Porter prove that this expansion provides
the complete solution.

Both Squire & Dixon (2000) and Williams & Squire (2002) solved the problem of a
single crack over an infinite fluid depth, the former for normal incidence with the latter
extending this to oblique incidence. The methods used by these authors are similar to
the Green’s function approach described above, although neither utilised the symmetry
in the manner of Evans & Porter. The work of Squire & Dixon is extended to multiple
cracks in Squire & Dixon (2001).

Multiple cracks are also dealt with by Porter & Evans (2006), although this work
is far from a direct extension of their earlier method. Here, the authors solve for a
single crack by deriving a pair of ‘source’ functions, which satisfy certain jump conditions
across the crack. The full solution for any number of cracks may be expressed as a linear

combination of these functions located at the cracks. Furthermore, Porter & Evans extend



their analysis to a semi-infinite array of cracks using the properties of Bloch modes in an
infinite array.

Porter & Evans (2007) have considered the more challenging, three-dimensional prob-
lem of an arbitrary number of cracks of a finite length in an ice sheet, where the restrictions
of the cracks to straight parallel lines are enforced. Such finite cracks are subject to addi-
tional conditions at their ends. To solve this problem Porter & Evans solve hypersingular
integral equations along the cracks. The sequence of papers concerning cracks is currently
under development, with the forthcoming work of Porter (2007) tackling the problem of
finite straight line cracks which are arranged arbitrarily, solved using source functions.

A number of techniques have also been formulated for other three-dimensional prob-
lems, specifically those that incorporate finite ice floes. Meylan & Squire (1996) considered
the problem of a circular plate resting on the surface of an infinite fluid surface of infinite
depth. In this work two solution methods were proposed, one of which was constructed
in an entirely analogous fashion to the method of Meylan & Squire (1994) for finite two-
dimensional floes, and resulted in a linear Fredholm integral equation of the second kind.
A more computationally efficient option was also given. Here, the integral equation for
the potential derived from the free-surface Green’s function, in which both the potential
and its vertical derivative appear in the integrand, is turned into a matrix system via
expansions in the free modes of the plate taken in vacuo.

It was shown by Meylan (2002) that this method of expansion of the unknown functions
in an integral equation in the in vacuo modes could be applied to plates of an arbitrary
shape. However, for most non-circular floes these modes could only be found through
numerical means. Meylan achieved this through the use of finite elements and produced
results for triangular and quadrilateral floes.

Peter et al. (2004) also solved the circular ice floe problem but over a finite bed depth.
Their solution procedure followed an eigenfunction matching method. The solution in
both the ice-free and ice-covered regions were expanded as double infinite sums, in which
the radial motion is defined in the form of Bessel functions, the azimuthal motion as
a Fourier series and the vertical motion in the modes appropriate to the domain. An
infinite set of equations is then generated by equating the two forms of the solution at
their interface and integrating vertically and azimuthally, with the ice edge conditions
also being applied. These equations are then truncated and solved directly.

To produce an accurate representation of the MIZ using a scattering model it is nec-
essary to determine the combined effect of a multiplicity of three-dimensional floes. As in
the two-dimensional setting, more realistic situations are formed by considering circum-
stances in which the scattering caused by individual floes may interact. Work in this area
was conducted by Peter & Meylan (2004), who applied the method of Meylan (2002) for

a single floe of an arbitrary shape to a finite number of multiple floes in any configuration.



For each individual floe the forcing upon it consists of not only the incident wave but of
the waves scattered by all of the other floes. Peter & Meylan described this relationship
explicitly via Graf’s addition formula for Bessel functions, so that the scattered fields local
to each floe could be coupled. Combining this with the scattering relation for individual
floes results in a system of equations that must be solved simultaneously.

Another, related extension of the work of Meylan (2002), this time to an infinite
straight line array of identical floes, was made by Peter et al. (2006). The interaction
of the scattered fields of all of the floes is calculated via Graf’s addition formula as in
Peter & Meylan (2004) (albeit for a finite bed depth). At this point the periodicity of the
problem is invoked, which reduces the problem to the consideration of only a single floe,
and the resulting system of equations is solved directly.

The identical problem was also solved by Wang et al. (2007). In contrast, these authors
used a Green’s function to express the solution in terms of integrals of the potential and
ice sheet displacement over the bases of all of the floes. Again, the periodicity of the
problem meant that calculations for a single floe can be translated to all of the other
floes, and the solution is then found from a suitable expansion of the unknown functions.

All of the models described above, although of great merit, are deficient in the aspect
that they do not take account of the variable properties of the physical quantities they
represent. Prominent in the application to ice sheets is the assumed uniformity of the
elastic plate, both in its thickness and its material properties. Such variations cannot be
expected to be realistically simulated by discrete jumps. Rather, the heterogeneous nature
of the ice should be inherent in the model, so that the physical and material properties of
the ice appear as continuous functions. However, the admittance of continuous variations
incurs difficulties and there have consequently been relatively few attempts to solve such
problems. For instance, it is not possible to obtain separation solutions in a domain for
which the ice is non-uniform, which prevents standard eigenfunction matching methods
being used.

Williams & Squire (2004) produced a solution procedure for a restricted class of vari-
ations in the properties of the ice. In a two-dimensional setting for which an infinite
interval of otherwise uniform ice-cover is present, Williams & Squire allowed for a finite
interval or finite intervals of continuous variations and concentrated on a changing thick-
ness. The restriction imposed was that of a flat underside of the ice, which, along with the
assumption of a finite flat bed, permits the use of the Green’s function that was employed
by Evans & Porter (2003), to reduce the problem to a Fredholm integral equation of the
second kind. This method is elaborated on in the thesis of Williams (2006) and in par-
ticular a solution procedure is found for the more general situation of an ice shelf, where
the finite interval of varying ice constitutes a transition in the thickness of the plate. For

this problem Williams solved two coupled integral equations. The possibility of one of



the semi-infinite intervals being ice-free is also considered.

Solutions for cases in which the shape of the quiescent bed undulates beneath a uniform
floe of a finite extent have also been obtained. These models have far more relevance in
relation to VLFSs than ice coverings as it is often assumed that, although of variable
depth, the seabed beneath the MIZ is often deep enough to neglect these variations
(Peter & Meylan, 2004). However, the mathematical models used are worthy of note.
Both Wang & Meylan (2002) and Belibassakis & Athanassoulis (2005) considered bed
variations beneath zero draught plates in a two-dimensional setting, although the Wang
& Meylan model is slightly more general in that the interval of the variable bed may
extend beyond the length of the plate. Wang & Meylan obtain a solution by reducing
the problem to a finite domain enclosed by a boundary (including the varying part of the
bed and the lower surface of the plate) on which the normal derivative of the potential
is expressed as a function of the potential itself. The problem is then solved numerically
using a boundary element method. Belibassakis & Athanassoulis, on the other hand,
use a variational principle and express the solution as an infinite series in the vertical
eigenfunctions, but add a further mode to improve convergence of the truncated series for
a non-horizontal bed.

One feature that is common throughout the models that have been discussed so far,
even those that incorporate continuous variations, is the unrealistic assumption of a ‘zero’
draught. This means that the surface of the ice that is in contact with fluid is flat and that
the ice sheet rests on the fluid surface, which has a two-fold effect. Firstly, no variations
in the lower surface of the ice may be included; for example the existence of a keel cannot
be registered. Furthermore, the submergence at the edge of an ice sheet is neglected and
the scattering caused by this is therefore absent.

Work on the inclusion of realistic draught conditions are sparse and we cite only two
instances. Andrianov (2005) considers a small finite draught in a two-dimensional semi-
infinite uniform plate. This is achieved by writing the unknowns of the problem in power
series expansion in the draught, which are solved numerically for the leading two orders.
In a forthcoming work, Williams & Squire (2007) investigate a non-zero draught in the
form of a finite jump in the thickness of an infinite two-dimensional plate. Their method
of solution is akin to that of Williams & Squire (2004), in that they use the Green’s
function based on the semi-infinite states to express the solution as an integral equation,
where the integral in this case is over the contour that defines the part of the ice that
protrudes from the uniform state.

The features of varying ice thickness, an undulating bed and a non-zero draught are
all included in the model of Porter & Porter (2004). In this work the governing equations
of full linear motion in a general three-dimensional setting are shown to be equivalent

to a variational principle, whereby the stationary point of a given functional is sought.
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Moreover, both cases of complete and partial ice-cover are permitted, with the latter re-
quiring only modifications to the functional in the ice-free regions and a supplementary
functional at the fluid-ice interfaces to couple the motion. Porter & Porter implement the
‘modified mild-slope’ approximation of Chamberlain & Porter (1995) for free-surface flows
to situations of ice-cover by representing the vertical motion of their solution in terms of
a single mode, which at each point in the domain corresponds to the wave bearing mode
when the surrounding geometrical variations are neglected. Taken in conjunction with the
variational principle, the ‘mild-slope approximation’ generates a set of approximate gov-
erning equations that are independent of the vertical coordinate. Numerical calculations
in this work are made for selected two-dimensional geometries.

The ideas of Porter & Porter (2004) will be central to our work here. In particular, we
will extend their single-mode (mild-slope) approximation, whose accuracy is dependent
on the slow variation of the obstructions, to a multi-mode approximation, which does not
impose any such restriction on the geometry. In conjunction with the same variational
principle, the multi-mode approximation is an application of the Rayleigh-Ritz method
that provides a means of constructing a sequence of increasingly accurate approximations,
so that we may, in effect, obtain the full linear solution.

Certain aspects of the extension to multiple modes are not particularly straightforward.
For instance, we will need to consider amendments to the interfacial functionals used to
link solutions over jumps in the geometry. Moreover, we will need to look carefully at
the properties of the modes that are used, as their role is essential to the accuracy of the
approximation.

In addition to the consideration of multiple modes, we will elaborate on the numer-
ical study of Porter & Porter by conducting a more detailed investigation of the two-
dimensional configurations that they considered, which includes the extension to full lin-
ear solutions of certain problems selected from their work, as well as ‘non-slow’ variations.
We also derive a solution method of a greater computational efficiency than that of Porter
& Porter. Furthermore, our work will exceed that of Porter & Porter in the types of ge-
ometrical configurations that are formulated for numerical solution. This will include
periodic variations in a two-dimensional setting and a three-dimensional axisymmetric
construction.

It is pertinent at this point to give a brief review of the history of the solution method
that we will use, in which a variational principle is taken in conjunction with a restic-
tion of the vertical coordinate to a finite-dimensional space. For situations of free-surface
flows, the modified mild-slope approximation was originally conceived by Chamberlain
& Porter (1995) as an improvement to the ‘mild-slope’ approximation of Berkoff (1973).
The motivation for this modification was that the mild-slope approximation of Berkoff

neglected certain terms that proved to be significant in the case of rapid variations, such
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as might occur in ripple beds. In an extension that is analogous to ours here, Porter &
Staziker (1995) expanded the modified mild-slope approximation to a multi-mode approx-
imation by including a finite number of the modes that support evanescent waves in the
corresponding flat bed problem.

Subsequently, many problems in the context of free-surface flows have been solved
using the single-mode (modified mild-slope) or the multi-mode (extended modified mild-
slope) approximations. For example, applications to two-dimensional ripple beds have
been conducted by both Chamberlain & Porter (1995) and Porter & Porter (2003). Fur-
ther examples examined include a plane wave incident on a three-dimensional domain
of axisymmetric topography that has been considered by Chamberlain & Porter (1999),
and the interaction of water waves with beds in the form of three-dimensional doubly-
periodic undulations studied by Porter & Porter (2001). Inverse problems, in which a
two-dimensional interval of varying topgraphy is reconstructed from knowledge of the
reflection coefficient, have also been tackled (Chamberlain & Biggs, 2006). Finally, we
note that the extended modified mild-slope (multi-mode) approximation has recently
been reappraised by Chamberlain & Porter (2006) in the light of the additional accuracy
gained through the inclusion of a ‘bed-mode’, which was first proposed by Belibassakis &
Athanassoulis (1999).

Our outline for the work that will be carried out here is as follows. In the following
chapter we will begin in §2.1 by giving the equations that govern motion in a situation in
which a thin-elastic plate forms the upper surface of a fluid domain. We assume that the
usual conditions of linear motion apply to the fluid and also that it is bounded below by
a fixed impermeable bed. The motion of the thin plate is considered at the fluid surface
using the linearised version of Bernouilli’s equation. These governing equations apply in
the generality of a three-dimensional setting, for both full and partial ice coverings, and
the geometrical surfaces are permitted to undulate so that the ice thickness and fluid
depth may vary. A harmonic time dependence is removed and the oscillating interface
between the fluid and ice linearised to leave a boundary-value problem in a fixed domain,
which is to be solved for the motion within the fluid and the transverse displacement of
the fluid-ice interface.

In the latter half of the second chapter, a variational principle is discussed. It is shown
that the governing equations of the linear problem given earlier in the chapter arise as the
natural conditions of the given functional when we seek its stationary point. Furthermore,
this variational principle may be used to determine the natural conditions that must be
satisfied by the full linear solution at any internal boundary, for example at the interface
between ice-covered and ice-free domains.

At the beginning of §3 we apply the Rayleigh-Ritz method to the variational principle

given in the preceding chapter to generate a means of calculating a hierarchy of approxi-
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mations, abbreviated to the MMA, to the full linear solution. Our choice is to restrict the
vertical motion to a finite-dimensional space, consisting of a set of vertical modes. We
then determine the differential equations and accompanying boundary conditions that de-
fine the approximation. This new set of governing equations is independent of the vertical
coordinate.

The remainder of the content of the chapter, section §3.2, is concerned with the choice
of the vertical modes that define our approximation. Our wish is to follow the method of
previous authors, for example Porter & Staziker (1995), who investigated analogous free-
surface flows, by using a pointwise correspondence to the full linear solution of the problem
in which no geometrical variations are present. However, it is found that the extra two
‘complex’ roots of the ice-covered dispersion relation cause bifurcations in the evanescent
modes that may prevent their use in the multi-mode approximation. A further result is
given, showing that there is a two-fold linear dependence in the set of vertical modes we
wish to use and consequently that two of these vertical modes may be eliminated from
our reckoning. This discovery has ramifications for the full linear solution in situations of
uniform geometry and these are discussed. The linear dependence issue partially alleviates
the problems caused by bifurcations but does not do so entirely and we give an example
of an alternative expansion for cases in which their presence persists.

In §4 the multi-mode approximation is applied to the degenerate case in which vari-
ations only occur in one horizontal spatial coordinate and an incident wave propagates
obliquely from the far-field. The governing equations therefore simplify to an ordinary
differential system with accompanying point conditions. Over an interval of uniform
geometry it is shown in §4.2 that it is possible to produce an analytic form for the ap-
proximation which mirrors the full linear solution over such an interval; however, unlike
its free-surface equivalent, the form of the approximation when ice-cover is present is
shown to not be a direct truncation of the full linear solution, due to the appearance of
dimension-dependent complex waves.

Two particular two-dimensional geometrical configurations are formulated for numer-
ical solution in §4.3. In the first we concentrate on the scattering caused by obstructions
in the geometry alone. Here a finite interval of varying geometry is considered, with semi-
infinite intervals of uniform geometry attached to it at either end. The solutions in the
three subintervals are linked through the conditions that apply at the internal boundaries
between states of connected ice-cover. These conditions are then combined with the ex-
pressions for the MMA in the uniform intervals to reduce the problem to the numerical
calculation of the solution over the interval of varying geometry with appropriate bound-
ary data. It is shown that we may manipulate the boundary data so that only two linearly
independent solutions need to be calculated in order to obtain the solution, regardless of

the dimension of the approximation.
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A second problem, that of a finite ice floe, is also formulated. Here, the uniform
intervals are ice-free rather than ice-covered. This is expected to be more demanding of
the approximation due to the appearance of ice edges but can nevertheless be solved by
following identical methods to the complete ice-cover problem.

Prior to using our approximation in situations in which the geometrical surfaces are
permitted to vary, in §5 we investigate the effects of the difference we have found between
our approximation and a truncated version of the full linear solution over intervals of uni-
form geometry. To do this, we take the problem of a semi-infinite ice sheet, which we solve
using both our multi-mode approximation and an eigenfunction matching method. After
a comparison to data produced by independent authors who used alternative methods of
solution, we give a set of our own numerical calculations to compare the accuracy of our
approximations and the eigenfunction matching method. It is found that our approxima-
tion provides superior accuracy to the eigenfunction matching method at low dimensions,
especially when the jump between the two states is most pronounced, caused by either
a large ice thickness or a high frequency. However, we also show that in certain extreme
cases the higher-dimensional refinements of the multi-mode approximation are slow in
comparison to the eigenfunction matching method.

In §86-7 we undertake a numerical investigation of the scattering caused by the geome-
tries that were formulated in §4.3. In both chapters we begin by providing comparisons
to work produced by independent authors, who have used different methods of solution to
our own. Furthermore, we consider extending some of the results given by the single-mode
approximations of Porter & Porter (2004) to full linear solutions. In doing so, we discover
in the continuous ice-cover problem that there is a close link between geometries that
share certain features of their vertical structure. This observation leads to a full investi-
gation in §6.4 of the relationship between obstructions related by a shared ice thickness or
fluid depth or both. Certain régimes are deduced in which particular sources of scattering
are significant, and a main conclusion is that variations to the ice thickness are dominant
under many circumstances. The approximation used during the investigation of §6.4 is
restricted to a single mode to aid analytical progress, and because a single mode has by
then been proved to provide high accuracy, even in situations involving large obstructions.

For the situation of a finite floe the approximation must deal with discontinuities in the
geometry caused by the ice edges. As expected, it is shown that this is detrimental to the
accuracy of the multi-mode approximation, so that a greater dimension must be taken in
order to achieve a desired accuracy in comparison with the continuous ice-cover problem.
We find that this is particularly true in the vicinity of the ice edges, at which points the
evanescent waves are strongly activated. Consequently, it is shown that approximations
to quantities that are sensitive to the value of the solution at these points may contain

qualitative inaccuracies at low dimensions but that these are quickly eradicated by the

14



inclusion of supplementary evanescent modes. It is found that the scattering caused by the
edges of the ice dominate over those induced by geometrical variations at high frequencies
but that for lower frequencies the scattering caused by the two sources are comparable.
Furthermore, we note the appearance of a fine structure in the results of the finite ice floe
that were not present for the semi-infinite ice sheet.

As well as geometrical variations, the multi-mode approximation allows the inclusion
of a realistic Archimedean draught and this is investigated for two-dimensional motions
in §7.5. The effects of the existence of a draught are discovered to be significant in many
circumstances. Primarily, we show that at mid to high frequencies the submerged portion
of the floe causes it to reflect a greater proportion of the incident wave.

In §8 we progress to the problem of a finite interval containing periodic variations
in an otherwise infinite ice sheet. Although we may use the formulation of §4.3.1, it
is both computationally efficient and aids analysis if we reformulate the problem. This
is done in §8.1 and §8.3 by using the transfer matrix approach devised by Porter &
Porter (2003) for free-surface motions, which relates the amplitudes at either end of a
single period, and we find that we are able to calculate the solution for any number of
periods using the solution from a single such period. A wide-spacing approximation,
analogous to that of Porter & Porter, which ignores the influence of the evanescent waves
between periods, is also given and this allows us to relate the production of resonances
to the eigenvalues of the transfer matrix. Although it is pointed out that the chance
of Bragg values coinciding with realistic parameters is far less likely in the presence of
ice-cover, we nevertheless examine this phenomenon in §8.4. We find that resonances do
occur around Bragg values in this problem and that, in comparison to results of previous
authors who investigated periodically varying beds for free-surface flows, these resonances
are pronounced. Moreover, we make the discovery of rightward drift of Bragg peaks as
well as the common leftward drift, as the magnitude of the periodic geometric variation
is increased.

By returning to the general governing equations of the multi-mode approximation, in
89 we are able to formulate the three-dimensional problem of an axisymmetric ice floe
forced by a plane wave. This is achieved using polar coordinates in the horizontal plane,
and the axisymmetry of the geometry is then invoked to express all unknowns in terms of
Fourier cosine series. The multi-mode approximation is therefore determined by a set of
ordinary differential equations, which we truncate to a finite dimension to give a desired
level of accuracy.

A restricted set of numerical results is presented in §§9.2-9.3 using the multi-mode
approximation and it is found that the properties of the approximation are consistent with
those shown in two-dimensional situations. In the following chapter (§10) we embark on a

far more extensive investigation of the axisymmetric floe, although with the single-mode
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approximation. By taking only a single vertical mode we are able to produce explicit
approximations in régimes in which the radius of the floe is either long or short with
respect to the length of the propagating waves. These approximations are then used to
aid our analysis of the numerical results that we produce. We are able to draw inferences
about the behaviour of the floe as its properties vary, and pay particular attention to the
prevalence of fine structure that leads to disproportionate responses for relatively short
incident waves. This fine structure is shown to obscure the inferences that we may make
about the effects of geometrical variations and an Archimedean draught. In §10.2.4 we
are able to relate the occurrence of fine structure to full resonances in problems for which
we allow a fictitious temporal decay.

To conclude, in §11 we give a summary of the findings that we have made, which is
followed by a discussion of directions that we may wish to take in order to extend our

work. All supplementary calculations are contained in Appendices A-C.

16



Chapter 2
Preliminaries

In this chapter we will define the problem of linear wave scattering by an ice sheet of
varying thickness floating on fluid, which is bounded below by an undulating bed. The
ice may fully or partially cover the fluid surface and our solution method for these two
situations will be distinct. The setting considered here is three-dimensional, which will
allow us to retain full generality in the approximation theory that is developed in §§2-3.
The numerical methods that are formulated and utilised in §§4-9 are devised for specific
geometrical configurations and make use of the degeneracies that they introduce; however,
the general theory that is developed is available for further study.

The cartesian cordinates x,y, z are used to define the geometry, where xz,y are hori-
zontal coordinates and z is the vertical coordinate. This vertical coordinate is directed
upwards and its origin is set to coincide with the equilibrium surface of the fluid in the
absence of ice.

A typical two-dimensional cross-section (y = constant) of geometry in equilibrium is
shown in figure 2.1. The lower surface of the ice sheet is located at z = —d(z,y), and its
thickness is given by the function D(z,y). Fluid is bounded above by the lower surface
of the ice sheet and lies above a fixed impermeable bed located at z = —h(x,y). The
functions D(z,y), h(x,y) and d(z,y) fully define the geometry; however, it will aid brevity
to introduce the notation H(x,y) = h(x,y) — d(x,y) to represent the fluid depth.

When motion is generated (by some means) in this system of fluid and ice, it is assumed
that the fluid and ice remain in contact at all times. The ice then experiences flexural

oscillations and the position, at time ¢, of the fluid-ice interface is given by

z=—d(z,y) + ((z,y,1).

The displacement function, ¢, is an unknown.
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Figure 2.1: Two-dimensional cross-section of geometry.

2.1 The boundary-value problem

We are using linear theory. Therefore, on the basis that ¢ is small in comparison to the
vertical scales, the fluid is considered to occupy the fixed interval —h < 2z < —d. The
usual assumptions regarding the properties of the fluid that are required for wave theory
are also adopted. These are that the fluid is inviscid, incompressible, and homogeneous,
and in irrotational motion. It follows that the fluid may be entirely defined through its
velocity potential & = (i(x, Y, 2, t).

Within the fluid domain, the velocity potential satisfies Laplace’s equation
V20 4+ 020 =0 (—h<z< —d), (2.1)

where V = (0,,0,) and the notation 9, = 0/0x, and so on, is used throughout. The

velocity potential must also satisfy the bed condition of no normal flow, namely
Vh-V®+3,2=0 (z=—h). (2.2)

The linearized version of Bernoulli’s equation gives the pressure, p(z,v, 2,t), of the
fluid in the form
P =10~ pui® — pugz (—h <z < —d), (2.3)

in which p,, is the density of the fluid and p, denotes the atmospheric pressure that we
may take to be a constant (see, for example, Wehausen & Laitone, 1960). In order for

linear theory to apply here, we have assumed that the potential, QAD, is small, so that
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the term p,(V®)2/2 may be omitted. The quantity g represents the acceleration due to
gravity and will be set at ¢ = 9.81ms™? throughout.

It has become standard practice to model the ice as a ‘thin’ elastic plate. A comprehen-
sive study of elastic plates is contained in Timoshenko & Woinowsky-Krieger (1959). Such
theory is based on the assumption that the ice is comprised of homogeneous vertical strips
that expand and contract uniformly about a middle-plane, which experiences no deforma-
tion. Stresses that occur between adjacent vertical strips are considered negligible. A key
feature of the elastic plate model is that the flexure of the ice is included through Hooke’s
law, rather than the ice appearing simply as a mass that rests on the fluid surface, as in
the earlier ‘mass-loading’ models, such as that of Weitz & Keller (1950). Modifications
to ‘non-thin’ elastic plates have been studied; for example, Balmforth & Craster (1999)
incorporated rotational inertia, shear deformation, compressibility and dissipation in their
model. This theory may be incorporated into our model; however, as it is yet to be shown
that these modifications are of value we will not pursue this issue. All stresses within the
ice may then be entirely described through calculation of its transverse displacement, (,
at the interface between itself and the fluid.

By referring to Timoshenko & Woinowsky-Krieger (1959), on the basis that  is small,
Porter & Porter (2004) deduced the linearised equation governing the motion of the ice
to be

[Plo=—a = Do + pwgd + pug-LC + piDIFC, (2.4)

where p; is the density of the ice and
ZLC=VA(BVEC) — (1 = v){0;895¢ + 9,805 — 20,0,0,0,(},

in which v denotes Poisson’s ratio. The function

3

) = Ty (2.5)
where F is Young’s modulus for ice, represents the flexural rigidity of the ice, which has
been scaled by the factor p,g. From expression (2.5), we note that 3 may be regarded as
a function of the ice thickness, D. Equation (2.4) follows from an application of Newton’s
second law of motion that describes the motion of the ice, which is induced by pressure
forces at its lower and upper surfaces.

At this point we note that we have assumed the density and resistive properties of
the ice to be uniform horizontally as well as vertically. That is, the ice properties vary
only with respect to its thickness, . This is not a requirement of thin plate theory but
is rather an expedient in the model for the following study of the réle of the geometrical

configuration.
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In a state of equilibrium ((i> = ( = 0), consistency is ensured by the plate equation
(2.4) coinciding with Bernoulli’s equation (2.3) at z = —d. The motion of the fluid and
the plate may be coupled by eliminating the pressure between the linearised equations
(2.3) and (2.4), to give

Puw (0D + gC) + pugLC + piDIXC =0 (2 = —d). (2.6)

Due to the presence of the two unknowns @ and ¢ in (2.6), a second equation at the

fluid-ice interface is required. This is provided by the linearised kinematic condition
Vd-V® 40,0 =9,( (2= —d), (2.7)

which equates the normal velocity of the fluid at its surface to the velocity of the dis-
placement of the ice.

In situations of ice-free fluid (D = d = 0), equations (2.6)-(2.7) collapse to the standard
free-surface condition

A 1 .-
0,0 = =0} (2=0).
9

The displacement function ¢ = [3,®/g],— then simply represents the free-surface elevation
in terms of ®.

By decomposing the time dependence of the problem into harmonic modes (see, for
example, Linton & Mclver, 2001), we may consider the problem in terms of individual
frequencies, w, over a range of significant values. By removing a harmonic time dependence
with a given frequency w, we express the steady-state behaviour of the velocity potential

and displacement function as

d(a,y,2) = Re (Zo(w,y, 2™ ), (1) =Re (n(,y)e ™), (28)
iw

where ¢, the reduced velocity potential, and n, the reduced displacement function, are both
complex functions. We also define the wave period T = 27 /wsecs.

Equations (2.1)-(2.2) now become
Vip+0%0=0 (—h<z<—d), (2.9a)

and
Vh-Vo+0,0=0 (z = —h). (2.9b)

The time independent versions of the plate equation (2.6) and kinematic condition (2.7)

are

(1—ra)n+Ln—¢=0, Vd-Vo+0,6=kn (z = —d). (2.9¢)

20



Here, we have introduced the notation
k=—, ar,y)=—"—">=, (2.10)

where o denotes the mass of the ice, which has been scaled by the factor p, ¢ and, like [,

is a function of the ice thickness. For unloaded fluid, conditions (2.9a-c) degenerate to
V2p+0*¢=0 (~h<z<0), Vh-Vo+0,6=0 (2z=—h), (2.11a)
and the free-surface condition to
0.9 = K¢ (z=0). (2.11b)

The reduced displacement becomes, trivially, the reduced free-surface elevation, n =
[¢].=0-

Unless otherwise stated, the physical parameters of the ice take the constant values
values £ = 5 x 10°Pa, p; = 922.5kgm 3, and v = 0.3, with the density of the water
taken to be p,, = 1025kgm 3. Although the properties of the ice will have a complicated
dependency on the particular state of the ice that is being modelled, for instance the
supposed dependency of the Young’s modulus and Poisson’s ratio on the brine content and
tempreture of the ice (Hutter, 1975), these averaged values are those that are widely used
at the present and are typical of MIZ conditions. Further information on the properties
of the ice along with experimental data can be found in Hobbs (1974).

We have thus far considered only the conditions that apply at the vertical boundaries
2z = —h and z = —d. There is also the question of the conditions that apply at the lateral
boundaries, which may be the boundary of the overall domain under consideration. For
the problems that we will deal with in §§5-9 these ‘overall domain boundaries’ will be
infinite and therefore described as the far-fields. Then, there are the internal boundaries
that separate differing states within the overall domain. Most commonly an internal
boundary is an interface between ice-free and ice-covered states or it may define corners
in the geometry. The mathematical description of the problem is not complete until
conditions have been set at the lateral boundaries.

In §2.2.1 the internal boundary conditions will be determined under the present gen-
erality. These internal conditions dictate the continuity that must be maintained at such
points and additionally impose constraints on the dynamics of the ice edge. Conversely,
the far-field conditions are problem specific and will only be defined at the appropriate
juncture. They take the form of radiation conditions and descibe the behaviour of the
solution in this limit.

For each problem, the lateral conditions must be combined with equations (2.9) in
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order to obtain ¢ and 7).

2.2 Variational principle

An alternative means of defining the linear, time-harmonic problem of wave scattering
by an ice sheet of varying thickness over an undulating bed, in the form of a variational
principle, was proposed by Porter & Porter (2004). In this setting, the governing equations
(2.9a-c) and (2.11a-b) arise as the natural, stationary conditions of given functionals.

The functional formulation of the problem will provide the basis for our solution
procedure, and as such warrants attention. The following mirrors the outline originally
appearing in Porter & Porter (2004).

We introduce the simply connected and bounded domain €2 in the plane z = 0, with
boundary 6€2, and suppose that the region Q x [—h, —d] contains ice-covered fluid. Fur-
thermore, we require the functions ¢ = ¢(x,y,2) and x = x(z,y) to be sufficiently
differentiable for what follows.

We will treat the motions of the fluid and ice through separate functionals. Consider

first the fluid motion via the functional

nw =y [[ [ 1wer s @ aany,

which has first variation

5L, / / / (V) - (V50) + (0.4)(2.60)} d= o dy.

Using Green’s identity we may write

5L, = —//Q/_hd{&/)(V2¢+82w)}dzdxdy+/mn-/_hd&/)vwdzds

(2.12)
- //Q (0% (V- Vi — 82’95)];1,,1 dz dy.

This provides a form in which the variation dv¢ appears without differentiation. The
vector n is the outward unit normal from the curve §{2 and s measures arclength on this
boundary.

The second functional,

Ly, x) = %//ﬂ {B((V*)? = 2(1 = v) ((92)(F5x) — (0:0,x) (0.0, x))) } dw dy
+ %//Q {1 = wa)x® = 2x[¢].=—a} dady,
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contains the motion of the ice sheet and a term that couples it to the fluid motion. This

functional has the first variation

6Ly = // {8 ((V*x)(V?6x)

—(1 =) ((95x) + (850x)(950x) (9 x) — 2(8:0,x)(8:0,6X))) } dz dy

[ [ 10 = k)= [0 0x = 0]} .
(2.13)
The removal of the derivative operators from the variations in L, is achieved through use
of the identity

BLO2x)(026x) + (92x)(076x) — 2(020,x) (0:0,0x) } =
ox{(920)(92x) + (928)(03x) — 2(0:0,3)(0.0,X)} + V - g,

where

{B[(05x)(0:6x) — (020,x)(9y0x)] — dx [(8213)(F;x) — (0,8)(8:0,X)] }
+ { [ 2X) (0 5X) (a:vayX) (a:c(SX)} —0x [(ayﬁ) (a:%X) - (axﬁ)(a:vayX)] }Ja

with i and j denoting the usual unit vectors. Green’s identity may now be applied to the

terms that contain the factor § in (2.13) to give

/ / {((1 = k)X + LX — W) bx — X[60s—_a} dzdy
“ (2.14)

! /59 {BV*x(8n0x) — 0x(8,8V*x) — (1 —v)n - g} ds.

We therefore seek the stationary point of the functional Lo (1), x) = L1(v)) + kLo (1), X)-
With reference to the form of the first variations (2.12) and (2.14) it is clear that Lo = 0
for (¢, x) = (¢,n) satisfying the governing equations of ice-covered fluid (2.9a-c). In
addition to these natural conditions, there is a set of conditions to be satisfied at the
boundary 69 x [—h, —d], which will be dealt with in the following section.

The derivation of the functional Lq is a form of Hamilton’s principle, in that it is
comprised of the difference between the kinetic and potential energies of the system. In
our specification of the variational principle, we have implicitly made the assumption that
our choice of approximation will be constructed on a real-valued basis. The extension of
Lg to incorporate complex values is made in Bennetts et al. (2007).

Let us now suppose that we consider a domain Q¥ for which the fluid is unloaded.
Equations (2.11a-b) arise as the natural conditions of the varational principle 6 L) = 0,

along with the identification of the reduced displacement function, 1, with the reduced
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free-surface elevation, [¢],—¢. It is efficient to encapsulate this latter identity as an essential

condition, by writing

20 ) = Lol = 3 [ [ [ (007 + @00102 = it vy

The first variation of Lgl()o) is then easily deduced to be

—d

_ , |

Q(o) = //Q(O)/ {6¢ (V*¢ + 024) }dzdady + o /h S1yVp dzds
B / /Q Do (2 V= B, + oy do dy,

and the stationary point ¢» = ¢ must therefore satisfy equations (2.11a-b) along with
conditions at the lateral boundary 6Q® x [—h, 0].

2.2.1 Jump Conditions

It was noted at the end of §2.1 that the governing equations (2.9a-c) and (2.11a-b) lack
conditions in the far-field and at the internal, lateral boundaries. Moreover, the satis-
faction of (2.9a-c) and (2.11a-b) are not sufficient as stationary conditions; there remain
boundary terms that must vanish.

In this section we will be primarily concerned with the conditions that must hold
at internal boundaries, caused by either a corner in the geometry or by the interface
between ice-covered and ice-free regions. To achieve this, we develop the boundary terms
that appear in the variational principle into the form of jump conditions.

First though, let us consider §§2 x [—h, —d] to form all or part of the far-field boundary.
In each individual problem, sufficient conditions for ¢ and 7 will be specified at this
boundary. These boundary conditions may be imposed on ¢ and 7 in the variational

problem, thus restricting the variations to
=0 ondéQx|[—h,—d], 6éx=0,0x=0,0x=0 on 6, (2.15)

and the boundary contributions in § Lq vanish. Similarly, if §Q(%) x [—h, 0] forms part or all
of the far-field boundary then conditions on ¢ exist there and the boundary contribution
to 5LQ(0

essential condition in our variational principle then a modified (and far more complicated)

, vanishes. If we were not able to impose the exact form of the solution as an

functional would be required. This fact will have an important consequence for our
solution procedure, which will be outlined in the following chapter, as it is necessary
that the exact form of the far-field conditions is inherent in the approximation that we

generate.
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water

Figure 2.2: An internal boundary, I', that separates two regions of connected ice-cover,
Q.

We now turn to the question of internal boundaries, beginning with their creation
through corners in the geometry. In the derivation of the variational principle, it was
implicitly assumed that the geometry possessed sufficient differentiability. Specifically, in
) we require that the fluid boundaries, d and h, are continuous up to first derivatives and
that the ice thickness, D, is continuous up to second derivatives. Let us suppose that
such discontinuities occur along a smooth simple curve I', with end points I'y and I’y
which partitions 2 into 2, and Q_. A graphical reprentation of this situation is shown in
figure 2.2. For algebraic convenience here, it is assumed that the fluid boundaries, h and
d, are continuous. It is therefore not possible to apply the variational principle dLg = 0
but rather §(Lo, + Lo ) = 0. For all points (z,y) € /T, the natural conditions (2.9a-b)
once again apply; however, at the internal boundary, referring to (2.12) and (2.14), we

have the boundary contribution

/Fn/; (56)) (V) dz + (k {(BV?X)(VX) — bx V(BV%) — (1 — v)ghds, (2.16)

where, for example, ((¢))) = 1y —1)_ denotes the jump in ¢ across the surface I' x [—h, —d]
and (x) = x4 —x_ denotes the jump in x across the contour I'. The subscripts + indicate
limits from the respective subdomains. Let the normal and tangential vectors, on I', n
and s be defined by

n=1icos®+jsin®, s=—isin® + jcosO,

where © = ©O(s) represents the angle of the curve I" with respect to the Cartesian frame.
It follows that
0y = cos ©0, —sin©J;, 0, = cos O, + sin O0;,
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where 0, = n -V and 9y = s - V., from which we find that
n-g=(02x + 0'9,X) (800X — (3.B)5x) — (050u X — ©'05x)(BIs0x — (9;8)5x). (2.17)
We also note the non-commutative identity
0,0, — ©'0sx = 0,0, X.

Using (2.17) and applying integration by parts to the terms involving d,(dx) in (2.17)

leads to the representation of the expression in (2.16)

[ s @mazas
[ (5f =390 + L= (@B + 00
—~(2(0.0) + B)(@:dnx ~0'0,x)) } )ds (319
[ (@) {57 ~ (1= 1)3(@ -+ 9,0} ds

—k (1= 1) [(5xB(D.0ux — ©'DX)) ]

Q’

ice

['
water

T bed w

Figure 2.3: An internal boundary, I, that separates a region of ice-covered fluid, €2, from
a region of ice-free fluid, Q).

Let us now suppose that I' occupies an interval of both §Q and 6Q®, so that it forms
the boundary between ice-covered and ice-free states. Such a situation is depicted in
figure 2.3 and we may suppose that at the ice edge D # 0, so that the geometry is not

continuous across I'. Mimicking the steps that led to (2.18) we find the contribution to
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the first variation of Lgwo) + Lg on I' to be

/F/;d 3 (Op)) dzds — /r/(; 5¢p(© (3n1/)(0)) Az ds

[ of = 0,397 + (=0 (@0 @+ O
—(2(0,8) + ) (Bu0nx — ©'D5x)) }ds
+ /i/ran(dx) {BV*x — (1 = v)B(d2x + ©',x) } ds

-k (1 - V) [5Xﬁ(asanx - @’85X)]§(1):

(2.19)

where ¢ = (© € QO to distinguish the limits from the two opposing states.
Before we deduce the conditions that apply at each type of internal boundary, it will

be beneficial to introduce the functional

= [ [ waas

where wu is an auxiliary function. This functional has first variation

ST = /F/; LS U+ ()} dz ds. (2.20)

Considering first the case of an internal boundary between two regions of connected ice,

by enforcing the stationary condition §(Lq, +Lo —Ir) along with the essential conditions

(X) = (9x) =0, (2.21a)

which ensures (0x) = (9,0x) = 0, we obtain, by referring to (2.18), the natural conditions

{((8)) = ((Ond)) =0 (2.21b)

and

(M) = (&) =0, (2.21¢)

which must be satisfied by the stationary point on I'. The essential conditions (2.21a)
ensure continuity of the position and gradient of the ice and the natural conditions (2.21b)
ensure continuity of fluid pressure and velocity. The quantities that appear in (2.21c) are
defined by

My = FVin — (1 —v)B(3;n + O'(9n)), (2.22a)

&n = 0n(BVin) — (1= v){(9in + ©'(0un)) (0n)

(2.22D)
_2((asan77) - 6’(8577))(855) - 533((333n77) - 6’(8577))}7
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and, respectively, represent the bending moment and shearing stress of the ice. If the

ends, I'g and I'y, of the internal boundary are finite and distinct, then the condition

</8(858nx - @’85X)> = 07 (223)

applies at each of these points. This condition will not apply to any problems considered
in this work.
If, instead, the internal boundary I' separates ice-covered and ice-free regions then

the stationary condition §(Lq + Lo - Ir) provides, from (2.19) and (2.20), the natural

0(0)
conditions
{((#)) = ((On9)) =0 (2:24a)
oY =0 (z,yeTl,—d<z<0), (2.24b)
and
Mn=6n=0 (zr,yel), (2.24¢)

where we assume only that y and J, x remain bounded along I" and no essential conditions
apply. If the contour is open and finite, for instance when it represents a crack or an edge
of an open pool, there will also be corner conditions, which are akin to (2.23). However,
in order to derive these conditions it is necessary to consider the limit from the opposing
directions, and as this will not form part of our study we do not pursue this issue.

Condition (2.24b) states that there is no fluid flow from the ice-free domain through
the submerged portion of the ice edge. For this form of internal boundary, the bending
moment and shearing stress conditions now mean that both of these quantities vanish at
the ice edge. These are the correct physical conditions applying at the edge on an ice
sheet.

For both types of internal boundary, I', the auxiliary function u may be retrieved from
u=20,¢ (v,y€l,—h<z<—d). (2.25)

The use of the functional It was first proposed by Porter & Porter (2004) as a means of
ensuring that the coupling between ice-covered and ice-free domains arises as a natural
condition of the variational principle. We use it in a more wide ranging sense, so that it
appears at the boundaries between regions of connected ice-cover. Through a straight-
forward modification it can be used for points at which discontinuities occur in the fluid
boundaries between ice-covered states. Although, in all cases, the coupling of ¢ could be
provided as an essential condition here, the use of Ir will have important ramifications
for our solution method.

Finally, we note that an internal boundary need not necessarily define a set of points

at which the geometry is not sufficiently smooth. The definition of an internal boundary
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in such situations is necessary; however, we may define an internal boundary along any
contour and in doing so, partition the domain arbitrarily, linking the two sub-domains
through jump conditions. Thus, we see that jump conditions apply at every point within
the domain but are normally superceded by the governing equations (2.9a-c) or (2.11a-b).
In our algebraic formulation of specific problems, it will prove to be benificial to partition
the overall domain, regardless of whether the internal boundaries are necessitated by the

particular geometrical properties.

2.3 Summary

On the basis of certain simplifying assumptions the problem of wave scattering by an ice
sheet of varying thickness over an undulating bed has been formulated mathematically.
Specifically, the motion of the system is described by a reduced velocity potential, ¢,
which exists within the fluid domain, and a reduced displacement function, n, which
exists in ice-covered regions. These functions are unknowns that satisfy the governing
equations (2.9a-c) when ice-cover is present and (2.11a-b) when the fluid is ice-free. At
the interface between ice-covered and ice-free regions, solutions are connected through the
lateral conditions (2.24a-c), and for any internal boundary within a connected ice-sheet
the jump conditions (2.21a-c) apply. The boundary-value problem is completed by the
imposition of the far-field behaviour of the solution, which is problem-specific.

All of the governing equations spoken of above arise as the natural conditions of a
Hamiltonian formulation of the problem as a variational principle, so that the solution
of the boundary-value problem coincides with the stationary point of a given functional.
The correct joining conditions that apply at the internal boundaries were actually derived
through this means, as the functionals contain all of the physical attributes that are
required of the solution.

The formulation of the problem as a variational principle will provide the basis of our
solution procedure, which will be outlined in the following chapter. Our motivation is
that approximations to the stationary point of the functional are, clearly, approximations
to the solution of the boundary-value problem. We may therefore utilise approximation

methods that exist for variational principles.
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Chapter 3
The multi-mode approximation

The set of governing equations (2.9a-c) is unsolvable by direct methods. Specifically, this
is due to the presence of variations in the thickness of the ice and the fluid depth, and in
particular that of the possibility of an undulating lower surface of the ice. This prevents,
for instance, application of the Green’s function method of solution that is utilised by
Williams (2006), in the case of a horizontal bed and the assumption of a zero draught.
Our objective will be to create a sequence of increasingly accurate approximations, so
that the full linear solution may be obtained to any degree of accuracy. Such approxima-
tions may be obtained in a number of ways; our chosen method is to restrict the vertical

motion of the reduced velocity potential to a finite-dimensional space, seeking a solution

of the form .
d)(mayaz) %¢N(Iayaz) :Zgﬁz(iE,y)’U}Z(iE,y,Z), (31)

=0
where the dimension (N + 1) and the vertical modes w; (i = 0,..., N) are user-defined.
The functions ¢; (i = 0,...,N) are unknowns that must be calculated by some means.

For the remainder of our work, we will describe ¢y as the multi-mode approximation
(MMA). The specific choice of the vertical modes in the MMA is an important one and
will be dealt with in §3.2.

In order to generate an approximation of the form (3.1), we make use of the variational

principle derived in §2.2. If the argument 1 of the functional Lg (or %) ) is restricted to

(0)
be only functions of the form 1y, then by seeking the stationary poinst2 of the functionals
over this restricted space we determine an approximation to the unrestricted stationary
point and hence an approximation to the full linear solution of the boundary-value problem
outlined in §2.1. The reduction of a variational principle to a chosen finite-dimensional
subspace is known as the Rayleigh-Ritz method. We are therefore applying the Rayleigh-
Ritz method to the coordinate z, using the trial space {wy, ..., wy}.

We expect that as the dimension, N, of the trial space is increased, through the

inclusion of additional modes, the accuracy of our approximation will be improved. This
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property may be established in some settings, such as that of integral operator theory
(see Porter & Stirling, 1990). In principle it is possible to convert the current problem
into one involving integral equations, in which case we could obtain the assurance that by
expanding our trial space we will gain a more accurate result. However, this conversion
constitutes a substantial undertaking and we are content to rely on numerical support for

the validity of this connection in the present work.

3.1 The governing equations of the MMA

The governing equations of the MMA, in a domain of ice-covered fluid, €2, are generated
by applying the stationary condition § Ly = 0 in conjunction with the restriction of 9 to
the form (3.1). Likewise, the governing equations of the MMA in a domain of ice-free
fluid, Q) are generated through 5L§;)()0) = (0 in conjunction with the same restriction to v
(although we will define different modes for this situation). We note at this juncture that
approximations to the reduced displacement function, y & 7, in domains of ice-covered
fluid, are generated indirectly through this method. That is, the reduced displacement is
only approximated through its relationship to the velocity potential.

We initially consider the case of a region of ice-covered fluid. Substituting the restricted
version of ¢ into Lg and noting that it has the variation

N
o =" (di)w,

1=0

we find that, since the w; are known, the stationary condition is

—i [[sed [ é(w +3) () de -+ malugla—

+ [w; Z{Vz -V (piw;) — gpi(azwi)}}zdh} dzdy

1=0

N
+ Ii// 5)({(1—/ﬁa)x+.$x—2<pi[wi]zz,d} dedy = 0,
Q i=0

where, for the present, it has been assumed that the boundary 62 x [—h, —d] is in the far-
field and can therefore be disregarded. It follows that the functional Lqg(v), x) is stationary
with respect to the variation dv satisfying the boundary restriction (2.15) provided that

31



the set of (N + 1) second-order partial differential equations

wj Z {Vz- V(piw;) — @i(azwz')}] =0

(3.2)
is satisfied for j = 0,..., N. Equations (3.2) may be simplified, by using the identity

—d N
/ w; 3 VP (i) dz + rxfg]ea +
—h

1=0

—d —d
/ ijQ(wigpi) dz = / ’LUJ(V’LUZ) . (VQOZ) — (ij) . (szQOZ + QOZVULL) dz

h —h

—d —d
—[w;Vz- V(wigoz-)]z_j_h +V. { / wjw; dz}V(pi + {Vh : / w;i(Vw;) dz}@i,

—h h

to

N ~

Z {V . (aj,ngoi) + dj,i . (VQOZ) + bj,igoi} + IiX[’LUj]z:_d = 0, (33&)

=0
where

—d . —d
aj,i = / ’LUj’LUi dZ, dj,z' = / {w](sz) — ’U)Z(V’U)])} dZ,
—h —h

and

—d —d —d
by — / wy (@) dz — [y (D)0, +V - / wy (V) dz — / (Vy) - (Vay) d.
—h —h —h

With respect to the variation Jy, subject to the far-field restrictions (2.15), we have that

the stationary point must further satisfy the fourth-order partial differential equation

(1= ra)x +Lx — Z @i[wil;=—a = 0. (3.3b)

1=0

Equations (3.3a-b) thus govern the MMA over domains of ice-covered fluid and are to
be solved for ¢; (i = 0,...,N) and x. These functions are dependent on the horizontal
coordinates x and y only.

Our ability to assume that the arbitrary variations of ¢ and y, over the restricted
space, should satisfy (2.15) is dependent on our choice of trial space. In particular, in
the far-fields, we will always include the vertical mode that supports the propagating
waves that contribute the only motion that exists in that limit. Our approximations will
therefore maintain the exact form of the full linear solution in the far-fields.

Through the combination of an approximation of the form (3.1) with a variational
principle we have succeeded in generating a new set of governing equations (3.3a-b) that
are independent of the vertical coordinate, z. The elimination of a geometrical dimension

contributes an enormous reduction in the complexity of the problem. Moreover, the
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dependence of the approximation on the vertical structure, and hence the choice of trial
space, has been condensed into the coefficients through a process of vertical averaging.
In particular, the difficulty of undulating vertical boundaries has been removed and the
problem outlined in §2 had become manageable.
Similarly, in situations of ice-free fluid, the governing equations of the MMA may be
deduced to be the set of (N + 1) second-order differential equations
N
{V @dve)+d? - (Vo) +leib =0 (G=0,...,N), (3.4)
=0

)

which are to be solved for the functions ¢; (i = 0,..., N). The coefficients are defined as

0 . 0
“g‘?z') - /hwa‘wz‘ dz, d;-f’z-) - /h{wj(Vwi) — wi(Vw;)} dz,

0 0 0
o) = / w(Ow) dz = w; (D)), + V- / (V) dz - / (Vuy) - (V) dz.
For convenience, the system of equations (3.3a) will often be written as the more

compact matrix equation
V- (AV®y)+ D - (V®y) + B®y + kxCf = 0, (3.5)

where ®x = (o, ..., ¢on)T, C = diag{[wq],=_a, - - ., [wn],=—a}, and £ = (1,...,1)T, while
Aji =a; 11, Bj; =bj_1, 1 and 15” = aj,l’i,l for i,5 = 1,..., N + 1. Equivalently,
the expression

V- (AOV&\) + DO . (Vey) + BO®y =0, (3.6)

will, on occasion, be used in place of (3.4), with the matrices defined analogously to those

appearing in (3.5).

3.1.1 Jump conditions of the MMA

The conditions that must be satisfied by the MMA along any internal boundary, I', may
be calculated through the same analysis used for the full linear solution in §2.2.1.

We begin by considering an internal boundary, I', that partitions a domain of ice-
covered fluid 2 into €, and 2_. It is necessary to employ an approximation for the

auxiliary function, u, introduced through the functional It in §2.2.1, which is consistent
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with the MMA, and so write

N N
U~ ZU1(x7 y)vz-(x, Y, Z), ou = Z(5u1)vz:

where the modes v; are supposed given but will be left unspecified for the present. With
the restrictions to both ¢ and w in place, the contribution of the variational principle
(Lo, + Lo_ —Ir) =0on T gives

EN:EN:/F </_hd{5%‘wy‘ (On(piwi) — wv;) — dujvjwip;} dz> ds

j=0 i=0

[ @u60Mx — xSV ds = r (1= 1) [ (x50 ~ OO ], = 0.

For arbitrary variations (0t¢)+ and 64, we deduce natural conditions, which are most

conveniently given in the matrix form,

(Vi®y)y = (VT®y), (3.7a)
and
(A0, @n)+ + (Q®N)x = Vi, (3.7b)
where L
Qmitnt1 = / W Opwy, dz (m,n=20,...,N), (3.8)
~h
—d
Vitrit1 = vji = / wjv; dz - (4,5 =0,...,N), (3.9)
—h
and u = (ug,...,ux)”. It is not necessary to explicitly calculate the auxiliary functions
u; (1=0,...,N) and we therefore recast conditions (3.7b) as
ViH{(A0,8n) 1 + (Q®n)1} = VI H{(A0,8y) + (Q®N) -}, (3.10)

where we have assumed that V. are invertible. It is possible that the relative choice of
modes, w; and v; (i = 0,...,N), and particular geometrical parameters will cause the
matrices V. to be singular; however, this is an unlikely scenario and has never proved
to be an issue. Furthermore, we note that, if the geometry is continuous across I', the
matrices Vi satisfy V; = V_. Retaining the essential conditions (x) = (J,x) = 0, for
arbitrary variations dx and 9,0y, we find that the equations for continuity of bending
moment and shearing stress, (2.21¢), apply, as does the end-point condition (2.23). This is
to be expected as the reduced displacement function is only indirectly approximated. The

complete set of conditions to be satisfied by the MMA at a boundary dividing ice-covered
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states is given by (3.7a), (3.10), (2.21c) and the end-point condition (2.23).
Now suppose that the internal boundary I' separates a region of ice-free fluid, Q(©,
from a domain of ice-covered fluid, 2. We will distinguish the MMA in the ice-free region

through use of the superscript (0), that is,

N
6=0" ~ oy =3 V@ (@y.2) (a.ye Q).
1=0

The contribution of the variational principle §(Lq + Lg]()o) — Ir) = 0 along this interface

implies
N N —d
ZZ/F { /h {dpjw; (On(piwi) — wivy) — dujvjwip;} dz
j=0 i=0 -
0
—/ {0y (5n(¢§0)w§0)) - ﬂwz‘) - 5Ujvjw§0)<ﬁ§0)}dz}d5
—h
[ {059~ xS s — 1 (1= 1) PxB@O - QAN = o
The natural conditions
VIdy = (VI®y) 0, (3.11a)
and
V40,8 n + QPy = {V 140,85 + QP 5}, (3.11b)

therefore apply across I'. Note that, due to the assumption that D # 0 at the ice
edge, V # V(. For the approximate reduced displacement function, y, the vanishing of
bending moment and shearing stress conditions (2.24c) apply and there is the possibility
of an end-point condition (see §2.2.1). The complete set of conditions to be satisfied
by the MMA at an internal boundary that defines the interface between ice-covered and
ice-free states is thus given by (3.11a-b), (2.24c) and the end-point condition.

We have succeeded in reducing the problem formulated in §2 to the calculation of
a finite set of two-dimensional functions. This was achieved by restricting the vertical
motion to a chosen (although, as yet undefined) finite-dimensional space. Application
of the variational principle over this restricted space generates a new set of governing
equations, from which the coordinate z has been removed through a process of vertical
averaging. Our task, before we are able to implement this approximation, is now to make
a judicious selection of the vertical modes that form the trial space. This is the subject

of the next section.
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3.2 Vertical Modes

The purpose of our work is in producing a sequence of increasingly accurate approxima-
tions to the full linear solution. We wish to balance this degree of accuracy with the
computational effort undergone to achieve it. Primarily, the computational effort is de-
pendent on the required dimension, N, of the approximation. Our remaining control over
the MMA is through the choice of the vertical modes, w; (i = 0,..., N). By judiciously
selecting these vertical modes we will obtain approximations that reproduce the key qual-
itative and quantitative properties of the full linear solution with relatively few vertical
modes.

If the geometrical configuration is uniform, such that the functions D, h and d are
all constant, it is possible to solve the full linear problem (2.9a-c) by seeking separation
solutions of the form ¢(z,y,2) = X(x,y)Z(z). Through this approach, we obtain the

representation of the full linear solution

oo

$(x.y,2) =Y _ iz, y) coshk;(z + h), (3.12)

1=0

from which it is possible to obtain an expression for the reduced displacement, 1. In (3.12),
the vertical dependence of ¢ is defined through the hyperbolic functions cosh k;(z + h)
(1=0,...), where the quantities k; (i = 0,...) are the roots of the (ice-covered) dispersion
relation

(1 — ko + BkYktanh kH = &, (3.13)

ordered in a way that will be discussed presently. Note that the quantities that appear in
(3.13) are dependent on the harmonic frequency (through x) and on the vertical distances
D (through « and ) and H. A proof of the completeness of the expansion set that
appears in (3.12) is given in Evans & Porter (2003).

The first mode (i = 0) of expression (3.12) will represent the propagating waves of the
solution. As we expect that the presence of a geometrical impediment will have the effect
of modulating propagating waves and activating (to some degree) the remaining modes,

we conjecture that a MMA of the form

T/JN(% Y, Z) = Z (,01(55, y) COSh{ki(xa y)(z + h(fl?, y))} (314)

1=0

will provide a good approximation, for relatively small dimensions, to the exact solution
¢, in regions where all fluid and ice boundaries are fully variable. We therefore define the

natural (vertical) modes as

wi(z,y, 2) = wi(x,y) cosh{k;(x,y)(z + h(z,y))} (i=0,...), (3.15)
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where w; (i = 0,...) is a weight function that is included for algebraic convenience and
will be defined at the appropriate juncture. At each horizontal point (z,y), the roots
k; satisfy the dispersion relation (3.13) generated by the particular geometrical values
D and H at (z,y). As such, they may equivalently be regarded as functions of (D, H).
Subsequently, the natural vertical modes become functions of (D, h,d, z), so that they
are dependent on the position of the fluid surfaces as well as the vertical distances. To

emphasise the alternative dependences of the modes, we write
wi(z,y,2) = Wi(D,h,d,z) (i=0,...,N).

In a region of ice-free fluid, we define the roots k; = k§°) to be the zeros of the free-
surface dispersion relation
k@ tanh kOh = &, (3.16)

whose geometrical dependence is on the local fluid depth h(z,y). The corresponding

natural modes are
(0) _ (0 h{E© h =0 3.17
w;(2,y,2) =@, (z,y) cosh{k; "’ (z,y) (2 + h(z,y))} (1=0,...), (3.17)

and may be taken to be functions of A and z, and we write wgo)(x,y,z) = I/Vi(o)(h, 2)
(1=0,...,N).

It is appropriate to note at this juncture that, due to the dependence of the natural
vertical modes on the geometry, any discontinuities in the structure will be manifest in the
approximation. In particular, consider the interface between ice-covered and ice-free re-
gions. At this point, the trial space will switch between {wy, ..., wy} and {w((]o), e wﬁ\?)}.
Consequently, it is not possible to ensure continuity of the MMA, throughout the fluid
depth, at this interface. The same is true of any internal boundary over which the ge-
ometry is discontinuous. This provides the motivation for the use of the functional I,
which is utilised to convert the condition ({1))) = 0 from essential to natural. That is,
the condition ((¢n)) = 0 cannot be imposed, but is rather satisfied approximately as a
natural condition.

Based on condition (2.25), we choose the vertical modes of the auxiliary function u to
be v; = cosh{k;(z + h)} (i =0,...,N). It is noted that, relative to our choice of vertical

modes w; and wz@

, there may exist a more efficient choice of these modes. That is,
there may be a choice that better balances the discontinuity across the internal boundary.
Porter & Porter (2004) used an averaging method for their single-mode approximation;
however, it was shown in Bennetts et al. (2007) that, for a particular problem, this
does not improve accuracy. Furthermore, it is not possible to extend this method to a

multi-mode approximation.

37



3.2.1 Coeftlicients of the MMA

Having made a suitable choice for the vertical modes that define the trial space for the
MMA, we are able to explicitly calculate the coefficients that appear in the governing
equations (3.3a) and (3.4) and the jump conditions (3.7a-b) and (3.11a-b). To ease
calculations we utilise the dependence of the vertical modes, (3.15) and (3.17), on the
geometrical functions. This is achieved by using the chain rule on the derivative operator
to give

V =(VD)op + (Vh)o, + (Vd)0,. (3.18)

We note here that the equivalent transformation in Porter & Porter (2004) was made
in terms of the vertical distances D and H only. The resulting approximations thus
neglected variations to the fluid-ice interface d. In particular, this led to spurious results
for non-constant d and the variations in this interface that appear in their work must be
reinterpreted as equivalent variations in the bed and the upper surface of the ice.

It is possible to make the transformation, (3.18), from cartesian to geometrical coordi-
nates, providing that the geometrical coordinate system fully describes the construction,
including the positions of the horizontal interfaces. In ice-free regions transformation
(3.18) reduces to

V = (Vh)0p.

In terms of the inner-product notation

—d 0
(f.9) = / Cfgds (190 / fgd (3.19)

we express the coefficients involved in the governing equations of ice-free and ice-covered
fluid as
0
aij = (W, Wy), al) = (Wi, ;) (3.20)

dj; = (PY — PYVD + (P — P+ (P — PV)Va,

2y

where we have written

P = (ax W, W;) for X = D, h,d,

Js

and
PO = @ w0,
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The remaining coefficients are defined as

’

= kja;; — k;jsinh(k;H) cosh(k;H) + Pj(’ V2D + p( N2h + P( dAve¥
+ P‘(l‘)’D)(VD)2 + P.('?”‘)(Vh)2 + P.(‘?’d (Vd)?
+ (PP 4 PP (WD) - (Vh) + (PP 4 PUP)Y(VD) - (Vd)
+ (P + Py D) (Vd) - (Vh),

and
O _ (1©)240) 1 pO 0.0
b = (6”2 + POV + PO (Vh)2,
with
PV = Oy (0x Wi, Wy) — (8y Wi, 0xW;), for X,Y = D, h,d,
and

_ ah(ahWi(U)a W],(U))(O) _ (ahWi(U), 8th(0))(0),

0,0
Py
and where we have used the properties 0?w; = k?w; and [0,w;],— » = 0 of the vertical

modes, and similarly for the ice-free modes. Using the same notation, the coefficients in

the jump conditions are calculated via
0 0
v = Wi V), giin = (W%, 1), (3:21)

and
Qitrin = VD + P 'Vh + P )Vd’ Qggzl,iﬂ = P'(O')Vh,

Js?

(0)

where, in the same manner as we used for the vertical modes w; and w,;’, we have
enforced the dependence of the modes v; to be on the geometrical variables by writing
vi(z,y,2) = Vi(D,h,d,z) (i=0,...,N).

Explicit calculations of the inner-products that appear in the above expressions are
rather lengthy and for this reason are given separately in Appendix A. We note here
that, with respect to the inner-products (3.19), the natural modes are non-orthogonal in

ice-covered regions but are orthogonal in ice-free regions.

3.2.2 The roots of the dispersion relation

The roots of the dispersion relation (3.13) are of fundamental importance to the natural
modes (3.15) and consequently to the MMA. In this section we investigate these roots
and discover their properties to be non-trivial. We also discuss how they may be ordered.

To begin with though, we conduct a review of the roots of the free-surface dispersion
relation (3.16), whose properties are comparatively simple. Each of the roots comes in a

+£© pair and it is, therefore, only necessary to consider those that appear in the complex
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domain £(*) € C; such that C; = {Re’ : R > 0,0 < 6 < 7}. In this domain, there exists

a unique positive real root, which we denote k((lo), whose corresponding vertical mode,

w(()o), supports propagating waves in regions of uniform fluid depth. The only waves that
will exist in the far-fields are these propagating waves. By selecting the primary mode in
our trial space to be that which supports these waves, we ensure that the exact form of
the radiation conditions is mirrored exactly by the MMA, which is a requirement of our
solution procedure.

There are also infinitely many purely imaginary roots, A (n =1,...), ordered in
ascending magnitude, and such that the inequality

iw < k9 < i%ﬂ (n=1,...), (3.22)
holds. In regions of uniform fluid depth, these purely imaginary roots support evanescent
waves that attenuate exponentially according to the magnitude of the root. As they
increase in magnitude, it is easily deduced that the purely imaginary roots approach the
upper limit of (3.22), such that

EOh =inr +0(n™Y) (n— o). (3.23)

We now turn to the roots of the ice-covered dispersion relation (3.13). Parallels run
with the free-surface dispersion relation. Again, the roots come in +k pairs and we restrict
our attention to complex domain k£ € C,. It will also be helpful to note that roots come
in conjugate pairs, so that if one complex root k is present in C; then a second, —k € C;,
necessarily exists.

There is always one positive, real root of the dispersion relation (3.13), which we denote
ko. It can be shown that this root lies in the interval (0,U), where U = max{x coth(k),
kH™', (ka3 1)V/4}, and it is therefore easily found numerically. In a region of uniform
geometry, the corresponding vertical mode, wqy, supports propagating waves of length
A = 27 /ky. Comments pertaining to the satisfaction of the radiation conditions in the
far-field are again applicable.

The real root of the ice-covered dispersion relation, kg, is typically smaller than that of
the free-surface dispersion relation, k((]o); however, for small angular frequencies ky & k((]o).
In figure 5.10(a) a graphical representation of the relationship between the respective
roots is given for some example ice thicknesses and a typical range of frequencies. If the

angular frequency is reasonably large we find that

e\ 14
k(()o) ~ Kk, ko= (F) .

Thus, as the angular frequency (and hence k) increases, so does the difference between
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these two roots.

Through application of the principle of the argument, it has been shown by Evans &
Davies (1968) and Chung & Fox (2002) that the complex region C, = {Rel’ : 0 < R <
nm/H,m/2 <0 < 3r/2} contains (n + 2) roots of the dispersion relation. In this aspect,
the structure of the roots of the ice-covered dispersion relation differs from that of the
free-surface dispersion relation, which has only n roots - its purely imaginary roots - in
the analogous region.

Let us consider the possibility of purely imaginary roots. If we choose to write the

roots as k = io, such that ¢ > 0, then the dispersion relation may be given in the form
(1 — ka + Bo')o = —kcot(oH). (3.24)

This expression makes it clear that at least one root, o, = —ik,, lies on each branch of
cot(oH), that is, in the interval (m, 1, 7,), such that m, = nw/H. In regions of uniform
geometry, the corresponding vertical modes, w,, support evanescent waves. These purely
imaginary roots are (typically) simple and therefore account for n of the roots to be found

in C,. As with the purely imaginary roots of the free-surface dispersion relation, the limit
koH =inm +O(n™%) (n — 00), (3.25)

is easily verified. Comparing (3.25) with (3.23) we see that the purely imaginary roots of
the ice-covered dispersion relation attain their limit more rapidly and, taking H = h, are,
in general, larger in magnitude than their free-surface counterparts.

We will describe the two remaining roots as complex roots and denote them k_; = p;
(¢ =1,2). The full linear solution (3.12) and MMA (3.14) are therefore recast, in regions

of ice-covered fluid, as

¢ = Z ¢icosh{ki(z + )}, Vniz= Z i, (3.26)

i=—2 1=—2

respectively. For most values of «, 3, H and &k, the roots p; (i = 1,2) lie away from
the imaginary axis, in which case pus = —7,. In intervals of uniform geometry, the
corresponding modes support waves that attenuate as they propagate. Note that, as y; €
Cy, Sm(|p|) > Re(|pi]). It is also possible that particular combinations of parameters
produce values of u; that lie on the purely imaginary axis, occupying the same interval
(Tn_1,m) of cot(0 H). The relationship between the values «, 3, H and k for which the
complex roots bifurcate between these two states is significant to their role in the MMA

and form the investigation of the subsequent section.
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Bifurcations

A coalescence occurs at the point at which the complex roots, p; (i = 1,2), switch
between being fully complex reflections of one another in the imaginary axis to being
purely imaginary and being related only in that they exist on the same segment of the
imaginary axis. A comprehensive study of the circumstances under which a bifurcation is
created is conducted in Appendix B of Williams (2006). The following account, although
closely linked, differs from that of Williams in its method and in that its intent is towards
the use of the roots in the MMA.

The point at which the complex roots bifurcate between the two states described arises
when a double root of the dispersion relation (3.24) occurs. Differentiating (3.24) with

respect to o, we deduce that a multiple root must satisfy
(1 — ko +560")0 = koH csc* (0 H), (3.27)
in addition to (3.24). Equations (3.24) and (3.27) may be rewritten
(A+ BoYYo = —cot(cH), (A+5Bo*)o =oH csc*(cH), (3.28)

where

A= (1-ka)/k, B=g/k. (3.29)

Isolating the factor Ao in both expressions involved in (3.28) and equating leads to
—Bo® — cot(0H) = —5Bo° + o H csc*(cH)
which may be rearranged to give
4Bo® = cot(oH) + o H csc* (o H) (3.30a)

and so
Ao = (A°/4B)Y*{cot(c H) + o H csc? (o H) }'/°. (3.30b)

Substituting expressions (3.30a-b) into the left hand equation of (3.28) and rearranging

produces the equation

~

fa(6: C) = 55in(6) + 6 + C{(1 — cos(#))*(sin(5) 4+ 5)}/*> = 0, (3.31)

where C® = 2845/B and 6 = 20 H. The function f, is an increasing, oscillatory function
of the positive real variable 6. The existence of zeros, ¢, is dependent on the value of the
parameter C’, which, in turn, depends on the properties of the ice and also the incident
wave through (3.29).
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0

G/2m
Figure 3.1: The function f, given in equation (3.31), as a function of 6 /27 for the param-
eter values C' = 0 (blue curve), C' = —1 (red), C'= -2 (green), C'= =3 (cyan), C = —4
(magenta) and C' = —5 (yellow).

In figure 3.1, the function f, is plotted in the interval 6 € (0,67), for the range
of values of the parameter C' € [=5,0] N Z. Decreasing the value of C has the effect of
translating the curve f downwards, in doing so increasing the prevalence of zeros. For each
interval (7, m,11) (n = 0,1,...) an oscillatory cycle occurs and there is the possibility of
2 isolated zeros, a single double zero or no zeros. If zeros exist in the interval (m,, 7,1)
for n = ng then roots exist in all prior intervals, n < ng. As C decreases and a particular
interval passes from having no zeros to having 2, a double zero is created; for the interval
(Tn_1, ) we label this point as C' = C,, (n = 1,...). Hence, it is deduced that, on the
nth purely imaginary branch of (3.24), for all C' > C,, there is no possibility of bifurcations
as H varies; while, for C < C’n, there are two values of H that produce double roots. The
finite interval between these values of H corresponds to the existence of purely imaginary
w; (i = 1,2) (this may be deduced by noting that for any value of C we may select H
such that we have a solitary root on the purely imaginary interval in question). As soon
as we have calculated the relevant roots &, the value of o (and consequently H) may be
obtained from (3.30a-b). This assumes that B and/or A has been fixed (in addition to
0).

If the parameters «, # and x are such that C = C’n, then there is an isolated value of H
for which a triple root of the dispersion relation exists in the nth purely imaginary interval,

although this is the only value of H for which multiple roots exist (in this interval). In
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order to investigate the values C, (n=1,...) further, we differentiate the second equation
of (3.28), with respect to o, to obtain

10Bo® = —(0H)? cot(c H) csc* (o H). (3.32)
A triple root is then defined by equations (3.28) and (3.32).
1 (a) . (b) 7 (c)

s

f .
a

s

G/2m 5/2 5/2

Figure 3.2: The function f, as a function of & /2x plotted for (a) C' = C4, (b) C' = C, and
(c) C = Cj (see equation 3.34). The chosen interval of & /27 in each subfigure corresponds
to the specific parameter C’n, in order that they demonstrate the existence of double roots
for these values.

By eliminating Bo® between (3.30a) and (3.32) we deduce the triple root condition
5(sin(6) + &) (1 — cos(6)) + 62 sin(6) = 0. (3.33)

This equation is independent of the parameters of the problem, specifically of the value
C. The zeros of (3.33) are denoted &, € (m,_1,m,) (n = 1,...) and may be easily
found numerically. The corresponding values C, may then be derived from, for example,

equations (3.28), and we find the first three values to be
Cr~265x107", Chm~ —277, Oy~ —4.80. (3.34)

The value of C; given above is consistent with the equivalent value that is given by
Williams (2006). Further verification of these values is provided in figure 3.2, which plots
the function f, in the relevant interval of & for the respective values of Cy appearing in
(3.34).

Let us now turn to the physical interpretation of these values. It is clear from the def-
inition of C' that it decreases linearly with increasing x and quadratically with increasing
D. There is therefore a relationship between x and D that must be satisfied in order to
attain the values C' = én As n increases (and hence én decreases) this will require either

a greater incident wavenumber or a greater ice thickness. It is clear that C=0<0Cif
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a = 1/k, which is satisfied by

1
/iD:—0<:p—w>.
9 Pi

In figure 3.3 the value of D that ensures C' = 0 is plotted for the interval of angular
frequency w € (1,5)rads/secs. The corresponding bounding values of H, that separate
the different states of the complex roots are also plotted; note that, the bounds are
very close, which means that for each w and D, there is only a narrow band of fluid
depths for which the complex roots are purely imaginary. Using this information we may
select, as an example, the combination w = 3rads/secs (k = 0.9174), D = 1.2111m and
H € (22.7870,23.0060)m as an interval of physically realistic parameters for which the p;

(1 =1,2) are purely imaginary, existing on the first imaginary segment, (0, 7).

14
12

10

1 15 2 25 35 4 4.5 5

€ wt

Figure 3.3: The values of D (solid blue curve) that ensure C =0 for differing frequency,
and corresponding upper bound (dotted red) and lower bound (dotted green) of H/10
between which multiple roots exist on the first purely imaginary interval.

~—

In the subsequent segments it is physically extremely unlikely that bifurcations will be
encountered. In demonstration of this figure 3.4 displays the values of D and H against
K at the triple roots, C = C, (n = 2,3), that bound the bifurcation points in the second
and third imaginary intervals.

Finally in this section, we consider the relevance of these results to our model. In
Appendix A, it will be shown that, in a neighbourhood of a bifurcation the derivative
(with respect to any independent variable) of the constituent roots is unbounded. We

are required to differentiate the natural modes (see §3.2.1), which implicitly necessitates
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Figure 3.4: The unique values of D (blue curves) and H (red) that ensure (a) C=0C,
and (b) C = (3, and hence the existence of a triple root in the corresponding interval of
the imaginary axis, as functions of frequency.

the differentiation of the roots of the dispersion relation, and this is precluded if such a
bifurcation arises.

In each particular problem there exists an fixed angular frequency (and hence fixed
k). The vertical structure of the geometry is allowed to vary, and let us suppose that
max(D) = D,,, and max(H) = H,,,. From the above argument it is legitimate to restrict
our attention to only the first imaginary interval, (0, 7). For the set x there exists a pair
(D,H) = (Dy, Hy) for which C = Cy. If D,,, < Dy or Hpy < Hy then there is no risk of
bifurcations; however, if these inequalities do not hold then further investigation must be
carried out. For D € (Dy, D,,,) we may find the bounds in H of the bifurcation interval,
say (Dy, H,) and (D,, H;) represent the lower and upper bounds respectively. If this is
plotted against (D(z,y), H(z,y)) then it is possible to deduce at which points (if any)
bifurcations occur according to the number of times the path of the vertical structure
cross the bounds of the bifurcation interval.

An example of a typical bifurcation is shown in figure 3.5. Part (a) shows the path of
the constituent roots, namely p; (i = 1,2) and kq, for a linearly increasing ice thickness,
D € (1,6)m, and linearly decreasing fluid depth, H € (55,60)m, with x = 0.4245. Part
(b) plots the corresponding path of (D, H) along with the bifurcation bounds, (D, H,)
and (D,, H,;), described above. Initially the complex roots, u; (i = 1,2), are genuinely
complex. As the ice thickens and the fluid becomes more shallow they travel towards
the imaginary axis. At the point at which the complex roots coalesce on the imaginary
axis, the curve (D, H) meets the lower bound (D,, H,) and crosses so that it lies within
the upper and lower bounds. During this period, as H and D vary, the complex roots,
w; (i = 1,2), are travelling, respectively, down and up the imaginary axis. Whilst this

has transpired, the purely imaginary root, k; has moved slowly up the imaginary axis
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towards the oncoming root ;. These roots inevitably collide, at which time the curve
(D, H) crosses the upper bound upper bound (D, H;). The curve (D, H) then crosses this
boundary so that is no longer enclosed within the bifurcation bounds and concomitantly

the roots p; and ky bifurcate to form a new fully complex pair.

701
01
(a) o5t
0.09 /
/ 60—
/
0.08 /
/’ 551
—~ /
<o 0o7f M1/
N—r 50
E 0.06 / H
& / s
005
// 40-
004 351
0.03f 1 \ 30l
0.02 . . . . . . . ) 25 . . . . . . . . | )
~0.04 0.03 0.02 ~0.01 [) 0.01 0.02 003 004 1 15 2 25 3 35 4 45 5 55 6
Re(k) D

Figure 3.5: Graphical representation of a typical bifurcation. Part (a) plots the paths of
the constituent roots, with k; (blue curve), uy (red) and ps (green). Part (b) plots the
path of the vertical structure of the geometry, (D, H), (magenta curve) and bifurcation
bounds, (D,, H,) and (D,, H;), (black).

Linear Dependence

There is a second result, concerning the natural modes, that will affect our ability to
define the vertical structure of the MMA. In this section we will prove that the entire
set of natural vertical modes, consisting of the single propagating mode, the two complex
modes and the infinite number of evanescent modes has a two-fold linear dependence. To
avoid numerical difficulties, we must then modify the finite subspace of these functions,
that we intend to use as our trial space, by removing two of the salient members.

Consider the integral

1 [ (<)
%?{ A cosh¢(z + h)dg, (3.35)

integrated about a circle centred at the origin, of radius R, where
8(5) = (1 — ka + B<*)ssinh(¢H) — k cosh(¢H),

is an even function, and f, is a currently unspecified odd function that is holomorphic in
the circle about which we are integrating.
Assuming that the parameter set used does not give rise to a multiple root (i.e. a

point at which the complex roots k_; = p; (i = 1,2) coalesce) application of the residue

47



theorem to integral (3.35) gives

N

2 Zz Q/EZ:; cosh k, (2 + h) = Bg, (3.36)

n=-—

where Bp is the contribution from the boundary, and we are supposing that only the roots
+k, (n=-2,...,N) are contained in the circle.

Suppose that f, is selected such that the contribution from the boundary decays as
R — oo, then

2 ngo.; QEIZ; cosh k,(z + h) = 0. (3.37)

This result tells us that there exists a subset of the natural modes
{coshk,(z+h)} (n=-2,—-1,0,1,...), (3.38)

that spans the same space. The degree by which we may reduce the natural set (3.38)
depends on how many linearly independent ways we may select the function f;.

It may easily be deduced that the only admissable f, are such that f,(s) = a5 + aszs®,
for constants a; and az. Therefore fy(k,) = k, and fy(k,) = k2 are the only two linearly
independent possibilities. Integral (3.35) originally appeared in Evans & Porter (2003);
however, its implication for the natural modes was not made explicit.

Although we work only with a finite number, (N + 1), of vertical modes, it can be
expected that numerical problems will be experienced for small NV, if the natural approx-
imation is applied in the form (3.26). Specifically, the matrix A (defined after equation
(3.5)) is found to be near-singular for MMAs of this form. Result (3.37) permits the
removal of two modes from the trial space (3.38); the role of the removed modes will be
compensated for, to an arbitrary degree of accuracy, through the addition of higher-order
modes w; (i > N).

An obvious choice of modes to be removed from trial space (3.38) are those that
correspond to the complex roots, namely w_; (i = 1,2). This will leave a real-valued set,
which is a computational advantage. It will also provide a consistent approximation in
situations of partial ice-cover, so that each vertical mode used in the ice-free region has a

clear analogue in the ice-covered region. To reflect this choice, we rewrite (3.37) as

cosh{p;(z +h)} = Z v;jcosh{u;(z+h)} (i=1,2), (3.39)

1=0
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in which the redistribution weights are

kiR (pg) (k3 — p5)
1 R (k) (15 — 115_)

(i=0,...:5=1,2), (3.40)

Vij =

where j_ = (3 — (—=1)7)/2. By using the limiting value of the purely imaginary roots,
k, — inm/H as n — oo, we deduce that

o (_1\n HR (1) _ (L -
Unj & (1) n?w?ﬂuj(ugj— S _O<n2> (j=12), (3.41)

for sufficiently large n.

In terms of the uniform geometry problem, we have shown that for any distribution
of the roots of (3.13), in which the roots do not coincide, the vertical motion may be
expressed by any subset of (3.38) with two members removed. The horizontal waves
corresponding to the vertical modes that are no longer present are then redistributed
amongst those remaining vertical modes. For example, by taking the choice to remove
the vertical modes cosh{p;(z+ h)}, the form of the full linear solution appearing in (3.26)
becomes

o0
d(x,y,2) = Z {¢1‘(SE, y) + Z v, 04, y)} cosh{k;(z + h)}. (3.42)
i=0 j=1,2

In situations in which any of the roots of the dispersion relation coincide, application
of the residue theorem does not lead to equation (3.36). Instead, extra functions will arise
in place of the repeated modes. As we are able to disregard two members of the trial
space (3.38) knowledge of these additional functions is not required.

In terms of their relevance to the MMA, result (3.39) and the issue of bifurcations
are not independent. By returning to the MMA of the form (3.14), any problems caused
by bifurcations in the removed modes, cosh{u;(z + h)} (i = 1,2), have been alleviated.
However, if we consider the example given in figure 3.5, we see that the three roots k; and
w; (i =1,2) all bifurcate, hence invalidating the use of w; in (3.14). In terms of the type
of bifurcations depicted in figure 3.5, we deduce that if the curve (D, H) only crosses one
of the bifurcation boundaries then the MMA of the form (3.14) is valid by virtue of the
linear dependence (3.39) but that if it passes through both upper and lower boundaries

(as in figure 3.5) then it is not possible to utilise the natural modes in their current state.

3.2.3 Alternative vertical modes

We find ourselves in the position that, in our choice of vertical modes for situations of
ice-covered fluid, (3.15), we are unable to guarantee sufficient differentiabilty to generate

the governing equations. Specifically, the problem lies in the evanescent modes and in
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particular the primary evanescent mode, w.

This is an appropriate point at which to note that the issue of bifurcations is not one
that reflects any failure in the full linear model, which was outlined in §2. It is rather an
artifice of our solution method, in which the vertical motion is defined at each horizontal
point as if the surrounding geometry were uniform.

In order that the MMA is available for all possible parameter ranges we must seek
some resolution of the problem created by the occurence of bifurcations. If we wish to
retain the natural modes, then it is sufficient that the composite quantities p;w; remain
bounded up to second derivatives across the domain. However, there appears to be no
practical way of implementing this condition. Alternatively, we may choose the weight
functions, w; (i = 1,...), to achieve sufficient differentiability. Unfortunately, as any
numerical method will operate on a discretised space, such a method would inevitably
lead to singular behaviour in the vicinity of a bifurcation. It would also be theoretically
possible to partition the overall domain according to the existence of bifurcations, applying
jump conditions between each subregion. This approach could not be realised practically
as it would be difficult to manufacture the appropriate boundary values to be used in
the jump conditions due to the unboundedness of the derivatives of k; (i = 1,...) in a
neighbourhood of a bifurcation. Our choice of the natural modes was merely a judicious
choice based on the reasoning that the key physical aspects of the vertical motion would
be encompassed by a relatively small trial space. It is, however, in principle, possible
to obtain convergence of the MMA to the full linear solution through use of any trial
space, provided that a sufficiently large dimension is taken. Therefore, the problem of
bifurcations may be simply overcome by employing an alternative trial space in situations
for which the natural evanescent modes are not viable.

The specific alternative that we propose is the hybrid MMA ¢y = 1/;N, so that

N

'@/;N(xaya Z) = %(«Tay)wo(%ya Z) + Z(P1(«T,y)wz($,y, Z)a
i=1

where the hybrid (vertical) modes are

Wiz, y, z) = w(z,y) cosh{k;(z,y)(z + h(z,y))} (i=1,...,N),

and
~ nrT

k‘n:iﬂ'nzlﬁ (n=1,...,N). (3.43)
The hybrid MMA therefore shares the same single-mode approximation as the natural
MMA, which is unaffected by bifurcations. The additional modes are modified versions of
the natural evanescent modes, the quantities k; (1t =1,...,N) being the limiting values

of the purely imaginary roots k;. We therefore have k, — k, as n — oc. It is clear from

20



(3.43), that unlike the k;, which depend on both D and H, the quantities k; (i = 1,..., N)
depend only on the fluid depth, H. As such, the hybrid modes have less correspondence
to the structure of the problem and we therefore expect the convergence of the hybrid
MMA to be (generally) slower than that of the natural MMA.

The form of the coefficients derived in §3.2.1 is equally applicable to the hybrid modes,
with only %, replacing k, (n # 0). We however note the simplification

VW, = (0,W,))Vh+ (0,W,)Vd (n=1,...,N),

where w;(z,y,2) = W;(h,d,z) (n = 1,...,N). The same is true of the explicit expres-
sions for the inner-products that are given in appendix 5.12. Only the derivatives of the
quantities k, (n = 1,...,N) differ in structure from their natural counterparts and are
given at the end of Appendix A.

Rather than considering the hybrid modes to be modified versions of the natural
evanescent modes they may be viewed as the non-constant modes of a Fourier cosine
series. The hybrid MMA therefore represents a truncated Fourier expansion of the ver-
tical motion, with the constant term replaced by the mode that supports propagating
waves. It is our assertion that the inclusion of this mode is fundamental to the MMA and
significantly improves its accuracy.

It will be shown in §4 that it is necessary to move between alternative trial spaces
across internal boundaries. In doing so, we will create discontinuities in the MMA, even
when the geometry is continuous. This provides a further motivation for the use of the

functional Ir.

3.3 Summary

We are now at a point at which we have at our disposal an approximation method, known
as the MMA, that will provide solutions of any given accuracy. Moreover, we believe
that in our specific formulation, we will receive a high degree of accuracy at minimal
computational expense.

The task of solving the three-dimensional boundary-value problem that was outlined
in §2 has been replaced by a more appealing set of governing equations, in which the
coordinate z is absent. These equations were generated by the restriction of the vertical
motion to a finite-dimensional space in the variational principle given in §2.2.

The accuracy of the MMA may be controlled through the choice of the trial space
that defines the space in which the vertical motion of the solution exists. Specifically,
the size of the trial space may be chosen large enough that we may, effectively, attain
the full linear solution. Moreover, as we wish to minimise the computational expense,

we proposed a set of vertical modes known as the natural modes. These modes, which
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comprise the trial space, were selected on the basis that they define the vertical motion
of a ‘near-neighbour’ solution and we therefore expect that a relatively small number will
accurately represent the vertical motion of the exact solution that is sought. Furthermore,
the inclusion of the mode that supports the incident wave allows the exact form of the
far-field to be retained in the MMA.

In situations of ice-cover, the properties of the natural modes were found to have non-
trivial properties. Firstly, there is the difficulty of bifurcations; whereby, the complex
roots of the ice-covered dispersion relation, which have no analogue in the free-surface
case, switch between being genuinely complex and being purely imaginary and may collide
with the purely imaginary roots as well as each other. This causes singularities in the
derivatives of the resulting evanescent and complex modes and hence invalidates their use
in the MMA. Secondly, there is the issue of a two-fold linear dependence in the complete
set of natural modes. This necessitates the removal of two of the prominent modes from
the trial space and the complex modes were seen to be the obvious choice.

For the trial space from which we have removed the complex modes, there is less
chance of the modes becoming polluted by bifurcations; however, this was seen to still be
a realistic possibility. To resolve this issue, we proposed an alternative set of evanescent
modes, described as the hybrid evanescent modes. The hybrid modes do not suffer from
bifurcations but also do not share the same level of association with the geometry as the

natural modes and are hence expected to provide slightly less accurate approximations.
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Chapter 4
Two-dimensional problems

The first application of the MMA that will be made is to two-dimensional problems in
which the bed shape and ice shape are independent of y; take, for example, the situation
shown in figure 2.1 of the §2, now assumed to represent every cross-section.

Two specific problems of this type are formulated for numerical solution and results are
presented in §§6-7. Graphical representations of these geometries are given in figures 4.1-
4.2. In both problems, the geometry is permitted to vary over a finite interval contained
within semi-infinite intervals of uniform geometry that are either ice-covered and run on
continuously from the varying geometry (see figure 4.1) or are ice-free (see figure 4.2).
An obliquely incident plane wave propagates from the far-field x — —oo with crests that
meet the z-axis at a given angle, 9(~). Problems of this type have been considered by
previous authors and comparative results are therefore available for restricted cases.

This is an appropriate juncture at which to introduce the lateral conditions attached
to the problem. In the far-fields + — ‘o0, the exact solution must behave like a super-

position of propagating waves, such that the radiation condition
&y, 2) ~ {ABENTT . BEFAT oV giw cosh £ (2 + BE)) (1 = £00),  (4.1a)
holds if the far-fields are ice-covered and
$(w,y, 2) ~ {AD N 4 BB FNT 2y olay cogh kO (2 4 h@E)) (2 = £00), (4.1b)

holds if the far-fields are ice-free. Imposing these radiation conditions fully defines the
two-dimensional problem.
The constants A(()_) and A((JO_) are the prescribed incident amplitudes and will be set

as

A = e (), AP = e ),
0 0

to ensure that the incident waves are of 1m amplitude. In numerical examples we will
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choose to consider no incident wave from the far-field + — oo and thus set the con-
stants A(()+) and A((]0+) as zeros; however, for generality and to ensure algebraic symmetry
throughout the formulation, we leave these amplitudes unspecified. The constants B)
and B%) are unknown outgoing amplitudes that must be determined as part of the
solution process.

The quantities k(()i) and k(()Oi) are the propagating wavenumbers in the respective far-
fields and ¢ = k((f) sin9) or ¢ = k(()of) sin (7). Using these values, we may calculate the

wavenumbers in the z-direction from
AP = G602 =g O8) = (W) = ¢

By accepting the radiation conditions (4.1a-b), we have implicitly assumed that the
angle of the reflected wave is identical to that of the incident wave, and that the angle,

)| of the wave transmitted into the opposing far field (z — oc) satisfies the relation
ESD sin(9) = k{7 sin(9)),

so that it is dependent on the incident angle, (=), as well as the ratio of the propagating
wavenumbers in the respective far-fields. Both of these assumptions are consequences of
Snell’s law.

At this point we remark that when k((]+) < k((f) there exists a critical angle, 97 = 9,,

beyond which no waves will propagate into the opposing far-field, x — oc. This critical

k(+)
’190 = Sin_l % .
kO

If the critical angle is attained or exceeded then all of the energy from the incident wave

angle is defined by

is reflected, |R| = 1. Moreover, the waves that we have assumed to be propagating in the
far-field x — oo are in fact exponentially growing or decaying. In this case, we must set
the amplitude of the growing wave, Agﬂ, to zero. However, this matter is of trivial concern
and we will not need to touch upon it again. If, on the other hand, k(()+) > k((]_) then waves
will transmit to the far-field # — oo for all incident wave angles, =) € (0, 7/2).

As a periodic variation has been assumed in the y-direction, it is pertinent to retain

this in our approximation by setting

Qpi(ma y) = @i(z)eiqy ('L =0,..., N)a X(l‘, y) = X(m)eiqy.

The unknown functions are relabelled ¢(z) = ¢(x) and x(z) = x(x). They, along with
the functions that define the surrounding ice and bed shape, are now functions of the

variable z only and consequently the vertical modes are w; = w;(z, 2).
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4.1 The governing equations of the MMA in 2-d

It is straightforward to reduce the partial differential system (3.5), for ice-covered fluid,

to the ordinary differential system
0,(A0,®N) + DO, &N + (B — (>A)®y + kxCf = 0, (4.3a)

and the associated fourth-order partial differential equation (3.3b) to the fourth-order

ordinary differential equation
N
{8 = a)B0; = &) + (1 = v)(828)0* + 1 — ratx = Y _[wils=—api = 0, (4.3b)
i=0
where all of the matrices are defined in §3.1. The following, more compact, version of this
system of differential equations

8,(A0, ¥ ) + D, ¥y + BTy =0, (4.4)

will prove to be convenient on occasion, where

T
Uy = ((I)%7X(1):X(2)) ’ (45)

which is such that x(*) = y, and x? = 3(9? — ¢?)x, and

Aij=Ai;, Bij= DB 5zg =D;; (i,j=1,...,N+1),

Ansonte = Avgsnis =1, Binpo=sI]Cf (i=1,... N +1),
BN+27N+3 - —/8_1, BN+3J‘ - —fTC I] (] — ]., ey N + 1),
Byionte = Byisnis = —¢°, Byisnie = (1—v)(020)¢° + 1 — ka,

with all unspecified values equal to zero and where [ I, ..., Iy, | is the identity
matrix of size (N +1). In an interval of ice-free fluid, the partial differential system (3.6)

trivially collapses to the ordinary differential system
9, (A99,®y) + DY(9,®y) + (BY — 2A0)®y = 0. (4.6)

Throughout the set of equations (4.3a-b), (4.4) and (4.6) we have tacitly redefined the
differential operator 0, so that it now represents the full derivative 9, = d/dz. The
notation 0, has been retained simply for the sake of brevity and its new definition will
hold throughout our investigation of two-dimensional motion in §§5-8.

The accompanying jump conditions must also be calculated. Given the restrictions of
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the problem, the contour I', over which the jump conditions are implemented, must be
parallel to the y-axis and hence the normal to this contour is parallel to the z-axis.
If T separates two intervals of connected ice, the two-dimensional versions of the

natural conditions (3.7a) and (3.10) are easily found to be
(VTBy), = (VTBy) |, VH{(A0,8x): + (QBy) =V 1{(40,8x) +(QBy) }

respectively. Equivalently, if I' defines the interface between ice-covered and ice-free re-

gions, the natural conditions (3.11a-b) become
VI®y = (VI®N) Y, V9140,®y 4+ Q®y = {V 140,Py + QP x} . (4.7)

Again, all matrices that appear are defined in §3.1.

The expressions for the bending moment and shearing stress reduce to
My = x? + 51 - v)g’xV,
and

Sx = 0ux? — (1 = )¢ (B0, — (0:3))xV.

At a point between ice-covered intervals, the essential conditions (x") = (9,x(") = 0
apply. If the ice thickness is continuous across I', these essential conditions can be used to

simplify the natural conditions that ensure continuity of bending moment and shearing

stress to
(x?) =0, (4.9a)
and
(037 + (1= 1) (0.8)") =0, (4.9D)
respectively.

The full set of jump conditions at a point at which two intervals of connected ice meet

may then be expressed as
VM Oy = (VM Ny, (4.10a)
and
VI{(AMO, )y + (QN T )1} = VI {(AMI, Ty)- + (QN T )}, (4.10b)
where

Qn,m:Qn,m: Qn,m:Qn,m (namzla"'7N+1):
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QN+2,N+2 = QN+3,N+3 = VN+2,N+2 = VN+3,N+3 = 1,

Mpn=1 (n=1,....N+3), Npn=1 (n=1,...,N+1),

and

MN+3,N+2 = —5(1 - V)q2a NN+3,N+2 = (1 - V)QQ(amﬁ)-

As always, all unspecified entries are zeros. The matrices M and N therefore enforce the
continuity of bending moment and shearing stress and may be simplified if the geometry
allows; in particular, if the ice thickness is continuous then (4.9a-b) may be applied in
place of (My) = (&x) = 0 by replacing M with the identity matrix. Furthermore, the
matrices M and N commute with all of the matrices that appear in the jump conditions.

If, however, the jump conditions are to be applied at a point separating ice-covered and
free-surface fluid intervals then the conditions to be satisfied are given by (4.7) together
with the conditions of zero bending moment and shearing stress, Gy = My = 0.

These may be condensed into the expressions
(V@) = (VI®n)-, (4.11a)
and
VIH{(AMO, O y) | + (QN ), } = VIH{(AMO, B y)_ + (QN )},  (4.11b)

where
Mpn=Nopn=1 (n=1,...,N+1),

Mz nge = —p(1 - V)q27 Mnyysnys =1,

and
-/\7N+2,N+2 = 5(1 - V)QQ; -/\7N+2,N+3 =1, -/\~/N+3,N+2 = (815)(1 - V)q2-

Note that, in both situations, end-point conditions, such as (2.23), do not apply.

4.2 Uniform geometry

In a situation in which the geometric variables D, h and d take constant values, it is
possible to give an analytic expression for the natural MMA, as (4.4) reduces to a con-
stant coefficient ordinary differential system that may be solved by standard methods.
The expressions that we will derive for the MMA will provide boundary values for the
numerical solution of the two-dimensional problems described at the beginning of this

chapter. It is possible to obtain expressions for alternative trial spaces; however, these
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rely on complicated numerical procedures. For this section, it will make calculations more
manageable to assume that the vertical modes take the weighting @; =1 (i =0,..., N),
which is done without loss of generality.

Therefore, take ¥y (z) = ¢(A)e*, such that ¢7(X) = (cT'(X),7M(A),7P (X)), where
)\ is a constant, € is a vector depending on A, and 4 (i = 1,2) are scalars depending
on A. The quantities A and ¢ represent, respectively, eigenvalues and eigenvectors of the

simplified system (4.4). Substituting these expressions into (4.3a-b) and making use of

djﬂ' = 0, bj,i = aj’ik? - kz smh(kZH) COSh(ij),
which apply on intervals of constant D, h and d, leaves the eigensystem defined by
{A(K*— (X +¢)I) - CEfTKS} e+ kyVCE =0, (4.12a)

and
(B +¢)? +1—ka) ) —£7'Ce =0, (4.12b)

where
C = diag{cosh(koH),...,cosh(kyH)}, S = diag{sinh(koH),...,sinh(kyH)} (4.13a)

and

Matrix A, which is defined by A, 1,11 = a;; = (W;,W;) (4,7 = 0,...,N), and the
vector f = (1,...,1)7, were originally introduced in §3.1. The set of equations (4.12a-b)
now represents an eigensystem that is to be solved for eigenvalues A and corresponding
eigenvector entries ¢(\) and y()(A). Due to the dimension of this eigensystem, there
will be (2N + 6) of these eigenvalue-eigenvector pairs. Note that we have eliminated
the constant 4(?) by using the identity v® = —X28+(") from which it is therefore easily
recovered.

Combining dispersion relation (3.13) and equation (4.12b) we deduce that

kCf = (1—ka)Sf+ SK*KST

(4.14)
= B(K*— (N + ) (K*+ (AN +¢*))KSEf+ KSfFTCe.

Furthermore, by using the formula

_ kjsinh(k;H) cosh(k;H) — k;sinh(k;H) cosh(k;H)
o k2 _ k2
j i

(i #5), (4.15)

Qji
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which is given in Appendix A, the equality
A(K? — \2) + (KSTTfC — CETEKS) = (K? — \?) A, (4.16)

follows directly. Substituting equalities (4.14) and (4.16) into equation (4.12a) gives

(K% — (N +¢)I) Ac+ By (K2 — (N + ¢*)I) (K> + (M +¢)I) KSf=0.  (4.17)
At this point, it may be noted that the (2N + 2) pairs

(Ac)= (L) = (k- ¢* L) (i=0,...,N),
satisfy (4.17), and hence provide our first set of eigenvalue-eigenvector pairs. The values
AY(N\) = Kk sinh(k,H) (i =0,...,N),

may then be recovered from (4.12b).
If \# )\ (i =0,...,N) then the matrix A = K? — (\? + m?)I is non-singular, and
hence equation (4.17) may be simplified to

Ac+ V(K2 + (\2 + A )KSE =0, (4.18)

from which the vector ¢ may be eliminated by multiplying through with £ and using

equation (4.12b), to give
(BN +¢)?+1— ka) + BETCATYK? + (V4 A KSE = 0. (4.19)
Equation (4.19) is a quartic that defines the remaining four eigenvalues
N=XN, =y -0 (i=12). (4.20)

The corresponding eigenvectors, vy iy = ¢(A_;), are then recovered from (4.18). Unlike
the previous eigenvalue-eigenvector pairs, (A;,I;) (i =0,...,N), the quantities ;) and
vnyiy (i = 1,2) are dimension dependent. Note that the choice of v(V(A_;) (i = 1,2) is

free, and taking
A_;sinh(A ;H)
K

W) =

will prove to be algebraically convenient.

(i=1,2), (4.21)

On intervals of constant D, h and d the approximation may therefore be written as

Uy (z) = C{e""A + e B}, (4.22)
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where

A =diag{g, ..., Av, A1, Mg}, e = diag{eFhor | oFIve oFiAaw Hidaay
(4.23)
C=1¢N) ... ¢(Any) ¢(A 1) e(N2) |, (4.24)
and

A= (AOa RS AN; A—la A—Q)T ’ B = (B07 R BNa B—la B—?)T ’
are constant vectors of length (N + 3). Equivalently, we may express the full MMA as
N
Un(z,y,2) = Z {soz(a:) + Z ’UN,(Z',j)SOi(SE)} e'% cosh{k;(z + h)}, (4.25)
i=0 j=12

where
(,Dz(LE) = Aiei)\im + Bieii)\im (Z = 0, ey N),

/24

p-j(z) = A_jei e,y =)o B—je_i(u?\’ﬁ(]’)_(f)l (1 =1,2),
and the (dimension-dependent) constants are
UN,(i,j) = {’UN7(]')}1‘ (Z = O, cee N, ] = 1, 2) (426)

We may compare this with the two-dimensional version of the full linear solution (3.42)

$(z,y,2) =) {@(:c) + Y Vo (:r>} ' coshki(z + h)}, (4.27)

i=0 §=1,2

where
QZSZ(]I) = Aiei/\ix + Bie_i/\ix (’L = 0, ey N),

and
1/2

$_j(x) = A_jel (50" L g o iUi-a) i (5 9),

Beyond the issue of truncation, expressions (4.25) and (4.27) differ only in the appearance
of yin,(;) as opposed to p;, and vy (; ;) as opposed to v;; (i =0,...,N:j =1,2). As such,
we may view the role of the dimension-dependent pairs (A_;, c(A_;)) as compensating for
the horizontal motion related to the complex roots that, in the full linear solution, are
redistributed amongst the other vertical modes using (3.39). It is therefore natural to

regard

,U/N,(j) =~ Hj, UN,(i,j) ~ Vij (Z = 0, cee N; j = 1, 2) (428)

It is possible to say a little more than (4.28) if we assume the approximations are

replaced by equalities in the limit N — oo. It is then necessary to show that the eigen-
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system (4.18) is satisfied by these choices in this limit. To prove this we make use of the

equality

k;sinh(k;H) cosh(u;H) — p; sinh(p;H) cosh(k;H)
ki — w3

By () (k7 + 1i2) ki sinh (k H ) = — ,
fori=0,... and j = 1,2 (which may be derived from the dispersion relation (3.13)) and

also the limit
al k;sinh(k;H) cosh(p;H) — pu; sinh(p;H) cosh(k;H)
Z QinUn,j k2 — 12

j

; —

(N — ),

n=0

for i = 0,... and j = 1,2 (which is deduced via (3.39) and (4.15)). We may indeed
therefore write

IN,G) = His  UNGig) — Vij (N — 00, (4.29)

fors=0,...,Nand j =1,2.

Having substantiated assertion (4.28) through (4.29), we however note that the MMA
of dimension N is unaware of our choice to redistribute the horizontal motion related to
the complex roots; that is, we may equivalently have removed any of the vertical modes
WN41, ... in place of w_; (j = 1,2) in (4.27) and have deduced different approximations
(4.28). The effects of using the dimension-dependent values juy,(;) and vy, ), as opposed
to direct truncation of (4.27), are investigated in the following chapter.

In an interval of ice-free fluid, expression (4.22) degenerates to

@53) (z) = A + e M, (4.30)
in which ) )
M= (W) = (W) —¢ (i=0,....N),
and

A =diag (A, ..., Ay)", B=diag(By,...,By)",

are now of length (N+1). The analogues of expressions (4.25) and (4.27) are, respectively,

N
Yn(T,y,2) = g[)](\(,)) (2,y,2) Z{Aiei’\g% + Bie_i’\gm‘”}eiqy cosh{kz(o)(z + h)}, (4.31)
i=0
and N
¢(z,y,2) z:{Aiei’\EO)‘lC + Bie_i’\gm‘”}eiqy cosh{kz(o)(z + h)}. (4.32)
i=0

Therefore, in contrast with the case of ice-cover, for situations of ice-free fluid, the form

of the MMA is a direct truncation of the full linear solution.

61



In this section we have ignored the possibility of the approximate roots py i) (i = 1,2)
coinciding, which could occur even though a multiple root of the dispersion relation is not

present. The condition for a multiple root here is

1 — ko

B

(fTCAT'KSE)° = +7CAT K3 St

1
4
in which case

1
2 _ T —17-3

This situation is easily dealt with by standard methods; however, as this problem occurs
only at isolated frequencies, we will not have to resort to an alternative expression but
will rather take the pragmatic approach of perturbing the frequency to eliminate the
multiple eigenvalue. It is also noted that, in the neighbourhood of a true bifurcation,
it is not unlikely that the properties of the py ;) (i = 1,2) differ from those of the y;
(¢ = 1,2). That is, for certain N, the uy ;) (i = 1,2) may be purely imaginary, whilst the
w; (i =1,2) are complex and vice versa.

The fact that the inclusion of the vertical mode that bears the incident wave in the trial
space would lead to the correct form of the far-field conditions being satisfied in the MMA
was discussed in the previous chapter. Having derived the expressions (4.25) and (4.31)
it is possible to explicitly witness this property in the case of two-dimensional motion
and oblique incidence for which the radiation conditions (4.1a-b) must hold. Further and
more specific reference will be made to this point in the following section.

For problems of two-dimensional geometry and obliquely incident waves, we have
reduced the governing equations of the MMA, given in §3.1, to a finite system of ordinary
differential equations, (4.4) and (4.6), with accompanying jump conditions. In intervals of
uniform geometry, for which the geometrical functions take constant values, this system
has been solved up to a set of unknown constants - the amplitudes - which are fixed by
imposing the correct jump conditions dictated by the specific problem. These expressions
will be used in the far-fields to allign the MMA with the exact radiation conditions that
are attached to the problem. It now remains to formulate the specific solution procedures

that will be used for our chosen geometrical constructions.

4.3 Numerical Formulation

In both of the two-dimensional problems to be considered, we define the finite interval
over which the fluid and ice boundaries are permitted to vary as z € (0,l). Within
this interval, the fluid therefore occupies the domain (x, z) € (0,1) x (—h(z), —d(z)) and
the ice thickness is given by the function D = D(z) # 0. For the situation in which

the ice-cover is complete, the two semi-infinite states of uniform geometry are defined as
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(z,2) € (=00,0) x (A7), =d)) and (z,2) € (I,00) x (—=hF), —dP)), where h*) and
d®) are constants, and the respective ice thicknesses are given by the constants D(~)
and D). This is the geometrical configuration depicted in figure 4.1. The internal
boundaries are defined by the points x = 0,[, regardless of whether the geometrical
functions are insufficiently differentiable at these points or not (see §2.2.1). That is, even
if the geometry were to be sufficiently smooth at either of the ends of the finite interval
of varying geometry, it will suit our solution procedure to partition the x-axis at these
points as if it were not.

The second problem involves partial ice-cover and, in particular, a solitary floe of finite
length and is depicted in figure 4.2. The semi-infinite intervals of uniform geometry are
ice-free, and the fluid occupies the domains (7,z) € (—o0,0) x (—h{7),0) and (z,2) €
(I,00) x (—h{),0). Again, the internal boundaries are defined by the points z = 0,1 and
we recall that we have assumed that D(z) #0 (z = 0,1).

4.3.1 Complete ice-cover

Ag—)emg—u ~

_ iy (5)
B(() )e—1>\0 z

_ z

Figure 4.1: Schematic of the two-dimensional problem of complete ice-cover.

We assume the use of the natural modes in the two semi-infinite intervals z € (—o0, 0)
and z € (l,00) . In this case, using the form (4.22), we may represent the unknown

functions as

T () = O T7AC) 4o TR} (x < 0), (@.33)
T (z) = cCH {0 AM) 4 o WD —BHY (1> 1), '
where vectors A% = (Agi),(], ...,0,0,0)T contain the known incident amplitudes and

63



B = (B](Vi’g, e B](Vi’])V, B](\,ill, B](ViiQ)T contain unknown outgoing amplitudes. The su-

perscripts (4) are used to indicate that the particular quantity is evaluated using the
corresponding geometrical constants. The approximation therefore mirrors the exact ra-
diation conditions (4.1a), so that in the far-fields

{AS) N7 4 B](v_’())e*i’\é_)m}eiqy cosh{k$7) (z + h( )} (r — —0),

¢N ~ ‘ . .
(A =a) o B e =0y ei cosh (kST (2 + A} (@ — o),

and thus the only approximation is to the outgoing amplitudes B](éfg.

As discussed in §2.2.1, satisfaction by the MMA of the exact conditions in the far-fields
is required so that we may assume that the appropriate variations vanish at these points.
The point raised in §3.2.2 that it is essential to include the mode wq in the trial space in
the far-fields is now particularly evident.

Over the interval of varying fluid and ice boundaries, x € (0, 1), the system of governing
equations (4.4) must be solved numerically for the vector of unknown functions ¥y, up
to a set of unknown constants. These constants are then determined through application
of the jump conditions (4.10a-b). Using (4.33) we have

VM ey] = (VMTIC) T {A®) 4 B, (4.34a)

and
VTH{AMO® ) + (QNEN)Y] = H(VTTAMA)I{A® B} (4.34b)
where (*) = (141)/2. In this finite interval the vertical modes may be chosen arbitrarily.

The number of constants up to which we determine the numerical solution, ¥y, is
controlled by the number of unknown constants appearing in the jump conditions (4.34a-
b). It is therefore computationally efficient to suppress as many unknowns as possible

and, with this in mind, equations (4.34a-b) are reformulated as the vector
By (vP) = Fidg(AT — By (VTAMC) P, (4.35a)
where Z; = (1,0...,0)7 is of length (N + 3), and the scalar
bWy (2F)) = ASY + BYY, (4.35h)

where

Bov(z) = V7 (5) (Alrs) M(25)0, + O (2)) v(ws),
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and
bav(z) = Z7C Yz )M(21)V T (22)VT (25) M oz )v(z),

where

-~

Qui(r) = Qz4)N(z3) FiQu(x), (4.36a)
and _
Qi(r) = V(rg)V Naw)A(rs)M(24)C(xs) A(zs) Fx

(4.36b)
C Mz ) M@V (@) V! (a) M (25),

with F = diag{0,1,...,1}. Note that the only unknown amplitudes appearing in these
new conditions are those of the outgoing amplitudes that appear in the far-field, namely
Bﬁ’o. However, the amplitudes of the evanescent waves, By, (n = 1,..., N), are unavail-
able through jump conditions (4.35a-b). Our objective in these two-dimensional problems
will be to obtain information relating to the properties of the ice over the varying interval,
specifically its displacement, and the far-field response. Therefore, the loss of knowledge
of the evanescent waves, in the intervals of uniform geometry, will not deter us. It is
mentioned in passing that, having obtained the MMA, the missing amplitudes may be
retrieved from conditions (4.34a-b).

The approximation may now be expressed over the interval z € (0,l) as a linear

combination of numerically determinable functions, with
Wy (x) = i(A5) = B)L () +1(AFY = By L (), (4.37)
where L. satisfy the system of equations (4.4), along with boundary conditions
B L (0)= NV AMC)TIT, B L. (1) =—-NV TAMC)H T, (4.38a)

and
B, L (I)=B L,.(0)=0, (4.38b)

where, again, Z; = (1,0,...,0)T.
The form of the solution (4.37) along with conditions (4.38a-b) ensure satisfaction of
the jump conditions (4.35a). The remaining unknowns in (4.37), the outgoing amplitudes

B](\f()), are found through application of the conditions (4.35b) that are yet to be used.

B AC)
( s ) = S( w | (4.39a)
BN,U Ao

which defines the outgoing amplitudes in terms of the incident amplitudes through the

Specifically, this produces

scattering matrix

S - —(IQ —|— iSU)il(IQ - iSO), (439b)
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with I representing the two-dimensional identity matrix, and

So = ( b-L-(0) b-L:(0) ) . (4.39¢)
b L (1) biLi(l)

4.3.2 Partial ice-cover

A(()f)eug;u ~

Bé_)e*“t(f)m wr | h(x)

bed

Figure 4.2: Schematic of the two-dimensional problem of partial ice-cover.

In the second problem, the two semi-infinite intervals are ice-free, and consequently,

using (4.30), we may denote the solution

@537)(33) = N TTAC) 4 eiNT2B() (z <0), 440
309(1) = AHAND) 4 NOEDBO (5> 1), o
+ () ’ - inci i
where now the vectors A& — (AU ,0,...,0) contain the incident amplitudes and
T
B® — (B](Viyg, cee B](Vi])v) the unknown outgoing amplitudes. The comments relating to

the satisfaction of the the exact form of the radiation conditions, here (4.1b), are again
applicable.
By using (4.40) in the jump conditions (4.11a-b) we provide the boundary conditions

I:VTQN]CL‘:;C:E = (V(i))T{A(i) + B(i)}’ (441&)
and

ViI{(AMO®y) + (QN®y) | = HF(VTTANE{A® - B}, (4.41b)

_:L‘:t
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for the numerical solution Wy (z) (0 < z < 1), in which F is a (N 4 3) x (N + 1) matrix
consisting of the identity matrix of dimension (N + 1) appended with two rows of zeros.
To calculate W, in this finite interval, any vertical modes may be chosen.

Following §4.3.1, we recast the conditions (4.41a-b) to reduce the number of unknowns

that appear. The reformulated versions are
B, Uy (@) = FiAF (AP - BIHYFV1A) BT, (4.42a)

and
b Wy (2H)) = A + B, (4.42b)

where we have redefined B4 and b, as

—~ o~

Bv(z) = V7 (a5) (Ale=) M(a5)9, + O @)V (a5)

and
bov(z) =1V T (x)VT (a5) Flv(zs),

with

~

Q. (7) = Qax)N (w5) FiFV (22)V ™ (02) Alz) Aws) FV " (w) V" (a5),

where F' = diag{0,1,...,1} is a square matrix of dimension (/N 4 1). Again, the refor-
mulated conditions (4.42a-b) contain only the amplitudes that exist in the far-fields.
We then numerically calculate the functions £4(z) (0 < x < I) satisfying the system

of equations (4.4) and the boundary conditions
B L (0)=FOOVIOL, B,.L.0) =-FOLV 41, (4.43a)

and
B, L (I)=B_L,.(0)=0. (4.43b)

The approximation may be expressed as the linear combination
T(x) = i(Ay ) = By )L (2) +i(A57 + By) Ly (a),

and the outgoing amplitudes are obtained from the scattering relation (4.39a-c).
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4.4 The scattering matrix

Many of the results presented in §§5-8 will be based on the scattering matrix, S, defined in
(4.39a). This is because it gives a concise representation of the reflection and transmission

of energy through an obstacle. We will also write

R_ T,
S = , (4.44)
T R,

where the entries Ry denote the reflection coefficients and Ty the transmission coefficients.
The squares of the moduli of these quantities we will refer to as the reflected energies
and transmitted energies respectively, which are clearly proportional to the square of the
incident amplitudes.

As the vertical modes have been chosen to be real-valued, all of the coefficients involved

in the governing equations of the MMA are real-valued. It follows that ¥ is a solution to
the same problem as Wy, with the only concession being that the amplitudes (Eg\ﬁ], Z((]i))

replace (A(()i), B](éfg). In particular, the scattering process (4.39a-c) remains consistent, so

that

—(=) ()
0 _g BN,O
+ | - ()
0 BN,O

(4.45)

Comparison of (4.39a) with (4.45) reveals the identity SS = I. From this equality the

Kreisel relationships

\R_R,|+|T-Ty| =1, (4.46a)
R | =|R,| = |R|, (4.46)
arg(T_) —arg(T}) =2nm  (n € Z), (4.46¢)
and
arg(R_-Ry) —arg(T-T,) = 2n+ 1)m  (n € Z), (4.46d)

which are well-known for free-surface flows (see Porter & Chamberlain, 1997), may be
obtained. It is therefore necessary to only consider the one value, |R|?, for the reflected
energy.

In Appendix B the energy balance

Tl OA0, T () — (0,80, OAT ) + T, DT ()| =0, (4.47)

Zo

is derived, with x; (7 = 0,1) arbitrary points, within ice-covered intervals, and ¥ (i =
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0,1) any two solutions of the differential system of equations (4.4). The matrix

I 0 0
Oo=10" 0 -k |, (4.48)
o' —k 0

is of size (N + 3) x (N + 3).
Taking (W), ¥(1y) = (£-, L) in (4.47), where L. satisfy the complete ice-cover
boundary conditions (4.38a-b), it is possible to show that

[Z"ACTOACT| _, b_L.(0)=[I"ACTOACT] _ V0L (D). (4.49)

0 l

This makes use of the identity
D=Q-q"
and the diagonality of the matrix CT OAC, which is proved in Appendix B. We deduce

that, if the matrices satisfy
[AcToAC) =0, (4.50)

then
b_L,(0)=0b,L_(]). (4.51)

Equality (4.50) is clearly satisfied if the far-field geometries are identical.
From the definition (4.39¢), it can readily be shown that

det(So)T- = 2b""(£,)(0),

and
det(So) T} = 2b% " (Lo) (1),

and hence that if equality (4.51) is satisfied, then we have equality of the transmission
coefficients, T" = T,.
Similarly, for the case of partial ice-cover, when the functions £, satisfy the boundary
conditions (4.43a-b), the relation
[T7AAT]

Cb_L4(0) = [TTAAT] V6L (D),

=0 =1

can be deduced in place of (4.49). The equality of the transmission coefficients then
follows if the far-field fluid depths are identical.

If the transmission coefficients are equal, say T = T, then using (4.46a),

IT|>=1-|R]
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It is therefore only necessary to consider the value |R| to describe the scattering of energy

by any two-dimensional obstacle.
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Chapter 5
Piecewise uniform geometry

Before we consider the two-dimensional models formulated in §§4.3.1-4.3.2, in which there
exists an interval for which we permit the geometrical surfaces to undulate, it is pertinent
to explore the properties of the MMA in comparison to an alternative solution method.
This will serve to establish the MMA as an efficient approximation method and highlight
some of its strengths and weaknesses.

To make this comparison, we consider a restricted class of problem, involving only
piecewise uniform geometry, in which the sole sources of scattering are at the interfaces
between different uniform regions. For such problems there is a range of alternative
solution methods available, some of which are mentioned in §1. In particular, we will
make use of the analytic expression for the MMA in intervals of uniform geometry, which
was derived in §4.2, and explore the issues that were raised about this approximation.

The derivation of the MMA was a consequence of the consideration of geometry that
varies over a domain as a continuous function of the horizontal spatial variables. An

approximation method was produced by a combination of the following:
- The separation of the vertical and horizontal motion of the fluid;
- Restriction of the vertical motion to a judiciously chosen finite-dimensional space;
- Application of the Rayleigh-Ritz method in a variational principle.

This results in the elimination of the vertical coordinate from our calculations via a process
of vertical averaging through integration.

Our specific aim in this chapter is to examine the role of the vertical averaging in the
MMA. To do so, we will compare the MMA against an eigenfunction matching method
(EMM) that does not invoke any such vertical averaging. For the investigations of this
chapter, it is sufficient to consider only the most simple version of piecewise uniform
geometry, which is a two-dimensional model involving only a single source of scattering.

The EMM is introduced through one such example below.
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5.1 The semi-infinite ice sheet problem

As stated above, we will restrict our comparison of the MMA and EMM to a piecewise
uniform problem that incorporates only a single source of scattering. The example that
will be used here is the classical problem of ocean waves normally incident from a semi-
infinite interval on an ice sheet of a semi-infinite extent. This problem has been used to
describe shore-fast sea-ice (see §1) and has been studied by Evans & Davies (1968), Fox &
Squire (1994), Balmforth & Craster (1999) and Linton & Chung (2003) amongst others,
although a zero draught has always been assumed.

Therefore, we consider the geometrical configuration defined by

PU=3 (x> 0), H=9 4 (x> 0),

and h = hgy throughout. The draught of the ice is given by dy = hg — Hy. All values with
subscripts are positive constants. A graphical representation of the semi-infinite ice sheet

geometry is given in figure 5.1.

Agf)eikgo)m ~

B((]—)e_ikg% -
water

ho H,y

bed

Figure 5.1: Schematic of the semi-infinite ice sheet problem.

We wish to approximate the reduced velocity potential ¢(z, z) satisfying (2.9a-c) for
x > 0 and (2.11a-b) for x < 0. Additionally, there are the continuity conditions

() = ((020)) =0 (2 =0,—hg <z < —dy), (5.1a)
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and the draught condition
0:0(0_,2) =0 (—dy <2<0). (5.1b)
The no bending moment and shearing stress conditions are given by
zm(0) = 9;m(0) = 0, (5.2a)

or, alternatively,
020,4(0,4, —dy) = 020,¢(04, —dy) = 0. (5.2b)

In the far-fields, the radiation conditions

(A§ " 4 B{ e 72) cosh b (2 + ho) (= —o0),

(Ay e thor 4 BT eik02) cosh ko (z + ho) (x — o0),

(5.3)

must hold, where k¢ is the propagating wavenumber beneath the ice and k((]o) is the

propagating free-surface wavenumber. As usual, the constants A((]i) and B((]i) represent,

respectively, the incident and reflected amplitudes. The incident wave amplitude from
the ice-covered far-field, Agﬂ, will usually be set to zero; however, we retain it in our

numerical formulation for completeness.

5.1.1 The multi-mode approximation (MMA)

Assuming unit weighting, @, =1 (n =0,..., N), the reduced velocity potential ¢, under

the constraints of (5.3), is approximated in the MMA as

U (2.2) =F1CO() @Y (@) (w <0),
d(x, 2) ~
Un(x,2) =f1C(2)PN(7) (x> 0),
where f = (1,...,1)" is a vector of length (N + 1) and
C(z) = diag{cosh{ko(z + hg)},...,cosh{kn(z + ho)}}

and
C9(z) = diag{cosh{kéo) (z4+ho)}, ... ,Cosh{k](\?)(z + ho)}}

have been (for this chapter only) redefined to include z dependence. From equation (4.30)

3V (z) = KT AL 4 o 1K)

73



and, similarly, from equation (4.25),

By(z) =e KTAMH) 4 lKrBH) 4 Z B_ ety o, (5.4)

7j=1,2

where A(®) are vectors whose only non-zero entries are the incident amplitudes and B(+)
are vectors of the unknown reflected amplitudes.

The vertical displacement of the underside of the ice, 7, is indirectly approximated in
the MMA by x. By using (5.4) in (4.12a), it is straightforward to give x in the explicit

form

X(@) = k7K S (—do) {7 TAM 4+ B} 43 " Wy y) Bje T, (5.5)
j=1,2

where S(z) = diag{sinh{ko(z + h)},...,sinh{ky(z + h)}}, like C(z), has been redefined

for this chapter only. Using this definition, conditions (5.2a), which here translate to

92x(0) = @x(0) = 0, may be interpreted as a means of defining the amplitudes B_;
(j =1,2) in terms of A(H) and BM™), with

YO (i () Bi e ) (18, — B ) =

(5.6)
k UTKS(—d)K*{(K + pn g I)AD + (K — py, i 1) BMY,
where j_ = (3 — (—1)7)/2.
The approximations wj(\[;) and 1y are joined at x = 0 through the conditions
(VYT (0) = VT(0), (5.7a)
and
A0, 0 =0y, 49,® = Vu. (5.7b)

This fully defines the MMA approximation. The auxiliary vector u, which is usually

omitted from these continuity conditions, is retained to aid comparison with the EMM.

5.1.2 The eigenfunction matching method (EMM)

In order to examine the EMM, it is convenient to utilise notation that includes infinite
arrays. The difference between infinite and finite arrays will be understood through a
subscript attached to all matrices where confusion could arise.

Seeking separation solutions (see §3.2) and applying radiation conditions (5.3), the
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reduced velocity potential may be expressed as the infinite sum over the vertical modes

oz, 2) = i{A; ) lkﬁ)x+B( ik "} cosh{£O (= + ho)}
- ;;Oc'og)(z){eiKég)mA(—) +e—iK§2)xB(_)} (5.8a)
= {100 ()2 (2),
in x <0, and
o(z,2) = Z{A e vy Blt)eiknr 4 Z Un,;B_ e} cosh{k,(z + ho)}
j=1,2
(5.8b)

= 170 (2){e =" A 4 B +ZB jeitu;}
= {'0x(2)2(x),

for x > 0, where A®) = <Agi),0,...>T, B®) = <Béi),...>T, f=(1,...)7 and v; =
(Vojs - - - )" are all vectors of infinite length. The quantities i (j =1,2) are the complex
roots of the dispersion relation (3.13), which were discussed in §3.2.2, and the values v, ;
(n = 0,...) are the corresponding redistribution weights defined in equation (3.40). It
is appropriate to again note that the recasting of the full linear solution ¢ through the
redistribution of the horizontal motion associated to the vertical modes cosh{y;(z + h)}
(j = 1,2) is non-unique. The particular selection to remove the complex vertical modes
is here made to maintain consistency with the MMA and this choice will have a bearing
on the resulting truncated form of the EMM.

Following the MMA approach, the constants B_; (j = 1, 2) are determined in terms of
A and B™) by application of the no bending moment and shearing stress conditions,
here equations (5.2b), to (5.8b)

p sinh(p; Ho) B i (1 — ) =

— kT Koo Soo (—do) (Koo) { (Koo + ptj_ L) A + (Koo — 1 I)BM}, o
where, again j_ = (3 — (—1)7)/2 (j = 1,2), and the identity
K (2)v; = kg sinh{p (2 + b))},
has been used.
Let the condition of continuity of fluid velocity at x = 0 be expressed as
0:0(0_,2) = 0,004, 2) =u(z) (—ho <z < —dp), (5.10)
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where u again denotes an auxiliary function, and note that, due to the condition (5.1b)
we may define u(z) = 0 (—dy < z < 0), so that

0 —do
[ aGnueae= [ geutas (=12,
—ho —ho
for arbitrary function g. Taking the inner-products, with respect to z, of the two limits
involved in (5.10), with COf and C..f respectively, and noting that

0 _

do
AO = [ O (2) dz, Ay = CO()EECL () dz,

[o.0]
—ho —hg
yields the conditions

—dy —dp

CO()fu(z)dz, A, ®(0,)= /_h C(2)fu(z) dz.

A©9,®(0 ) = /

—ho

The function u(z) may be expanded as

u(z) = sz(z)uz = fdiag{v,(2)}u, u=(up,...)",

where {wvp, ...} is the trial space employed for the analogous auxiliary function in the
MMA (see §3.2). This approach is equivalent to Galerkin’s method. Conditions (5.10)

may then be recast as

A©9,89(0 ) = VOu (5.11a)

Furthermore, if we take inner-products of the remaining continuity condition, ({(¢)) = 0,
with vy(2), ..., the resulting condition is

(VOO0 ) =VT®(0,). (5.11b)

The unknown outgoing amplitudes B™*) are theoretically obtained through conditions
(5.11a-b), which determines the EMM solution.

In practice the EMM solution must be found by setting a truncation level for the
vertical fluid structure, N say, and also for the auxiliary, interfacial function u(z), M say.
All infinite matrices are therefore reduced to the relevant finite dimension. Note that
the structure of the EMM approximation of dimension N = M differs from that of the
MMA in only one respect, that the wavenumbers p; and associated vectors v; (j = 1,2)
appearing in the EMM are, respectively, the exact complex roots of dispersion relation
(3.13) and redistribution weights (3.39), whereas the corresponding entries in the MMA,
pn,y and vy ) (J = 1,2), are dimension-dependent values generated by the variational

principle and are such that py ;) — p; and vy ;) — v; as N — oo for j = 1,2 (see §4.2).
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Consequently, at finite dimensions, the calculated values of the outgoing amplitudes, B™*),
differ between the two methods but will converge to the same values as the dimension is
increased.

In both methods, the vertical and horizontal motions of the fluid have been separated.
The process of vertical averaging results in horizontal modes in the MMA that can be
viewed as attempting to compensate for all of the absent modes. In contrast, in the EMM
the level of truncation does not affect the horizontal modes retained. However, due to the
separation of the spatial coordinates, the structure of both methods is unrelated to the
scattering which takes place over a horizontal boundary. These last comments are not
restricted to the case of a semi-infinite ice sheet but are true of all geometrical configura-
tions. As our primary concern is in exposing characteristics of the MMA, throughout the
remainder of this chapter we will restrict the truncated EMM to dimensions such that

N = M and refer to this as the EMM approximation of dimension N.

5.1.3 Comparison to the work of Linton & Chung (2003)

Linton & Chung (2003) also solved the semi-infinite ice sheet problem being considered
in this chapter, albeit with the restriction to zero draught and with the introduction
of oblique incidence. Their method of solution follows our EMM closely, in that the
solutions in the differing states, expressed as infinite series involving unknown amplitudes
(see (5.8a-b)), are matched at the vertical interface = 0. However, the resulting system
of equations are solved by Linton & Chung via an application of the residue calculus
technique, whereby a function whose poles correspond to the required unknowns, is derived
and utilised. The work of Linton & Chung provides a means of testing the validity of the
approximation methods presented in this chapter.

The extension of both approximations to oblique incidence is straightforward - the
presentation of normal incidence was made only so that the similarity between the EMM
and MMA could be clearly distinguished. The introduction of oblique incidence, other
than modifying the wavenumbers used in a horizontal direction, requires only the use of

the modified bending moment and shearing stress conditions
9;x(04) — vx(04) = &x(04) — (2 — )8, x(0) = 0,
or
820.0(04, —d) — v0,6(04, —d) = 3;0.6(04, —d) — (2 = 1)3,0.6(0, —d) = 0,

which somewhat complicates expressions (5.6) and (5.9) but does nothing to affect the

structure of the solutions.
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Throughout the results produced in our work, we will refer to the normalised difference

of two functions, say f and g over the interval (a, b), which we define as

_ [T =9
E(f,g)—/a O] de, (5.13)

where the parameter ¢ is either spatially or frequency dependent as required. If we take
the sequence of functions {fo,...} to be particular quantities of interest, approximated
with the subscripted dimension, then the normalised differences €(f,, f,,) will be used
as a measure of the convergence of the approximations. For instance, in the following
example f, is the MMA or EMM approximation of dimension n to |R| over the interval
of k (a,b) = (0.2,2). It is noted that the normailised difference of the sequence of
approximations merely gives a reflection of the convergence rate. In many cases we will
revert to the notation €,,, = €(fn, f) and moreover €, = €,_1,. We will regularly,
although not always, consider results to be converged when ¢, = O(1073). We may, for
example, have the case that across an interval of frequencies, say, results for a certain
subinterval of frequencies take longer to converge than the remaining frequencies and,
therefore, deficiencies at certain points are smoothed away in ¢, by rapid convergence
at other points. The normalised difference will also be used to compare the difference
between two different approximations, for example the MMA and the EMM, and contrast
the results given by two related problems, for example the displacement experienced by
a floe of a zero draught to the corresponding floe with the correct physical draught.

Figures 5.2-5.3 display both the convergence of the EMM and MMA and comparisons
to the results obtained by Linton & Chung for the problem in which the constant (di-
mensionless) parameters « = 0, # = 1 and H = 7/5 are chosen, with an incident wave
such that ¢ = k(()o) sin(7/9). Although, from an algebraic point of view, the present theory
admits the value o = 0, this has no physical interpretation in our model. Figure 5.2
concentrates on the modulus of the reflection coefficient, |R|, whereas figure 5.3 gives the
argument of the reflected part of the wave propagating from the ice-covered far-field, here
denoted by O,. Parts (a) plot the convergence of both the EMM and MMA and parts (b)
plot EMM and MMA approximations, taken to be converged, alongside the results given
found by Linton & Chung.

The EMM and MMA single-mode approximations, to both |R| and ©,, are clearly dis-
tinct from one another but, nevertheless, both capture the key qualitative and quantita-
tive properties of the converged solutions. We further observe that the two approximation
methods tend towards one another as their respective dimensions are increased. In these
problems the EMM approximations of low dimension are more accurate than the MMA of
the same dimension. This is particularly evident in the approximations to ©,, for which
€03 ~ 6x 1072 for the EMM compared to ;3 &~ 1.1 x 107" for the MMA. Parts (b) confirm
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Figure 5.2: Comparison with the results of table 1 of Linton & Chung (2003) for the
semi-infinite ice sheet problem, with parameters o = 0, 3 = 1, hy = H = 7/5, and an
incident wave of angle w/9rads. MMAs (solid curves) and EMM approximations (dot-
dash) to the modulus of the reflected amplitude as a function of the frequency parameter
k. Part (a) plots the convergence of the MMA and the EMM. The dimensions of the
approximations are N = 0 (blue curves), N = 2 (red) and N = 4 (green). Parts (b) plots
the converged MMA (N = 6) and converged EMM approximation (N = 4) along with
the values calculated by Linton & Chung ().

1 (b)

Figure 5.3: As in figure 5.2 but for the argument of the reflected amplitude
) 62

that our approximations are converging to the correct full linear solution. However, we
note that for the approximations presented in parts (b), marginal yet clear gaps remain
between the two methods. These discrepancies are attributed to slow refinement of the
MMA and are observed in a slower convergence rate (€,). This is substantiated by the
results of Linton & Chung for which we observe greater agreement with our EMM, which
is particularly visible in figure 5.2. The noted behaviours are further investigated in the

following section.
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5.2 Results

Having validated the solutions produced by the MMA and EMM with independent data,
we will now conduct an investigation into the respective convergence properties of these
two methods of solution. In particular, we are interested in exposing the properties of
the MMA that we intend to implement in cases for which there is scattering caused by
continuously varying fluid and ice boundaries, in addition to that instigated by the ice

edges.
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Figure 5.4: Comparison of low-dimensional MMAs (solid curves) and EMM approxima-
tions (dot-dash) to (a) the modulus of the reflected amplitude as a function of wave period
and (b) the modulus of the reduced displacement when 7 = 2secs, for the semi-infinite
ice sheet problem. The ice has thickness D = 0.1m and a zero draught hy = H,, with
ho = 20m. The dimensions of the approximations are N = 0 (blue curves) and N = 3

(cyan).

In this section we revert to normal incidence. The remaining parameters are the ice
thickness, the fluid depth, the draught of the ice and the wave frequency. For the purposes
of comparing the MMA against the EMM, the role of the draught is immaterial as the
differences in the two methods are independent of this issue. For this reason, we may apply
the simplifying assumption that the ice floats on the fluid surface. A full investigation of
the physical implications of a non-zero draught as well as its effect on the convergence
of the MMA is conducted in §7.5.1. The fluid depth is normalised to H = 20m and we
therefore vary only the ice thickness, D, and wave period, 7.

Figures 5.4-5.9 plot the convergence of the MMA and EMM. In each part (a) approx-
imations to the modulus of the reflected amplitude, |R|, are given as a function of wave
period in the interval 7 € (2, 12)secs. Parts (b) plot approximations of the modulus of the
reduced displacement function, |n|, which is shown over a single wavelength beneath the

ice, x € (0,27 /kg), with the incident wave of period 7 = 2secs and originating from the
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Figure 5.5: As in figure 5.4 but with an ice thickness Dy = 0.5m. The dimensions of the
approximations are N = 0 (blue curves), N =1 (red) and N = 2 (green).

ice-free far-field, + — —oco, with an amplitude of 1m. Between the figures, three different
ice thicknesses are used, Dy = 0.1m, 0.5m and 1m. Also, we distinguish between the con-
vergence that occurs at low dimensions and convergence at higher dimensions that refines
the full linear solution, when a sufficient number of modes are present; this is reflected in
the presentation of the figures.

At the interface between the ice-covered and ice-free states, {x =0, —hg < 2z < —dy},
both methods are required to adequately resolve the continuity conditions (5.1a), which
are lost through truncation of the vertical modes. In order to regain continuity the
evanescent waves become activated around the interface and it is the level of disparity
between the two states that will dictate the number of evanescent modes required to
achieve the desired degree of convergence. The MMA must also satisfactorily recreate
the complex waves beneath the ice; however, we conjecture that the dimension-dependent
complex waves in the MMA will improve the method’s ability to resolve the continuity at
the interface in comparison to the EMM.

The convergence of both methods at low dimensions is shown in figures 5.4-5.6. Here
we observe that, as the ice thickness, Dg, increases, the accuracy of the low-dimensional
approximations of both methods decreases; for example, €y ~ 1.9 x 1072 when Dy = 0.1m
compared to ¢ &~ 1.0 x 107" when Dy = 0.5m for the MMA approximations to |R|.
Intuitively, we understand this phenomenon to be a property of the increasing disparity
between the ice-covered and ice-free states as the ice thickens. By way of demonstration
of this, figure 5.10(a) displays the respective propagating wavenumbers, ko and k((lo), over
the chosen interval of wave periods, for ice thicknesses between 0.1m and 1m. We note
that the difference between the ice-covered and ice-free wavenumbers increases as the ice

thickens. Moreover, it is evident that the differences become pronounced at the smaller
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Figure 5.6: As in figure 5.4 but with the ice thickness Dy = 1m. The dimensions of the
approximations are N = 0 (blue curves), N =1 (red) and N = 2 (green).

wave periods, which is reflected in the need for evanescent modes to be used in order to
obtain accuracy for |R| in this limit. It may, therefore, be assumed that the wave period
of 7 = 2secs chosen for parts (b) provides the stiffest test of convergence in the current
interval. Comments pertaining to the noted properties of the propagating wavenumbers
were made in §3.2.2.

For the low-dimensional approximations shown in 5.4-5.6, the supremacy of the MMA
over the EMM becomes evident as the ice thickens and, in relation to the approximations
to |R|, as the wave period decreases. That is, the low-dimensional approximations of the
MMA are superior to those of the EMM at those points for which there is a significant
amount of scattering. For example, with Dy = 1m, ¢, = O(1072) (n = 0,...,3) for MMA
approximations to both |R| and |n|, compared to ¢, = O(10™") for corresponding EMM
approximations. This implication is contrary to the inference from the example considered
in §5.1.3; however, we note that 8 = 1Pa m® s?/kg corresponds to the extremely thin ice
thickness Dy ~ 2.8mm.

The shape of the displacement function is dominated by the propagating wave as the
evanescent waves are confined to the vicinity of the ice edge. The role of the evanescent
modes is primarily in quantitative adjustments to the approximations. In contrast, we
note, in particular, a significant qualitative inaccuracy in the single-mode EMM approx-
imation to |R| for D = 0.5m. This reflects the sensitivity of this value to the accuracy
of the approximation at z = 0 that we have noted to be a source of difficulty at low
dimensions.

The implication of these results is that the dimension dependence of the MMA, which
is derived through the process of vertical averaging, compensates somewhat for the evanes-

cent waves missing from the approximation. In contrast, the truncated EMM approxima-
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Figure 5.7: High-dimensional refinements of the approximations shown in figure 5.4. The
dimensions of the approximations in part (a) are N =4 (blue curves), N = 12 (red) and
N =29 (green), and in part (b) are N =4 (blue), N = 24 (red) and N = 36 (green).

tion is insensitive to these missing terms. This result was anticipated in §4.2. However,
with the possible exception of the MMA approximation to || with D = 0.1m for which
€3 ~ 4.1x1073, the approximations shown in figures 5.4-5.6 have not sufficiently converged

to the full linear solution.
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Figure 5.8: High-dimensional refinements of the approximations shown in figure 5.8. The
dimensions of the approximations in part (a) are N =4 (blue curves), N = 12 (red) and
N =21 (green), and in part (b) are N =4 (blue), N =19 (red) and N = 33 (green).

Figures 5.7-5.9 plot the refinements of near-converged approximations to the problems
considered in figures 5.4-5.6. The performance of the two methods here is contrasting,
with the EMM providing highly accurate approximations where the MMA struggles to
fully resolve the solution. For example, with D = 0.1m, €39 ~ 1.8 x 102 for the MMA
approximation to |R| compared to €59 =~ 1.0 x 107* for the EMM. Our findings here are
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consistent with the example considered in §5.1.3.

09r

|

Figure 5.9: High-dimensional refinements of the approximations shown in figure 5.6. The
dimensions of the approximations in part (a) are N = 4 (blue curves), N = 8 (red) and
N =19 (green), and in part (b) are N =4 (blue), N =19 (red) and N = 29 (green).

This observation indicates that the complex waves, those of wavenumbers p; (j =
1,2), are strongly activated in this problem. It is these waves that differentiate the two
methods of approximation. Unlike the EMM, for which the exact values of y; are in-built,
in the MMA, the absence of these waves is compensated for by the inclusion of waves
of dimension-dependent wavenumbers py ;). However, as previously discussed in the
concluding paragraph of §5.1, the horizontal modes of MMA approximations are formed
independently of the source of scattering and subsequently no precedence is given to the
missing wavenumbers ji; over the other wavenumbers omitted from the approximation,
although they are clearly of greater importance in this problem. Therefore, the same
process that distinguishes the MMA approximation at low dimensions is also responsible
for slow small-scale refinements at higher dimensions. Despite this latter deficiency, we
note that, as seen through figures 5.7-5.9, the MMA is capable of obtaining the full linear
solution to a desired degree of accuracy, if a large enough dimension is taken.

It is evident that the refinement problems shown by the MMA are of greater signifi-
cance for thinner ice; for example, the difference between the two methods’ approximations
to |R| at N = 29 is approximately 5.6 x 1072 for Dy = 0.1m and 1.3 x 1072 for Dy = 1m.
A possible explanation for this is the variation of the magnitude of the complex roots
pj (7 =1,2), which, as depicted in figure 5.10(b), increase as Dy decreases. It therefore
seems reasonable to expect the motion relating to these roots to be more significant for
thinner ice. A second possibility is that the dimension-dependent wavenumbers in the
MMA, gy, ), converge more slowly to the complex wavenumbers, p;, for thinner ice.
However, this issue is not explored further in this work.

By way of comparison to the semi-infinite ice sheet problem studied above, we consider
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Figure 5.10: Part (a) plots propagating wavenumbers, and part (b) plots the modulus of
the complex wavenumber, as functions of wave period. The ice thicknesses are Dy = 0.1m
(blue curves), Dy = 0.2m (red), Dy = 0.5m (green), and Dy = 1m (cyan). In part (a) the
free-surface wavenumber is also shown (black curve). In all cases the bed depth is 20m.

a related problem in which there is still a single source of scattering produced by a
geometrical discontinuity but one for which the ice-cover is now complete. Let us therefore

define the geometrical functions as

Do Dy #0 (z<0), o Hy (z<0),
Dl 7£0 (.ZE > 1), H1 (fl? > 1),

and h = ho(= 20m), for constants D;, H; (i = 0,1) and hg, which may be formulated
for both the MMA and EMM in a similar fashion to the semi-infinite ice sheet problem.
The difference between the two approximation methods is again confined to the terms
corresponding to the complex roots.

Figure 5.11 plots the convergence of MMA and EMM approximations to |R| for two
choices of ice discontinuity and may be compared to the semi-infinite ice sheet problems of
figures 5.4-5.9 parts (a). In both problems shown in figure 5.11 the discontinuity occurs
in the underside of the ice, so that H; = Hy + Dy — Dq, with Dy = 0.1m fixed. In
figure 5.11(a), D; = 0.2m, giving a discontinuity of 0.1m in the ice thickness, which
is comparable to the geometrical discontinuity caused by the semi-infinite ice sheet of
0.1m thickness. The convergence here is rapid, with e = O(1073) for both methods,
and we may consider the three-mode MMA and four-mode EMM approximation to be
sufficiently converged. Moreover, the single-mode approximations provide high accuracy,
with €93 & 1.3x 1072 for the MMA and €y 3 ~ 5.1 x 1072 for the EMM. This again indicates
that at low dimensions the MMAs are more accurate than their EMM counterparts. As

with the semi-infinite ice sheet problems, at higher dimensions the EMM demonstrates
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Figure 5.11: Comparison of MMAs (solid curves) and EMM approximations (dot-dash)
to the modulus of the reflected amplitude as functions of wave period for the complete ice-
cover problem. The ice thicknesses in part (a) are Dy = 0.1m and D; = 0.2m and in part
(b) are Dy = 0.1m and D; = 1m. The bed depths are Hy = 20m and H; = Hy+ Dy — D;.
The dimensions of the approximations in part (a) are N = 0 (blue curves), N = 2 (red)
and N = 3 (cyan), and in part (b) are N =0 (blue), N =1 (red) and N = 14 (green).

superior convergence to the MMA, for example, €14 ~ 1.6 x 10~* for the MMA and
€14 ~ 2.6 x 1075 for the EMM, which is again attributed to the role of the wavenumbers
1 (j =1,2). However, as we have already accepted lower dimension approximations as
adequately converged, the negligible size of the refinements at high dimensions in this
problem indicate that, unlike the semi-infinite ice sheet problems studied, these waves
are not activated significantly. This may be anticipated by considering the small jump
between the relevant propagating wavenumbers of this problem (see figure 5.10(a)) relative
to the jumps that occurred between the propagating wavenumber when moving from ice-
free to ice-covered states.

By taking the ice thickness D; = 1m in figure 5.11(b), we create a more significant
discontinuity and amplify the role of the complex waves. The difference between the
propagating wavenumbers in the two opposing states is now of comparable size to those
considered in the semi-infinite ice sheet problem. High-dimensional refinements in this
case are no longer negligible, with, for example, the difference between the MMA and
EMM approximation of dimension N = 19 approximately 7.5 x 103, whilst €19 ~ 2.7 x
1073 for the MMA and €9 ~ 5.5x107* for the EMM. Consequently, we accept a converged
EMM of lower dimension than MMA, although the low-dimensional MMAs maintain
better accuracy. It should be noted that the inaccuracies shown in this final complete
ice-cover problem are smaller than those of all of the semi-infinite ice sheet problems
seen, and that a large discontinuity in a continuous ice sheet is not a model that we are

interested in studying. Rather, we will model changes in the properties of an ice sheet as
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continuous functions, as in the two-dimensional problem of complete ice-cover formulated
in §4.3.1. In contrast, the geometrical jump produced by an ice edge is a feature that is

prevalent in our investigations.

5.3 Conclusions

In this chapter, two alternative methods of solution are proposed for geometrical con-
figurations in which the defining functions are piecewise constant. The first method is
the application of the MMA, using the natural vertical modes, to this degenerate class of
geometries, and we have sought to emphasise the process of vertical averaging inherent
in the method. The alternative method, known as the EMM, is valid only for piecewise
uniform geometry. Approximations are produced by directly truncating an expression
for the full linear solution as an infinite sum of separation solutions, where the unknown
amplitudes are determined through application of Galerkin’s method at the scattering
interfaces.

Both the MMA and the EMM were explicitly formulated for the classical problem of a
semi-infinite ice sheet and normal incidence, in two-dimensions. It was noted that the sole
disparity between the two methods derives from the additional complex waves that are
attached to each vertical mode in the ice-covered interval. In the MMA these waves are
dimension-dependent quantities, generated through the process of vertical integration. In
contrast, in the EMM, irrespective of the dimension of truncation, these waves are given
by the exact complex waves that appear in the full linear solution.

For the results presented in this chapter, a single source of scattering was considered
in order to isolate the primary characteristics of the two methods. It was seen to be
advantageous to separate the convergence at low dimensions, where the methods must
attempt to resolve the continuity conditions, and the higher dimension refinements. We
highlighted both relative properties of the two methods and the influence of the geom-
etry, specifically the thickness of the ice, on the accuracy of approximations. In terms
of the latter, it was concluded that a greater jump between the uniform states causes
inaccuracies in the low-dimensional approximations of both methods. As expected, the
jump from ice-free to ice-covered states is a relatively strong source of scattering, even at
a small ice thickness, as opposed to cases of complete ice-cover. At low dimensions, the
MMA regularly provided higher accuracy than the EMM, a phenomenon attributed to
the MMA’s property of being ‘dimension-aware’.

For those problems in which the complex waves are strongly activated, the high di-
mension refinements of the MMA are slow compared to those of the EMM. This is a
consequence of the separation of spatial coordinates, making the dimension-dependent

terms unaware of the relative dominance of the complex waves. In the EMM the exact
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structure of these waves is in-built.

We conclude that, for cases of partial ice-cover, in which scattering of the complex
waves is generally significant, the implementation of a method based on a variational prin-
ciple generates accurate approximations at relatively low dimensions. However, the ability
to attain highly refined solutions may require the use of a high dimension, which could
prove to be numerically costly over continuously varying geometry for which differential

equations of order (2N + 4) must be obtained numerically.
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Chapter 6

Numerical Results: complete

ice-cover 1n two-dimensions

In this chapter we are concerned with presenting numerical results for problems of com-

plete ice-cover, of the two-dimensional form outlined in §4.3.1.

6.1 Alternative modes

During the investigation of §3.2.2 it was found that, under certain circumstances, the
natural evanescent modes, in particular the first evanescent mode, may be invalidated by
the presence of bifurcations in the roots of the dispersion relation (3.13). This led us to
propose an alternative trial space in §3.2.3, consisting of what we call hybrid modes. It is
expected that the ramification of the switch of natural to evanescent modes in the MMA
will be a slight loss of accuracy and hence the requirement of a larger number of modes to
achieve the desired convergence. Our basis for this assertion, as discussed in §3.2.3, is that
the hybrid modes lack an awareness of the ice thickness. Furthermore, by combining the
hybrid approximation in the interval of varying geometry with natural approximations in
the intervals of uniform geometry, we introduce a jump in the trial space which is not the
product of a geometrical feature. This creates a fictitious source of scattering that must
be resolved.

In this section we will provide numerical results, in terms of the two-dimensional com-
plete ice-cover problem, to substantiate the conjecture regarding the respective conver-
gence rates, as well as showing that convergence is achieved with either choice of modes.

We will also consider the Fourier cosine trial space

2
{1, cos (%(2 + h)) , COS (%(z + h)) s b
over the interval of varying geometry (0 < = < [), and compare it with the trial spaces
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we intend to implement.

The results presented here will use the geometrical configuration defined by

1 (x <0, z>10), 0 (x <0, z>10),
D(z) = d(x) =
1+ sin? (7;—”“") (0 <z < 10), %sinQ (77'5—5”) (0 <z < 10),
(6.1a)
and
h(] (fl? < 0),
hy —h
h(z) =< ho+ 110 %2 (0 <z < 10), (6.1b)
hl (.ZE > 10),

where h; (i = 0,1) are constants such that hg > h;. This represents a symmetric pres-
sure ridge in the ice thickness, in which the protrusions in the upper and lower surfaces
are equal, over a linearly shoaling bed. In this configuration all of the geometrical func-
tions vary and by making appropriate choices of the bed depths, h; (i = 0,1), we may
manipulate the vertical modes to produce the behaviour that we wish to expose.

Figure 6.1 displays results comparing the natural and hybrid MMAs for two choice of
bed depth. In parts (a.i-iii) Ay = 20m and hy = 10m, whereas in parts (b.i-iii) hy = 40m
and hy; = 30m. The wave period is set at 7 = 2.5secs.

As the purely imaginary roots of the dispersion relation attain their limiting value
rapidly (see equation (3.25)), differences in the natural and hybrid approximations are
mainly a product of discrepancies in their respective lower-order evanescent modes. In
particular, the presence of bifurcations plays a leading role in this issue. The choice of bed
depths made for parts (a.i-iii) and (b.i-iii) ensures that the path of the root o3 = —ik;,
where k; is the initial purely imaginary root of the dispersion relation (3.13), lies to either
either side of a pair of bifurcations. This is shown graphically in parts (a-b.i) of figure
6.1 and the resulting roots o, are plotted against their corresponding limiting values, 7y,
which are used in the hybrid approximation, in parts (a-b.ii).

We note that the root resulting from the shallower bed of part (a) is far closer to its
limiting value than the analogous root resulting from the deeper bed of part (b). With
reference to the form of the dispersion relation (3.24), we understand this to be a property
of how the quintic on the left-hand-side intersects the first branch of the right-hand-side.
For example, consider the fluid depth to be fixed and suppose that the ice thickness lies
within the bifurcation bounds D; < D < D,,. Let the three imaginary roots that exist on
the first branch be denoted in ascending order as oy; (i = a, b, c) (see figure 6.3). Then,
if D > D, we have o; > max(oy.) and if D < D, we have 0y < min(oy,). Therefore, for
points (D, H) that lie below the bifurcation bounds, take the example of figure 6.1(a.i),

the purely imaginary root will lie in the vicinity of its limiting value but if (D, H) lies
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Figure 6.1: Comparison of natural and hybrid MMAs for the geometry defined in equa-
tions (6.1a-b) and wave period 7 = 2.5secs. In parts (a.i-iii) hg = 20m and h; = 10m, and
in parts (b.i-iii) hg = 40m and hy; = 30m. Parts (i) plot the path of the vertical structure
of the geometry, (D, H), (magenta curves) and bifurcation bounds, (D,, H,) and (D,, H)),
(black). Parts (ii) plot the modulus of the first purely imaginary root of the dispersion
relation, oy, (blue curves) and their limiting value, 7, (red). Parts (iii) plot MMAS to the
modulus of the reduced displacement function, |7/, using the natural modes (solid curves)
and the hybrid modes (dotted). The dimensions of the approximations in part (a.iii) are
N =0 (blue curves), N =1 (red), N = 2 (green), N = 3 (cyan) and N = 5 (magenta),
and in part (b.iii) are N = 0 (blue curves), N =1 (red), N = 2 (green), N =5 (cyan)
and N =7 (magenta).

above the bifurcation bounds, take the example of figure 6.1(b.i), there will be a significant
difference between the root and the limiting value.

The corresponding convergence of the natural and hybrid MMAs to the modulus of
the reduced displacement, |n|, are plotted in figure 6.1 parts (a-b.iii). As predicted,
the convergence of the hybrid MMA is seen to be slightly inferior, with approximations
having the appearance of ‘following behind’ their natural counterparts. This is particularly
evident in the double-mode approximations, where the disparity between the two trial
spaces is most acute. Recall that we have defined the quantity € to be the normalised
difference between two functions, and use it as a measure of the rate of convergence of
the MMA. In this context we have

l
Xn—1 — Xn
€n = E(Xn—th) = / @dz,
0 |Xn—1|

where Y, is the MMA approximation of dimension n to the displacement function. In
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the most extreme case, the deeper bed of part (b), we have ¢ ~ 2.8 x 1072 for the
natural approximation as opposed to €; ~ 1.4 x 10~* for the hybrid approximation, which
here implies a slower convergence rate in the hybrid approximation. For these results,
convergence is taken to at least ey = O(107*) and in each case we obtain converged
natural approximations at a lower dimension than than their hybrid counterparts.

Given what has been noted about the relationship between the values of o and 7 for
the two problems, it is unsurprising to find that the convergence rates are most distinct
for the problem that incorporates the deeper bed. In this case, the maximum normalised
difference between the two approximations is 1.4 x 1072, which is, obviously, at N = 1.
However, it only takes one additional mode for this difference to reduce to O(1073).
For the shallower bed the natural and hybrid approximations never have a normalised
difference that exceeds O(1073).

We conclude that the hybrid approximation is a competitive alternative to replace the
natural approximation, for points at which bifurcations invalidate the natural evanescent
modes. Specifically, we have seen that the hybrid approximation will converge rapidly
to the full linear solution, although, as expected, the natural approximation has proven
to be the superior of the two methods and we retain its use whenever possible. Our
investigation has incorporated only two example problems; however, numerous tests not
presented have shown identical behaviour. It is possible to construct much stiffer tests of
the hybrid modes but these are somewhat spurious as they generally involve unrealistic
parameters in circumstances for which the natural modes may be used. For more typical
geometry, the natural and hybrid approximations are closer than the examples presented.
Here we have chosen a relatively short incident wave to highlight the differences in the
approximations.

In figure 6.2 the convergence of Fourier MMAs to |n| are plotted for the problems
used in figure 6.1. To enable comparison, the natural single-mode approximations and
converged results are also shown. It is evident that, although the Fourier approximations
are reasonable both quantitatively and qualitatively, they are significantly inferior to those
produced by the natural and hybrid modes. The approximations given by a single Fourier
mode - the constant mode - are particularly weak. We note that the difference between
the natural and Fourier single-mode approximations is most prominent for the shallower
bed, part (a), for which the normalised difference is €(x, xr) ~ 1.3 x 107!, where x is
the natural approximation and yr is the Fourier approximation. This case coincides with
the greatest difference between the vertical mode wy = cosh{ky(z + h)} and the constant
term, although in the deeper bed case these primary modes are only narrowly closer. Ten
modes are required to reach sufficient convergence of the Fourier approximation in part
(b), and it can be seen that it gives the same aproximation to the full linear solution

as that achieved via the natural modes. In part (a), the Fourier approximation has not
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Figure 6.2: The convergence of the Fourier MMA (dot-dash curves) to the modulus of
the reduced diplacement, for the geometry defined in equation (6.1a-b) and the wave
period 7 = 2.5secs. In part (a) hy = 20m and hy = 10m, and in part (b) hy = 40m and
hy = 30m. The single-mode natural approximations are displayed by cyan curves and
converged natural approximations are the black curves. The dimensions of the Fourier
approximations are N = 0 (blue curves), N = 1 (red), N = 2 (green) and N = 9
(magenta).

converged with ten modes. At this point, it has a normalised distance of approximately
5.6 x 107 from the converged natural approximation. However, it is clear that it is
tending to the correct solution and will provide the full linear solution with additional
modes.

Having conducted this examination of the Fourier approximation, we discard it forth-
with. Its purpose has primarily been in highlighting the efficiency of the natural approx-

imation.

6.1.1 Choice of evanescent modes

There exists a subtle issue regarding the choice of vertical evanescent modes included in
our approximation, connected to the subject of bifurcations and linear dependence and
capable of becoming manifest in the results that we obtain. Although it is worthy of
note it is of a purely academic nature. The problem, that will presently be outlined, is a
general property of the natural MMA and it is pertinent to discuss it at this juncture in
terms of the two-dimensional complete ice-cover problem.

In the problems considered, we will often record quantities as a particular parameter
is varied continuously. So, let us suppose that the geometry has been fixed and that the
angular frequency, w, is varied. It was shown in §3.2.2 that, as this parameter varies,

the complex roots of the dispersion relation (3.13) may bifurcate and that there is a two-
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fold linear dependence in the set of natural modes {w;} (j = —2,...). For the reasons
discussed in §3.2.2, when they exist, we wish to omit the modes relating to the pair of
symmetric, complex roots and, at all times, retain only one mode per purely imaginary
branch of the dispersion relation. However, in order to retain these conditions we must
sacrifice the assurance of continuity of our vertical basis, {w;} (j = 0,...N), as a function
of frequency. For example, we may envisage the type of situation depicted in figure 3.5(a),
in which the complex roots, y; (i = 1,2), bifurcate from being a symmetric pair onto the
first purely imaginary interval, (0,7 ), already supporting the root &, followed by one of
the complex roots, i say, coalescing with k; to create a new complex pair. However, in
the current context, we regard this transition as a function of the wave frequency rather
than of the geometry.

At the point at which three roots exist in the first interval, there is a choice as to
which of them, p; (i = 1,2) or ky, is chosen for use in the MMA. To either side of this
interval, as we pass through a bifurcation, the choice reverts to either k; or us. As the
paths of k£ and us never cross there is necessarily a frequency, between the two instances
of bifurcation, that the user may control, at which the path of the chosen root from this
segment is discontinuous. Under the same circumstances, when continuously varying the
geometry, with incoming frequency fixed, we revert to the hybrid approximation.

If we consider approximations generated by the MMA, of fixed dimension N > 1,
to a particular quantity, the reflected amplitude, |R|, say, as a function of frequency,
through a situation such as the one described above, then the function |R(w)| will contain
a discontinuity. As the dimension N is increased, and the full linear solution is attained,
this discontinuity will be resolved.

The size of the discontinuity in |R(w)| is dependent on a number of factors, in partic-
ular, the level of activation of the subject mode, here w;, in the problem and thus this
phenomenon may often pass unnoticed. Furthermore, suppose that the issue only occurs
in the interval of varying geometry, for instance, let us suppose that it is not possible to
select the root ky(z) (0 < x < I) as a continuous function, as the frequency is varied. In
this case a discontinuity in |R(w)| may be overcome by consistently reverting to the hybrid
approximation throughout the chosen interval, regardless of whether bifurcations occur
in each individual problem. For a bifurcation caused by a non-geometrical parameter in a
domain of uniform geometry, the problem will persist due to our wish to employ the nat-
ural approximation in all uniform domains surrounding those containing the geometrical
variations.

In figures 6.3-6.4, an example of the above issue is given. Here, we use a trigonometric
keel of 10m amplitude and 80m length protruding from an otherwise uniform sheet of 1m
thickness, over a flat bed depth of 20m with an incident wave of length 53.45m. In the

uniform intervals, < 0 and = > [, there exists three roots on the first imaginary interval,
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Figure 6.3: Graphical representation of the existence of three roots, k; = 0; (i = a, b, ¢),
in the first imaginary interval, (0, 7). The functions shown are —k cot(c H) (blue curve)
and (1 — ak + Bo*)o (red).

as shown in figure 6.3. These roots will be denoted oy, (j = a,b, ¢) in ascending order of
magnitude. For all of these roots, and the parameters used here, the roots remain purely
imaginary across the geometrical variation. There is, therefore, a choice to be made as to
which of the three roots are used in the MMA in the uniform intervals. Across the varying
interval, bifurcations restrict our choice to the root that runs on continuously from the
largest of these roots, oy..

Figure 6.4 compares approximations to |n| generated by approximations using oy, and
01 Double-mode approximations (N = 1) are used in part (a) and the normalised differ-
ence between the two is approximately 1.8 x 1072, With the addition of supplementary
modes, N = 11 and N = 14 respectively, this difference falls to 3.1 x 1072 in part (b). It
should be noted that the problem that is used here is an extreme case, chosen to clearly
highlight the current issue.

Despite the lack of continuity of the function k;(x) at x = 0 and = = [, the convergence
of the approximation using oy, is superior to that of oy, with, for example, ey = O(10*)
when N = 11 compared to N = 14. If we refer to the values of yiy ;) (i = 1,2) generated
by the opposing roots then we find that, at N = 10, those generated by k;, agree with
k1p to two decimal places and with kq. to one decimal place, whereas at N = 14, k. still
produces /iy, (i = 1,2) that form a symmetric, complex pair. The question of choice of
the optimal root in these circumstances is perceived to be of unwarranted difficulty and

will not concern us further.
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Figure 6.4: Natural approximations to the modulus of the reduced displacement function
over the interval of varying geometry, using the roots k; = ioy, (blue curve) and k; =
ioy. (red) in the semi-infinite intervals of uniform geometry, + < 0 and = > [. The
approximations in part (a) have dimension N = 1, and in part (b) have dimensions
N =11 (blue) and N = 14 (red).

6.2 Comparison to the work of Williams & Squire
(2004)

Our attention now turns to the analysis of the role of geometrical variations in the process
of wave scattering. Having established that we may produce consistent results with either
the natural or hybrid evanescent modes, the MMA will, from this point on, be chosen with
the natural modes where available and the hybrid modes when bifurcations invalidate the
natural modes. Reference will only be made to the specific choice of modes if it is felt to
be relevant.

Initially, we will consider solving a problem for which numerical results already exist
in the literature. This is done primarily to aid validation of our method of solution.

A restricted case of varying ice thickness, in two dimensions, was solved by Williams
& Squire (2004), who considered variations of finite length in the upper surface of the ice
(sail heterogeneities) in infinite intervals of complete ice-cover. Their method of solution
utilised a Green’s function that allowed the vertical displacement of the underside of the
ice to be obtained from an integral equation, which leads to a knowledge of the reduced
velocity potential everywhere.

The particular geometrical configuration that we will compare results against at this

stage was described as type 2 by Williams & Squire and is defined by

1 (z<0,z>15),

PEr=4, (0 <z <15),
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with d =0 and h = 70m.

We note that this is the only geometrical configuration to be considered, in the context
of complete ice-cover, for which the geometry will contain discontinuities. We have pre-
viously studied isolated discontinuities in an infinite interval of ice-covered fluid in §5.2.
As type 2 geometry is piecewise uniform, following the method adopted in §5.2, it is pos-
sible to obtain approximations by means of the approach outlined (for partial ice-cover)

in §5.1.1, where we must now deal with the two scatterers at the interfaces + = 0 and

x = 15m.
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Figure 6.5: Comparison with figures 4(h) & 4(i) of Williams & Squire (2004), in which type
2 geometry (see equation (6.2)) is used with the geometrical values d = 0 and h = 70m.
Part (a) plots the convergence of approximations to the modulus of the reflected amplitude
as a function of wave period for normal incidence (¢ = 0). Part (b) plots the convergence of
approximations to the moduli of reflected amplitudes as functions of incident angle for the

wave periods 7 = 2secs, 5secs, 10secs and 15secs. The dimensions of the approximations
are N =0 (blue curves), N =1 (red) and N = 2 (green).

Figures 6.5(a-b) are for comparison with figures 4(h) and 4(i) of Williams and Squire
(2004), where the graphs of the transmitted amplitudes have been omitted for clarity.
Both plot the convergence of natural approximations to the magnitude of the reflected
amplitude, |R|, against incident wave period, 7, in part (a) or incident angle, ¥, in part
(b). For figure 6.5(a), although the single-mode approximation provides good accuracy,
it is necessary to take three modes to achieve ey = O(107?), which is primarily due to
the need for convergence in the middle range of wave periods taken.

Indeed, the need for the greatest number of vertical modes in a middle interval of wave
periods proves to be a general trait. The middle interval is relative to the size on the
obstruction and this indicates that the evanescent modes are activated with most strength
when the incident wave is not particularly long or short with respect to the obstruction.

Consistently, we find for 6.5(b) that e; = O(1073) for 7 = 2, 15secs, and ¢, = O(107?)
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Figure 6.6: Schematics of the keel and the sail with a bed protrusion geometries defined
in equation (6.2a).

for 7 = bsecs, 10secs. This extends the relatively slow convergence seen for normal
incidence in the interval 4 < 7 < 11. In all four curves, we observe that |R| — 1 as
¥ — m. This limit is more readily attained at smaller wave periods.

All of the converged solutions are consistent with the relevant data of Williams &

Squire (2004). A fuller analysis of the results may be found therein.

6.3 Comparison with the work of Porter & Porter
(2004)

In this section we revisit two problems of continuous ice-cover, which were originally
considered via the single-mode approximation of Porter & Porter (2004). We are able to
present full linear solutions for these problems through use of the MMA. The two problems

taken from their work, are those of figures 2(a) and 5(a), which involve the variations

0 (x <0,z >1),
Paal) = %Aza(l — cos (27TT$>) (0<z <), (6:22)
and
0 (x <0),
pra(a) ={ As7 (0<z <), (6.2b)
Asa (z > 1),
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respectively, where A; (i = 2a,5a) are constant amplitudes. In Porter & Porter the
geometrical configurations intended for figures 2(a) and 5(a) involved variations to the
underside of the ice; however, as discussed in §3.2.1, these must be reinterpreted in terms
of equivalent variations to the upper surface of the ice and the fluid bed. For protrusions,
such as the trigonometric variation of figure 2(a) of Porter & Porter, these geometries
are described as a keel problem and a sail with a bed protrusion problem. These two
geometries are depicted in figure 6.6 for the trigonometric variations given in (6.2a).

Due to this correction of Porter & Porter, in figure 6.7, results are presented for both
the intended problems, D(z) = Dy + p;(x), d(z) = pi(x), h = hy (i = 2a,b5a), in figures
6.7(a-b.i), and the unintended problem, D(x) = D+ p;(x), d(x) = 0, h = hg — p;(x) (i =
2a,5a), in figures 6.7(a-b.ii). The constant values Dy = 1m and hg = 20m are maintained
for both problems. Bifurcations occur in subintervals of the independent variables, A
and kg, for all of the geometries used to produce results in figure 6.7. For consistency,
the hybrid MMA is therefore used throughout the entire intervals of wavelength and
wavenumber.

The choices of geometrical configurations made in Porter & Porter (2004) were influ-
enced by the restriction of the single-mode approximation, so that only ‘slow variations’
were considered. This is reflected in the results presented in figure 6.7, for which the
single-mode approximations are seen to require very little refinement in order to obtain
the full linear solutions; in fact, for many of the problems the single-mode approximation
is adequate. For both the original and corrected versions of Porter & Porter’s figure 2a,
which are shown in figures 6.7(a.i-ii), the only obstruction length for which ¢; = O(1072)
is that of [ = 20m, with all other lengths producing ¢, = O(1073). Equivalently, for
Porter & Porter’s figure 5a, which is shown in figures 6.7(b.i-ii), ¢ = O(10~2) only for the
amplitude A5, = 2m, with all other amplitudes producing ¢, = O(1072). The [ = 20m
case of figures 6.7(a.i-ii) and the A5, = 2m case of figures 6.7(b.i-ii) are the steepest vari-
ations in their respective figures. It is only necessary to include typically one, or at most
two, additional modes to achieve convergence to O(107?) in these problems. As, in all
other problems ¢; = O(1072), we accept the single-mode approximations as the converged
solutions. A significant feature of these curves is the striking similarity between results
from the original problem and their corrected counterparts. This indicates a strong link
between these geometrical configurations that will be analysed in §6.4.

The problems considered in figure 6.7 do not provide a suitable test of the convergence
of the MMA as they were biased by the need for slowly-varying geometry. In figure 6.8,
figures 2(a) and 5(a) of Porter & Porter are reconsidered with the (clearly ‘non-slowly
varying’) amplitudes Ay, = 10m and As, = 6.5m. Only the corrected geometries, d = p;
(1 = 2a,5a), are used as the results for the original problems, d = 0, remain nearly

identical.
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Figure 6.7: The extension to full linear solutions of the approximations given in figures
2(a) & 5(a) of Porter & Porter (2004). The geometrical variations in parts (a.i-ii) are
of type pa, (see equation (6.2a)) with amplitude Ay, = 1m, and lengths [ = 20m, 40m,
60m and 80m. In parts (b.i-ii) the geometrical variations are of type ps, (see equation
(6.2b)) with length [ = 40m, and amplitudes A5, = 0.5m, 1m and 2m. Parts (a-b.i) are
the keel variations intended by Porter & Porter, and parts (a-b.ii) are the sails with bed
protrusions that were actually produced in Porter & Porter (2004). The dimensions of
the approximations are N = 0 (blue curves), N =1 (red) and N = 2 (green). The values
Dy = 1m and hy = 20m are used throughout.

By comparing the results of figure 6.8 to their counterparts in figure 6.7, it is clear
that the accuracy of the single-mode approximation decreases with increasing amplitudes.
This is reflected in the values ¢; &~ 107! for [ = 20m in figure 6.8(a) and ¢; &~ 5 x 1072 for
the other two problems of figure 6.8. Consequently, a larger number of modes are required
to achieve convergence, with up to five modes required to give ex = O(107%). Despite
this, it is evident here that, even for these rapidly varying obstructions, a single-mode
provides a good approximation, in all cases shown, managing to accurately represent the
shape and magnitude of the full linear solution.

In particular, we may make a comparison between the accuracy of the single-mode
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Figure 6.8: The convergence of MMAs to the modulus of the reflected amplitude as a
function of (a) non-dimensional incident wavelength, and (b) non-dimensional incident
wavenumber, for geometries that extend those used by Porter & Porter (2004) to ‘non-
slow’ variations. The geometry in part (a) is a keel of type po, with amplitude Ay, = 10m
and lengths [ = 20m and 40m. In part (b) the obstruction is on the lower surface of the
ice and is of type ps, for amplitide Ay, = 6.5m, and length [ = 40m. The dimensions of
the approximations are N = 0 (blue curves), N = 3 (cyan), N = 4 (magenta) and N =5
(yellow). The values Dy = 1m and hy = 20m are used throughout.

approximation to the reflected amplitude for these ‘non-slow’ variations in the geometrical
surfaces with the low-dimensional MMAs for the semi-infinite ice sheet problem of §5.2.
In that problem, the geometrical surfaces were flat and the scattering was produced by
the single geometrical discontinuity at the ice edge. The low-dimensional approximations
to the reflected amplitudes, although reasonable, were adversely affected by the strong
activation of the evanescent modes at the ice edge and were consequently more susceptible
to qualitative inaccuracies. At high frequencies there was also a need to take a relatively

large number of modes to fully refine the solution.

6.4 The single-mode approximation

Through the results that have thus far been produced for cases of continuous ice-cover it
has been noted that:

1. The single-mode approximation provides high levels of accuracy;

2. There are similarities in the results produced by geometries that share the same ice
thickness and fluid depth.

In this section we provide a mathematical interpretation of the causes of the similarities
that have been observed and the limits in which they hold, which is done using the single-

mode approximation. The relatively simple structure of the single-mode approximation
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allows for a great deal of analytical progress to be made and the inferences that are made
are deemed to be applicable to the full linear solution due to the high levels of accuracy
that have been displayed thus far.

For the single-mode approximation and normal incidence the system of equations that

govern the two-dimensional motion of the MMA, equations (4.3a-b), degenerate to
0z (a0zp) + by +wrx = 0, (6.3a)

and
{02602 +1 — ka}x —we =0, (6.3b)

where ¢ = g, w = [wgl,=—4, @ = agp and b = byp. Analysis is most easily carried out
if we eliminate the approximate displacement, x, from (6.3a-b), to leave the sixth-order

differential equation

6
Zcﬁigp =0, (6.4)
1=0
where
Cg — /B%, (65&)
¢ = 48 (a%) +2(am5)%, (6.5b)
= 6 821 6 (0 al 821 b 6.5
Cy = /8<x6>+ (xﬁ)(:vE)_"(xﬁ)a‘*"ﬁaa (C)
o = a5 (@h) +os) (a21) +2(0) (o) (6.54)
460, (3) 12,5 L,
w w
S (a;%) +2(0,0) (a%) T (@20) (8%) (6.5¢)
b b b 1
b b b
o = 460 (5) L 6(0,5) <‘955> 12 (925) <a%>, (6.50)
o = 00t () +20 (0 ) + @) () + (- an) ¢+ wu. (059
Here .
_[4k cosh? kH \ 2
B (sinhK + K) ’
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where k = ko and K = 2kH, uses the normal weighting
wo = (cosh{k(z + h)}, cosh{k(z + h)}) /2,

so that @ = 1. The function b may be written in terms of the derivatives of the wavenum-
ber, k., and the those of the fluid boundaries h and d

b = be(k, H) + (k) bsz (k, H)

0zk)(0zh) bk, (k, H) + (0:k)(02d)bya, (k. H)
0zh)?bpz (k, H) + (0:1)(0:d) b, a, (K, H) + (90d)*baz (k, H)
;1) bn,, (k, H) + (93d)ba,, (k, H),

_|_
(6.6a)

(
(
+(
+(

where the coefficients appearing in this expression are dependent on the wavenumber and

the fluid depth. Alternatively, we may use the fluid depth H in place of d and write

b o= bo(k, H) + (0,k)2bye (k, H)
+(0uk) (0o H )by, 11, (ky H) + (05k) (05 h) by, (K, H) (6.6b)
(0, H)2by: (k, H) + (0, H) (0ph)bpz, . (k, H) + (0:h)2byz (k, H) '
The various coefficients appearing in expressions (6.6a-b) are given by
koo oo
Fb.(k,H) = —{K —sinh® K'},
_ 2
Fby(k,H) = 48k3{ 3sinh” K — 6K sinh K
+3K?*(1 + 2cosh K) — 2K?sinh K + K},
1
Fbyp, (k,H) = 8—k{—4 sinh K + 4K cosh K — K?sinh K + K*},
1
Fby,a,(k,H) = —E{—sinhK(l + cosh K) + K (1 + cosh K) — K?sinh K},

k
Fby> (k,H) = 1{2(1 + cosh K) + K*},
k
Fbp,a,(k, H) = —5{2(1 + cosh K) — K sinh K},
Fbg(k,H) = 2{2(1 + cosh K) — 2K sinh K — sinh® K'},

1
Fop,, (k. H) = —Z(K +sinh K),

1
Fbq,, (k,H) = (1 + cosh K)(K + sinh K),
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and

b, (k, H) = —by,a,(k, H),
brkan, (ks H) = b, (K, H) + by, a, (k, H),
bu2(k,H) = —bgp(k,H),
biton, (k, H) = —bp,a, (k, H) — 2bg (k, H),
Eh;(kaH) = bp2(k, H) + bp,a, (k, H) + bg2 (K, H),
bu,.(k,H) = —bq,, (k, H),
b (b H) = by, (k, H) + ba,, (k, H).

with ,
F = E{sinhK—I—K}Q.

Comparisons between differing geometries are made using the trigonometric variation
pa2a(x) (see equation (6.2a) and figure 6.6) with the amplitude of this obstruction set as
As, = 1m and with the constant values Dy = 1m and Hy = 10m throughout. We begin by
considering geometries that share the upper case geometrical variables D and H. Initially,
this is interpreted as a keel against a sail with a bed protrusion, for which D and H vary
subject to D + H remaining constant. These two geometrical configurations are depicted
in figure 6.6.

As a and  may be considered to be functions of the ice thickness, and k£ and w are
functions of the ice thickness and the fluid depth, it is clear that the only differences
between these problems are manifest in the coefficient b, due to the terms endowed with
a tilde, which are only present in the latter geometrical configuration.

Figures 6.9-6.11 compare single-mode approximations to |n| along with the relevant
functions b(x), across the interval of varying geometry, for the two problems described.
The length of the obstructions is [ = 10m in figures 6.9-6.10 and [ = 7m in figure 6.11,
with incident waves of length A = 200m in figure 6.9, A = 20m in figure 6.10 and A = 7m
in figure 6.11.

We observe that the functions b shown in figure 6.9(b) are extremely similar and,
inevitably, this leads to corresponding approximations of ||, shown in figure 6.9(a), that
are also extremely similar. The closely matched functions b for the incident wavelength
A = 200m are to be expected here. If we consider the second definition of b (6.6b), which
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Figure 6.9: Part (a) plots single-mode approximations to the modulus of the reduced
displacement caused by an incident wavelength of A = 200m, for obstructions of form py,
(see equation (6.2a)) with amplitude As, = 1m, length [ = 10m, thickness Dy = 1m, and
fluid depth Hy = 10m. The obstructions are in the form of a keel (blue curve) and a sail
with a bed protrusion (red). Part (b) plots the corresponding moduli of the function b
(see equation (6.6b)), with the dominant term 92Hby,, superimposed (x).
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Figure 6.10: As in figure 6.9 but with incident wavelength A = 20m
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is made in terms of the geometrical variables D, H and h, then it is possible to show that

1 1 [(K2\? 1
bc ~ _E(kK)2a bk% ~ T Ton <—> 5 bszz ~ _gKa

180 \ %
- 1 k2 .
b, ~ §K, byz ~ <?> : bin, ~ k2, (6.9)
~ 1 k ~ 1
s~ —— (KK)? ~ ~ kK
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as k — 0. Therefore, for fixed geometry, as the incident wavelength becomes large, all
terms involved in (6.6b) tend to zero except for by> and by,, that tend to the constant
values 1/4H? and 1/2H respectively (recall that K = 2kH). These two terms are shared
by the respective geometries. Due to the choice of geometry, specifically our choice of
Hy = 10m, the term involving by, is dominant, which may be seen in figure 6.9(b). To

emphasise this, the function 92 Hby,, is superimposed over the functions b in figure 6.9(b).
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Figure 6.11: As in figure 6.9 but with obstructions of length [ = 7m and incident wave-
length A = mm.

Conversely, the corresponding functions b for an incident wave of A = 20m, which
are plotted in figure 6.10(b), are quite distinct from one another as the coefficients that
separate the respective geometries (those that take the tilde notation) are now of a com-
parable magnitude to the other terms. However, although the functions b have clearly
become different, the corresponding approximations to ||, shown in figure 6.10(a), are
still quantitatively and qualitatively very close.

In figure 6.12(a) the coefficients of the governing equation (6.4) that differ between the
keel and sail with a bed protrusion geometries, namely ¢; (i =0, ..., 4) defined in (6.5¢-g),
are plotted for the problem considered in figure 6.10. With reference to the transform
(3.18), we note that the derivative operator is inversely proportional to the length of
the obstruction. As the differential operator becomes more dominant in the lower-order
coefficients, in this case, where [ = 10m, the coefficients decrease in magnitude from ¢, to
co- The coefficients c5 and ¢4, that are shared by the two geometries and are not shown
in figure 6.12(a), are of magnitude O(10°) and therefore outweigh the coefficients ¢4 to
co- We also note that, in this case, the relative size of the only variation between the two
problems, the function b, is negligible in the coefficient c¢,.

The more extreme example [ = A = 7m is considered in figure 6.11. As in the case

[ =10m and A = 20m, the functions b shown in figure 6.11(b) are dissimilar. The resulting
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Figure 6.12: The coefficients ¢; (i = 0,...,4) of the governing differential equation of
the single-mode approximation. These are the coefficients that differ for problems that
share the same vertical structure, D and H. The geometry used in part (a) is as in figure
6.10 (I = 10m and A = 20m). In part (b) the geometry is as in figure 6.11 (I = 7m and
A = 7mm). In both, the obstructions appear as a keel (blue curves) and a sail with a bed
protrusion (red).

approximations to |n|, which are shown in figure 6.11(a), differ to a greater extent than
those that appear in figure 6.10(a); however, their agreement, both quantitatively and
qualitatively, remains.

As with the case [ = 10m and A = 20m, the coefficents ¢; (i = 0,...,4), corresponding
to figure 6.11, are displayed in figure 6.12(b). The magnitude of the shared coefficients
cs and cg (not shown) is O(10*), which is smaller than those of the displayed coefficients
that are not shared by the two geometries. This is due to the reduction in length of the
obstruction. Furthermore, by shortening the incident wave, the relative magnitude of the
function b in the coefficients increases. The difference between the respective coefficients
is therefore greater here than in the previous example of figure 6.12(a). Despite this, as
already commented, the approximate displacements shown in figure 6.10(a) are similar.
This indicates that the sources of scattering contained in the coefficients ¢5 and cg, which
are produced through variations in the ice thickness and the fluid depth, are dominant.

Figure 6.13(a) displays single-mode approximations to |R|, over an interval of incident
wavelengths, for the keel and sail with a bed protrusion geometries described, where
[ = 10m. As expected from our previous analysis, we see the results for these two problems
tending towards one another as A increases and only a slight difference for A &~ 20m.

A further curve denoting the reflected amplitude arising from an isolated sail geometry
is also shown in figure 6.13(a). This geometrical configuration shares its ice thickness D
but not its fluid depth H with the previous geometries; thus, the sail problem does not
share the functions w or b with the previous problems. The differences in these functions
are produced by differences in the values of k£ and K caused by the absence of variations

in H, as well as the extra terms that appear in b when d or h vary.
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A/ Dy A/ Dy
Figure 6.13: Part (a) plots single-mode approximations to the modulus of the reflected
amplitude as functions of non-dimensional incident wavelength, for obstructions of form
Poa With amplitude A, = 1m, thickness Dy = 1m, length [ = 10m and bed depth
ho = 10m. The obstruction takes the form of a keel (blue curve), a sail with a bed
protrusion (red) and a sail (green). Part (b) plots the corresponding ratio ky/kp, where
k is the incident wavenumber.

It is evident in figure 6.13(a) that the far-field behaviour of the sail problem closely
resembles that of the two other problems. In particular, we observe the results of the sail
and the sail with a bed protrusion geometries tending towards one another as A — 20m.
As A — 200m the reflection caused by the solitary sail is negligible in comparison to that
from the other two geometrical obstructions.

We are primarily concerned with how the role of the wavenumber, £, dictates the
scattering properties of each of the chosen geometrical configurations. Therefore, consider

the partial derivatives

k(ak — 38k*) sinh K " 2(1 — ak + BE")K?
H=-

kp = DE ’ E ’

(6.10)

where
E=(1-ak+58kY)sinh K + (1 — ax + k") K.

These derivatives have the properties that

ak? k
S k
o 5D (k—0), _— S5H (k—0),
P k " k
~3p (k — o0), —%cschK (k — o0).

We deduce that, for a large incident wavenumber, the variation of k, in relation to the
ice thickness, is proportional to the wavenumber itself but, in relation to the fluid depth,

becomes negligible. For a small incident wavenumber, the derivatives of £ tend to zero

108



and do so more rapidly with respect to D than H. Consequently, for short incident waves,
the shape of the wavenumber, &, for the sail problem will be almost identical to that of
the keel and sail with a bed protrusion geometries, whereas for long incident waves, due
to the uniform fluid depth in the solitary sail geometry, this relationship will cease. This
latter remark is consistent with the conclusion drawn from the limits (6.9). We can,
therefore, partially attribute the similarity of results of the solitary sail to the keel and
sail with a bed protrusion geometries, used in figure 6.13(a), to a close relationship in
their respective wavenumbers, which is a product of the shared ice thickness profile, over
much of the chosen interval. The relationship between the derivatives (6.10) is displayed
graphically, for the problem in hand, in figure 6.13(b).

Having investigated the influence of the vertical distances, D and H, on the single-
mode approximation, further understanding of geometrical relations may be gained by
considering the role of variations to the fluid boundaries, d and h. This is achieved by
considering two problems, one in which only d varies and another in which only A varies.
In both problems the ice thickness is constant and the variations to the fluid depth, H

are the same.

o.os—\ asl \“‘ “‘“ (b)

|R|0.04 \ 2
0.03 \\
A/ Dy A/ Dy
Figure 6.14: Part (a) plots single-mode approximations to the modulus of the reflected
amplitude, for obstructions of form p,,, with amplitude As, = 1m, length [ = 10m,

thickness Dy = 1m and bed depth Ay = 10m. The obstruction takes the form of an
undulating fluid-ice interface (magenta curve) and an undulating bed (cyan). In both, the
ice thickness remains constant. Part (b) plots the corresponding terms that differentiate
the function b, namely 4H?by> (dashed curves), by, x, (dotted) and 2Hbx,, (dot-dash)
(X =d,h).

Figure 6.14(a) displays single-mode approximations to |R| resulting from variations
in H derived in the two ways described. Figure 6.15 plots approximations to |n| along
with the relevant functions b, taken at either end of the interval of incident wavelength,
A = 20m and 200m.
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As the two problems share the upper case geometrical variables, D and H, differences
in the solutions are again caused by the function b; specifically, considering the first
definition of b (6.6a), the differences appear through the terms with the coefficients by, ,
bp2 and by, , and by, q,, bs2 and bg,,. The analysis of b for small &, given in equation (6.9),
once more applies and is substantiated by the similarities that are visible between the two
problems in figure 6.15(b.i-ii) and the behaviour of the reflected amplitudes as A — 200m,
shown in figure 6.14(a). Note that, as D is constant, the problem is more sensitive
to the variations in b and hence the solutions are proportionately further apart around
A = 200m than for the keel and sail with a bed protrusion problems at corresponding

incident wavelengths.
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Figure 6.15: Parts (a-b.i) plot single-mode approximations to the modulus of the reduced
displacement for the geometries used in figure 6.14. In part (a) the incident wave is of
length A = 20m, and in part (b) it is A = 200m. Parts (a-b.ii) plot the corresponding
moduli of function b, and in part (a.ii) the dominant term |by + 92db,, | is superimposed

().

It is clear in figure 6.14(a) that, for the majority of the interval of incident wavelengths,

variations in d cause greater reflection than equivalent variations in h. This is confirmed
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by the response of the lower surface of ice at A = 20m, which is shown in figure 6.15(a.i).
To examine this phenomenon we consider b in the limit £ — oo, for which it can be shown
that

1 1
be ~ —k?, b2 ~ BUVER b, h, ~ —§K2(:schK,
bkzdz ~ 1: bh% ~ QkQCSChK, bd% ~ —]{;2’ (611)
bn,, ~ —2kcschK, by, ~ k.

Therefore, as k increases the terms corresponding to variations in d increase or tend to
a non-zero constant. In contrast, the analogous terms corresponding to variations in A
tend to zero, so that variations to the underside of the ice dominate over bed variations.
These tendencies are shown graphically, over the interval of incoming wavelengths A\ €
(20,200)m, for the current problem in figure 6.14(b). They are also observed in the shapes
of the respective functions b at A = 20m in figure 6.15(a.ii). The dominant terms in b in
the short wave limit, for [ = 10m, are deduced from (6.11) to be b. + 0?db,,, and this
function is overlaid on figure 6.15(a.ii).

It is now possible to further clarify the relationships shown in figure 6.13(a). As the
influence of the variations in A die out in b as k increases, which coincides with the weak
response in k to variations in H, the sail with a bed protrusion problem tends towards
the sail problem. In this limit, the influence of the fluid-ice boundary, d, in b remains
significant and so a gap remains between the keel and sail problems even when the response

of k to variations in H is weak.

6.5 Conclusions

The problems considered in this chapter have been those of a two-dimensional nature
in the context of complete ice-cover. The formulation of such problems was outlined in
section §4.3.1.

In §6.1, this form of geometry was used to demonstrate the respective convergence rates
of the natural and hybrid approximations. By judiciously selecting two example problems,
the slight superiority of the natural approximation over the hybrid approximation was
demonstrated. Nevertheless, the hybrid modes provided rapid convergence and the full
linear solutions gained by using the two alternative trial spaces were consistent. It was
therefore concluded that the hybrid modes would be used in all cases in which the natural
evanescent modes became invalidated by bifurcations. A third trial space, comprised of
the Fourier cosine modes, was used to further highlight the excellent performance of the
natural approximation.

A technical issue, regarding the choice of modes was then investigated. This centred
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around the possibility that we would be unable to select a continuous trial space as a
non-geometrical parameter (e.g. frequency w) was varied. Consequently, it was shown
that a spurious jump would become manifest in our results. However, these jumps are
normally negligible and vanish as more modes are included and the MMA converges.

In §§6.2-6.3, we compared results produced by the MMA to results available in pre-
vious literature. The comparison to Williams & Squire (2004), whose method is entirely
independent of our own, served to verify the effectiveness and accuracy of the MMA. It
was observed that the convergence of the MMA is weakest in an intermediate interval of
frequency for which the parameters cause the incident wave to most strongly excite the
evanescent waves. The single-mode approximations of Porter & Porter (2004) were ad-
vanced to full linear solutions using the MMA. It was prominent that only a small number
of modes was required to find the full linear solution, with, in many cases, a single mode
producing approximations to the reflected amplitude and displacement for which the ad-
dition of each evanescent mode causes at most only O(107%) improvements. Even when
the geometry was extended to ‘non-slow’ variations, the low-dimensional approximations
retained their accuracy, although a larger number of modes was required to attain the full
linear solution. This compares to the resolution of the scattering caused by an ice edge,
which was seen in the case of a semi-infinite ice sheet. There, qualitative inaccuracies
were far more evident in low-dimensional approximations.

Correction of the erroneous transformation employed in Porter & Porter (2004) led us
to observe a close link between geometries that share their ice thickness and fluid depth.
This relationship was thoroughly investigated in §6.4. Due to the high levels of accuracy
that it demonstrated, the analysis that was carried out in this section was made using the
relatively simple structure of the single-mode approximation. Through a series of results
and examination of the relevant quantities involved, it was shown that the ice thickness is
the dominant factor in determining the shape of the solution, whilst the fluid depth only
becomes a factor in the long wave régime. This indicated that configurations that share
the same ice thickness, such as equivalent keels, sails and sails with bed protrusions, can
be expected to give similar results under most circumstances. Additionally, it was shown
that undulations in the fluid-ice interface, d, affect long incident waves in the same way
as bed undulations, A, but that for shorter incident waves the effects of the bed variations

die out, whereas those due to the ice variations grow.
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Chapter 7

Numerical Results: partial ice-cover

Iin two-dimensions

Having considered the effects of variations to the geometrical surfaces in isolation during
the previous chapter, we now progress to problems involving partial ice-covering. This
adds the feature of ice edges, which are an additional source of scattering to the incident
wave. In this chapter we will mainly look at those problems that incorporate a single ice
floe of a finite extent, which is the problem that was formulated in §4.3.2. This means
that we will now be dealing with the scattering caused by and interactions of two ice edges
and undulating surfaces. In situations of partial ice-cover there is also the question of the

inclusion of the correct physical draught and this is addressed at the end of the results.

7.1 Comparison with the work of Belibassakis &
Athanassoulis (2005)

As with the previous two chapters, our numerical investigations are prefaced by a com-
parison to results produced by independent authors.

Belibassakis & Athanassoulis (2005) also used a variational approach to solve two-
dimensional finite ice floe problems of the form outlined in §4.3.2; however, they imposed
the ice sheet restrictions of uniform thickness and a zero draught, so that only the bed
topography may vary continuously over the finite interval beneath the ice floe. Noting
that the natural modes satisfy [0,w;],—_, = 0 and building on their earlier work for
free surface motions (Belibassakis & Athanassoulis, 1999), an extra expansion mode was
included, w say, satisfying [0,w],—_,, # 0, thereby accelerating the convergence of the
approximation.

A similar approach could be utilised in our MMA. That is, we note that both the
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natural and hybrid modes satisfy

for i =0,...,N. It is therefore impossible for the no-flow condition (2.9b) to be satisfied
exactly by the MMA when the bed undulates and convergence around this point is ex-
pected to be slow. If we chose to pursue this issue, it is likely that we would closely follow
the method of Chamberlain & Porter (2006). In the work of these authors the trial space
used on a free-surface flow is extended consistently with the addition of a vertical mode
that both allows the bed condition to be satisfied and decays in the far-fields, so that the
exact radiation conditions are not compromised.

However, the addition of a supplementary ‘bed-mode’ would only be an issue if we
wished to investigate the motion in a vicinity of this surface. Our concern is with the
fluid-ice interface, and the excellent convergence we find in the results presented in this
section confirm that the bed-mode would only have a marginal effect. Furthermore, we
will most often use situations in which the bed is flat. Therefore, the bed-mode is left
only as an area of possible further study.

In the particular problem, chosen from Belibassakis & Athanassoulis (2005) for com-
parison, the parameter values are o = 0, § = 10°Pa m°s? /kg and [ = 500m, with

ho + h ho — h
h(z) = 0;— LI 02 1tanh37r(x/l—1/2) (0<z <), (7.1)

which represents a monotonic decrease in the depth when Ay > h;. Using the parameter
values given in §2, 3 = 10°Pa m®s? /kg corresponds to an ice thickness Dy ~ 1.3m. The
value a = 0 is inconsistent with any parameter values for the model problem we have
developed and the comments pertaining to the semi-infinite ice sheet problem studied by
Linton & Chung (see §5.1.3) are again relevant.

Figures 7.1(a-b) are the counterparts of figures 10-11 of Belibassakis & Athanassoulis
(2005). Both figures plot MMAs to the magnitude of the sheet elevation ||/2 across the
ice floe; the single incident wave has angular frequency w = 0.4 rads/secs. Only the most
significant two sets of data are plotted on each graph to keep them uncluttered. The four
parameter sets each demonstrate extremely rapid convergence with ¢; ~ 1 x 1073 and
€1 ~ 3x 107 and the single-mode approximations are considered sufficiently accurate. In
all cases the converged curves of figure 7.1 appear identical to their counterparts presented
in Belibassakis & Athanassoulis (2005).

The rapid convergence displayed in figure 7.1 can be explained by the large length of
the ice floe. Referring back to the investigation into the convergence of approximations
to the ice sheet displacement for the semi-infinite ice sheet conducted in section §5.2, we

learnt that the role of the additional evanescent modes is confined to the vicinity of the
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Figure 7.1: Single-mode approximations for comparison with figures 10-11 of Belibassakis
& Athanassoulis (2005), in which the plate is of uniform thickness, a zero draught and
length { = 500m, and the bed varies beneath it, as defined in equation (7.1). Part (a)
plots scaled moduli of the reduced displacements of floes for normal incidence (¥ = 0)
and bed depths hy = 12m and h; = 8m (black line), and hg = 15m and h; = 5m (blue).
In part (b) the bed depths are hg = 15m and h; = 5m and the incident angles 9 = /6
(black line) and ¥ = 7/3 (blue) are used.

ice edges. For a long floe such as this, the lengths of these regions are small compared to
the floe length and thus it is the propagating wave that dominates. The question of the
length of the floe is further investigated in §7.3.

7.2 Comparison with the work of Porter & Porter
(2004)

We continue by again returning to Porter & Porter (2004) in order to study the effects
of the inclusion of evanescent modes in the approximation. In addition to the issue of
the missing terms relating to variations in d (see §3.2.1), the results presented in §6 of
Porter & Porter (2004) differ from the results taken from our single-mode approximation
(N = 0) due to the expansion of the auxiliary function, u, that exists in the interfacial
jump conditions (see §3.1.1).

Figure 7.2 displays the convergence of the natural approximation to the non-dimensional
sheet elevation, |77/A(()07)|, of a uniform floe of a zero draught, length [ = 10m and thick-
ness Dy = 38mm over a uniform bed of depth hy = 1.1m for two incident wavelengths,
7 = 0.7secs and 1.429secs. In this problem only, Young’s modulus is £ = 103MPa and
the density of the ice is p; = 220.5kgm®. The corresponding single-mode approximations
of Porter & Porter (originally appearing in figures 8(a) and 9(a) of that paper) are also

shown. Note that the ice thickness used here is far less than any of those that we have
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considered previously but that the length of the incident waves is also shorter.

As the underside of the ice is flat, the only difference between our single-mode ap-
proximations and the single-mode approximations of Porter & Porter is derived through
the reformulation of the matching conditions. For the incident wave of angular frequency
7 = 0.7secs, shown in figure 7.2(a), there is negligible difference between the accuracies
of the single-mode approximations; however, for the incident wave of angular frequency
7 = 1.429secs, shown in figure 7.2(b), the reformulated matching conditions lead to a

clear improvement in accuracy.
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Figure 7.2: Extensions to full linear solutions of the approximation given in figures 8(a)
& 9(a) of Porter & Porter (2004). The floe is of uniform thickness Dy = 38mm, length
[ = 10m and with a zero draught (d = 0) over a bed depth of hy = 1.1m. The figures
plot the convergence of the MMA to a scaled version of the modulus of the reduced
displacement of the floe, with wave period (a) 7 = 0.7secs and (b) 7 = 1.429secs. The
dimensions of the approximation are (a) N = 0 (blue curves) and N = 3 (cyan), and (b)
N = 0 (blue) and N = 2 (green). The single-mode approximations of Porter & Porter
are also superimposed (black dotted curves).

Here, we find that the convergence of the natural approximation for the longer incident
wave is far more rapid than that of the shorter incident wave, with ey ~ 7.2 x 1073 for the
longer wave compared to €3 ~ 3.7 x 102 for the shorter wave. The stronger activation
of the evanescent modes seen in figure 7.2(a) may be attributed to a greater jump in
the propagating wavenumber as it passes into the interval occupied by the ice sheet; we
have ko/k” = 0.1550 for 7 = 0.7secs and ko/k\” = 0.4588 for r = 1.429secs. Similar
comments were made for the semi-infinite ice sheet problem in §5.2. Convergence for the
7 = 0.7rads/secs problem was terminated at four modes with €3 ~ 3.7 x 1072

It is again evident that the accuracy gained by adding the evanescent modes is signifi-
cant at the ends of the ice floe, particularly the left hand end at which the incoming wave

is incident. The qualitative nature of the propagating wave passing through the ice is
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Figure 7.3: Convergence of the MMA to the modulus of the reflected amplitude as a
function of incident wavenumber, which extends to full linear solutions the single-mode
approximations given in figure 11 of Porter & Porter (2004). The floe is of length | =
40m and thicknesses Dy = 0.1m, with the bed depth hy = 20m. The variations of the
geometrical surfaces are those defined in equation (7.2) with amplitude A;; = 1.35m.
The variations take the form of (a) the keel intended by Porter & Porter and (b) the
sail with bed protrusion actually given in Porter & Porter (2004). The dimensions of the
approximations are N = 0 (blue curves) and N = 3 (cyan).

accurate in the single-mode approximation; however, slight quantitative refinements are
achieved through the addition of extra modes.
The results given in figure 11 of Porter & Porter (2004) were intended for a set of keels

of the parabolic form

0 (x <0,z >1),
pu(r) = (7.2)
4A (1 —x/Dx/l  (0< 2z <),

where Ay is a constant amplitude. However, we now understand that these results must
be reinterpreted as equivalent sails with bed variations.

In figures 7.3-7.5 we investigate and contrast the results of both the intended keel
geometries with the actual sail with bed protrusion geometries. The results are of the
modulus of the reflected amplitude, |R|, over the interval of incident wavelengths k((]o) €
(0,0.5)rads/m, where the geometrical values Dy = 0.1m, hg = 20m and A;; = 13.5Dym
are used, along with the three floe lengths [ = 40m, 80m and 160m. Over the chosen
interval of incident wavelengths the wave period decreases to approximately 4secs at
k((]o) = 0.25rads/m and 2.84secs at k((]o) = 0.5rads/m. Due to bifurcations, in all problems
the hybrid evanescent modes are used.

Convergence has been taken to be complete when ey ~ 1073, which requires four verti-

cal modes for the two shorter floe lengths and five modes for the longest floe length. In all
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problems the convergence rates are extremely similar; the marginally slower convergence
caused by the longest floe is understood to be due to an increase in interference effects
between propagating modes. In §7.3 we will observe convergence difficulties produced by

interference between evanescent waves when the floe length is short.
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Figure 7.4: As in figure 7.3 but with floe length [ = 80m. The dimensions of the approx-
imations are N = 0 (blue curves) and N = 3 (cyan).

In all problems the single-mode approximation provides good accuracy, containing the
essential characteristics of the converged solution. This is a consequence of the relatively
small geometrical jump at the edges of the floe, a feature that was observed for the semi-
infinite ice sheet problem in §5.2. Following the findings of that chapter, we anticipate
that the fine-scale refinement of the solution will be slow. By way of confirmation of this
assertion we note that it takes twelve modes for the error, ey, to gain an extra order of
magnitude in accuracy for the keel of length 40m, that is ¢;; ~ 10~%.

During our study of the semi-infinite ice sheet problem we noted the deterioration
of accuracy of low-dimensional approximations as the frequency increased, which was
attributed to the difference of the propagating wavenumbers between the ice-free and
ice-covered states. In §6 we observed that the convergence of the MMA when there are
geometrical variations is weakest in a middle range of frequencies. The current problem
combines both scattering by ice edges and undulating surfaces and we hence expect a
combination of the above convergence traits. We can certainly distinguish weak conver-
gence in a mid-interval for the shorter floes, in figure 7.3, and at the higher wavenumbers
of the longer floes, in figures 7.4-7.5.

It is evident that the scattering properties of the corresponding geometries are almost
identical to one another. This phenomenon is consistent with our investigations of the
complete ice-cover problems of the previous chapter and again indicates that the variations

in the ice thickness are dominant. However, the problems presented in figures 7.3-7.5
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are limited, especially in relation to the ice thickness used. The issue of dominance of
variations to the ice thickness, in the context of partial ice-cover, is investigated further
in §7.4.
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Figure 7.5: As in figure 7.3 but with floe length [ = 160m. The dimensions of the
approximations are N = 0 (blue curves) and N = 4 (magenta).

7.3 Piecewise uniform geometry

For our first set of independent numerical results in this chapter, we restrict ourselves
to floes of uniform thickness and a zero draught over flat beds. This situation is closely
related to the semi-infinite ice sheet problem studied in §5 and may be analysed by similar
means to those outlined in that chapter. A finite uniform floe contains two sources of
scattering - one at each ice edge - and is thus more complicated than that of the semi-
infinite ice sheet in which there is only a single ice edge. It is therefore necessary to
consider the interaction of the scatterers in addition to their isolated properties, which
were investigated as part of our analysis of the semi-infinite ice sheet problem.

In figures 7.6-7.8 we consider |R| for the three floe lengths [ = 10m, 30m and 100m,
and the three ice thicknesses Dy = 0.1m, 0.5m and 1m over a bed depth of hy = 20m. The
interval of incident wave periods, 7 € (2, 12)secs, translates to ky € (0.0413,0.424)rads/m
for D = 0.1m, ko € (0.0411,0.174)rads/m for D = 0.5m, k; € (0.0393,0.117)rads/m for
D =1m.

As in §5.2, the assumption of a zero draught is made to isolate other properties.
Specifically, here we are interested in the effects of varying [ and Dj.

The characteristics observed in §5.2 are again present: low-dimensional approxima-
tions display large inaccuracies for the thicker ice but are resolved rapidly; small-scale

refinements of the full solution are slow; and convergence problems are confined to short
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Figure 7.6: The convergence of the MMA to the modulus of the reflected amplitude as a
function of wave period. The ice floe is of uniform thickness D = 0.1m and a zero draught,
over a flat bed h = 20m, with length (a) [ = 10m, (b) [ = 30m and (c) [ = 100m. The
dimensions of the approximations are N = 0 (blue curves), N = 2 (green) and N = 14
(magenta).

incident waves. A feature of these finite floes, not seen in the semi-infinite ice sheet, is
the existence of fine structure in the far-field response. This is attributed to interactions
between the two sources of scattering - the ice edges - and is dependent on the length of
the floe relative to that of the incident wave, so that it is a feature that is more prevalent

for longer floes.
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Figure 7.7: As in figure 7.6 but for ice thickness D = 0.5m. The dimensions of the
approximations are N = 0 (blue curves), N =1 (red), N =4 (green), N = 12 (cyan) and
N = 14 (magenta).

A shorter floe length is seen to exacerbate any convergence difficulties experienced by
the MMA. This is attributed to interactions of the evanescent waves generated by the
scattering at each ice edge. As these evanescent waves are only significant locally to the
scattering source, interactions between scatterers are only possible if the floe length is
relatively small. Above a certain distance the only non-trivial motion under the ice, away
from the edges, is that of the propagating waves. It is therefore unsurprising to find that,
for example, with an ice thickness of 1m, ¢; ~ 5.8 x 10~! when / = 10m compared to
€1 ~ 2.0 x 107! when [ = 100m. The importance of the floe length in this issue is actually

somewhat understated in these relative values due to the shorter floe going ‘unnoticed’ by
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the incident wave at a far smaller wave period than the longer floe. Specifically, for the ice
floe of a 1m thickness, the reflected amplitude is approximately zero from around 9secs
onwards when the floe is of a 10m length. Whereas, for the floe of an 100m length, the
reflected amplitude remains significant throughout the given interval of wave periods. In
addition to the conclusion of §5 that increased thickness of the ice edge adversely affects
the accuracy of low-dimensional approximations, we may therefore add that, for a finite
floe, at short floe lengths, the distance between the edges is inversely proportional to the

accuracy of low-dimensional MMAs but that beyond a certain point this relationship no

longer applies.

T T T

Figure 7.8: As in figure 7.6 but with ice thickness D = 1m. The dimensions of the
approximations are N = 0 (blue curves), N =1 (red), N =4 (green), N = 11 (cyan) and
N = 14 (magenta).

7.4 Sinusoidal variations

In this section we study the complete problem formulated in §4.3.2, for which the geo-
metrical surfaces are permitted to undulate in the finite interval occupied by the ice floe.
The addition of variations to the ice thickness and bed shape creates an extra source of
scattering and we are concerned with how this influences the problem.

As with our investigations of continuous ice-cover in §6.4, we will be content to work

with sinusoidal variations of the form
Ay sin? (7;—"“") , (7.3)

where Ay, is the amplitude of the protrusion. As a simplifying measure for this section,
the floe is assumed to have no submergence at its edges. That is, we set d = 0 at x = 0, [.

In figures 7.9-7.12 we consider the addition of sinusoidal variations (7.3) to an ice floe
of thickness Dy = 1m and lengths / = 10m and 50m over a bed of depth hy = 20m.
Specifically, we are again interested in comparing the results given by a keel against an

equivalent sail with a bed protrusion, all of amplitude Ay, = 1m. The 1m ice edge
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Figure 7.9: Moduli of reflected amplitudes as functions of wave period for geometries
that include variations. The floes are of length (a) [ = 10m and (b) | = 50m. The
variations are defined by equation (6.2a) with amplitude A, = 1m, and take the form of
a keel (blue curves), and a sail with a bed protrusion (red). In all cases, the ice thickness
Dy = 1m, the edge submergence of the floe is zero, and the bed depth is 20m. The result
from the corresponding uniform floe is also shown (black dotted). The dimension of the
approximations is (a) N = 11 and (b) N = 6.

thickness provides a stronger source of scattering than that of the 10cm ice edge used
in figures 7.3-7.5 and is hence a better test of the approximation to the partial ice-cover
problem.

Figure 7.9 plots approximations to the reflected amplitude as a function of incident
wave period, over the interval 7 € (2,12)secs, for the two geometrical constructions de-
scribed and also includes the corresponding piecewise uniform problem (A, = 0). Ap-
proximations to |n|, at the three incident wave periods 7 = 2secs, 5.06secs and 12secs, are
given in figures 7.10-7.12. All approximations are converged so that ey < 1072

For the floe of length [ = 10m, a far greater effect is caused by the addition of
the keel than the sail with a bed protrusion. Thus, the energy reflected by the keel
behaves quantitatively differently to that reflected by the uniform floe, whereas the effect
of introducing the sail with a bed protrusion is mainly quantitative.

In figure 7.10(a) it can be seen that the approximations for the three geometries to
the reduced displacement at 7 = 2secs virtually overlap one another. From figure 7.9(a),
we also note that the reflected amplitudes coalesce as 7 — 2secs. We therefore infer that
at shorter wavelengths the effect of the ice edge scattering is dominant. It is again noted
that, in the short wave limit, the energy carried by the incident wave is almost entirely
reflected and hence the magnitude of the displacement experienced by the floe diminishes.

Considering the opposing limit, 7 — 12secs, as expected, in all three instances the

reflected amplitudes decay to |R| ~ 0. The corresponding ice displacements seen in figure
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Figure 7.10: Moduli of the reduced displacements of the floes used in figure 7.9, for a
wave period 7 = 2secs. The floes are of length (a) I = 10m and (b) [ = 50m. The
approximations are of dimension N = 11.

7.12(a) display trivial flexure, so that the floe merely rests on the incident wave. It is
clear that the incident wavelength is such that the scattering by both the ice edges and

the geometrical variations is negligible.

7] sz

. . . . . . . . )
0.9 . . . L . . . . . ! o 0.1 0.2 0.3 0.4 05 0.6 0.7 08 0.9 1
0 01 0.2 03 0.4 0.6 0.7 0.8 0.9 1

z/l z/l
Figure 7.11: As in figure 7.10 but with wave period 7 &~ 5.06secs. The approximations
are of dimension (a) N =11 and (b) N = 5.

Between these two limits there is an interval in which both sources of scattering are
distinguishable. In figure 7.9(a), this interval is approximately 7 € (4, 8)secs, although
this can be extended to 7 € (3,10)secs, if we consider the addition of the keel only. This
issue is further evident in the approximations of the reduced displacement shown in figure
7.11(a). The observation that a geometrical obstruction has its greatest influence for a
middle range of incident wavelengths is consistent with the findings of §6 for complete

ice-cover.
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In parts (b) of figures 7.9-7.12, we see that the keel and sail with bed protrusion
variations agree far more closely for the floe of length [ = 50m than the [ = 10m case
just studied. As with complete ice-cover, this is due to the diminishing importance of the
position of the interfaces relative to that of the vertical scales, which are shared by these
geometrical configurations, as [ is increased.

As 7 — 12secs, we again note the results for the three geometrical configurations
tending towards each other, with |R| — 0 shown in figure 7.9(b) and little displacement
shown in 7.12(b). However, it is clear that these effects are weaker for the longer floe.
This is clearly a property of the relative length of the 50m floe to the incident wave as

opposed to the 10m floe.

(v
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Figure 7.12: As in figure 7.10 but with wave period 7 = 12secs. The approximations are
of dimension (a) N =11 and (b) N = 5.

Unlike the floes of 10m length, as the wave period decreases to 2secs, the behaviour of
the geometrically varying problems is markedly different to that of the piecewise uniform
problem both in terms of the reflected amplitude, shown in figure 7.9(b), and ice displace-
ment, shown in figure 7.10(b). Around the wave period of 2secs we see the beginnings
of fine structure, which was observed earlier in §7.3, in the reflected amplitude produced
by the uniform floe. The presence of a keel or a sail with a bed protrusion completely
eliminates the minimum experienced by the uniform floe in this case. As the uniform
floe reflects relatively little of the incident wave around this sharp dip in the reflected
amplitude, we expect more energy to be transferred into the ice floe. This is confirmed
by the displacement functions given in figure 7.10(b), where we see that the uniform floe
has a displacement which is of a magnitude that is significantly greater than that of the
varying floes.

In §10, the question of locally disproportionate responses in the ice displacement is

explored in the context of a fully three-dimensional ice floe. It will be seen that such
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behaviour is more prevalent for larger floes and this is reflected in these two-dimensional
results.

We may question why the connection between geometrical configurations that share
the same vertical structure (D and H) is weaker in cases of partial ice-cover than for
continuous ice-cover. That is, why do we observe, over an interval of wave periods cor-
responding to A0 = 27r/k(()0) € (53.5,160)m, the present response of keels versus sails
with bed protrusions in figure 7.9(a), when, for almost identical geometrical variations
in the context of continuous ice-cover (see figures 6.9-6.11 and 6.13(a)) there is little to
distinguish between the two configurations?

The investigation of §6.4, into the relationship between geometries related by their
vertical structure, in the context of continuous ice-cover, was restricted to the single-mode
approximation on the basis that it provides high levels of accuracy. All of the analysis
that was carried out in that section also holds for cases of partial ice-cover, and we may
therefore expect that single-mode approximations will display generally good agreement
between keels and equivalent sails with bed protrusions for these finite floe problems. In
demonstration of this, figure 7.13 displays the single-mode approximations corresponding
to figures 7.9(a) and 7.11(a). The piecewise uniform configurations are disregarded as
they do not form part of the current issue.

Comparing the single-mode approximations of figure 7.13 to their converged coun-
terparts, we find that they are, evidently, not of sufficient accuracy. The single-mode
approximation of the reduced displacement is deficient quantitatively and also qualita-
tively, in that it does not reproduce the larger modulus at the far end from the incident
wave; however, it does correctly reproduce the concavity of the full linear solution. The
accuracy of the single-mode approximations to the reflected amplitude is far worse. This
is especially true in the middle range of incident wave periods, for which spurious extrema
appear. Poor accuracy of the single-mode approximation to the reflected amplitude has
been noted for the semi-infinite ice sheet problem in §5.2, and is attributed to the sensi-
tivity of the far-field to the boundary values of the numerical solution.

It is in the process of convergence, which is achieved through the addition of evanescent
modes, that the association between the two configurations is lost. The reason for this is an
accumulation of interface-dependent terms, in which the problems differ, as N increases,
combined with the stronger impact of the additional modes that are generated by the ice
edge scattering. However, referring to figures 7.3-7.5 and 7.9(b), we note that in situations
in which the floe is long and hence the gradient of the geometrical functions is small, the
vertical structure of the geometry is again dominant.

A detailed analysis of factors that determine such geometrical associations, akin to
that carried out for cases of continuous ice-cover in §6.4, will not be pursued here. In

situations of partial ice-cover matters are obscured both by the coupling of geometrical
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Figure 7.13: The single-mode approximations corresponding to (a) figure 7.9(a) and (b)
7.11(a).

variations to the scattering at the ice edges and by the complicated behaviour of the

evanescent modes.

7.5 Archimedean draught

Thus far in our consideration of problems that involve partial ice-cover, pertaining to §5.2
as well as this chapter, the uniform floes have been restricted to a zero draught and the
floes of varying thickness to zero submergence at their edges. This leads to a physically
unrealistic model of the floes, as all floes will experience some submergence. Importantly,
the inclusion of a non-zero draught at the edge of a floe introduces a supplementary source

of scattering through the condition
9,60 =0 (—=d<z<0), (7.4)

which applies at each ice edge. This condition ensures that there is no flow through these
submerged portions (see equation (2.24b)).
A non-zero edge submergence is readily permitted in our model. The physically correct

draught of an ice floe is calculated using Archimedes’s principle, which here takes the form

!
[ 10:D@) - puda)} ds =o. (75
0
and, given the floe’s shape, determines its buoyancy.

In this section we conduct an investigation into the effects of introducing an Archimedean

draught in various circumstances.
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7.5.1 Semi-infinite ice sheet

Before we consider introducing an Archimedean draught to the finite floes that have been
the study of this chapter, we return to the simpler problem of the semi-infinite ice sheet
of §5. By initially dealing with a single source of scattering, we are able to isolate the
influence of the no flow condition (7.4) without the interference of additional influences,

specifically those due to geometrical variations and floe length.

0.45-

|B]

T x

Figure 7.14: Comparison of results of a zero draught (blue curves) and the corresponding
Archimedean draught (green) semi-infinite ice sheet. The ice is of thickness Dy = 0.1m
and the bed has the depth hg = 20m. Part (a) plots the moduli of the reflected amplitudes
as functions of wave period, and part (b) plots the moduli of the reduced displacement
functions, for wave period 7 = 2secs. The dimension of the approximations is N = 29.
Also plotted are the results given by the altered bed depth Hy = hy — d4 with a zero
draught (red dotted curves).

For ice of uniform thickness Dy, the Archimedean draught, dy = da(Dy), is calculated

from condition (7.5) to be
D
da(Do) = ”p 3

Moving from a zero draught to an Archimedean draught both alters the wavenumber

beneath the ice and the limits between which vertical integrals are calculated beneath
the ice, which affect the values a;; and v;; (i,7 =0,...,N) given in equations (3.20) and
(3.21) respectively.

We also consider a third geometrical configuration, in which the bed depth is replaced
by ho — d4 and a zero draught is again imposed. This will allow us to judge the influence
of the change in bed depth caused by the introduction of a non-zero draught in separation
from condition (7.4). Having a bed depth of hg—d 4 and a zero draught differs from having
a bed depth of hy and a draught of d4 due to the free-surface wavenumbers, k§°) (1 =

0,...,N), and the limits of vertical integration used to calculate the aﬁ-) (1,7 =10,...,N),
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which is defined in equation (3.20).
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Figure 7.15: As in figure 7.14 but with Dy = 0.5m. The dimension of the approximations
is (a) N =14 and (b) N = 20.

Figures 7.14-7.16 plot sufficiently converged MMAs to the reflected amplitude, |R|,
over the interval 7 € (2,12)secs, and the modulus of the reduced displacement, |n|, at 7 =
2secs, for the three geometrical variations described. The incident wave again originates
in the ice-free far-field, and we consider the three ice thicknesses Dy = 0.1m, 0.5m and
1m.

As may be anticipated, the differences between the problems increase as the ice be-
comes thicker. This is particularly evident in the displacement of the ice, for which the
zero draught and Archimedean draught geometries are approximately 6.8 x 1073 apart
when Dy = 0.1m and 6.1 x 10! when Dy = Im. There appears to be a tendency for the
magnitude of the displacement to be greater for ice sheets of a zero draught and this will
be analysed presently. Intuitively, it is interpreted as additional reflection of the incident
wave by condition (7.4).

Between figures 7.14-7.16, the ice sheet becomes thicker and qualitative differences in
|R| become visible between the zero draught and Archimedean draught problems. These
are apparent for much of the incident wavelength interval when Dy = 0.5m and 1m but
do die out as the wavelengths increase.

The altered bed depth and original zero draught problems give virtually identical
results, with their greatest deviation being O(1073) when Dy = 1m, which makes the red
dotted curves for the altered bed depth problem difficult to identify. This implies that it
is the introduction of condition (7.4) that is responsible for the transformation in results
caused by the addition of an Archimedean draught, rather than the change in fluid depth.

Although throughout figures 7.14-7.16 the approximations are plotted as converged at

the same dimensions for the zero draught and Archimedean draught problems, we note
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Figure 7.16: As in figure 7.14 but with Dy = 1m. The dimension of the approximations
is (a) N =13 and (b) N = 14.

that the convergence rate of the latter is marginally slower than that of the former. In the
most extreme case here, we have ey = O(107") for the zero draught problem and ey =
O(1072) for the Archimedean draught problem (N = 0,...,4) for the approximations
to |n| when Dy = 0.1m, which in this instance demonstrates that the approximations
for the zero draught problem move more rapidly towards the full solution than those for
the Archimedean draught problem. This trait persists for the finite ice floe problems
considered in §§7.5.2-7.5.3 and is attributed to the extra scattering that must be resolved
when edge submergence is present. However, for convenience we often continue to plot

approximations of the same converged dimension.

Single-mode approximation: short waves

It has been noted that, for 2sec incident waves, there is a tendency for the ice sheet to
be displaced to a lesser extent when an Archimedean draught is included. This tendency
is relative to the thickness of the ice, so that a greater reduction in the displacement is
produced for thicker ice. Let us examine this phenomenon further.

In order to conduct an analysis of the displacement function, we will restrict ourselves
to the single-mode approximation. Although the single-mode approximation contains
inaccuracies in the magnitude of the displacement, particularly at the ice edge, it has,
nevertheless, been proven to contain the key feature of the displacement. Without loss
of generality, we suppose that wy = 1 and that there is a single normally incident wave

propagating from the ice-free far-field.
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Referring to equations (5.5)-(5.6), the approximate displacement is given by

x(z) = {eik‘ﬂ" + Z o ei“omm} Bo;

j=1,2

where

ki (ko — pto,(-))
165y (Ho,(g) = Ho,i )
Recall that j = (3 — (=1)7)/2 (j = 1,2). For the remainder of this section we shall
endow quantities with a subscript A if they relate to the Archimedean draught problem,

By = k ‘kosinh(koH) By, #; =

(7.6)

for example Hy = Hy, ks = kg and B4 = B,. Quantities that retain the zero subscript
will refer to the zero draught problem.

Let us suppose that the limits koHy < sinh(koHy) and ksH4 < sinh(ksH4) hold,
which is the case for most of the geometrical parameters in which we are interested. We

therefore have tanh(ksH4) ~ tanh(kqHy) ~ 1 and consequently
(1 — ka+ Bko)ko ~ k, (1 — ka+ fka)ka ~ kK,

from which k4 = ko follows and then also fi4,;) = poj) (7 = 1,2). This implies that

Xo &~ X4, where

Yo=2, Xa=22
By’ B,

and we deduce that the respective magnitudes of the displacements are controlled by the
values BO and B A.

Similarly, take the functions

%0 = {eim t 2 f’jei"‘*mm} By, g = {eim > f’jei“”w} Ba,

j=12 =,
where
O — k§ (ko — to,(;_y) sinh(koH)
’ Mg,(j)('u‘),(j) — po,(i_)) sinh (g ()
or
o ki‘(kA - MA,j_) sinh(kaH)
j

1y (BaG) — mao)) sinh(pa )

according to its context. We find that ¢pq &~ @4, where

s _% o _a
©o B07 YA BA’
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and it can be shown that

9a0(0) = O(ko)o(0)  9rpa(0) = O(ka)@4(0).

For both problems, the unknown amplitudes By and B, are found from application

of the jump conditions (5.7a-b), in the form

a v©® 0y U . 0) kosinh(koH,)
0, 50(0) + ik )—%(0)} By = 2ik : (7.7a)
{a(O) v O] 0 k(()o) Sinh(k((lo)Hg)
and "
ap Uy ~ .7.(0) VA ~ 5 o (g)kASinh(kAHA)
———2-0,04(0) +iky ' —¢4(0)  Ba = 2ik , (7.7b)
{a<0> VA O k9 sinh (£ )
in which a = agg, v = vog, al¥ = ag?()], v = v(()?g and the A-subscripted versions

are calculated from the Archimedean draught problem. By explicitly evaluating these
coefficients, and using sinh(koHgy) > koHy and sinh(kaH4) > kaH 4 we find that

a v 2kl { sinh (ko Ho) } ay o)) 2k {sinh(kéO)HA) sinh(kAHA)}

a® v 7k k9 Vsinh (50 Ho) [ 0@ va T kg + kY sinh?(k$” )
(7.8a)
and
v ko + K [ sinh(koH,) va  ka+ k" [ sinh(kaHy)
FORMEEDY 2 0) N ONY> 2 0) ' (7.8b)
0 sinh(kg’ Hy) vy A sinh(kg ' H )

The terms that differ strongly between the zero draught and Archimedean draught prob-

lems are bracketed {-}. Taking these bracketed terms, we have for most situations that

Sinh(kgHg) Sinh(kAHA)
sinh(k\” Hy)  sinh(k\"H,)’

(7.9a)

and
sinh(kS” H ) sinh(k4H,)  sinh(koHo)

sinh? (k3" 1) sinh(k{"h)

(7.9b)

Unfortunately, straightforward application of inequalities (7.9a-b) to (7.8a-b) gives no
indication of the tendency for change in magnitude of the amplitudes in question, as we

switch between a zero draught and an Archimedean draught. However, for relatively short

incident waves k((]o) > ko & ka (see §3.2.2) and consequently

k k(o) Qk(o) k k(o) Qk(o)
FOE Ry 2l pO AT R0y, 2

2k ko + KO 0 2k ka+ kY

(7.10)
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from which we deduce that

a v

~ 0 UV o~ 0 U ~ 0
@ 0 P0l0) + ik 50 (0) kY G Bo(0) (k) > ko), (7.112)
and "
ap v ~ . VA ~ . VA ~
a ’UA UA /UA

The validity of the inequalities given in equation (7.10) and the approximations (7.11a-
b) is shown graphically in figure 7.17. This is done for the same three ice thicknesses,

Dy = 0.1m 0.5m and 1m, which have been used previously.
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Figure 7.17: Graphical representations of the inequalities given in equation (7.10) and
the approximations given in equations (7.11a-b), which hold in the small wave period
régime. Part (a) plots the ratio of the coefficients of the non-derivative to the derivative
parts of the jump conditions (7.7a-b). Part (b) plots the ratio of the non-derivative to
the derivative terms on the left-hand side of the jump conditions (7.7a-b). The ice is of
thickness Dy = 0.1m (green curves), Dy = 0.5m (red) and Dy = 1m (blue). Ratios are
given for the zero draught problem (solid curves) and the Archimedean draught problem
(dot-dash).

Applying approximations (7.11a-b), in conjunction with (7.8b), to equations (7.7a-b)

2 2
- ko <800(0) ) B ko

By~ 4 =0|—7—] , 7.12a
=) (% 0 e

gives, respectively,
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for k" > ko, and

2 _
B ~ 4sinh(k(()0)HA) kA QOA(O) !
4= - (0) (0) B
sinh(kgy "ho) \ kg A
2 (0)
_ o (kA> sinh (k" H 1)

EP ) sinh(k{”ho)

(7.12b)

for k((lo) > ka. The accuracy of the approximations given in (7.12a-b) are shown graphi-
cally in figure 7.18(a) for the three ice thicknesses Dy = 0.1m, 0.5m and 1m.
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Figure 7.18: Graphical representation of the validity of approximations (7.12a-b) and
the relationship (7.13) between the zero draught and Archimedean draught problems.
Part (a) plots the ratio of the approximate amplitudes given in equations (7.12a-b) to the
exact amplitudes, for the zero draught problem (solid lines) and the Archimedean draught
problem (dot-dash). Part (b) plots the ratio of the amplitude of the Archimedean draught
problem to that of the zero draught problem, for the exact amplitudes (solid curves) and
the approximate amplitudes (dotted). The ice is of thickness Dy = 0.1m (green curves),
Dy = 0.5m (red) and Dy = 1m (blue).

From (7.12a-b) we deduce that, as the incident wave becomes shorter, the magnitude
of the amplitude of the displacement function decreases - a feature that has been noted
for problems of partial ice-cover. Furthermore, when an Archimedean draught is included,
the decay of the amplitude is more rapid due to the extra term sinh(k(()o)HA)csch(k((lo)h).
This is demonstrated in 7.18(b), which plots the ratio of the amplitudes, BA/BU, and we
observe that

Ba/By — 0, (7.13)

as 7 — 0.
In figures 7.18(a-b) it is clear that the approximations that have been found and the

conclusions that have been drawn, for short incident waves, are more appropriate for for
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Figure 7.19: Comparison of the moduli of the reduced displacement functions of a zero
draught (solid curves) and the corresponding Archimedean draught (dot-dash) semi-
infinite ice sheet. Both the single-mode approximations (blue curves) and converged
approximations (magenta) are given. The ice is of thickness Dy = 0.1m and the bed of
depth hy = 20m, with the wave period (a) 7 = 0.75secs, (b) 7 = Isec and (¢) 7 = 2.5secs.
The dimensions of the converged approximations are (a) N = 38, (b) N = 29 and (c)
N = 4 for the zero draught problem, and (a) N = 44, (b) N =29 and (c¢) N = 4 for the
Archimedean draught problem.

thicker ice. This is easily explained if we consider the limits, k((]o) > ko and k((]o) > kg,
on which our approximations are based. These inequalities are satisfied in the short
wave limit; however, they take a shorter incident wave to be attained for thinner ice.
Such relationships between the free-surface and ice-covered propagating wavenumbers
have already been discussed in §3.2.2 and quantified in figure 5.10. Therefore, for thinner
ice, the incident waves are required to be shorter in order for the reduction in displacement,

which is caused by the introduction of an Archimedean draught, to take effect.

In| w

Figure 7.20: As in figure 7.19 but with ice thickness Dy = 0.5m and wave period (a)
7 = L.5secs, (b) 7 = 2.5secs and (c) 7 = 4.5secs. The dimensions of the converged
approximations are (a) N =18, (b) N = 14 and (¢) N = 3 for the zero draught problem,
and (a) N =25, (b) N =24 and (¢c) N =2 for the Archimedean draught problem.

Figures 7.19-7.21 plot single-mode approximations to the reduced displacement for
the zero draught and the Archimedean draught problems, along with the corresponding
converged approximations. Three different wave periods are used in each figure, chosen
at points for which the ratio of the amplitudes is BA/BO ~ 0.5, 0.75 and 1. We note
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that, as the ice thickness increases, the wave period for which the above ratios are at-
tained increases, which is consistent with our predictions. It is also clear that the relative
properties displayed by the single-mode approximations are mirrored by the converged

solutions.

n|

Figure 7.21: As in figure 7.19 but with ice thickness Dy = 1m and wave period (a)
T = 2.25secs, (b) 7 = 3.5secs and (c) 7 = 6secs. The dimensions of the converged
approximations are (a) N =7, (b) N =10 and (¢) N = 3 for the zero draught problem,
and (a) N =14, (b) N =16 and (¢) N = 2 for the Archimedean draught problem.

Single-mode approximation: long waves

It is reasonable to speculate from observation of figure 7.18 and parts (c) of figures 7.19-
7.21 that, in the long wave limit, the zero draught and the Archimedean draught problems
are tending towards the same solution. We may analyse this issue by similar means to
those employed for short waves.

Recall that x = 472/(g7?). As 7 increases and therefore r decreases, we have the

following approximations of the wavenumbers

Y e )]

which therefore decay at the same rate as 7 grows. In making the approximation of the
wavenumber beneath the ice, kg, we have specifically assumed that 7 is large enough that
fkg < 1. Furthermore, it can be shown that

and therefore the dimension-dependent wavenumbers, unlike the propagating wavenum-
bers, remain bounded as 7 increases. Consequently, the coefficients, 4, (j = 1,2), of the
complex waves, which are defined in (7.6), decay as the wave period grows. It follows
that the motion under the ice is dominated by the propagating wave. We also note that

the values of the coefficients of equations (7.7a-b) approach the fluid depths over which
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the integrals that produce their values are calculated, so that, for example,

aUNHU’ UANHA, aA Nh().

Using the above approximations, we are able to deduce from equations (7.7a-b) that

- 2v/hyg

Pl Bam
The value of By is, unsurprisingly, the long wave limit of the transmitted amplitude
across a depth discontinuity in a free surface flow (see Lamb, 1932). Although they
are extremely similar, the amplitudes of the displacements of the two problems do not,
therefore, reach the same long wave limit. The amplitude of the Archimedean draught
problem is marginally greater than that of its zero draught counterpart, and, as would be
expected, this disparity increases for thicker ice. We attribute the slight difference in the
solutions here to the change in the fluid depth. This long wave property is undetectable

in figure 7.18(b) but can be verified through numerical calculations.

7.5.2 A finite uniform floe

We now return to a floe of finite length and consider the effect of introducing an Archimedean
draught in this context. In this section, a uniform ice thickness is retained. The inclusion
of the correct submergence, d = d4, to such a floe is shown graphically in figure 7.22.

We are particularly interested in the role of the floe length. The findings of the previous
section, concerning variations of the ice thickness, are also applicable for a finite floe. For
this reason, only the thicker ice values, Dy = 0.5m and 1m, are used, in order to highlight
the submergence effects.

Figure 7.23 compares converged approximations to the reflected amplitude for a zero
draught (d = 0) against an Archimedean draught (d = da(Dy)). The floes are of thickness
Dy = 0.5m. As with the investigation of the semi-infinite ice sheet, the addition of
submergence at the ice edges is seen to be considerable here. The effects are greatest
when the two sources of scattering are closest, with a relative difference of approximately
4.0 x 107! for [ = 10m compared to 2.0 x 107! for [ = 100m. Again, the strength of this
effect is somewhat obscured in these values due to the shorter floe going ‘unnoticed’ by for
an incident wave of a smaller wave period than the longer floe. Specifically, for [ = 10m,
we note that the minimum around 7 = 4secs in the zero draught problem is eliminated
by the inclusion of submergence.

Converged approximations to the reduced displacement of the floe when Dy = 1m, for
the two types of draught, are given in figure 7.24. The incident waves are taken at either

end of the intervals used for figure 7.23 and the floe lengths / = 10m and 50m are used. For
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Figure 7.22: Schematic of a uniform floe with the inclusion of an Archimedean draught.
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Figure 7.23: Comparison of moduli of the reflected amplitudes given by a zero draught
(blue curves) and the corresponding Archimedean draught (red) uniform floe of a finite
length. The ice is of thickness Dy = 0.5m, with a flat bed of depth h = 20m. The floe
length is (a) { = 10m, (b) [ = 30m and (c) [ = 100m. The dimension of the approximations
is (a) N =14 and (b-c) N = 12.

both of the 2sec incident waves the relative difference between the corresponding curves
is 6 x 107!; for the 12sec incident waves this value reduces to 2 x 1072 (both correct to
one significant figure). Therefore, unlike the quantity |R|, there is no evidence to suggest
that the size of the change in the oscillations of the ice, caused by the inclusion of a non-
zero draught, is affected by the length of the floe. Rather, as in §7.5.1, the inclusion of
an Archimedean draught causes the floe to experience less displacement at smaller wave
periods but becomes trivial when the incident wave is relatively long. The former is again

interpreted as the extra reflection caused by the submergence at the ice edges, and the
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latter is due to the insignificance of the floe to long waves.
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Figure 7.24: Comparison of the moduli of reduced displacement functions of a zero draught
(blue curves) and the corresponding Archimedean draught (red) uniform floe of a finite
length. The ice is of thickness D = 1m, with a flat bed of depth h = 20m. The floe length
is (a.i-ii) [ = 10m, and (b.i-ii) [ = 50m. The wave period in parts (a-b.i) is 7 = 2secs and
in parts (a-b.ii) is 7 = 12secs. The dimension of the approximations is (a.i) N = 19, (a.ii)
N =9, (bi) N =17 and (b.ii) N = 4.

7.5.3 Inclusion of trigonometric variations

In this section we study the addition of the correct physical draught to floes that include
trigonometric protrusions of the form (7.3). Such trigonometric variations were consid-
ered earlier, for floes of a zero edge submergence, in §7.4 with the protrusion occurring
as either a keel or a sail. Our attention in that section was in comparing the results that
are produced by the respective positions of the protrusion. To accurately compare differ-
ent geometrical configurations, the respective floes must obey the Archimedean draught
condition (7.5). In particular, the way in which the weight of the floe is distributed will

affect its buoyancy, so that, for instance, a sail will weigh the ice down more than a keel.
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Figure 7.25: Schematics showing the submergence experienced by floes of the same thick-
ness, D, but with different shapes in their upper and lower surfaces.

Let us suppose that the ice floe we are considering, which is of thickness

Do + Agsin (7;—”“") , (7.14)

where Ay is the amplitide of the protrusion, has a lower surface defined by

do + pAgsin (?) . (7.15)

The value p denotes the proportion of the protrusion that is a keel, so that p = 1 is the
ice floe with a keel studied in §7.4, and p = 0 is the corresponding ice floe with a sail (the
values dy = 0 and Dy = A = 1m were used earlier). We may calculate the Archimedean
draught for this ice floe from (7.5) to be

do = %Do—f—% (g —p) Ag,

where we have used p; = 9p,,/10. Our model requires that the ice edges do not become
fully submerged beneath the fluid surface, and this imposes the restriction that dy < 1,
and therefore the proportion p must satisfy p > 0.7. Due to this restriction, we may not
study the ice floe with a sail protrusion and a flat lower surface that appeared in §7.4 as
it leads to the value dy = 1.35m. Instead, as well as a floe with a keel and a flat upper
surface, we will investigate floes that vary in both their upper and lower surfaces, with
the possibility of an indentation on the upper surface. As in §7.4 we will use the values
A =1m and Dy = 1m. The three floes that will be used are shown in figure 7.25.

In figure 7.26 we compare the reflected amplitudes produced by floes of a zero edge
submergence with the corresponding floes of an Archimedean draught over an interval
of incident wave periods. Results for the two configurations shown in figure 7.25 that
produce the largest draught are displayed. These are p = 0.7 which gives dy = 1m so that
the entire ice edge is submerged, and p = 1, the floe with a keel that was studied when a

zero edge submergence was maintained in §7.4, which gives an 85cm edge submergence.
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Figure 7.26: Comparison of the moduli of the reflected amplitudes given by a floe with
zero edge submergence (solid curves) and the corresponding floe with an Archimedean
submergence (dot-dash). The floes have varying thickness, as defined in equation (7.14),
with Dg = 1m and A = 1m over a flat bed of depth 20m. The lower surface of the floes
is defined by equation (7.15) with keel proportion p = 1 (blue curves) and p = 0.7 (red).
The floes are of length (a) [ = 10m and (b) I = 50m. The dimension of the approximations
is (a) N =11 and (b) N = 6.

The two floe lengths [ = 10m and 50m are used.

For floes of a 10m length the inclusion of an Archimedean draught has a significant
effect on the reflected amplitude. Prominent in figure 7.26(a) is that the reflected am-
plitude decays far more slowly as the incident period becomes larger when the floes have
an edge submergence, and we see that, unlike the floes that lack a realistic draught, at
7 = 12secs a non-trivial amount of reflection is caused by the Archimedean floes. For
shorter incident waves the addition of submergence creates qualitative differences in |R],
with a pronounced maximum and minimum seen in the response of both floes. The change
in the reflection is marginally larger for the floe with the greater submergence, p = 0.7,
with the normalised difference 7.2x10~! for this floe compared to 6.8x10~! for the p =1
floe.

In comparison, the effect that the introduction of an Archimedean draught has on the
reflected amplitude is small for the two floes when their length is 50m, which is shown
in figure 7.26(b). Although clear changes in the reflection coefficient are produced here
when the Archimedean draught is included, both curves only move O(1072) and no new
qualitative properties are created. As before, the difference in the results for the two
different floes are increased when the correct edge submergence is included, particularly
around the middle range of wave periods, but this is only marginal and the reflection
coefficients remain extremely similar.

The effect on the displacement of the floe caused by the change from a zero edge
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Figure 7.27: Comparison of the moduli of the reduced displacement functions of a floe
of zero edge submergence (solid curves) and the corresponding floe of an Archimedean
submergence (dot-dash). The floes have varying thickness, as defined by equation (7.15)
in the form of a keel, with thickness Dy = 1m, amplitude A = 1m and length (a-c.i)
[ = 10m, and (a-c.ii) [ = 50m. The incident wave period is (a.i-ii) 7 = 2secs, (b.i-ii)
T & 5.06secs and (c.i-ii) 7 = 12secs.

submergence to an Archimedean draught is investigated in figures 7.27-7.28. Figure 7.27
displays a floe with a keel (p = 1) for the two floe lengths used previously, = 10m and
50m, and the three periods 7 = 2secs, 5.06secs and 12secs. Our findings here parallel
those made for the uniform floe in the previous section. Specifically, as the incident
period becomes smaller the additional scattering produced by the submerged portion of
the ice edge causes the Archimedean floe to be displaced to a lesser extent than the same
floe of a zero edge submergence. For the larger period, 7 = 12secs, the corresponding
displacements are almost identical both qualitatively and quantitatively. At the smaller
wave periods, we again see that the Archimedean floes experience less flexure than their
non-Archimedean counterparts, a property that becomes more pronounced as the period
decreases. At the middle period, 7 &~ 5.06secs, which we have previously found to be in the
régime for which the scattering caused by the undulating surfaces is most distinguishable,
there are no additional features observed when the non-zero draught is introduced. This
is not surprising as the influence of the draught around such periods has been attributed
to the extra source of scattering it produces at the edges of the floe. We also note that,
as with the uniform floe, the effect of the edge submergence is again insensitive to the
length of the floe.

It is evident that the difference between a floe when it has a zero edge submergence
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and when it has an Archimedean draught is very similar for both the uniform floes of
1m thickness seen in the previous section and the floes of figure 7.27. This similarity is
undoubtedly due to the close values of their edge Archimedean edge submergences, with
this value being 90cm for the uniform floes and 85cm when a keel is included. We can
corroborate this observation with the values of the normalised differences. For example,
for the incident wave period of 2secs, both the 10m and 50m length floes move by a
distance of approximately 6 x 10! when the Archimedean draught is included, which is

identical to the uniform problem.
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Figure 7.28: Comparison of the moduli of the reduced displacement functions of a floe
of zero edge submergence (solid curves) and the corresponding floe of an Archimedean
submergence (dot-dash). The floes have varying thickness, as defined in (7.15), with
thickness Dy = 1m, amplitude A = 1m, and length (a) [ = 10m and (b) [ = 50m. A wave
period of 7 = 2secs is used. The lower surface of the floes is defined by equation (7.15)
and the proportion of the variation that is a keel is p = 1 (blue curves), p = 0.7 (red) and

p =2 (green).

The change in the displacement of the floe is further investigated in figure 7.28. Here,
we look at how the influence of the introduction of an Archimedean draught depends on
the position of the variation in the ice thickness. To do this we take the wave period that
maximises the effect of the submergence, namely 2secs. In the results presented we use
the three keel proportions p = 0.7, 1 and 2, and, again, the floe lengths [ = 10m and 50m.

As the keel proportion, p, increases more of the weight of the floe is transferred down-
wards. Consequently, the edge submergence diminishes and it is clear that the effect of
the draught decreases markedly. For example, the normalised difference between the zero
draught and Archimedean draught floes are 1.7x10~! when [ = 10m, and 3.4x10~! when
[ = 50m, for the proportion p = 2, whereas for p = 0.7 these values are 2.0 and 2.1
respectively.

As expected, we may therefore conclude that the addition of the correct physical

draught has a negligible impact on the scattering caused by a geometrical variation. In
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contrast, the size and position of the variation may have a strong influence on the degree
to which the ice edge becomes submerged and hence the impact of the satisfaction of the
Archimedean condition. The fact that the position of the variation also has an influence
on the scattering caused by the floe indirectly through the edge submergence it induces
further compounds the weaker relationship that we have found for floes related by a shared

ice thickness in this chapter.

7.6 Conclusions

Results presented in this chapter have been concerned with cases of partial-ice cover
in a two-dimensional setting. In particular, we have been occupied by the problem of
a single floe of finite length, which was formulated in §4.3.2. Such problems are of a
more complex nature than those of continuous ice-cover due to the additional sources of
scattering provided by the ice edges.

In §7.3 we studied only the scattering caused by the ice edges, with the ice floe assumed
to be uniform and the bed flat. This extended the investigation of the semi-infinite ice
sheet of §5.2 to two sources of scattering - one at each edge of the finite floe. The findings
made for the semi-infinite ice sheet were seen to hold for the finite floe. In terms of
the convergence of the MMA, we again observed that low-dimensional approximations
could contain qualitative as well as quantitative inaccuracies. This is particularly true of
quantities that are sensitive to the accuracy at the sources of scattering (for example |R|)
at which the evanescent waves are strongly activated. Convergence issues are prominent
for large wavenumbers and thick ice, as these are the régimes for which the jump in the
propagating waves between the ice-free and ice-covered intervals is greatest.

The addition of a second scattering source results in the possibility of interaction
between the evanescent waves, which was deemed to be the cause of the need for extra
vertical modes in the MMA to gain convergence. However, this is only true if the two
sources of scattering are in close proximity, as the evanescent waves decay rapidly.

At high frequencies, the ice edges reflect most of the incident wave and the magnitude
of the ice displacement is small. The reflection property is relative to the thickness of
the ice, so that, for a fixed frequency, thicker floes tend to reflect the incident wave more
strongly. This is again consistent with our study of the semi-infinite ice sheet problem.

Furthermore, incident waves which are long compared to the length of the floe pass by
relatively undisturbed. Between the long and short wave limits, we found the existence
of fine structure in the far-field response of the incident wave to the ice floe. This was
not observed in the case of a semi-infinite ice sheet and is attributed to the effects of
cross-scatterer interactions within the floe. The fine structure takes the form of sharp

minima in the reflected amplitude, which was complemented by disproportionately large

143



responses in the floe displacement.

The addition of keels and sails to the ice floe, as well as bed undulations, was inves-
tigated in §7.4. Typically, these continuous geometrical variations did not activate the
evanescent waves as strongly as the ice edges and the convergence rate of the MMA went
unaffected. For high frequencies, we found that the reflection of the incident wave caused
by the ice edges dominated. However, at intermediate frequencies, for which a significant
wave penetrates the ice, scattering properties due to the undulating geometrical surfaces
were evident. This was especially true in the case of keels, for which qualitative differences
were produced.

As in situations of continuous ice-cover studied in §6.4, we were again concerned with
the relationship between geometries that share the same vertical structure, in particular
keels and sails with bed protrusions. For finite ice floes, it was found that, although a
similarity remains between these geometries, it is far weaker than in the case of continuous
ice-cover.

A significant issue for cases of partial ice-cover is the question of how the addition
of a physically correct submergence affects results. In §7.5 we considered some of the
problems of the semi-infinite ice sheet problem of §5.2 and finite ice floe problems of
§67.3-7.4 with the inclusion of an Archimedean draught and compared them to their zero
draught counterparts.

In particular, we found that at relatively high frequencies, the submerged portion
of the ice edge reduces the amount of displacement experienced by the ice. This was
attributed to reflection of the incident wave by these additional sources of scattering.
Unsurprisingly, the effects of a non-zero draught depended on the thickness of the ice and
length of the incident wave. Thus, results were perturbed most for thick ice and short
incident waves. It was also seen that the extra source of scattering produced by edge
submergence caused slower convergence of the MMA.

For floes that have a varying thickness, the satisfaction of Archimedes’s principle will
depend on the way in which the variations are manifest. In particular, adding more weight
to the top of the floe rather than the bottom will result in a greater submergence and hence
cause greater scattering of the incident wave. The difference in the edge submergence
for floes of a shared thickness profile serves to further exacerbate the weakness in their

relationship that has been seen in this chapter.
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Chapter 8

Periodic structures in

two-dimensions

It is possible to investigate many variants of the two-dimensional problems formulated in
§4. One such is the subject of this chapter.

In the following section a method is devised in which the scattering caused by a
two-dimensional periodic stucture, consisting of an arbitrary number of periods, may
be determined using only a fixed set of solutions of differential equations taken over a
single period. This represents a substantial numerical saving. Moreover, for free-surface
flows periodic arrays are known to be the cause of resonances; for instance, see the work of
Chamberlain & Porter (1995) and Porter & Porter (2003), which we will refer to frequently.
It is on this issue of resonance that the results of this chapter are concentrated.

The scope for the study of periodic arrays is such that we confine ourselves to cases of
continuous ice-cover and normal incidence. However, the extensions to partial ice-cover

and/or oblique incidence may be easily made.

8.1 Reformulation of the complete ice-cover problem

in two-dimensions

Before we consider cases of periodic geometry, let us begin in the general setting of the
complete ice-cover problem defined in §4.3.1 but such that the interval (0, ) is divided into
the M subintervals (l;_1,1;) for i = 1,..., M, where Iy = 0 and [y, = [. This subdivision
is chosen either on the basis of geometrical discontinuities or simply for convenience. The
periodic problem is then a specific sub-class of this configuration.

The MMA is subdivided correspondingly, by writing

Uy(r)=Pymr) (i <z<1),
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fori=1,..., M. At the boundaries that have been created between the subintervals, the
solutions, Wy ;y (1 = 1,..., M), are linked through the jump conditions (4.10a-b). This
is so regardless of whether or not the geometry is sufficiently differentiable at these points
and, in fact, we will assume at a later stage that the geometry is smooth, so that the
boundaries are artifices of the method.

We may therefore consider the waves scattered by a particular period to be the incident
waves for the adjacent period and this means that the full solution can be composed by
solving the scattering problem defined by each individual period. So, let the function
W ;) be defined as the solution of the differential system (4.4) that governs the MMA in
two-dimensions (with normal incidence, ¢ = 0) in the interval (I;_1,1;), with

‘IlN,(i) (l‘) = [C{ei}c(li_l_:p)li_l + e_iK(li_l_m)ri_l}] (li—l — Z <z < li—l)a (81&)

x=li—1

and

A,

‘IIN,(Z') (l‘) = [C{eiK(li_:C)li + e_i’c(li_m)ri}] (lz <z < lz + l), (81b)

x=l;

where [ is an arbitrary positive value, K = diag{ko, ..., kn, tinq), in,2)} 1S the matrix A
of equation (4.23) evaluated for normal incidence (9 = 0) and the matrix C is defined in
equation (4.24). The constant vectors 1; and r; (j = ¢ — 1,17) represent, respectively, the
amplitudes of the leftward and rightward waves. We suppose that these vectors are full,
as the waves incident on any subinterval will consist of the evanescent waves scattered by
the neighbouring periods in addition to propagating waves. The only exception is at the
extreme ends of the periodic interval, where ry = A=) and 1; = A, each containing
a single amplitude from the wave that propagates from the relevant far-field. Using the
jump conditions (4.10a-b) to link the expressions (8.1a-b) to the solution over the period

of varying geometry, we deduce the boundary conditions

[VTM_l\IIN’(Z-)] a=lio1ys = [VTM—IC(I'Z'_l + li_l)]m:l(l_l)_ , (82&)
VM @), =DV MICEi+1)],, (8.2b)
[V*l{AMam‘I’N’@) + Q,./\/’\I’N’(Z)}] m:l(FIH =1 [V*lAMClC(I'Z',l — lifl)}m:l(i,l), s (82C)
and
[V_I{AM@C\IIN’(Z) + QN‘I’N’(” }} a=l;_ = —1 [V_l.AMClC(r, - li)}m:li_;,_ . (82d)
The matrices M, A and V are defined in §4.1.
Each of the solutions Wy ;) (i = 1,..., M) may therefore be expressed in terms of a
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linear combination of calculated functions, and we write
‘I’N,(i) (LE) = iﬁ_m‘) (LE) (I‘(i_l) — l(i—l)) + iﬁ—l—,(i) (LE) (1(1) — I'(i)) (Z = 1, ceay M) (83)

The functions £, ;) are (N + 3) square matrices whose columns satisfy the system of
differential system (4.4), so that

0p(ADL Lo i) + DL iy + BLiiy =0 (i=1,..., M), (8.4)
and boundary conditions derived from (8.2c-d)

[Vﬁl{AMaﬂ;ﬁi’(i) + Q,./\/’Ei’(i)}} = [VﬁlAMC]CI¢} s (85&)

ZL’:l(i,I)+ ZL’:l(i,I),

and

[V HAMO Ly i)+ QN Ly ()}] = — [V 'AMCKL]

ZL‘:li,

, (8.5D)

a=li,
where I, is the identity matrix of size (N + 3) and I_ is the zero matrix of the same
size, for the solutions of equation (8.4). Note that, unlike the formulation of the standard
two-dimensional complete ice-cover problem in §4.3.1, we have not modified the jump
conditions (8.2a-d) to suppress the amplitudes of the evanescent waves. Instead, we
retain all of the amplitudes in (8.3), not only those corresponding to propagating waves,
which is necessary as, at the intermediate boundaries, all of the evanescent waves have an
active role.

The constant amplitudes r(; and 1) (¢ = 0,..., M) are as yet undetermined; nonethe-
less, we are able to relate the neighbouring amplitudes through the extended scattering

matrices

= Sw.) (i=1,..., M), (8.6)

which, unlike the scattering matrix discussed in §4.4 that refers to only those of the
propagating waves, includes the amplitudes of all of the waves that are relevant to the
subinterval. The scattering matrix (8.6) describes the scattering on the single subinterval
(I;_1,1;) and relates the incoming amplitudes to the outgoing. Alternatively, it is possible
to define the transfer matrices Py ;) and the extended transfer matrices Py ), which

relate amplitudes at either side of a subinterval, with
:PN7(1‘) , :PN:(i) (’Lzl,,M),

where [y ;) and 7o) (j =i — 1,7) are the amplitudes of the propagating waves. We will

use these transfer matrices to compose our solution over the full interval of periods, an
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approach that was first proposed by Porter & Porter (2003).
If we isolate the scattering problem in each subinterval, then the remaining conditions

to be satisfied by ¥y ;), equations (8.2a-b), may be expressed as

Qo(l(i—1)+)‘I’N,(z‘)(li—1) = 531(1(1‘—1)—)(1‘(1‘—1) + l(i—l))7 (8.8a)

and
Qo(li_)‘I/N’(i)(li) = (lH_)(I‘(i) + l(i)), (8.8b)

fori=1,..., M, where
Qo(24) = K(2)C" (25) Alw) M (22)V ™" (25)V" (22) M (22) O,

Ql (xi) = lC(a:i)CT (fl?i).A({L‘i)OC({Bi),

and, as previously defined in (4.48), the block matrix O is

I 0 0
O = of" 0 -k
0" —k 0

By applying the conditions (8.8a-b) to the form of the solutions given in (8.3), it
is straightforward to derive the following expression for the scattering matrix in each

subinterval, with

Riy- T+ s .3 s .3
Sni) = = —(So,i) + iS1,) " (So,i) — iSL1)) (8.9)

T~ Ray+

where
3 Qi(lg--) 0
0,(1) — )
v 0 Q1 (liy)

and

3 Qo(li—1)+) L= 6y (lic1)  Qo(l—1y+) Ly @) (lizr)
1,(9) =
Qo(lis) L 5y (L;) Qo(lim) Ly i) (1)

The transfer matrices across each subinterval are similarly calculated from

T = RonToi B RorTe)

-1 —1
_T(¢)+R(i)f T(z')+

PN,(i) = —75/(;(11-)’/’51’(2'), (810)
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where

5 190 (li—1)+) L @) (liz1) —iQo(li—1)4 ) L i) (liz1)
0,(i) = . . ’
Qi (liv) +1Qo(lis) L iy (L) Quliv) —1Q0(lim) L 5y (1)
and
3 Qi (Ui—1)-) = Q0 (l—1)+) Loty (lim1) - Qi (l—1)-) + 1Q0(l—1)+) Lot (lim1)
L) =

—1Q0(li-) L) (i) 1Q0(li-) L+ i (L)

It is clear from equations (8.9) and (8.10) that the entries of the scattering matrix may
be deduced from those of the transfer matrix and vice versa.

If the extended transfer matrix for the entire interval, (0,7), is denoted Py, then it is
immediate from (8.7) that

Py = Py, nPn -1y - - Pn,)- (8.11)

Using the above noted relationship between the transfer and scattering matrices, the
scattering matrix for the entire interval, Sy, is then easily obtained from Py.

The problem of two-dimensional scattering in the context of complete ice-cover, origi-
nally considered in §4.3.1, has now been reformulated in view of the forthcoming periodic
problem. Our motivation in §4.3.1 was to minimise the computations required to produce
a numerical solution, and the jump conditions used were thus manipulated to suppress the
maximum possible number of unknown amplitudes. However, due to our current desire
to investigate the periodic problem, we consider the overall interval of varying geometry
to be arbitrarily subdivided and find the scattering properties of the entire interval from
the individual properties of the subintervals, which necessitates an explicit knowledge of

the amplitudes that were previously disregarded in the modified jump conditions.

8.2 Comparison to the work of Williams and Squire
(2004)

In addition to the advantages it yields for instances of periodic geometry, the method of
transfer matrices, outlined in §8.1, may be utilised in circumstances where the interval of
varying geometry contains points at which the geometry is not smooth enough to generate

the equations (4.4) and the jump conditions (4.10a-b) are instead applicable. One such
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example is provided by Williams & Squire (2004), who solve for the geometry

( 1 (z < 0),

)
D(a) = | 1+2x/15 (0<z<15/2)
)
)

b

(8.12)
51/15 — 22/15 (15/2 <z < 15

L 1 (x > 15),

b

with H = 70m and d = 0, which they describe as type 1. Their solution method is, as
with type 2 geometry (see §6.2), a Green’s function approach.

Type 1 geometry is non-differentiable at the points x = 0,15/2, 15 and we will therefore
subdivide the interval of varying geometry x € (0,15) into the two subintervals x €
(0,15/2) and z € (15/2,15) with the corresponding transfer matrices Py 1y and Py ),
respectively. Due to the symmetry of the geometry,

0 Ings . 0 ZInys

PN, 2) = P ’
(2) Tnes 0 N,(1) Tnas 0

and therefore the transfer matrix for the interval x € (0,15), Py = Pn,2)Pn,1), is pro-

duced from one set of linearly independent solutions.

0351 ir
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Figure 8.1: Comparison with figures 4(e) & 4(f) of Williams & Squire (2004), in which type
1 geometry (see equation (8.12)) is used with the geometrical values d = 0 and h = 70m.
Part (a) plots the convergence of approximations to the modulus of the reflected amplitude
as a function of wave period for normal incidence (¢ = 0). Part (b) plots the convergence of
approximations to the moduli of reflected amplitudes as functions of incident angle for the

wave periods 7 = 2secs, bsecs, 10secs and 15secs. The dimensions of the approximations
are N =0 (blue curves), N =1 (red), N =2 (green) and N = 3 (cyan).

Figure 8.1 displays the convergence of approximations to the reflected amplitude as

a function of wave period, 7, and incident angle, ¥, for type 1 geometry. These are
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directly comparable to figures 4(e-f) of Williams & Squire (2004) and it is evident that
the converged MMAs match these figures. The convergence properties of the MMA remain
smooth here and are very close to those seen for type 2 geometry in §6.2. Convergence
rates are found to be adversely affected by the addition of an extra interface; for example,
the value €; in relation to the function |R(7)|, for type 1 geometry is an order of magnitude
greater than its corresponding value for type 2 geometry. However, the accuracy of the
single-mode approximation is maintained for large and small wave periods, and it is only
in the middle interval that convergence worsens. This implies that, in this middle interval,
the scattering caused by an additional interface significantly increases the activation of

the evanescent modes.

8.3 Formulation of the periodic problem

We now return to the formulation of the periodic problem. Each subinterval (I;_1,[;)
(1t =1,..., M) will henceforth be of the same length and contain identical geometrical

variations, so that we have [; — l,_; = I, (t=1...M) and
D(zo +ily) = D(x0), h(zo+ ily) = h(xo), d(zo+ily) = d(z) for zo € (0,1), (8.13)

for i = 0...M — 1. The definition of periodic geometry (8.13) implicitly imposes the
restriction of continuity of the geometrical functions D, h and d. As such, the matrices
M that appear in the interfacial conditions (8.5a-b) and (8.8a-b) may be replaced by

identity matrices. This is also true of the matrices V if we use the natural modes.

8.3.1 The transfer matrix

Before we outline our method of solution for the periodic problem, it is pertinent to
consider certain properties of the transfer matrices Py ;). These may be deduced as
follows.

Firstly, by noting the relevant changes that must be made to the amplitudes, the
function @N,(i) satisfies the same scattering conditions as ¥y (;), which may be represented

as

~ re—1)
=Prwl

) ) (i=1,...,M), (8.14)
1) 11y

where 7 is a matrix that interchanges the first and the (N +4)th entries of a vector only if
the dimension dependent wavenumbers, 11y ;) (¢ = 1,2), are distinct and purely imaginary,
and also the (N +2)nd and the (2N +6)th, and the (N + 3)rd and the (2N + 5)th entries

if the py ;) form a symmetric, complex pair. In either case 7 is self-inverse and simple
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manipulation of (8.7) and (8.14) leads to
Py = IPnwI

This relation implies that the eigenvalues of the transfer matrices are either real or arise
in conjugate pairs. This property was proved by Porter & Porter (2003) for free-surface
flows over periodically undulating beds.

Secondly, the identities

Qo (li—1)4) L iy (1) = (Qoli—1y+) Loy iy (li 1)), (8.15a)
Qo(li-) L iy (li) = (Qo(lim) L iy (1)), (8.15b)

and
Qo(li-) L iy (1) = (Qoli—1)+) L iy (lier))T, (8.15¢)

result from the application of the two-dimensional multi-mode energy balance

~ x1

Zo

(see Appendix B) where (¥ ), ¥(y)) is taken to be the pairs
(£_7(i)Im7 £_7(Z)In)’ (E‘i‘ Imi ‘C‘i‘ )J (E-i- Im: ‘C )

for (m,n = 1,...,N + 3) respectively. This derivation is very similar to that which
produced (4.49) and again uses the diagonality of the matrix CT O AC. Identities (8.15a-c)
may then be directly used to establish the equality

where

—Tnis 0O

when the geometrical functions D, h and d are identical at the two boundaries. Therefore,

under this condition, we find that

holds, from which we conclude that the eigenvalues of the transfer matrices must come
in reciprocal pairs. Again, this property is proved in Porter & Porter (2003) for the

free-surface case.
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Finally, consider the transfer matrix that gives the left-hand amplitudes in terms of
the right-hand rather than the usual construction (8.7) that performs the transfer in the

opposite direction. Referring to equation (8.10) it is easily seen that

—1 -1
Li-y ) _ [ T+ = Ba-To-Ro+ a1 (i=1,...,M)
r(i 1) ~T Ry Tiy-

(8.17)

Alternatively, we may define the right-to-left transfer matrix in terms of the inverse of

the left-to-right transfer matrix to be

0 Znys 0 Znis

Pyl : (8.18)
Iy 0 (0)

Ini O

Equating our two expressions for the right-to-left transfer matrix, (8.17)-(8.18), and as-

suming symmetry of the geometrical boundary values, so that (8.16) holds, we have that

-1 -1
T+ — Ro-Tj;_ Rayy Ra-T)-

~To-Ro Ta)
oo Sa iy PRioySoi faa 0
0,(6) 7 N,(0) 0, (i
0 —Inys 0 —Inys

1

Matching the block entries in this equation gives a set of four equalities. Most notably

we have that
TG Qo) = Qo(li)Te- (i=0,..., M),

and hence diag(7{(;+) = diag(7{;-). This result supercedes that of the equality of the
transmission coefficients of the propagating waves, which was given in §4.4.
We will now utilise the above properties of the transfer matrices in our formulation of

the periodic problem.

As the geometry in each subinterval has been assumed to be identical, each period

necessarily defines the same scattering problem, whence
Sni) = Sn) =Sn) (17 =1,.... M),

and
PN,(i) = ,PN’(J‘) = 'PN’((]) (Z,j = 1, cey M)

It is convenient at this juncture to revise the context of the problem, so that the individual
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period under consideration is taken to be fixed and that the length, [, of the entire interval
varies according to the number, M, of these periods that are present.
By virtue of the reciprocal and conjugate properties of its eigenvalues, the transfer

matrix, Py, ), may be decomposed as

A 0 )
Prnoy =H 0 A-1 H,

where A is a diagonal matrix whose entries are the eigenvalues of Py, ) of magnitude less
than unity or lying on the upper half of the unit circle and the matrix H contains the
eigenvectors of the transfer matrix, ordered accordingly. Referring to (8.11), the transfer

matrix for the entire interval, Py, is therefore given by

AM 0
Py =PMo=H H' (8.20)
N.(0) 0 A-M

All other quantities are now readily available; however, as we are likely to have terms in
AM that are growing and terms in A= that are decaying, for large M this creates the
possibility of extreme values in the diagonal matrix on the right-hand side of equation
(8.20). In order to avoid numerical complications that may arise from these extreme
values, we mimic Porter & Porter (2003) by writing

My —AVHy \ [ Hn AV,

Sy =— : (8.21)
AM,}'llQ —%11 AM’HH _%12

where the #;; are such that

%11 %12
%21 %22

H =

Similarly, the amplitudes are retrieved by simultaneously solving the relations

Huri +Hioli = AHpri 1+ AHqoliy

(i=1,...,M). (8.22)
AHoir; + AHool, = Hoiriq + Haoliq

In equations (8.20)-(8.22) we have developed a means of calculating the response to
an incident wave over an interval of an arbitrary number of periods of identical geometry
from a single such period. This constitutes a significant numerical saving, as it is now not

necessary to discretise each period in order to calculate the solutions of the differential
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system (4.4). As will be seen in the following section, this method also allows for some

analytical understanding of the process of resonance to be gained.

8.3.2 A wide-spacing approximation

Expression (8.21) is particularly recondite when it comes to the issue of resonance. If
the so-called ‘wide spacing approximation’ is implemented, which supposes that the only
interaction between adjacent periods is through propagating waves, then certain properties
may be determined. This method has been used in the case of free-surface flows with
periodic bedforms by authors including Porter & Porter (2003) and Chamberlain & Porter
(1995) and our analysis mirrors much of their work.

In order to implement the wide-spacing approximation, we require the transfer matrix

—det(S R
0=T" Grio) By , (8.23a)
~R_ 1

where

R T
SN,0) = (8.23h)
T Ry
is the 2 x 2 scattering matrix discussed in §4.4 and calculated throughout §6. These
matrices relate the amplitudes of the propagating waves on either side of an obstruction
and may be constructed for any dimension N using two linearly independent solutions (see
§4.3.1). The scattering matrix (8.23b) is a truncated version of the extended scattering
matrix defined in equation (8.6), and, as such, the outgoing amplitudes it provides are
only approximate. This is because, in the periodic problem, the waves that are incident
on each period are not only propagating waves but also evanescent waves. Consequently,
the transfer matrix (8.23a) is not exact.

The equality of the transmission coefficients, 7' = T, = T_, for periodic construc-
tions, was most recently proved in §8.3.1. Moreover, the Kreisel relations (see Porter &
Chamberlain, 1997) given in equations (4.46a-d) hold. Note that, unlike their free-surface
equivalents, the scattering matrix Sy ) and transfer matrix Py ) are not equal to the
extended scattering and transfer matrices in the single-mode approximation, Sp ) and
Po,0), due to the suppression of the amplitudes of the dimension-dependent evanescent
waves.

Following Porter & Porter (2003) and Chamberlain & Porter (1995), it can be shown

that the eigenvalues of Py ) may be expressed as etiPo where py is chosen to satisfy

T(ei arg(T) 4 el arg(T))
7] '

T(eipo + efipo) =1- det(SN,(o)) =
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Therefore, py may be restricted to the interval [0, 7| if
—|T| < el 4 o tarelD) < |7, (8.24a)

in which case the eigenvalues form a complex conjugate pair lying on the unit circle; and
to the form py € iR if
elars(T) 4 g—tare(T) 5 ||, (8.24b)

or pp € T+ iR if
plars(T) 4 o-iarg(T) —|T, (8.24¢)

in which case the eigenvalues are a real-valued, reciprocal pair. The corresponding eigen-

vectors are also readily available, and we may decompose Py ) into

ePo (
Pyoy=H . H,
0 eino

where
1 — Teipo —R+

1-— Te_ipo —R+

H'=

We now apply the wide-spacing approximation, in which we assume that the effect of
the evanescent waves on the scattering of the propagating waves, between neighbouring
periods, is negligible. If this is true, then the scattering process may then be represented
by

lo(i-1) T0,Gi-1) 70,(i) lo,(i-1)
T0,(i) lo, i lo, i To,(i-1)
for + = 1,..., M, and this results in the approximation of the transfer matrix for the
entire interval, Py = ﬁN, where
e!Mpo 0

D _ pM -1
Py=P{o=H o o H.

The complementary approximation of the scattering matrix for the entire interval, Sy =~

§N, is given by

. . _1 . .
N —R. e!Mpo(1 — Te 1po) (1 —Te o) —eiMPopR,

eiMpo(1 — TeiPo) ~R, —eMPR, (1 Te)
(8.25)
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To aid brevity, we will write

_ R. T
SN = R A (826)
T R,

Straightforward manipulations of (8.25) and (8.26) lead to the expression

|j-\v|2 _ |T|2 SiIlQ(pO) ‘
T st (po) + [R5 (Vo)

It can easily be deduced and verified that the entries of the approximate scattering matrix
Sy satisfy the Kreisel relations (4.46a-d). In particular, from |R|> = 1—|T|? we have that

R = |R|? sin?(Mpy)
|T|2 sin*(po) + | R|? sin?*(Mpq)

Two distinct possibilities are now clear: the first is that inequality (8.24a) holds and py
is real, in which case sin?(Mpy) oscillates with varying M but remains bounded. Following

Porter & Porter (2003), we may then deduce the complementary envelopes

|f|2 > |T|2 Sin2(p0)

M=1,2... 8.28
> o i M =12 (5.280)

and
|R|?

| T2 sin®(po) + | RJ?
Alternatively, if either of inequalities (8.24b-c) hold, then py has an imaginary part and
sin?(Mpo) will be unbounded as M increases, so that |T| — 0 (M — oc) and |R| — 1
(M — o).

Under the wide-spacing assumption of non-interaction of the evanescent waves with the

IR <

(M=1,2,...). (8.28b)

propagating waves between neighbouring periods, we have generated an approximation
to the scattering properties of the entire interval that requires the calculation of only
two linearly independent solutions over an individual period. This not only represents
a substantial numerical saving but also allows the prediction of resonance based on the
scattering properties of a single period. Specifically, having calculated the eigenvalues of
the transfer matrix of one such period, we may determine whether or not the wide-spacing
approximation of the far-field response will display resonant behaviour as the number of
periods increases. The validity of this method will be substantiated in the numerical

results of the following section.
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8.4 Results

In this results section we will study the issue of resonance in the setting of continuous
ice-cover with periodic variations, described in §8.3. Resonances about the so-called
Bragg values ]{)0[(]/71' = 1,2,... are often observed in other problems; see, for example,
Chamberlain & Porter (1995) and Porter & Porter (2003).

Due to the tendency of ice to elongate propagating waves (see §3.2.2), for suitable
period lengths, the parameter régimes that we have thus far used will not typically coincide
with points of Bragg resonance. This is particularly true of ice sheets of considerable
thickness as they more severely extend propagating waves. As our initial concern is with
the existence and behaviour of these Bragg resonances, for the remainder of this section we
will be content to work with often unrealistically short incident waves, whilst retaining
the single period length lp = 2rm throughout. This period length is suitable for our
purposes as it allows us to investigate a reasonable number of periods without the entire
period (0,/) becoming particularly long or short. We do however note that, due to this
issue, the occurrence of Bragg resonance in practical models is extremely sensitive to the
thickness of the ice in question and hence is unlikely to occur in many situations.

With reference to the investigation of §6.4, it is here justifiable to restrict our attention
to variations in the ice thickness, D, using the single-mode approximation. Calculations
not given indicate that, in the problems presented in this section, the single-mode approx-
imation retains the high accuracy previously shown for instances of continuous ice-cover,

and that geometries that share their ice thicknesses give near identical results.

Dy I} ice Dy ice
0
— Ad VA VAN NI
VAV —
A - A,
H, water H, water
bed bed

Figure 8.2: Schematics of the periodic geometrical configurations defined in equation
(8.29), which here appear as protrusions and indentations in the lower surface of the ice.

In figures 8.3-8.4 reflected amplitudes are plotted as functions of the non-dimensional

frequency parameter kolo /7, which, in this case, varies with the incident wavenumber, k.
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The periodic variations are in the ice thickness and are of the form

D(l‘o) =Dy + Ad SiIl2 <7T;ZEU> (0 < xg < [0), (829)
0
where A, is the amplitude of the obstruction. We use the thickness Dy = 1m and a
flat bed, which is of depth h = 20m. The four amplitudes A; = +0.1m and 4+0.5m are
used and results are shown for one, two, five and ten periods. Two examples of these
geometrical configurations are shown in figure 8.2. It is worth noting that the obstruction

defined in equation (8.29) may be rewritten

A 2
D0+?d+Adcos< Tm(]) ,
0

and it is clear that it represents a sinusoidal variation, which is based around the fixed
level Dy + A;/2 and is of period lo.

Curves indicating the corresponding wide-spacing approximations are overlaid on fig-
ures 8.3-8.4 and the envelope of the reflected amplitude, which is given in (8.28b), is
also included. For the results presented, the ice thickness was varied by the inclusion
of a protrusion or an indentation on the lower surface of the ice; however, as previously
mentioned, any other means of producing the same variations in the ice (for example, a
protrusion or an indentation on the upper surface of the ice) will give rise to near identical
results.

The scaling of the horizontal axes is such that integer values coincide with Bragg
resonance points. Here, the interval of incident wavenumbers is chosen such that we pass
through the first three Bragg values, which, for an far-field ice thickness of 1m, corresponds
to wave periods ranging from 7 ~ 3.3 x 107 !secs to 7 ~ 3.7 x 10~ 3secs. As noted earlier,
this interval represents far shorter waves than have previously been considered.

For the less severe amplitudes, A; = +0.1m, which are shown in figure 8.3, resonant
effects are prominent about the primary Bragg value, kol /m =1, and also exist around
the secondary Bragg value, k(][(]/ﬂ' = 2, although to a far lesser degree. This behaviour is
consistent with that noted for analogous free surface motion over ripple beds (see Porter &
Porter, 2003). At these primary and secondary Bragg values, full resonance, i.e. |R| =1,
is not achieved, and effects are rather observed as being extreme relative to the local
behaviour. This is especially true if we consider the wide-spacing envelope, which indicates
the maximum effect caused by the inclusion of additional periods. More generally, the
wide-spacing approximations display excellent agreement with their corresponding single-
mode approximations in figure 8.3.

In figure 8.4 the accuracy of the wide-spacing approximations is only slightly dimin-

ished by the stronger activation of the evanescent waves when the amplitudes are increased
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Figure 8.3: The modulus of the reflected amplitude as a function of a non-dimensional
wavenumber, using the periodic ice thickness defined in (8.29) with Dy = 1m, and period
length le = 27m, over a flat bed depth h = 20m. The number of periods is M = 1 (blue
curves), M = 2 (red), M = 5 (green) and M = 10 (cyan). In part (a) the variations
take the form of protrusions on the lower surface of the ice, A; = 0.1m, and in part (b)
they are indentations on the lower surface of the ice, A; = —0.1m. Also plotted is the
corresponding wide-spacing approximations (dotted curves) and wide-spacing envelope
(black dot-dash).

to Ay = £0.5m. Resonant effects are far more pronounced in these problems, with, for
ten periods around the primary Bragg value, full resonance reached for the indentation
of figure 8.4(b). At the corresponding Bragg value for the protrusion, shown in figure
8.4(a), full resonance is not achieved by ten periods; however, the wide-spacing envelope

indicates that it will be realised if an increased number of periods is taken.
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Figure 8.4: As in figure 8.3 but with amplitudes (a) A; = 0.5m and (b) A; = —0.5m.

It is observed that the intervals around the primary Bragg value, for which full reso-

nance is captured in figures 8.4(a-b), are wide and are of approximately the same length.
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The resonances at secondary Bragg values are also far more significant with the increased
amplitudes, and, moreover, there are pronounced resonances developed at tertiary Bragg
values. The strength of the resonant effects shown in this figure is notably larger than
that discovered for free-surface flows, for instance that found by Porter & Porter (2003).
Again, referring to §6.4, this phenomenon may be attributed to the considerable response
given by waves of decreasing length to variations in the ice compared to the decaying
response given when only bed variations are present.

We further note that resonances seen in figures 8.3-8.4 are not centred about the Bragg
values but rather have a tendency to drift in a particular direction, a tendency that is
exacerbated by the increased amplitude of the variations and as the Bragg value increases.
For ripple beds this drift is well established but occurs in a leftward direction. In figures
8.3-8.4 we observe both rightward and leftward drifts, with the former appearing to be a
property of a protrusion and the latter likewise of an indentation.

To investigate the occurrence of resonances it is illuminating to consider the behaviour
of the wide-spacing approximation. In §8.3.2 it was shown that resonance is caused by
one of the eigenvalues, e*P0, of the transfer matrix for a single period, Py (), departing
from the unit circle. Figure 8.5 plots these eigenvalues, for the problems considered in
figure 8.4, where the amplitudes are of magnitude 0.5m, in the vicinity of a resonance.
Figure 8.5(a) is the primary resonance for the protrusion problem and figure 8.5(b) the

secondary resonance for the indentation problem.

0.5 15

0.6

e(e\\é{bos
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Figure 8.5: The eigenvalues, 7, of the transfer matrix, Py ), as functions of the non-
dimensional wavenumber, in vicinity of a Bragg resonance. In part (a) the geometry is as
in figure 8.4(a), and in part (b) it is as in 8.4(b).

In both subfigures of figure 8.5 we see that the respective eigenvalues meet at the real
axis as they approach from opposing directions along the unit circle, whence their paths
temporarily cut onto the real axis, before returning to the unit circle. During this process

their paths form a single loop, the length and amplitude of which are major factors in
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determining the size and strength of resonance caused. This behaviour is consistent with
that seen for periodic problems in other settings, for example in free-surface flows (see
Porter & Porter, 2003).

Taking the examples given in figure 8.5, we see that the resonance loop in figure 8.5(a)
is far wider and of greater amplitude than that of figure 8.5(b), which corresponds to
a more rapid build-up and a wider capture interval for the primary resonance of figure

8.4(a) than the secondary resonance of figure 8.4(b).

15
105
14 \\\
/QK\\ I Al \ 0 g: ”’/\\ ~
1\ " 1 NN N
/ \ - 09 / \ \ f N\ // /
08 \ \\

z/l x/l z/l

Figure 8.6: The modulus of the displacement function with the wave period passing
through a primary resonance. The thickness of the ice is defined by equation (8.29) with
Dy = 1m, and period length lo = 2mm, over a flat bed depth A = 20m. The number
of periods is M = 1 (blue curves), M = 2 (red), M = 5 (green) and M = 10 (cyan).
Each period of the lower surface of the ice contains a protrusion of amplitude A; = 0.5m
The non-dimensional wavenumbers used are (a) kolo/m =~ 0.81, (b) kolo/7 =~ 1.17 and (c)
kg[@/ﬂ' ~ 1.42.

The effects of resonance are also visible in the transverse oscillations of the ice sheet.
In each of figures 8.6-8.8 a series of three subfigures display how the modulus of the
reduced displacement function, |n|, behaves as the incident wavenumber passes through an
interval of resonance. To enable comparison with the corresponding reflected amplitudes,
the geometrical configurations are those considered in figures 8.3-8.4 and results are again

given for one, two, five and ten periods.

7]

z/l x/l z/l
Figure 8.7: As in figure 8.6 but for indentations, A; = —0.1m. The wavenumber passes
through secondary resonance, with (a) kolo/m = 1.91, (b) kolo/m =~ 1.97 and (c) kolo/7m ~
2.10.
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To either side of a resonant interval the maximum displacement of the ice is bounded
as the number of periods is increased. In some cases the bounds are those attained by the
single period (see figures 8.8(a),(c)). Conversely, at resonant frequencies, the amplitude
of the waves travelling along the underside of the ice sheet increases with the number of
periods. As may be expected, the magnitude of amplification is related to the degree of
resonance displayed by the reflected energy; so that, the resonance around the primary
Bragg values seen in figure 8.6(b) for amplitude A; = 0.5m, are more extreme than the

Ay = —0.1m secondary resonance of figure 8.7(b) or the A; = 0.5m tertiary resonance of
figure 8.8(b).
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Figure 8.8: As in figure 8.6 but for indentations, A; = —0.5m. The wavenumber passes

through tertiary resonance, with (a) kolo/m &~ 2.40, (b) kolo/m ~ 2.52 and (c) kolo/m =~
2.64.

At this point, it is of interest to consider a property of the ice other than its transverse
displacement, namely the bending moment imposed on the ice by the incident wave. This
is the quantity defined in (2.22a) and is one for which continuity is dictated at the interface
between ice-covered domains. The bending moment is a vertically integrated measure of
the stress experienced by the ice (see Timoshenko & Woinowsky-Kreiger, 1959). It is
therefore associated with the issue of fracture and is consequently of physical interest.
For two-dimensional motion and normal incidence, the bending moment, parallel to the
r-axis, is defined by

M = POz

Our solution method, therefore, directly supplies us with an approximation to this quan-
tity via the function x® = 392y (see section §4.1).

In figure 8.9 approximations to the maximum value of 91n, attained across the inter-
val = € (0,1), are considered as continuous functions of kol /7, for the parameters and
geometrical configurations used in figures 8.3(a) and 8.4(b). Again, it is only the incident
wavenumber, kg, that varies and it is clear that maximum bending moment and incident

wavenumber have a typically positive correlation. This is easily understood if we consider
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the bending moment of the incident wave, which is
2 ikox
X = Bhgetor,

(see §4.2) and hence has an amplitude that increases quadratically with ky. Intuitively,

we infer that shorter incident waves impose a greater bending force on the ice.
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Figure 8.9: The maximum bending moment experienced by ice over the periodic array
as a function of non-dimensional wavenumber. The geometry used is that of (a) figure
8.3(a) and (b) figure 8.4(b). The number of periods is M =1 (blue curves), M = 2 (red),
M =5 (green) and M = 10 (cyan).

The monotonic relationship between the maximum bending moment and the incident
wavenumber is broken only by resonant effects. If we consider the size of the maximum
value of My after ten periods, attained at each incident wavelength, in the context of the
wide interval of incident wavelengths used here, these resonant effects are insignificant
compared to the quadratic shape of the curve. However, in the subintervals of resonance
bandwidth, their effect is notable. The most prominent case is the secondary resonance
seen in figure 8.9(b), where the maximum bending moment increases by a factor of ap-
proximately 1.51 from one to ten periods. Thus, in an interval of wavenumber centred
on a Bragg value, the occurrence of Bragg resonance is the primary factor in determining
the possibility of fracture.

The drift of the resonant intervals away from the Bragg values has already been noted
in this section. A tendency for leftward drift to be associated with thinning ice and right-
ward drift to be associated with thickening ice was also remarked upon. The occurrence
of rightward drift, we believe, is a phenomenon hitherto unseen in mathematical models
of fluid flow. In figure 8.10 we continue to investigate the properties and causes of these
drifts.

It was observed through figures 8.3-8.4 that the extent of the drift is largely governed by
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Figure 8.10: Moduli of reflected amplitudes as functions of non-dimensional wavenumber
after five periods (M = 5). In part (a) the lower surface of the ice contains protrusions
and the ice thickness is defined by (8.29), with amplitude A; = 0.1 and Dy = 1m (blue
curve), Dy = 0.5m (red) and Dy = 0.1m (green). In part (b) the lower surface of the ice
undulates with the ice thickness defined by (8.30), for Dy = 1m and amplitudes 4, = 0.1m
(blue curve), A, = 0.25m (red) and A, = 0.5m (green). In both situations A = 20m and
the period length is lp = 27m.

the relative magnitude of obstruction present. Furthermore, the drift is more pronounced
around higher order Bragg values. Both of these properties are clearly visible in figure
8.10(a) with drifts around the primary Bragg value growing as the size of the keel grows
in relation to the overall ice thickness, and, for the D = 0.1m problem, the drift increasing
with Bragg value, so that the secondary resonance is actually clear of koly = 2.

If the scattering problem is considered in terms of formal perturbation theory then
these issues may be attributed to the role of the second-order terms. A full investigation
of the generation of drifts using perturbation methods is an area left open for further
work.

We have thus far only considered geometrical configurations in which the ice is either
thicker in the varying interval than the far-fields or likewise thinner. In figure 8.10(b)

sinusoidal periods of the form

2nx

D(z0) = Do+ A, sin < ; 0) : (8.30)
0

are taken so that the variation about the surrounding states is equal. The tendency

displayed is for leftward drift, from which we deduce that there are factors, independent

of the direction of geometrical variation, that determine the drift, and that these work

with the effects caused by thinning ice and against those of thickening ice. This explains

why the responses shown to thinning ice are greater than those of thickening ice.
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8.5 Conclusions

The periodic problem that has been formulated and numerically solved in this chapter is
a modification of the two-dimensional complete ice-cover problem that appeared in §4.3.1
and §6. In §8.1 the numerical solution of the complete ice-cover problem provided in §4.3.1
was reformulated through the addition of intermediate boundaries. This necessitated the
retention of the evanescent amplitudes, which were disregarded previously, as they play
an active role between neighbouring subintervals. As well as providing a platform for
the periodic problem, this formulation gives a means of solving for geometries in which
there are more than two internal boundaries. One such problem was available in existing
literature and we compared MM As successfully with this data in §8.2.

For the periodic problem, the overall interval is built up of an arbitrary number of
identical periods. Our method allows the solution to such a scattering problem to be
found using information calculated from a single period only. This constitutes a substan-
tial numerical saving and allows insight into the occurrence of resonances. A wide-spacing
approximation that is more efficient and accessible but ignores the interaction of evanes-
cent waves with the propagating waves, between the periods, was also constructed.

The data that were produced for the results section of this chapter centred on the
production of resonances around Bragg values. It was noted that, due to the tendency of
the ice to elongate propagating waves, these Bragg values are less inclined to coincide with
physically realistic values than, for instance, those in the analogous free-surface situation.

Strong resonant effects were found to be created in the far-field, for modest geometrical
constructions, around the primary, secondary and tertiary Bragg values, with large re-
sponses quickly generated as the number of periods was increased and often wide intervals
of resonance capture. Although full resonance was only observed at the primary Bragg
value for the steepest obstruction, a significant local response was seen for all Bragg val-
ues considered and even for reasonably mild obstructions. The far-field resonances were
seen to be reflected in the properties of the ice. Specifically, around Bragg values the ice
experiences a locally disproportionate displacement and bending force. Consequently, it
is more susceptible to fracture at these points.

For approximations to the reflected amplitude, the wide-spacing method provided a
good approximation in all of the examples used. As expected, its accuracy decreased
with an increased amplitude of the obstruction. Significantly, the resonances predicted
by the wide-spacing approximations were found to be consistent with the true resonances
displayed by the full approximation. As in periodic problems in other settings, for exam-
ple free-surface flows, the onset of resonance in the wide-spacing approximation can be
attributed to a coalescence of the eigenvalues of the transfer matrix on a single period
and is therefore easily classified.

It is well known for free-surface flows that the peaks of resonance never exactly coincide
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with Bragg values and this was seen to be consistent when ice-cover is present. Rather,
a drift appears and is found to increase with the relative amplitude of the impediment
and order of Bragg value about which the resonance emerged. We found drifts in both
directions from the Bragg values and a link was drawn between leftward drift and thinning
ice, and rightward drift and thickening ice. In the absence of any bias towards thickening
or thinning of the ice the drift was leftward. The occurrence of rightward drift is a property

that does not appear to have previously been documented in fluid flow problems.
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Chapter 9
An axisymmetric ice floe

Thus far, we have formulated numerical procedures only for problems of a two-dimensional
nature. The presentation of the structure of the MMA in §3 was made in three dimensions,
which allows us to consider more realistic models of ice floes. One such example is the
subject of this chapter.

In the following section we will outline a technique for solving the problem of a cir-
cular ice floe in an otherwise ice-free domain that stretches to infinity in all horizontal
directions. Scattering is induced by a plane incident wave that propagates from the far-
field. The ice is, of course, permitted to contain geometrical variations; however, we
restrict these geometrical variations to be of an axisymmetric form. In particular, this
allows its azimuthal dependence to be represented in the form of a Fourier cosine series,
so that computations may be made at a reduced cost. A graphical representation of this

configuration is given in figures 9.1-9.2.

Figure 9.1: Three-dimensional representation of the geometry.
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9.1 Formulation

In this section we will outline the procedure that will be used to calculate MMAS to
the axisymmetric ice floe problem described above. Recall that the general form of the

differential system that governs the MMA in an ice-covered domain is given by

N
SV (@) + dii - (Vo) + byapi f + rxlwgleea =0 (j=0,....N),  (9.1a)

1=0

where the coefficients a;;, d;; and b;; are defined in §3.2.1, and

(1 —ka)x +ZLx — Z Yi|wil,=—q = 0. (9.1b)

1=0

The equivalent equations in an ice-free domain are

N
S AV @@V +df (V) 18067 =0 (=0 V). (92)

1=0

where the coefficients are also given in §3.2.1.

Without loss of generality, we suppose that the origin of the horizontal coordinate
system is set to coincide with the centre of the ice floe, so that equations (9.1a-b) hold in
the disc 2 + y*> < R?, where R denotes the radius of the floe. Equations (9.2) then hold
in the region 22 4+ y? > R?. At the edge of the floe, 22 + y? = R2, the solutions from the

ice-covered and ice-free regions are linked by the jump conditions
VIdy = (VI®y) 0, (9.3a)

and
V140, y + JBy = {V 140, By + JB N}, (9.3b)

where .
q)N:(SOUw--:SON)T: @S\?):(gogo),,wg\?)) )

There are also the conditions that dictate that the bending moment and shearing stress

both vanish at the ice edge, which are defined by
My =6x =0,

where the operators 9t and & are defined in equations (2.22a-b).

We are free to set the incident wave so that it propagates along the z-axis from the
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far-field x — —oc and it is therefore given by
or(z,y,2) = Igeik(()% cosh{k{”(z + ho)}, (9.4)
where, as usual, hg is the bed depth in the far-field and k((]o) is the corresponding propa-

gating wavenumber. As previously, the incident amplitude will be set as

K
Iy = , 9.5
" sinh (5 ho) £ (5:5)

to ensure that the incident wave has a displacement of 1m amplitude at the free-surface,
regardless of its frequency. The problem is therefore symmetric about the y-axis and this
will be utilised in our method of solution.

Considering the circular shape of the floe, it is pertinent to switch from the horizontal

cartesian coordinates, (z,y), to the polar coordinates, (r,#), using the transformation
x =rcos(f), y=rsin(d), (9.6)

in which r > 0 and 0 < 6 < 27.
The floe therefore occupies the domain r < R, for all §. Under the constraints of
axisymmetry, the geometrical variations that occur, within this circular region, must be

independent of the azimuthal coordinate 6, so that
D=D(r), h=h(r), d=d(r) (r<R),

for all #. Note that, for generality, we also permit the bed to vary beneath the ice floe;
however, bed undulations are not our primary concern and thus are not investigated in
the results section. Outside of the ice-covered region the bed depth is assumed to be
uniform, with h = hg a constant in r > R.

Having made the transformation to polar coordinates, we redefine the MMA in terms
of these variables. In the ice-covered region, r < R, we have the MMA to the reduced

velocity potential ¢ & 1, where, assuming the use of the natural modes,

N

Yy =Yy (r,0,2) = Z On (1, 0wy (r,2),  wy, = w,(r) cosh{k,(r)(z+ h(r))}  (9.7a)

n=0

and the associated, indirect approximation of the reduced displacement function n ~ x =
x(r,0). In the ice-free region, r > R, the MMA is ¢ ~ ’gb](\?), where

N
Wy =0 (.0.2) =Y o0 (r, 0w (r,2),  w® =z cosh{k" (z+ ho)}.  (9.7b)
n=0
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Figure 9.2: Two-dimensional cross-section of the axisymmetric floe.

The roots kéo) (n=20,...,N) are constants, due to the uniform bed in this region.

9.1.1 Governing equations

In §4.1 we used the specific degeneracies of the two-dimensional geometry with oblique
incidence to reduce the governing equations of the MMA, equations (9.1a-b) and (9.2),
to (4.3a-b) and (4.6) with accompanying jump conditions. In the same manner, we must
use the properties of the current, axisymmetric problem to generate a set of equations to
be satisfied by the MMA that is numerically solvable.

Making the transformation to polar coordinates, the gradient operator becomes

V= (cos(ﬁ)@r - 1sin(ﬁ)ag, sin(0)0, + %cos(0)89> , (9.8)

r
and the Laplacian operator is given by
1 1
V=02 + -0, + =0;.
"o 72

The polar differential operators are defined as 9, = 9/0r and Jy = 0/06.
Using the axisymmetry of the geometry, we find that, in terms of the polar coordinates,

the system of partial differential equations (9.1a), for this problem, degenerates to

1 ~ 1
~0,(rA0,®) + D0, ® + <B + T—2A8§> & + kCfx =0, (9.9a)
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which is to be solved for the vector of unknown functions ®(r, ). As always, the entries

of the matrices are defined as Aj,i = Gj—1,4—1, Dj,i = Cfi;'_l’i_l and Bj,i = bj—l,i—l (Z,] =
1,..., N + 1), where, in this case

aj; = (Wi, Wi), dj; = (P — PXa,.D + (P — PM)a,h+ (P — P9)d,d,

i,J
and

bji = k?aﬂ k; sinh(k; H)cosh(kH)+P '92D + PWo2h + P o2d
+ P 0,D) + P (0,h) + P (9,d)°
+(P(Dh)+PhD)(aD)(ah) 4 (P Dd)+PdD)(aD)(ard)
+ (P + P ) (0:d) (9, h),

with the quantities Pj(f) and Pj(f’y) (X,Y = D, h,d) being defined in §3.2.1. We also
remind ourselves that the matrix C' = diag{[wo]|,=—d, - - ., [wn].=—q} and the vector f =
(1,...,1)T. Similarly, the coupled fourth-order equation (9.1b) becomes

(1 —ka)x +Lx — 0P =0, (9.9b)

where the operator .Z is now defined by

2x= v (57%) - (1- 1) {20, (@90 + @030}

In the ice-free region, equivalent simplifications change (9.2) into

1 ~ 1
~0,(rA99,8) + D& 4 <B<°) + —2A<°>a§> o =0, (9.10)
T T

which is to be solved for ®(©)(r, ). The matrices are defined as A;?i) = ago_)lyi_l, 15501) =

@07)1’1_71 and Bj’i = bj—l,i—l (t,j=1,..., N +1), for the coeffficients

aly) = (W, W), df) = (Y = P)o,h,

:] Js? %)

and
b0 = (K >) D+ POV R+ PV (VR

]Z

Again, the quantities P ) and P ) are defined in §3.2.1. Note that, we have not, as yet,
utilised the degenerac1es that result from the flat bed in the ice-free region in (9.10).
We will denote the circular contour that defines the edge of the floe as I' = {r = R

0 <0 < 2r}. In §2.2.1 the normal and tangential vectors to this contour were represented
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by
n = (cos0©,sinO), s=(—sinO,cosO),

respectively, where © is the angle of [' with respect to the cartesian frame. Here © =
©(0) = 0. Using (9.8), the corresponding derivative operators may be expressed in polar
coordinates as

O, =mn-V =0, 8s:s-V:%89, (9.12)

and it follows that 0,0 = r L.
From definitions (9.12), we find that the jump conditions (9.3a-b) applied at T" take

the form

VIiey = (VI®ey) Y (r,0) €T, (9.13a)
and
VA, BN + QB N} = (V) 140980 (r,6) T, (9.13b)

Furthermore, the bending moment and shearing stress along a circular contour, such as
I', are deduced to be

1 1
My = fVix — (1 —v)p (;87« + r—ga(?) X
and
9 1 1 ., 1 1 .5
Sx =0, (BV?x) — (1 —v)3 (8.5) ;Br + T—Qa(, X — ;ﬁ@r ;(809() :
These quantities must vanish at the ice edge, which means that
My=6x=0 (r,0)eTl. (9.15)

The problem also requires the specification of its far-field behaviour. For a three-
dimensional problem, such as this, the scattered solution must decay according to the
Sommerfeld radiation condition (see, for example, Wehausen & Laitone, 1960), which
states that

Jr (a, _ ikg°>) (6—¢1) =0 (r— o) (9.16)

uniformly in 0, where ¢ — ¢ represents the scattered solution. Therefore, the only motion
that exists in the far-field is that of the incident wave. The governing equations of the
MMA are now fully defined by the differential systems (9.9a-b) and (9.10), the jump con-
ditions (9.13a-b), the ice edge conditions (9.15) and the Sommerfeld radiation condition
(9.16).
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9.1.2 Decomposition of the azimuthal motion
As we include the vertical mode, w(()o), that bears propagating waves, in our trial space,

the incident wave (9.4) is represented exactly in the MMA by

v = Ioeik((JO)‘” cosh{k(()o)(z + ho)}
Ioeik((JO)TCOS(a) cosh{k(()o) (z+ ho)}

— 1, {Jo(kg‘”r) +23 T (k) cos(me)}cosh{kg°>(z+h0)}. (9.17)
m=1

The final expression given for the incident wave, for which the azimuthal motion appears

in the form of a Fourier cosine series, is produced via the identity

o

m=—oc

(see, for example, Tranter, 1968). The functions J,, (m = 0,...) are Bessel functions of
the first kind, of order m.

It will prove to be beneficial to decompose all of the azimuthal motion into its Fourier
cosine modes, which reflects the form given in the final expression, (9.17), of the incident

wave. Therefore, we write the unknown functions as

on(r,0) = 1o {¢n70(r) +2 Z " nm(r) cos(mﬁ)} ,

X(Taa)zlo{ +221 Xm(r) cos mH)}

and
0O (r,0) =1, {gpno +2 Zl gonm ) cos(m#) }

forn =0,..., N, and the corresponding vectors are

®y(r,0) =1 {@N,o(r) + 2 Z i"® (1) cos(m) }

m=1

and

0 (r,0) =1, { )+ 2 Z i@\ (r) cos(mb) } (9.19)
Our job is now to calculate the unknowns ¢y, ,, go,(lzn (n=0,. ) and x,,, for m =
0,..., which are functions of the radial coordinate only. Each of these functions is then
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forced by the corresponding azimuthal mode of the incident wave, (9.17). Note that the
representation in terms of a Fourier cosine series reflects the symmetry of the problem
about the y-axis.

If we substitute the above expressions for ®, and y into the governing differential
equations (9.9a) and (9.9b), then the azimuthal modes decouple and we are left to solve

the ordinary differential system
1 ~ m?
—0,(rA0, ®nm) + DO, PN+ | B — —A) @y + KCEXm = 0, (9.20a)
r r
and the coupled fourth-order ordinary differential equation
(1 — Q) Xm + LnXm — 0 C @y, = 0, (9.20b)

for m =0,..., where

ngm = V%n (ﬁvanm) - (1 - V) {%ar ((arﬁ)(aer)) o T_j(azﬁ)Xm} >

and
2

m
ar (Taer) - T_me

S|

VX =
Mimicking the two-dimensional case of §4.1, we condense equations (9.20a-b) into the
single expression
1 ~
~0,(rAd, ¥y ,,) + DO Wy + B™MOy, =0 (m=0,...), (9.21)
,

which is to be solved for the vector of unknowns

‘IIN,m — (Q%,ma X(l) (2))T )

m’Xm

where X%) = Xm and Xﬁ) = V2 Xm. The entries of the three matrices that appear in
(9.21) are defined by

m2 ~

Aj,i — Ajm B(m) — Bj,i - _Aj,ia Dj,i — 5j,i (’L,] = ]_, ey N + ].),

Jst r2
Ansons2 = Anganes = 1, BE,MN)H =sIJCf (i=1,...,N+1),

1 m — m
Anianiz =—(1 - V);(arﬂ)a BEV-:Q,N-H% =—p, B§V-23,j =—fC I

forj=1,...,N+1, and

(m) (m) m? ) 2 gy
BN+2,N+2 = BN+3,N+3 = R BN+3,N+2 = (1- V)(arﬁ)r—g +1 - ka,
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with all unspecified values equal to zero and where, again, [ I, ...,

In.. |istheidentity
matrix of size (N + 1). Similarly, inserting expression (9.19) into the partial differential
system (9.10) results in

2

%8T(TA(0)BT<I>§3?m) +D09, 80+ <B<°) - %A“”) eV =0 (m=0,...), (9.22)
after decoupling the azimuthal modes. As in the case of two-dimensional motion, we
have redefined the notation of the active differential operator, namely 0,, so that it now
represents the full derivative, that is 9, = d/dr.

We have succeeded in reducing the partial differential equations that govern the MMA,
for an axisymmetric ice floe, to a set of ordinary differential equations in the radial
coordinate. This reduction was possible since we were able to take advantage of the
properties of the geometry, specifically the axisymmetry, to define a set of azimuthal
modes that decouple and hence remove the coordinate # from our calculations. In practice,
we will set a tolerance on the accuracy of the MMA with respect to the convergence in the
azimuthal modes. We therefore restrict the azimuthal modes to a finite number, (M + 1)

say, so that the MMA of vertical dimension N is approximated as

on(r,0) = 1o {gpn’o(r) +2 Z " @nm (1) Cos(ma)} , (9.23a)

x(r,0) =1 {XU(T) +2 Z " X (1) Cos(ma)} , (9.23b)

m=1
and
M
goglo)(r, 0) ~ 1 {gpﬁ%(r) +2 Z imwg(f)m(r) Cos(mH)} (9.23¢)
m=1
for n = 0,..., N, and it is our conjecture that only a relatively small number of these

azimuthal modes will provide good accuracy. This is the topic of results section §10.2.1.

Having made the approximations (9.23a-c) to the MMA, by restricting the azimuthal
motion to a finite set of Fourier cosine modes, we are left to solve a set of (M +1) ordinary
differential equations in the radial coordinate. In a region of ice-covered fluid each ODE
is of dimension (2N + 6), whereas in ice-free regions the dimension is (2N + 2). It is
now necessary to calculate the conditions that link the approximations at the edge of the
circular floe.

By applying the jump conditions (9.13a-b) to our approximations (9.23a-c), it is a

simple matter to decouple the azimuthal modes and deduce that the conditions

VI®Nm= (VT ®ynm) " (r,0) €T, (9.24a)
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and
VHAS, @ + QB = (V) 1AD9,80) - (r,0) €T (9.24b)

must be satisfied by each of the unknown vectors, ®n,, (m = 0,...,M). In (9.24b)
we have used the property of a flat bed to set Q) = 0. Similarly, the vanishing of the

bending moment and shearing stress conditions (9.15) decouple to give
MuXm = Smxm =0 (r,0) €T, (9.25)

form =0,..., M. In (9.25), the operators 9M,, and &,, satisfy M,,,xm = ﬁm(X%), X&Z))

and &, xm = ém(xﬁ), XS?), where

T (D) L@ — ) 1 m*\
M (X s Xow') = X’ — (L= 1) ;81" - | X' (9.26a)
and
= ) L@ = 4 @ L, m?\ o, m L oo
Gm( m s Xm ) = aer - (1 - V) (arﬁ) ;ar - F Xm + Tﬁar ;Xm . (926b)

In addition to the conditions to be applied at the ice edge (9.24a-b) and (9.25), outside
of the ice-covered region, each of the unknown functions, go%o}n, must satisfy the Sommer-
feld radiation condition (9.16). This fully defines the set of governing equations from
which we may calculate the MMA for the problem of an axisymmetric ice floe. However,
before we are able to perform explicit calculations, we must note that the transformation
from cartesian to polar coordinates is singular at the origin and this will lead to numerical
difficulties. For this reason, it is convenient to assume that there exists a positive value
€ < R for which, within the disc r < €, the ice is of uniform thickness and has a uniform
draught, and the bed does not undulate (see figure 9.2). As will be seen presently, this
allows us to analytically remove the singular part of the solution at this point without
resorting to complicated numerical techniques. Although we now only allow variations of
the geometry in the annulus ¢ < r < R, we have not compromised the generality of our
model as we may select ¢ to be arbitrarily small.

By making the above assumption to facilitate calculations around the origin, we have
created the additional internal interface I'. = {r = ¢, 0 < 6 < 2x}. This contour
separates two regions of connected ice-cover and it is therefore necessary to obtain the
jump conditions that apply here from (3.7a) and (3.10). Following the same procedure
that produced the ice edge conditions, we can easily deduce that these jump conditions
are given by

VT®ym)r =V ®Nm)- (1,0) €T, (9.27a)
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and
Vi (A0, ®Nm) s + (QPNm)+ ) = (VA0 ®Nm)-  (r,0) €T, (9.27b)

for m = 0,..., M, where the positive subscript is used to denote the solution in the
annulus of varying geometry and the negative subscript likewise for the solution in the disc
of uniform geometry. Asin (9.24b), the matrix ¢ = 0 results from the uniform geometry
in this region. The continuity of the position and velocity of the ice’s displacement must

be ensured at this point, so that
<Xm> = <aer> =0 (7“, 0) S (928)

form = 0,..., M, where the brackets (-) are again used to denote the jump in the included
quantity. We assume the ice thickness to be continuous and this means that conditions

(9.28) may be used to reduce the continuity of bending moment and shearing stress to

(X2 =0, (9.29a)
and ,
Ox) = (1 =v)(0,8) <%8,« = %) Dy = 0. (9.29b)

The entire set of conditions (9.27a-b), (9.28) and (9.29a-b), that apply at r = &, may be

collected into the more compact notation
VN = VT ON,)- (z,y) €T, (9.30a)
and
VH(AD O ) s + (QN ™ Ty ) 1} =V (AD B ryn) - (2,y) €T., (9.30D)

where the matrix AN'™ is given by

m2
’
T2

NI =1 (n=1,...,N+3), NI y2=(1-0)00)

and, as always, all unspecified entries are zero. The matrix Q is defined in §4.1.

9.1.3 Uniform geometry

In our current problem, we have two regions in which we have assumed that the geometri-
cal functions, D, h and d, take constant values. Within the disc r < ¢ the situation is that
of ice-cover, whereas in the infinite region » > R no ice is present, D = d = 0. As we did

for the two-dimensional problems formulated in §4.2, we will use the simplifications that
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uniform geometry introduces to produce analytic forms of the solutions in these regions,
which will subsequently provide boundary data for the annulus of varying geometry.

Let us first assume the presence of ice-cover, so that the governing equations (9.20a-b)
apply. As in §4.2, the simplifications c@z =0, and b;; = a;;k? — k;sinh(k;H) cosh(k;H)

result from the uniform geometry and the governing equations reduce to

m2

1
A <—arrar B —2> By + (AK? — CHTKS) @y, + kCEXY =0 (m=0,..., M),
T T

and
(1 - HO‘)XS) + Vang) - OTC(I)N,m =0 (m =0,..., M)7

where the matrices C', S and K are defined by
C = diag{cosh(koH),...,cosh(kyH)}, S = diag{sinh(koH),...,sinh(kyH)}

and
K = diag{ko, ceey kN},

just as they were in §4.2.
We note that the above system of ODEs has the solution

®ym = c(\)Besy, (Ar), X0 =1UBes, (M), X2 =7 Bes,(Ar) (m=0,..., M),

where c¢()\) and v)()\) (i = 1,2) are constants, and Bes,, is any Bessel function of order

m, which satisfies
r?0?Bes,, + rBes,, + (\’r? —m?)Bes,, =0 (m=0,..., M). (9.32)

Specification of precisely which Bessel functions are appropriate is left until a later
stage. The value A represents an eigenvalue with the corresponding eigenvector ¢ =

(c”, v, v2NT which are calculated from the eigensystem
(A(K? = X\1) — Cf T K S)c + vy COf = 0,

and
B +1—ka)yV —f7Cc =0,

with v = —BA2y(M)_ This eigensystem is, unsurprisingly, identical to that of the two-
dimensional case (4.12a-b), with normal incidence (¢ = 0), which has already been solved

to find the eigenvalue-eigenvector pairs
(X&) = (k;, [I], k' k; sinh(k; H), — ' Bk} sinh(k;H)]") (i =0,...,N),
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and

(A, €) = (), Uiy 7 ooy sinh (o H), =K By oy sinh (v H)'T) - (6= 1,2),

where p1y ;) and vy ;) are dimension-dependent quantities that are defined in §4.2.

Therefore, in a region of ice-covered fluid, we may represent the unknown vectors that
define the MMA as

(1) = C{Tm(r)A + Hu(r)B}  (m =0, ..., M), (9.34)

where C is a matrix, previously defined in equation (4.24), whose columns contain the
eigenvectors of the system and A and B are constant vectors of length (N + 3), which

are fixed with appropriate lateral conditions. The matrices 7, and H,, are defined by

jm(r) = dlag{‘]m(kor)a Ty Jm(kNr)a Jm(“N,(l)T)a Jm(MN,(Q)T)}:

and
Hm(r) = dlag{Hm(kUT)a sy Hm(kNr)a Hm(:U’N,(l)T)a Hm(:U’N,(2)T)}:

where J,,, and H,, are, respectively, Bessel functions of the first kind and Hankel functions
of the first kind, of order m.

Similarly, in a domain of ice-free fluid, we may simplify the governing equations (9.22)
and seek solutions of the form @Sg,)m(r) = Bes,,(Ar). Solving the resulting eigensystem

leads to the expressions
30 (1) =JOMA+HOFB (m=0,..., M), (9.36)
in which

JO(r) = diag{Jn (kr), .. I (K0P}, HO(r) = diag{H, (k77), ... Hp (K01)},

m m

and the constant vectors A and B are now of length (N + 1).

We therefore have, at our disposal, representations for the MMA in the disc of uniform
geometry centred at the origin and the infinite region of ice-free fluid, for which we have
assumed a flat bed. The structure of the solutions here, (9.34) and (9.36), mirror their
two-dimensional counterparts, (4.22) and (4.30) respectively, almost exactly, with the only
difference being in the substitution of Bessel functions for the exponential functions. This
is to be expected, as both must represent incoming and outgoing propagating waves and
exponentially decaying waves, with respect to the same wavenumbers. Note that, in both
(9.34) and (9.36) the specific choice of Bessel functions was arbitrary in the sense that

we could have chosen any two linearly independent functions that satisfy the differential
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equation (9.32). However, the reason behind the particular choice of J,, and H,, will

become clear in the next section.

9.1.4 Numerical calculation

The problem of an axisymmetric ice floe, forced by a single incident plane wave, is
now ready for numerical solution. Our solution procedure will follow that of the two-
dimensional problems given in §4.3, with the representation for the MMA in domains
of uniform geometry, derived in the previous section, providing boundary data for the
solution in the annulus of varying geometry, which must be calculated numerically.

By using the result (9.34), we may deduce that, in the inner disc of uniform geometry,
the MMA may take the form

Uyn(r) =COTE A, (r<e), (9.37a)
form =0,..., M, where the superscript (¢) is used to indicate evaluation of the particular
quantity inside this region. For each m, the vectors A,, = (Amo, -+, Am.n, Am—1, A —2)T

contain a set of (N + 3) unknown amplitudes.

In (9.37a) the Hankel functions of the first kind have been disregarded due to un-
boundedness at the origin. This explicitly displays the advantage that we have gained by
assuming a region of constant geometry about this point. That is, the singularity that
has been created by the transformation to polar coordinates is encapsulated in the Hankel
functions, which we have been able to remove analytically.

Outside of the ice, the expression for the MMA,

oy, (r) = JP (L + HY (r)B,, (r > R), (9.37b)

for m = 0,..., M, may be obtained from result (9.36). The motion represented by
the Bessel functions of the first kind is that of the incident wave. Whereas, the Han-
kel functions of the first kind represent the scattered waves, with the vectors B,, =
(Bm,os - - -» Bm,y)T containing their unknown amplitudes. In the far-field we note that the

Hankel functions have the asymptotic behaviour
0 2 s ik r—m /4
Hy (k7) ~ i7" (—) eltkn r=m/M (5 0), (9.38)

(see, for example, Tranter, 1968) and therefore comply with the Sommerfeld radiation
condition. Using equation (9.38), we can be more precise about the behaviour of the
Hankel functions as they tend towards the far-field and say that they represent outward-

travelling circular waves that decay at the rate r—'/2,
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Expression (9.37a) is then combined with the continuity conditions at the boundary
within the floe, (9.30a-b), and we find that

V'], = (V7€) Tule) A, (9.39a)

and
V(A0 Ty ) + (QN ™y, = (VTIACO,Tn(e)) A, (9.39b)
must be satisfied at this interface by the numerical solutions, ¥y, (m = 0,..., M),

over the interval of varying geometry. Likewise, expression (9.37b) is used in the joining
conditions at the ice edge, (9.24a-b) and (9.25), and we have

Vi®y,] . = (VO {JORTL + HO(R)B,.}, (9.40a)

VA0 BN+ QBN = (V7'A) {0 SO (R + (9, HY (R) B}
(9.40b)
and
My Xm = GmXm =0 (r=R_), (9.40¢)

as the conditions to be satisfied by ¥y ,, (m =0,..., M) at this boundary.

As with the two-dimensional problems that were formulated in §4.3, we wish to provide
the solutions of the differential systems (9.21), over the varying interval, with boundary
conditions that contain as few of the unknown amplitudes as possible. Therefore, we

manipulate (9.39a-b) and (9.40a-c), to produce

m 2i
BTy () =0, BTy (R) = ——11%11 (m=0,..., M), (9.41)
mw

which are in terms of only known values. The operators B and %%n) are defined by

BIV(r) = (Tnle)(AC)T V)OI VAL 0,8 (r)
+{(Tn(e) (AC) W) [V 1QN]
~((0:TnNev) " 7] e,

(BUC(r)} = T(HL(R)A V)OOV A, F(O,8(r))
+ T (Ha(R) AV O [V1Q), (9.42)

— OH(R)(VO)T [V _, | Fe)

r=
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fori=1,....N+1, and

{BE () vss = M(Ta(r), Tnvaa(r) s {BR L) vas = 6 (Tvyalr). Tvalr)).

In definition (9.42) the notation F has again been used to denote the (N + 1) x (N + 3)
matrix comprised of the (N + 1) identity matrix appended with two columns of zeros.
The Wronskian identity

2

)
w4

Im(2)H;,,(2) = 15, (2)Hin (2)

has been used to simplify the right-hand side of the condition at the ice edge (r = R)
given in (9.41).

To obtain the MMA, we must therefore numerically solve the differential system (9.21)
over the interval ¢ < r < R, with boundary conditions (9.41), for the vectors ¥y,
(m=0,...,M). The value of M is chosen so that a desired level of accuracy is achieved
in the convergence of the azimuthal coordinate. Note that, due to the reformulation of
the boundary conditions, we need only calculate a single numerical solution for each of
the azimuthal modes. If we had retained (9.30a-b) at r = ¢, and (9.24a-b) and (9.25)
at r = R, as our boundary conditions, then it would have been necessary to calculate
(2N + 4) linearly independent solutions for each azimuthal mode. Having calculated
Wy, the unknown amplitudes, A,, and B,, may be easily obtained from (9.39a) and
(9.40a) respectively. This method will fail to deliver an amplitude if its corresponding
Bessel function vanishes at the particular internal boundary; in this case we must revert
to the appropriate derivative condition, (9.39b) or (9.40b), although this will require the

numerical calculation of the derivative 0, ¥y ,, at the relevant boundary.

9.2 Comparison to the work of Peter et al. (2004)

Consistent with all of the previous geometrical constructions considered, our first set of
numerical results use a problem for which independent data exists in the literature for
comparison. Peter et al. (2004) also solved the circular ice floe problem that we consider
in this chapter, albeit imposing the restrictions of a uniform ice thickness, a zero draught
and a flat bed.

The solution method of Peter et al. is based on a decomposition of the reduced
velocity potential into a double infinite sum of azimuthal and vertical modes, and the
displacement function into azimuthal modes, akin to our expressions (9.7a-b) and (9.23a-

c¢). Representations of the potential are matched through the continuity conditions
((9)) = ((0:0)) =0 (r,0) €T,
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which hold throughout the fluid depth, and the ice edge conditions 9n = Gn = 0 for
(r,0) € T, are applied to the reduced displacement. The numbers of azimuthal modes
and of vertical modes are then truncated to finite dimensions and the resulting systems of
equations solved. This procedure is closely related to the EMM that was derived in §5.1.2
for the semi-infinite ice sheet problem, and, as in the EMM, the complex wavenumbers
that appear in their expansions are exact.

It is possible to calculate the MMA for this problem without the need for the numerical
solution of a differential equation to be calculated. To do this, we abandon the interface
r = ¢ within the floe, and employ the analytic structure of the MMA, given in equation
(9.37a), at all points of the ice-covered domain, r < R. The ice edge conditions are
then dealt with in a similar manner to the method outlined in §5.1.1 for the semi-infinite
ice sheet problem. We will use this approach explicitly in §10.1 for the single-mode
approximation and hence obtain analytical information about the solution.

Here, we compare results obtained from the MMA to a selection of the results that
appear in Peter et al. (2004). We begin by considering the convergence of the MMA,
both vertically and azimuthally, to the solution of a chosen problem. Figure 9.3 displays
the convergence of the MMA for the modulus of the displacement function on the contour
0 = 0 for the problem in which the properties of the ice are described by a = 0 and
B = 10°Pa m%s? kg~!, the radius of the floe is R = 100m, the incident wave is of length
A% = 50m and the constant bed depth is h = 25m. For five vertical modes, M = 12
produces azimuthal convergence of approximately 2.2 x 10~3; this convergence is shown
in figure 9.3(a).

The use of five vertical modes is sufficient for convergence as displayed in figure 9.3(b),
where M = 12 is fixed. Note from this figure that a single vertical mode gives a good
approximation, retaining the key qualitative and quantitative features of the converged
solution. The incident wavelength of 50m along with the bed depth of 25m corresponds
to an incident wave period of approximately 5.67secs and, as in the comparison to the
work of Athanassoulis & Belibassakis (2005) in §7.1, we deduce the value 3 = 10°Pa m°s?
kg~! to be given by ice of thickness of approximately 1.3m. We may therefore conclude
that the performance of the single-mode approximation here appears to be consistent with
that seen around equivalent parameter values for the two-dimensional cases of §5 and §7.
The convergence of the vertical modes will be investigated independently in §9.3.

Figures 9.4-9.5 display MMAs that are directly comparable to results that appear
in Peter et al. (2004). The approximations are to the real and imaginary parts of the
displacement function, 7, and have converged both azimuthally and vertically. The results
shown in figure 9.4 use the parameters that appear in figure 9.3 and should be compared,
respectively, to figures 3(a-b) of Peter et al..

Figure 9.5 differs from the previous problem in that a shallow bed depth of 1m is used.
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Figure 9.3: Convergence of the MMA to the modulus of the reduced displacement function
along the contour § = 0, with respect to (a) the azimuthal modes and (b) the vertical
modes. The problem is that solved by Peter et al. (2004) in which the floe is of uniform
thickness, a zero draught and radius R = 100m, over a flat bed of depth 25m, with
an incident wavelength of 50m. In part (a) the approximation uses six vertical modes
(N =5), and M = 0 (blue curve), M = 2 (red), M = 4 (green) and M = 12 (magenta)
azimuthal modes. In part (b) the approximation uses thirteen azimuthal modes (M = 12),
and N =0 (blue curve), N =2 (red) and N =5 (green) vertical modes.

100 100 100 100

Figure 9.4: Comparison with figure 4(a) of Peter et al. (2004), in which the floe is of
uniform thickness, a zero draught and radius R = 100m, over a flat bed of depth 25m,
with an incident wave of length 50m. Part (a) displays the real part of the reduced
displacement function and part (b) the corresponding imaginary part. The dimensions of
the approximation are N =5 and M = 12.

The incident wavelength of 50m now corresponds to a wave period of approximately
16secs. Figure 9.5(a-b) are, respectively, for comparison figures 4(a-b) of to Peter et
al.. The azimuthal convergence of the shallow bed depth problem is very similar to the
greater fluid depth problem and an identical M is chosen in each problem for convergence;

however, as may be expected in a case of shallow water, the effect of the introduction of
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evanescent modes to the h = 1m problem is unnoticeable and the approximation is taken
as converged when only a single vertical mode is included. This compares to N = 4 when

h = 25m. Results given figures 9.4-9.5 match their counterparts in Peter et al. (2004).

100 100 100 100

Figure 9.5: Comparison with figure 4(b) of Peter et al. (2004). As in figure 9.4 but with
bed depth of 1m and a single vertical mode (N = 0).

9.3 Convergence of the MMA with respect to the

vertical modes

We have already seen in the previous section that, for a particular problem, the conver-
gence with respect to the vertical modes is rapid and that a single vertical mode provides
a good approximation. In this section, we conduct a brief investigation of the convergence
of the MMA with respect to the vertical modes for our axisymmetric problem. Results
given in this section will use only ice of uniform thickness and a zero draught, as numer-
ical experiments (not presented) have shown that, consistent with our investigation of
two-dimensional motion, it is the scattering caused by the ice edge, not undulations, that
dominate this convergence issue.

Let us consider the form of the scattered solution in the far-field. Earlier, in equation
(9.38), we defined the asymptotic behaviour of the Hankel functions to be outgoing circular
waves that decay at the rate r—1/2
we find that

. Substituting this expression into the scattered solution,

1/2

9 .

e (W) 08 T/ S (0) cosh {k) (2 + )} (r — o0),
0

where

Sp() = By + 2 Z B,,, cos(m#).

m=1
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Therefore, in the far-field the scattered solution can be separated into its radial, azimuthal
and vertical motions. Hence, the function Sg, which contains the amplitudes B,,, that are
calculated as part of the solution process, describes the azimuthal variation of the most
slowly decaying part of the scattered wave.

The scattered far-field is a quantity of importance. However, in the current context we
regard the response of the floe itself as our principal interest. To enable us to concentrate
on the properties of the floe, the main body of results that will be given in the following
chapter will on the whole neglect the form of the scattering outside of the ice-covered
region. For completeness, isolated approximations to the far-field will be presented in
§10.2.2, as in that section we will give an overview of the scattering caused by circular
floes of different thicknesses and radii and at different incident wavelengths. Of course,
it would be possible to use the solution procedure outlined in this chapter to investigate
the solution away from the ice. For this reason, we feel that it is warranted to display the
accuracy of low dimensional approximations to the far-field in this section.

Figures 9.6-9.7 plot the convergence of the MMA to both |n]g—¢ and the function Sg
for the three incident wave periods 7 = 2secs, Hsecs and 10secs and the two ice thicknesses
D = 0.1m and 1m. The radius of the floe R = 50m is maintained throughout as its value
is only important relative to the varied parameters, specifically the incident wavelength.

In figures 9.6-9.7(a-c.ii) the modulus of the function Sp is given as a ribbon plot,
in which the azimuthal dependence is traced around the circle. The magnitude of the
function is represented by the distance of the curve from the origin. However, to prevent
the generally dominant scattering in the direction of the incident wave from obscuring the
convergence of the MMA, the magnitude of the functions in these figures is distorted, so
that the dotted circles shown in fact represent ellipses. Consequently, there is no reason
to indicate the magnitude of the functions in these figures. In similar figures that will be
given later, in which we are concerned with the magnitude and true shape of the far-field
scattering, curves of Sg will not be distorted and its magnitude will be labelled.

As we found in the previous section, the convergence properties displayed in figures
9.6-9.7 are consistent with those observed for the two dimensional problems of partial ice-
cover considered in §5 and §7. For instance, we note that more vertical modes are required
for convergence at smaller wave periods. Also, in relation to the thickness of the ice, we
again observe the trait that low-dimensional approximations are clearly less accurate for
the thicker ice; however, these inaccuracies are eradicated rapidly as the dimension of the
approximation is increased.

Here, a close relationship is seen to exist between the convergence properties of the
MMA (with respect to the vertical modes) for two-dimensional problems of partial ice-
cover and the current three-dimensional problem. This is not unexpected, as we under-

stand the need for the addition of the evanescent modes to resolve the full linear solution to
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Figure 9.6: Convergence of the MMA with respect to the vertical modes. Parts (a-c.i)
are approximations of the modulus of the reduced displacement function on the contour
6 = 0. Parts (a-c.ii) are approximations of the function Sg(¢). The floe is of uniform
thickness 1m, a zero draught and radius 50m, over a flat bed depth of 20m. The incident
wave period is (a.i-ii) 2secs, (b.i-ii) 5secs and (c.i-ii) 10secs. The dimensions of the vertical
coordinate are N = 0 (blue curves) and: (a.i) N =1 (red), N = 3 (green), N = 7 (cyan),
N =12 (magenta) and N = 19 (yellow), with M = 15; (b.i) N =1 (red), N = 3 (green)
and N =9 (cyan), with M = 8; (ci) N =1 (red) and N =4 (cyan), with M = 4; (a.ii)
N = 3 (cyan) and N = 12 (magenta), with M = 60; (b.ii) N = 3 (green) and N = 12
(yellow), with A = 15; (c.ii) N = 2 (green) and N =9 (magenta), with M = 5.

be related to their activation by the sources of scattering that are present in the geometry.
In particular, for scattering at an ice edge, the strength of the activation of the evanescent
modes will be dominated by the frequency of the incident wave and the thickness of the
ice edge, regardless of whether we are in a two-dimensional or a three-dimensional setting.

Furthermore, it is noted that the azimuthal convergence of the MMA is consistent as
the number of vertical modes is varied. Therefore, we may be confident that no important
azimuthal motion is neglected by approximations that have not fully converged with
respect to the vertical modes.

Throughout the results that have been calculated, which extend beyond those that
appear in this section, a single vertical mode consistently provides a high level of accu-
racy. In the results displayed in this section, the only point at which the single-mode
approximation does not sufficiently represent the qualitative properties of the full linear

solution is in the approximation to |n|y—o in a vicinity of the ice edge for D = 1m and
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Figure 9.7: As in figure 9.6 but with ice thickness D = 0.1m, and vertical dimensions
N = 0 (blue curves): (ai) N = 2 (red), N = 5 (green), N = 10 (cyan) and N = 20
(magenta), with M = 40; (b.i) N =1 (red), with M = 15; (c.i) N =1 (red), with M = 9;
(a.ii) N =5 (green) and N = 19 (magenta), with M = 60; (b.ii) N = 3 (green) and
N =7 (cyan), with M = 15; (c.ii) N =1 (red), with M = 5.

7 = 2secs. Nevertheless, the corresponding approximation of the scattered far-field does
not suffer qualitatively.

It is therefore deemed acceptable to use a single vertical mode to gauge the scattering
properties of axisymmetric ice floes. For the numerical and analytical investigation of
the axisymmetric floe problem that will be made in the following chapter we consider
only the single-(vertical)-mode approximation. In doing so, we will find that its relatively
simple structure allows for greater transparency when analysing the results and hence a
more comprehensive understanding of the scattering process. Of course, the accuracy of
the results given by the single-mode approximation can always be checked by taking the
full MMA; however, this is not an avenue that we will pursue in this account of the work

carried out.

9.4 Conclusions

During this chapter we have used the governing equations of the MMA set out in §3
to formulate a solution procedure for a problem involving three-dimensional geometry.

Specifically, we have considered the problem of an ice floe under axisymmetric constraints
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being forced by a plane incident wave.

It was natural to transform from the horizontal cartesian coordinates to polar coordi-
nates in order to perform calculations. The imposed axisymmetry could then be utilised
by expanding the azimuthal dependence of the unknown functions in the form of Fourier
cosine series. This allows the azimuthal modes to be decoupled, which results in a system
of ordinary differential equations, dependent on the radial coordinate only, with corre-
sponding lateral conditions at the ice edge.

In regions of uniform geometry, both ice-covered and ice-free, it is possible to calculate
solutions of these ordinary differential equations and thus provide an analytical form for
the MMA. The structure of these solutions is closely related to the analogous expressions
we obtained for two-dimensional problems. However, in the three-dimensional setting the
horizontal motion is defined in terms of Bessel functions.

A further assumption was made that a disc of an arbitrarily small radius exists around
the centre of the floe in which the geometry is uniform, so that the geometry is permitted
to vary only in the surrounding annulus. This assumption only minimally compromises the
generality of the model, the loss of which is far outweighed by the advantage it affords. By
assuming this disc of uniform geometry we are able to deal with the singularity introduced
by the transformation to polar coordinates analytically, which means that we do not need
to resort to complicated numerical means.

In order to calculate a solution we truncate the azimuthal motion to a finite number
of Fourier modes. We expect the key azimuthal motion to be carried by a relatively small
number of the Fourier modes and hence it to be possible to calculate the MMA at a low
computational cost. Therefore, to calculate the MMA we are required to numerically
calculate the solution of the governing differential equations over the annulus of varying
geometry. The analytical forms of the solution in the uniform regions are used in the
jump conditions to provide the necessary boundary data.

As in the two-dimensional problems considered in §4, it was shown that by manip-
ulating the jump conditions it is possible to reduce the number of calculations that are
needed in order to obtain the approximation. To do this, we removed the amplitudes of
the scattered waves that appear in certain conditions, so that only one numerical solution
over the annulus of varying geometry is required per azimuthal mode.

In §8§9.2-9.3 a limited number of numerical results for the problem of a circular uni-
form floe was given. Initially, we compared our converged approximations with results
obtained by independent authors and found them to be consistent. This was followed
by a brief study of the convergence properties of the MMA with respect to the vertical
modes. As expected, it was found that these properties were identical to those seen in
two-dimensional problems. Notably we have the result that low-dimensional approxima-

tions, in particular the single-mode approximation, give accurate representations of the
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displacement of the floe. Difficulties were only experienced in a vicinity of thicker ice

edges at high frequencies.
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Chapter 10

An axisymmetric ice floe: the

single-mode approximation

During the previous chapter the MMA was formulated for numerical solution to the prob-
lem of an axisymmetric floe forced by a plane wave. The resulting approximation method
required convergence in the azimuthal coordinate in addition to the vertical coordinate.
We have already made a thorough investigation of the convergence of the MMA in re-
spect of the vertical coordinate on numerous two-dimensional geometries in §§5-7, and,
in the numerical results presented in the previous chapter, have seen these properties to
be retained for three-dimensional constructions.

It is therefore of a far greater interest to study the convergence of the approximation
with respect to the azimuthal coordinate. Thus, for consistency when considering the
azimuthal convergence and in order to focus the attention of the more extensive inves-
tigation of this chapter on the properties of the floe we here restrict our approximation
to a single vertical mode. In cases of large obstructions, such as a thick ice edge or a
high frequency, our single-mode approximations will undoubtedly contain inaccuracies,
particularly around the perimeter of the floe. Whilst we accept this, we note that in
most cases the single-mode approximation has proved to be highly accurate and, even for
difficult problems will give a good representation of the displacement of the floe.

As we will now only be dealing with a single vertical mode, the unknown functions
that form the MMA are redefined by

0
Com = Pmy Pom =0 (m=0,...,M).
Similarly, we will also relabel the propagating and complex wavenumbers by

k(] = k: k(()O) = k(o)a Mo, (i) = H() (Z = 17 2):
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and the coefficients of the governing equations as

0
apo =a, Voo =", a(()’()] = a9, U((LO =0,
Our analysis of the scattering properties of an axisymmetric floe, using the single-mode
approximation, will consist mainly of numerical calculations. However, as in previous
problems, the relatively simple structure of the single-mode approximation enables some
purely analytical understanding of the solution to be gained. This work is the subject of

the following section and directly precedes the numerical investigation.

10.1 Piecewise uniform geometry

If we assume an ice floe of uniform thickness and a zero draught over a flat bed, then
we may easily adapt the analysis of the semi-infinite ice sheet problem in §5.1.1, to the
current circular ice floe problem. The difference in the structure of these two geometrical
constructions means that the formulation of the current problem in this context is worthy
of presentation. A zero draught is taken here to isolate other properties; however, in the
following analysis a submergence may be easily implemented, as it was for the semi-infinite
ice sheet problem in §7.5.1.

The form of the single-mode approximation, for a floe of uniform thickness and uniform
draught over a flat bed, may be deduced from (9.34) to be

Pm(r) = Tn(kr) Amo + > VoI (@) Am—i (m=0,..., M), (10.1a)
i=1,2
and
X (1) = T (kr) Ay, + Z T (yr) v (1giy) A= (m =0,..., M), (10.1b)
i=1,2

where y(p) = psinh(uH)/k,

By (1) k sinh(KH ) (k? + p;))

Vo,(0,i) = V() = — " (1=1,2), (10.2)
and ksinh(kH
A, = FmhH) =0, ).
K
In fact, we are actually interested in the amplitudes Ay =LA, (m=0,..., M), as these

are the correct physical amplitudes beneath the floe, having their dimension in units

metres. Outside of the ice-covered domain, the single-mode approximation may be easily
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deduced from (9.36) to be
oOr) =T (kOr) + Hy (K97)B,, (m=0,..., M), (10.3)

where we have redefined the scattered amplitudes B, = B,,.
Due to the constant ice thickness and the property (9.32) of the Bessel functions, the
conditions of zero bending moment and shearing stress at the ice edge applied to (10.1b),

here take the form

{((kR)? = (1 = v)m?) Ju(kR) + R(1 — v) (8,J(kR))} A, +
> {(kpa)? = @ = v)m?) I R) + RA = v) (0 (1 R)) } ¥ (o) Am—i = 0,

i=1,2

(10.4a)

and

{((kR)* + (1 = v)m®) (0, Jm(kR)) + (1 — v)m* I (kR) } Ay +
Y AR + (1= v)m?) (8, Im(nwR)) + (1 = v)m* (e R) } ¥ (1) A, = 0.

i=1,2

(10.4Db)
Following the case of a semi-infinite ice sheet, we use conditions (10.4a-b) to express the
amplitudes associated with the complex wavenumbers, A,, ; (i = 1,2), in terms of the

amplitude associated with the propagating wavenumber, flm, by writing

Y(ky) Am, -1 Am(ER, ) R)
Bttty 7 (2) Am, 2 ~\ —aner, poyR) - 1)
where we define

A, 2) = Zon(0)Fn(2) — T (2) P (w0), (10.62)

with
Zm(w) = (w* = (1= v)m?) Jm(w) + w(1 = ) (DT m(w)), (10.6b)

and
Dn(w) = (w* + (1 = v)m?) w(0pIm(w)) — (1 = v)m* T (w). (10.6¢)

Thus, using equality (10.5) to remove the amplitudes A,, _; (i = 1,2) from expression

(10.1a) we have @,,(r) = @m(r) A, where

Am(kR, i yR)
Am(piy By pa )R

Bn(r) = Tm(kr) = Y )

i=1,2

)Jm(,u(z-)r) (m=0,...,M), (10.7)
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with
o k Sinh(kH)’U(i)

V(i)
and we recall that 5 = (3—(—1)7)/2 (j = 1,2). The unknown amplitudes, A,,, are then

obtained through the continuity conditions (9.24a-b), which we here write as

(i) (i=1,2), (10.8)

0) (0) 2i

{Hm(k(U)R)—g)— (8ram(R)) - (aer(k(U)R)) v—(ﬁm(R)} Am = _—1,1? (10.9&)
v T

form =0,..., M. In order to explicitly calculate the amplitudes A,, from equation (10.9a)

we must assume that the bracketed quantity on the left hand side is non-vanishing. A

situation in which this quantity were to vanish would correspond to a resonance in that

particular mode. Further investigation of this issue will be made later in this chapter.

If required, the scattered amplitudes B, (m =0,..., M) are then recovered via
A g L OR- 0En(R) — (0InKOR) G\ A (10.9b)
ﬂ'R m m a 0) v T@m rYm v Som m- .

Hence, we may completely define the single-mode approximation by explicitly calculating
the required amplitudes, A,, and B,,, from equations (10.9a-b), for use in expressions
(10.1a-b) and (10.3).

The complex wavenumbers yi(;) are defined by the N = 0 case of (4.19), and this may
be solved straightforwardly to give

k*sinh(kH) cosh(kH) ; (1 + Bk*) cosh(kH)
M) = T Sah(RH) cosh(RH) 7 kH D ( B(cosh (kH) + ok sinh(kH))
k* sinh(kH) cosh(kH)(sinh(kH) cosh(kH) + 2kH)\ '/?
* (sinh(kH) cosh (kH) + FH)? ) !

N

(10.10)

for i = 1,2, where we have used the dispersion relation (3.13) and the equality

sinh(kH) cosh(kH) + kH
2k ’

a =

in which the weighting @y = 1 has been taken. Equation (10.10) explicitly defines the
complex wavenumbers in terms of the propagating wavenumber, k, the vertical distances
D and H and the frequency (through ). The solution (10.7) is therefore likewise defined
in terms of these quantities, as well as the radius of the floe.

Supposing that the complex wavenumbers, ji;) (i = 1,2), form a symmetric pair (in

the imaginary axis), i.e. j1) = —fi(2), we have that

Jm(pyr) = (=1)"In(pwer),  Odm(payr) = (=1)"0Jm(per) (m=0,..., M),
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from which it can be verified that

Zn(pyr) = ()" Zn(per),  Zn(por) = (=1)"Zn(ue)r)-

The above equalities lead to the simplification

b

Sm (A(l)Am(lﬁR, ,u(l)R)Jm(/L(l)T))
) = 5

) m(% (h@yR)Y (ua)R))

for use in expression (10.7).

Let us now investigate certain régimes that are of interest. By analysing the behaviour
of our single-mode approximation in these régimes we will be able to draw inferences from
the numerical results that are produced in §10.2. This approximation will then allow us
to make predictions about the response of the ice floe to the incident wave. Details of the

calculations which follow may be found in Appendix C.

Short waves

It will be supposed throughout the following analysis that the frequency, the ice thickness
and the fluid depth produce a propagating wavenumber, &, such that

kH < sinh(kH).

This simply states that the wavelength within the ice-covered region is not particularly
long in relation to the fluid depth. This régime has previously been used in §7.5.1, to
investigate the addition of an Archimedean draught to the semi-infinite ice sheet problem.
When kH < sinh(kH) holds we have already seen in equation (7.8a-b) that the
approximations
a v©® 2k sinh(kH) v k+kO sinh(kH)

—_— — 10.11
al® v k + k© sinh(k©OH)”  v© 2k sinh(kOH)’ ( )

are valid when the ice rests on the fluid surface. The approximations

L1\
2o =k — (=i | ——— =1,2 10.12
:U’(J) ( ) 1(,8(1+Oék)> (] ’ )a ( 0 a)
e 21+ ab)E (K + 42
+ o —+ 1.
by ~ — o) = 1,9), (10.12b)

1+ Bk*
also result from applying kH < sinh(kH) in (10.10) and (10.8) respectively. If we further
assume that ak < 1 < Bk*, which is typical of the values that occur for the parameters
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used in our numerical calculations, then approximations (10.12a-b) simplify to
piy = —(1+ (=1)7)E (=1,2), (10.13a)

and
o) ~ (1721 (j=1,2). (10.13b)

From (10.13a) we can indeed conclude that the complex wavenumber form a symmetric
pair, with
fry = 24k ) A 2M e, (10.14)

These approximations will now be combined with other régimes that concern the radius

of the floe in relation to the wavelengths.

Large floes

Initially, we assume that the radius of the floe is large in relation to the wavelength in
the presence of ice-cover and the free-surface wavelength, so that the inequalities kR > 1
and k(R > 1 hold. Note that as the free-surface wavenumber, k¥, is greater than the
ice-covered wavenumber, k, in all but exceptional circumstances, the requirement kR > 1
will suffice here.

In this case, we may use standard Bessel function expansions (see Tranter, 1968, for

example) to determine the relevant approximations

2 \? 2m + 1
Jm(kR) ~ (ﬁ) oS (kR = ) , (10.15a)
[0, 3 (k)] e(2) g (op - 2t (10.15D)
rdm\RT)]|r=R kR Sin i s .
1 1/2 v : :2m+1
Jm (1) R) ~ (2 R) eIk R g ~iRe( (o) RHT= (10.15¢)
TH )
1 1/2 ~ . s 2m+41
[0r I (paiyT)Jr=r ~ —ipg) (27r,u(-)R> e 3m (i) R g =iRe(puqn) ) RAHT == (10.15d)
2 1/2 i1.(0) p_; 2m+1
H,,(kOR) ~ ( k(O)R> R RS (10.15¢)
m
and 5
0 ~ ik ik R—iZ2t
[0, Hy (K 7)] =R ~ ik <7rk(0)R> e i (10.15f)

form =0,..., M, to be used in conditions (10.9a-b).
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It follows from (10.15a-d) that
(W) ~ w I (w), Z(w) ~w*(OpIm(w)) (m=0,..., M), (10.16)

for w = kR, pyR (i = 1,2), which will be of use in finding the approximate values
of om(R) and 0,9, (R). Specifically, we combine the approximations given in equations
(10.13b), (10.14), (10.15a-d) and (10.16) in (10.7), to deduce that, in the chosen régimes,

Gm(R)AJ( . )me, OrPm(R) ~ —k <i>l/2ym (m=0,...,M) (10.17)

kR kR
where
2m+1 T 2m +1
_ (1 _9l/2 _  o—1/4 TN . _
X = (1—27%)cos (kR ym ) 27" esc (8) sin <kR ym ) ,  (10.18)
and
_ol1/4 z _2m+1 1/2 E . _2m+1
Y, =2 csc(s)cos (kR i +<1+2 Cot<8))sm kR = .

It is now possible to settle on an approximation to the amplitudes, Em, within the
ice-covered domain. Using (10.17) in (10.9a), along with the approximate coefficients

(10.11) and approximate Hankel functions (10.15e-f), results in

2k? k+ kO - [k 3/2 kO R
(10.19a)

which holds for kH < sinh(kH), ok < 1 < Bk* and kR > 1. As the frequency increases
or the ice becomes thicker the régime £ > k is attained (see figure 5.10(a)) and the

above approximation may be simplified to

A 2 E O\ —ik(©) R4i2ptl —
m R —— <W) e = (m=0,...,M). (10.19b)

The validity of the approximations (10.19a-b) is represented graphically in figure 10.1.
In this figure, the exact amplitude A,, is plotted as a function of kR for the first two
azimuthal modes (m = 0,1), alongside the approximations derived above. The quantity
kR is varied through the frequency rather than the radius of the floe, so that the geometry
remains fixed throughout. Varying the frequency leads to a non-constant relationship
between values of the wavenumbers k£ and k%), which affects the assumption k < k(¥ that
produced the simpler of the approximations, given in (10.19b). Therefore, two particular

values of the quotient k/k(o) are plotted on each of the subfigures, so that we may judge
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Figure 10.1: Comparison of the exact amplitudes, A (m = 0,1), (blue curves) in the
uniform problem with their approximations, which are derived for the régimes kH <
sinh(kH) and kR > 1 in equation (10.19a) (red) and additionally & < k(® in equation
(10.19b) (green). Amplitudes are plotted as functions of non-dimensional wavenumber
kR. Two values of the ratio of the ice-covered and free-surface propagating wavenumbers
are also plotted, with k/k©® ~ 0.25 () and k/k(® ~ 0.1 (x).

the validity of the simpler approximation.

As predicted, we note from figure 10.1 that there is good agreement of the approxi-
mations of A,, to its exact value as the régime kR > 1 is attained. Moreover, consistent
with the derivation of approximation (10.19b), the two approximations tend towards one
another as the relative values of the wavenumbers k/k(®) decreases.

For the larger values of kR, the approximations are deficient in one aspect. This is in
their accuracy around the fine structure of the amplitudes. Such fine structure has been
noted previously at high frequencies for finite floes in the context of partial ice-cover, and
was attributed to interactions within the floe. We note that the fine structure is a product
of the oscillatory nature of the coefficient of the amplitude A, in (10.9a). Specifically, it
is a minimum in this coefficient that results in the observed maximum in the amplitudes.
Such behaviour is particularly sensitive and it should not be surprising that it is difficult
to approximate. Moreover, as the effect of the trigonometric functions in the relative
magnitudes of the values X,, and Y,, were not considered when deriving approximation
(10.19b), its sensitivity around these points is most acute.

The difficulty in the approximation of the fine structure is particularly evident in figure
10.1(b) at the point kR = 5.3. Here, the approximation that assumes k(®) > k predicts
a resonance rather than a finite maximum, as is attained by the exact amplitude and the

other approximation. The spurious resonance arises due to the quantity X; vanishing,
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which, with reference to its definition (10.18), occurs when

3 2!/4sin (%)

We deduce that approximation (10.19b) will predict an infinite number of (spurious)
resonances in each azimuthal mode.

By retaining the term relating to the quantity Y;, in approximation (10.19a) the spu-
rious resonance is avoided and the fine structure is represented well. We may therefore
deduce that resonance does not occur in the exact solution for large kR due to the os-
cillatory parts of the terms involving @, and 0,%,,, in equation (10.9a), not vanishing
concurrently. Furthermore, this indicates that the maxima result from zeros in the oscil-
latory part of the dominant term (involving ¢,,), at which point the magnitude of the
bracketed quantity on the left-hand side of (10.9a) becomes dependent on the magnitude
of the non-dominant term (involving 0,,,).

Note that, our approximation of the oscillatory part of the dominant term, i.e. the
oscillatory part of X,,, is identical to the oscillatory part of the corresponding Bessel
function of the first kind J,,,(kR) in the régime kR > 1 (see equation (10.15a)). We can
therefore relate the maxima in the amplitude A,, to the points at which the values kR
coincide with the zeros of the Bessel function J,,. The behaviour of the Bessel function
of the first kind is such that for a finite floe length R and k < k,,,, where k,,, is finite,
the limit (10.15a) will only be attained for orders m < m,, for some finite number m,y,,
(see Tranter, 1968, for example). These Bessel functions may then contain zeros at some
values of k through the oscillatory part of (10.15a); however, all higher orders will be
non-vanishing. This leads us to conclude that, for a fixed floe and frequency range, only a
finite number of modes will experience a fine structure for large kR. Consequently, we can
be confident that a disproportionally large response is very unlikely in high order modes
and we will not eliminate any significant motion through truncation of the azimuthal

coordinate.

Small floes

We now turn to the opposing limit, in which the radius of the floe is small in comparison
to the ice-covered and free-surface wavelengths. This is described by the régimes kR < 1
and k(R < 1. Repeating our argument that, under most circumstances, k < k(©, we
need only consider that ('R < 1. We note that the case in which k(O R < 1 is of less
interest than the case kR > 1, as we expect the floe to go relatively unnoticed when the
incident wave is long in relation to the diameter of the floe. However, it is still worthy
of investigation and we will also use the asymptotic limits required here to help describe

the motion near the centre of the floe in the next section.
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For small arguments wR, where w = k or p; (i = 1,2), the Bessel function of the
first kind is such that

To(wR) ~ % (“’2—R> , (10.20a)
and 2p
_w2 (m = 0)7
O [Im(wr)]r=p ~ w(wR)™-! (10.20b)
mm—1y1 (™70

Similarly, the Hankel function of the first kind is seen to behave as

4 In(k9R) (m = 0),
Hn(kOR) ~{ " m (10.20¢)
B (m7r 1)! <k<02)R> (m £ 0).
and 9
E (m = O)a
[aer(k(U)r)]r:R ~ (1020d)

im! 2 \"
] (W) (m # 0),
for small arguments k(O R.
It is convenient to consider the behaviour of quantities in the current régime in terms
of orders of magnitude. By using the form of the Bessel functions J,, given in (10.20a-b),

with w = k and pg) (¢ = 1,2), and taking the limits (10.13a-b), derived for the case
kH < sinh(kH), in (10.7), we find that

Em(R) =O((kR)™), k'0,om(R) =0 ((kR)™") (m=1,...,M). (10.21)

Applying (10.21) to (10.7) along with the corresponding approximations of the Hankel
functions via (10.20c-d) and the approximations of the coefficients, which are given in

(10.11), we obtain the following relation

- L0\ ™1
Gk, ko) Ay = O (T) (m=0,...,M), (10.22)

where the function G, is given in Appendix C. This is not particularly helpful unless we
consider the frequency to be large enough or the ice thickness to be great enough that
k < k©, in which case

~ L0 "2

The equations (10.22) and (10.23) allow us to describe the behaviour of the amplitudes
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100

Figure 10.2: Comparison of the amplitudes A (m =0,...,3) for small kOR. In part
(a) the ratio of the ice-covered and free-surface wavenumbers k/k(®) ~ 0.95, which refers
to equation (10.22). In part (b) k/k® =~ 0.055, which refers to equation (10.23). The
orders of the amplitudes are m = 0 (blue curves), m = 1 (red), m = 2 (green) and m = 3

(cyan).

beneath the ice, when kYR < 1, to some extent. In figure 10.2 exact values of the
amplitudes A, (m =0,...,3) are plotted as functions of k(O R for two different ratios of
the wavenumbers. Here, the quantity k() R varies with the radius and all other parameters
are held constant. When the wavenumbers in the ice-covered and ice-free regions are
similar, as in figure 10.2(a), the relation (10.23) does not hold and we deduce only from
(10.22) that the amplitudes will be of approximately the same magnitude. However, when
the free-surface wavenumber is far greater than the ice-covered wavenumber, as in figure
10.2(b), relation (10.23) applies, so that the ratio of these two wavenumbers dominates
and the magnitude of the amplitudes will increase with m. Both of these predictions are

consistent with the relevant results presented in figure 10.2.

10.2 Results

In this section we conduct a numerical investigation of the problem of an axisymmetric ice
floe forced by a single plane incident wave, using the single-mode approximation. As has
been mentioned previously, we are particularly concerned with the properties of the ice
floe itself, under such forcing. We will consider how changes to the properties of the floe,
specifically its thickness, radius and draught as well as the introduction of undulations,
affects the displacement it experiences. These issues will be studied for a range of incident
wavelengths. The influence of the bed is not our primary concern and a constant depth
of 20m will be retained throughout. We note that if one wished to do so, our formulation

permits a full investigation of the response away from the floe.
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10.2.1 Azimuthal convergence of the MMA

Before we begin to draw physical conclusions from the results of our single-mode approx-
imation, it is necessary to consider the issue of the convergence of the approximation
with respect to the number of azimuthal modes. In particular, we wish to establish our
conjecture that only a relatively small number of these modes will allow us to accurately
describe the motion within the ice-covered region. This investigation is restricted to ice
of uniform thickness and a zero draught, as the inferences that we draw may be readily
extended to varying geometry.

Here, we wish to attain the single-mode approximation to the reduced displacement,
7, through the choice of a suitably large number of azimuthal modes, M. The rate of
convergence will, clearly, be closely linked to the relative magnitudes of the amplitudes
A (m =0,..., M), and, as such, we make use of the discussion and findings of §10.1.
At each point within the domain occupied by the ice floe (r < R), it is actually the
relative magnitudes of the compound quantities A,,J,,(r) cos(mf) that govern the con-
vergence rate. Although we do not study the issue in detail here, it is noted that the
free-surface region depends on different compound quantities and will therefore have a
separate convergence rate. We will confine our examination to the contour # = 0, so that
each azimuthal mode is weighted equally. Tt is accepted that the convergence of [n]g—o
does not necessarily imply convergence at all points within the ice; however, it proves to
be sufficient for our purposes.

We will consider the convergence issues as we vary the ice thickness, D, and the
floe radius, R, as well as the incident wavelength, A\(®). Each of figures 10.3-10.5 plots
the convergence of the single-mode approximation against the modulus of the reduced
displacement, for the three incident wavelengths A = 10m, 30m and 100m and the two
thicknesses D = 0.1m and 1m, where a radius R = 10m, 50m or 100m is maintained
respectively.

Let us again note that J,,(z) = O(2™) as z — 0. There is therefore a value of r < R in
all of the floes for which the mth mode dominates over the (m + 1)th mode to any given
tolerance, which is relative to the amplitudes Zm and the wavenumber k. Note that the
behaviour we are referring to is separate from the limit k(¥ R < 1, which was studied in
the previous section. The dominance of the lower-order modes is clear in the convergence
shown in figures 10.3-10.5. The physical implication of this finding is that the flexure of
the ice towards the centre of a circular floe is less than at its edge.

As the value of 7 < R increases, and hence so does kr, more of the Bessel functions
become significant. Therefore, a greater number of azimuthal modes is required to achieve
convergence around the edge of the floe (and hence throughout the floe). Considering the
wavenumber £ fixed, the scope for the growth of kr is evidently dependent on the radius

of the floe, R, so that the number of azimuthal modes required increases with the radius
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Figure 10.3: Azimuthal convergence of the single-mode aproximation to |n|g—¢. The floe
has uniform thickness D = 1m (solid curves) and D = 0.1m (dot-dash), with a zero
draught and radius 10m. The incident wave has length (a) A = 10m, (b) A\(®) = 30m
and (c) A® = 100m. The azimuthal dimensions of the approximations are M = 0 (blue
curves) M = 1 (red) M = 2 (green), M = 3 (cyan), M = 4 (magenta) and M = 5
(yellow).

of the floe. We infer from this observation that the motion within a larger floe is generally
more complicated than that within a smaller floe, which is to be expected on intuitive
grounds.

We have seen previously, for example in figure 5.10(a), that the wavenumber, k, de-
creases in value as the ice thickens or the incident wave lengthens. The value of kr is
therefore smaller when the ice is thicker or the incident wave is longer (at each fixed r)
and hence the lower-order modes dominate for a greater proportion of floe in such cir-
cumstances. This is reflected in the results that show that a smaller number of azimuthal

modes is required for convergence both as A(?) increases and as the ice thickness increases.

 [lo=o

o 5 10 15 20 25 30 3 a0 45 50
a0 0

r T r
Figure 10.4: As in figure 10.3 but with floe of radius 50m. The azimuthal dimensions of
the approximations are: in part (a) M = 2 (blue curves) M = 7 (red) M = 8 (green),
M = 14 (cyan) and M = 25 (magenta); in part (b) (b) M = 2 (blue curves) M = 4 (red)
M = 8 (green), M = 10 (cyan) and M = 14 (magenta); and in part (¢) M = 2 (blue
curves) M = 3 (red) M =4 (green), M = 8 (cyan) and M =9 (magenta).

In §10.1 we deduced an approximation for the amplitudes Em that holds under the
conditions kR > 1 and sinh(kH) > kH. To do so, we used an asymptotic limit of the
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Bessel functions of the first kind, which is given in equations (10.15a-b); however, for any
combination of £ and R, this limit will only have been attained by a finite number of
these Bessel functions, with all such functions of a higher order being negligible. Clearly
then, we have the result that a larger value of kR leads to a greater number of modes
significant in resolving this issue. We note that, for KR > 1, the limit reached by the
Bessel functions, J,,, of contributing magnitude differ only in their oscillatory phase, with
a magnitude dependent on the value of kR. Similarly, the approximations (10.19a-b)
suggest that the limits attained by the significant amplitudes, Em, have a magnitude that
is largely dependent on the relationship between the wavenumbers k and &) and not the
order m. However, this ignores the complications of the fine structure these amplitudes are
prone to in this limit, which are introduced through the values X,, and Y,,. We will look
into the issue of fine structure more closely at a later point of this chapter. Consequently,
at the edge of the ice we find that the non-trivial modes are of comparable weight and
hence all of these contributing modes must be included to achieve convergence at this
point. Again we conclude that a larger floe or a larger wavenumber beneath the ice, the
latter caused by a shorter incident wave and or thinner ice, will necessitate inclusion of a
greater number of azimuthal modes for convergence.

Although for large values of kR there may be a relatively high number of modes that
contribute to the motion at the edge of the floe, we have already seen that the higher-
order Bessel functions decay rapidly towards the centre of the floe. We therefore find that
waves within the floe become damped away from the edge to a degree that depends on
the number of significant modes at the edge. This feature is noticeable in a number of
the sets of results, particularly the D = 0.1m case of figure 10.4(a).

The régime kR > 1 can be attained in two ways. The first is through the radius, R,
increasing, for which the limiting magnitude of the amplitudes remains fixed. The second
is through the incident wavelength, A, decreasing, for which we have & — oo and
E® — oo and k/k©® — 0 as A(®) — 0. In this case we refer to the second approximation
(10.19b) and deduce that a shortening of the incident wavelength will typically result in
a decrease in the magnitude of the amplitudes. As the magnitude of the displacement,
towards the centre of the floe, is dependent on the size of the amplitudes of the primary
modes, we infer that, away from the ice edge, as the incident wavelength shortens, the
magnitude of the displacement function decreases. This may be interpreted as a resistance
to the incident wave. We note that this is relative to the thickness of the ice, so that,
since k decreases as D increases, the phenomenon is more prevalent for thicker ice floes.

The second régime ivestigated in §10.1 was k(Y R < 1, which may be attained by a
relatively small radius R or a relatively long incident wavelength. Assuming k < k(©,
we see that the limit (10.23) holds, so that the amplitudes grow in magnitude as the

order increases. By combining equation (10.23) with the corresponding limit of the Bessel
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Figure 10.5: As in figure 10.3 but with floe of radius 100m. The azimuthal dimensions of
the approximations are: in part (a) M = 2 (blue curves) M = 6 (red) M = 10 (green),
M =12 (cyan), M = 23 (yellow) and M = 38 (magenta); in part (b) (b) M =5 (blue
curves) M = 7 (red) M = 11 (green), M = 14 (cyan), M = 19 (yellow) and M = 27
(magenta); and in part (c) M = 5 (blue curves) M = 7 (red) M = 8 (green), M =9
(cyan) and M = 13 (magenta).

functions of the first kind (10.20a), we deduce that

Jm(ER) A = O ((lﬁ]—?Ry (k(U)R)m) : (10.24)

which implies that the lower-order azimuthal modes dominate throughout the floe. If we
cannot assume that the wavenumber beneath the ice is significantly less than the free-
surface wavenumber, then equation (10.22) rather than (10.23) holds. In figure 10.2(a) we
saw that in this case the amplitudes are of approximately the same magnitude and this
means that the dominance of the lower-order modes within the floe is more pronounced.

Expression (10.24) closely resembles the behaviour of the incident wave in this limit,
reduced by a factor which is proportional to the difference in the two wavenumbers. As
predicted, we therefore infer that, for small k(O R, the motion beneath the ice is that of
the incident wave, whose amplitude is damped by the presence of a surface load. As the
floe is small in its extent in relation to the wavelength, we envisage this situation as that

of the floe merely resting on the passing wave with its flexure being negligible.

10.2.2 Uniform floes

From this point on we will consider only approximations that have converged sufficiently,
with respect to the azimuthal coordinate, to the single-vertical-mode approximation. Our
investigation of the scattering properties of axisymmetric floes starts with the restriction
to floes of a uniform thickness and a zero draught (over a flat bed) and will incorporate
some of the observations made in our discussion of the azimuthal convergence in the
previous section. We note that a similar investigation was made by Meylan & Squire
(1995) over an infinite fluid depth for R = 50m—400m, D = 0.5m—5m and A(®) = 100m.
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Figure 10.6: Parts (a-c) display single-mode approximations of the floe displacement at
t = 0, for a floe of uniform thickness D = 1m, a zero draught and radius 10m. The
incident wavelength is (a) A(® = 10m, (b) A® = 30m and (c) A = 100m. Part (d)
gives the corresponding ribbon plots of the ‘far-field scattering’, |2Sp /&), as functions
of the azimuthal coordinate. The dotted circles define the level surfaces of the function
and two of the values are indicated on the contour # = 37 /4. Here, the wavelengths are
MO = 10m (blue curve), A® = 30m (red) and A® = 100m (green). In parts (a-c) the
dimension of the azimuthal coordinate is M = 2; and in part (d) M = 10 (blue), M =5
(red) and M =4 (green).

For figures 10.6-10.11 we reintroduce the harmonic time dependence to the displace-

ment function, which was removed in equation (2.8) by writing

((,y,t) = Re (n(z,y)e ™).

These figures then display azimuthally converged single-mode approximations to the dis-
placement function, at the initial moment in its harmonic cycle, [(];=¢ = Re(n), for the
sets of parameters that were used in the previous section. Corresponding ribbon plots of

the coeflicient,

(%) - Sp(0) = <%> " { (BO + 2mio:le cos(m9)> } :

of the outgoing circular wave
,r—l/2ei(k(0)R—7r/4)
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Figure 10.7: As in figure 10.6 but with floe of radius 50m. In parts (a-c) the dimension
of the azimuthal coordinate is M = 8; and in part (d) M = 36 (blue), M = 13 (red) and
M =7 (green).

Figure 10.8: As in figure 10.6 but with floe of radius 100m. In part (a) the dimension
of the azimuthal coordinate is M = 12; in parts (b-c) M = 11; and in part (d) M = 68
(blue), M = 36 (red) and M = 10 (green).

which is the slowest decaying part of the scattered wave in the far-field, are also given

in parts (d). Unlike figures 9.6-9.7, here we are interested in the physical implications of

208



a-c) the dimen-

Figure 10.9: As in figure 10.6 but with floe of thickness 0.1m. In parts (
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Figure 10.10: As in figure 10.9 but with floe
the azimuthal coordinate is M = 25; in
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209



it
SO\t
jl

SO Al
iy

)i /\/"

?

1<k

7
LSl
S

o/Le=0
Figure 10.11: As in figure 10.9 but with floe of radius 100m. In part (a) the dimension
of the azimuthal coordinate is M = 38; in part (b) M = 27; in part (¢) M = 18; and in
part (d) M =71 (blue), M = 27 (red) and M =9 (green).

these functions and hence plot the above scattered coefficients in ribbon plots where the
aspect ratio is fixed.

For D = 0.1m the ice is generally compliant with the incident wave and we observe
near-plane waves travelling through the ice floes. The ice displays the tendency to elongate
the incident wave and we see the phenomenon of damping of the amplitude away from the
ice edge. Observe also, in figure 10.11(a) for example, that the circular shape of the ice
also slightly curves the plane wave. For D = 1m the ice is less prone to become displaced,
which may be interpreted as the ice resisting the incident wave. In those situations for
which wave motion exists within the ice floe of 1m thickness, for instance in figure 10.8(a),
the plane incident wave is distorted by the greater influence exerted by the thicker ice
and the displacement of the floe is consequently complicated.

The far-field scattering of the incident wave by the floes of both thicknesses is generally
strongest in the direction of the incident wave, § = 0. We note that the thicker ice, which
is more resistive to the incident wave, tends to reflect more of the incident wave into the
region x < 0 (7/2 < 6§ < 37/2), whereas the thinner ice, for which the incident wave
propagates through the floe, scatters almost entirely into the region x > 0 (7/2 > 6,60 >
31/2).

As the length of the incident wave increases, we have seen that the wave beneath the
ice tends to behave like the incident wave and this effect can be seen in the figures. For

example, compare the effect of a 30m incident wavelength in 10.11(b) to the 10m incident
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Figure 10.12: Two-dimensional cross-sections of floes with trigonometric edge rims, de-
fined by equation (10.25), which here take the form of both a submergence and a surface
protrusion.

wavelength of 10.11(a) and note that it leads to a far less pronounced curvature within
the floe. A second example is the near plane wave that travels through the 1m thick floe
of 100m radius when the incident wavelength is 100m, which is shown in figure 10.8(c).
Correspondingly, it is unsurprising to find that a relatively small amount of scattering is
caused for long incident waves compared to short incident waves, for which it has been

noted that the ice is more resistant to the incident wave.

10.2.3 The addition of axisymmetric variations

We will now consider how the addition of axisymmetric variations to the thickness affects
the deformation the ice experiences. We therefore reintroduce the positive value ¢ <
R, and assume again that the geometry is uniform in the disc » < . The full model
formulated in §9.1 is only restricted in that, for the present, we retain zero submergence
at the edge of the floe.

As in §9.3, the results presented in this section will be only for a floe radius of 50m.
However, all of the conclusions that are drawn may be easily interpreted for floes of
different sizes.

The first variation is the addition of a trigonometric rim to the edge of the floe, of the

form
DO (0 <r< 5),

D(r) = m(r—e) (10.25)

D(] + AT‘ Sin2 <ﬂ) (5 <r< R),

where Dy is a positive constant and A, is the amplitude of the rim. Figure 10.13 plots

a series of approximations to the modulus of the reduced displacement function along
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the z-axis. Ice floes including a trigonometric rim of the form (10.25), are shown for
thicknesses Dy = 0.1m and 1m and rim amplitudes A, = 0 (uniform thickness), Dy and
5Dy. Furthermore, the rim takes the form of both a submergence, so that

d(r) = A, sin? (%) (re <7 < R),

and also a protrusion on the upper surface of the ice with d = 0 instead. These two
configurations are shown in figure 10.12. The three incident wavelengths A(¥) = R/10,
R/4 and R are used and the width of the protrusion is 20m throughout (¢ = 30m).

(a.ii) - (i)

] |77|§/:0 ]

5 |§77|§/:g§ § gz 8

Figure 10.13: Comparison of the moduli of reduced displacement functions along the x-
axis of floes of radius 50m and including a trigonometric edge rim, as defined in equation
(10.25). The rims are of length 20m, and are in the form of a submergence (solid curves)
and a surface protrusion (dotted). The amplitudes are A, = 0 (black curves), A, = Dy
(blue and red) and A, = 5D, (cyan and magenta). The incident wavelength is (a-b.i)
MO = 5m; (a-b.ii) A® = 12.5m and (a-b.iii) A(®) = 50m. In parts (a.i-iii) Dy = 0.1m, and
in parts (b.i-iii) Dy = 1m.

In our study of two-dimensional scattering by ice of varying thickness, conducted in
§86-7, it was shown that there is a close relationship between geometries that share the
same ice thickness, D. Analysis of this phenomenon was carried out in §6.4 for the single-
mode approximation and in §7.4 it was shown that the similarity may weaken for those
problems that converge more slowly, which is particularly evident in situations of partial
ice-cover.

The analysis of §6.4 may be trivially modified to be applicable to the single-mode

approximation for the current, three-dimensional problem and it is therefore unsurprising

212



9 R—¢
I D, D, . " ‘/l/\/\/
1ce

H, water

bed

Figure 10.14: Two-dimensional cross-section of a floe with a quadratic increase in thick-
ness, which is defined in equation (10.26), and here appears in the form of a pressure
ridge.

to find that the correspondence between the submerged rim and the upper surface rim
follows the behaviour witnessed for two-dimensional flows. That is, those geometrical
variations that share a common ice thickness, D, produce similar results. Any differences
between the two are exaggerated by a (relatively) large amplitude, A,, and a thinner
ice thickness, Dy. Moreover, as variations to the fluid depth become more significant
for longer incident waves, from the plots that use the largest value of A(?), we observe a
greater deviation between the results for the corresponding positions of the rim. It follows
that the displacement caused by the submerged rim and the upper surface rim are most
distinct for the instance of the largest amplitude, A, = 5Dy, the thinnest ice thickness,
Dy = 0.1m and the longest incident wave, A(®) = R, which appears in figure 10.13(c).

We also consider a second geometrical variation, which is of the form

D[] (0<7’<7‘E),

D(r) = (10.26)

r—Te¢

R—r.

2
D0+(D1—D0)< ) (T€<T<R),
and describes a quadratic increase, away from the edge of the floe, in the ice thickness.
The values D; (i = 0,1) are positive constants, such that Dy > Dy, with D, denoting the
ice thickness in the disc of uniform geometry and D, the ice thickness at the edge of the
floe. An example of a cross-section of a floe that varies in this fashion is shown in figure
10.14.
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(a-ii.ii) (b.ii.ii) (c.ii.ii)

Figure 10.15: Contour plots of the moduli of the reduced displacements of floes along with
scattered free-surface profiles surrounding the floes, comparing the results of quadratically
varying floes (parts (a-c.i-ii.i)) with corresponding uniform floes (parts (a-c.i-ii.ii)). The
thicknesses of the quadratically varying floes are defined by equation (10.26) with e = 10m
and with Dy = 10Dy, and are in the form of pressure ridges. In parts (a.i-ii.i) the thickness
is D; = 0.1m, in parts (b.i-ii.i) Dy = 0.25m and in parts (c.i-ii.i) Dy = 0.5m. The
uniform floes have thicknesses chosen to be equal to the avereges of their corresponding
varying floes. Each floe has the radius R = 50m. The incident wavelength is (a.i.i-ii)
A0 = 7.15m, (b.i.i-ii) A® = 6.6m, (c.i.i-ii) A® = 1.25m, (a.ii.i-ii) A\ = 80m, (b.ii.i-ii)
A0 = 40m and (c.ii.i-ii) A(®» = 25m. In each subdomain, depending on which function
is being displayed, there are ten contours eqispaced between 0 and either 0.95 x M;

or 0.95 x M,, where M; = max|n| and M, = max|d,[¢ — ¢r].—on|. We have (a.i.i)
M; ~ 2.27 x 107" and M,| ~ 1.34; (aiil) M; ~ 1.72 x 107" and M, ~ 1.22; (b.ii)
M; ~ 9.62 x 10~2 and M, ~ 1.26; (b.iii) M; ~ 1.59 x 102 and M, ~ 1.12; (c.i.i)
M; ~ 1.55 x 1072 and M, ~ 1.27; (c.iii) M; ~ 5.18 x 10 and M, ~ 1.23; (a.ii.i)
M; =~ 1.10 and M,, ~ 7.24 x 107!; (a.i.ii) M; ~ 1.18 and M, ~ 7.72 x 10~} (b.ii.i)
M, ~ 3.22 x 10 and M, ~ 1.32; (b.iiii) M; ~ 3.45 x 10! and M, ~ 1.24; (c.ii.i)
M; =~ 8.33 x 1072 and M, ~ 1.16; (c.ii.ii) M; ~ 6.49 x 1072 and M, ~ 1.14.

Figure 10.15 gives contour plots of approximations to the reduced displacement func-
tion over the floe, along with the surrounding free-surface elevation of the scattered
wave, [0,(¢ — &r)].=0. Each contour plot is subdivided such that the upper half do-
main (0 < # < 7) and the lower half domain (7 < 6 < 27) display different but related
problems. The upper half domain features a floe whose thickness varies as in equation

(10.26) in the form of a pressure ridge, with Dy = 10D, which is the particular form of
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variation displayed in figure 10.14. Following Vaughan & Squire (2006), the ridge is set
so that the increment in the upper surface of the ice to the lower surface is in the ratio
2 : 7. (For this problem, results not presented show again that ice floes sharing the same
thickness, D, have almost idential behaviour to one another). The lower half domain
contains results from uniform floes of a thickness chosen to match the mean thickness of
the corresponding floe of varying thickness.

In figure 10.15 three edge thicknesses are investigated, namely D; = 0.1m, 0.25m and
0.5m. For each, a pair of subfigures display the differing response of the floes to a relatively
short and a relatively long incident wave. It is clear that, for each pair, the shorter of the
two incident waves distinguishes the response of the varying floe from that of the uniform
floe, whereas for the longer incident waves, the two floes behave in a similar manner both
qualitatively and quantitatively.

Our choice of incident wavelengths was made judiciously in order to highlight these
characteristics. The longer of the incident waves was chosen to be as short as possible
whilst the floes retained their similarity. We note that the value of the longer incident
wave decreases as the ice edge, Dy, becomes thicker. Likewise, it is noted that length of
the shorter of the incident waves that we use decreases as the ice edge becomes thicker.
The values of the shorter incident waves were selected to demonstrate extreme cases
of differing behaviour; however, for an interval of relatively short incident waves, these
extremes are by no means unique. The use of the description ‘relatively’ is dependent on
both the radius of the floe and on the wavelength beneath the ice (through the thickness
of the ice).

10.2.4 Fine structure

In figures 10.15(a-c.i) the differences in the displacement experienced by the quadratically
varying floes and the uniform floes can be attributed to the excitation of a particular
azimuthal mode. In part (a.i) the excitation is of the third mode (m = 2) of the uniform
floe; in part (b.i) the fourth mode (m = 3) of the quadratically varying floe and in part
(c.i) the primary mode (m = 0) of the quadratically varying floe. Note that, due to
the dominance of the lower-order Bessel functions towards the centre of the floe, which
was discussed in our investigation of the azimuthal convergence earlier in this section,
the higher the order of the excited mode the further away from the centre of the floe its
dominance becomes apparent. This effect is evident in the disproportionate magnitude of
the fourth mode seen in the upper half plane of figure 10.15(b.ii), which manifests itself
only in a vicinity of the ice edge, whereas in the upper half plane of part (c.ii) the primary
mode prevails throughout the floe.

The excitation of a particular azimuthal mode is the product of a local peak in the

value of the corresponding amplitude, Zm Such peaks have been observed previously in
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figures 10.1 for kR > 1, which describes incident waves that are short in relation to the
radius of the floe, relative to the ice thickness. The occurrence of such local maxima has
been described by the use of the term ‘fine structure’. Fine structure has also been noted

for finite ice floes in a two-dimensional context in §7.3.

A0 /R C )R

Figure 10.16: Comparison of the amplitudes A,, of a uniform floe (blue curves) and the
corresponding quadratically varying floe (red), as functions of non-dimensional incident
wavelength. The floes are as in figure 10.15, with (a) Dy = 0.1m, (b) D; = 0.25m and
(c) Dy = 0.5m. The amplitudes are chosen to be those that appear dominant in the
displacement of one of each of the pairs of floes for the problems displayed in figures
10.15(a-c.i.i-ii).

In figures 10.16(a-c) the amplitudes pertinent to figures 10.15(a-c.i) respectively, are
plotted as functions of incident wavelength. These figures confirm that the extreme be-
haviour appearing in figures 10.15(a-c.i) coincides with peaks in the amplitudes. It is
noted that each peak that relates to a short wave value of figure 10.15 is accompanied by
a peak in the related ice configuration at a nearby incident wavelength. Comparison of the
corresponding amplitudes indicates that the peaks caused by the quadratically varying
ice are less severe than those of the uniform ice and will consequently lead to less extreme
displacement of the floe. We also note that the peaks are locally significant to a greater
degree for shorter incident waves.

With reference to equation (10.9a), the peaks observed in the amplitude Em, for floes
of an uniform thickness, are caused by minima in the function
(0

Fn(k) = Hyn (KO R) 55— (0:Pm(R)) = (0 Hm (k" R)) ——Gm(R)  (m =0,..., M).
(10.27)
In this context we consider the geometry to be fixed, so that the function F), is only
dependent on the frequency parameter .
Equation (10.27) is easily extended to floes of varying geometry. To do so, we consider

the vectors of unknown functions as the linear combinations

Wom =Ypo(r)Amo+ Y T i(r)Ap_; (m=0,..., M),

i=1,2
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T
where the vectors ¥,, ; = (cpm,j, XS?J" Xfﬁb) (j = 0,—1,—2) are solutions of the initial-
value problem defined by the differential equation (9.21), and also satisfy the conditions

V), = (VCTn() O, VI = (VCT(E) L (i1=1,2)

V(A0 %) + (QN ™ T0)}], ., = (VA4C(0,T)()) T

and
V(A0 )+ QN Y] = (VTACO:T) () T T (1=1,2),

for m =0,..., M. The functions ¢,,, satisfying ¢,, = ¢, A, are then defined by

_ AOZ,
Pm(r) = @mo(r +ZU —Pm,—i(T),

i=1,2

where

i _ oo 1 D\ 1 2 o 1 2)\ X 1 2
AN Sﬁm(XgL?iﬂ Xin?i)em(xirgjﬂ Xin?j) - E))tm(xinL., Xgn?j)em(xgnli? Xgn?i)ﬂ

using the definitions of the bending moment and shearing stress operators given in (9.26a-
b).
The amplitides A,, may then be calculated via

TR

where the function F,, has been redefined through the addition of an extra term, and is

now given by

Fulr) = HakOR) =" (8,5, (R)) + {Hmw%)i——

(0)
(0, H, (KO R)) *—

Uy

} Fn(R).

for m = 0,..., M. The quantity ¢ = (oo, where the matrix () is defined in equation
(3.8), is associated with the jump condition that replaces the continuity of fluid velocity
at the water-ice interface.

A zero of the function F), at x would correspond to a resonance in the function ¢,, at
that particular frequency; however, this phenomenon has not been observed throughout
extensive numerical simulations. The peaks that we have observed, resulting from minima
in F},,, have been only of local significance, which is a consequence of the short wave régime,

in which they occur, coinciding with the limit in which the ice experiences diminishing
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displacement. This would be somewhat counteracted if we were to consider the bending
moment of the floe rather than its displacement, due to the factor of k2 that it introduces
(see §8.4).

Following Chamberlain & Porter (1998), the minima of F,,, for positive real-valued &,
are related to zeros at complex values of x, whose imaginary part is small and negative.
Such values of k correspond an imaginary component in the frequency and thus relate to

waves that decay slowly in time.

’j—77777> 3/

Sm(k) Sm(k) Sm(k)

Figure 10.17: The function ﬁ, which is defined in equation (10.30), as a function of the
complex frequency parameter k, using an uniform floe of thickness D = 0.25m and a
zero draught. From left to right the floe has radius R = 25m, R = 50m and R = 100m,
respectively. The zeros of F' are marked with an x.

By further following Chamberlain & Porter (1998), the zeros of F,,, may be obtained

through use of the iterative scheme

;:EZ:; F (x) Fm(”‘sg_Fm(“), (n=0,..),  (10.29)

Kn41 = Kp —

where kg is an appropriate initial guess. Equation (10.29) defines an approximate version
of Newton’s method and § must be chosen suitably (here § = 107'% was used). This
method is applicable to all of the problems considered in this chapter; however, as it
necessitates intricate numerical calculations for cases of varying geometry, it is expedient
to consider only uniform ice floes and flat beds. We may now relate, for example, the
peak in Ay at AO) 7.15m, which is shown in figure 10.16(a), to a zero of Fy at k =
0.8818 — 0.0425i, for which A} = 7.1089 + 0.3426i.
Figures 10.17-10.19 plot the modulus of the function

Fon(k)

(KOR)"? =k RE () (m=0,..., M), (10.30)
for the primary azimuthal mode (m = 0), using the normalised weighting, w, = 1/a'/?,

over the complex domain Re(x) € (7/10,7), Sm(x) € (=0.5,0.5). The function F,, is

chosen for display as it reduces the exponential growth/decay that occurs in the function
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Figure 10.18: As in figure 10.17 but for an ice thickness of D = 0.5m.

F,, as the imaginary part of k increases. The positions of the zeros occurring in this
domain are also indicated. It is only necessary to present results for the primary azimuthal

mode as calculations indicate that higher-order modes behave in an analogous fashion.
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Figure 10.19: As in figure 10.17 but for an ice thickness of D = 1m.

Along the real s-axis the incident wavenumber varies from A\(®) = 2m at x = 7/10
to A® = 20m at k = 7/10. The three ice thicknesses D = 0.25m, 0.5m and Im and
three radii R = 25m, 50m and 100m are displayed. It is clear that the number of zeros
increases as the size of the radius increases or the ice becomes thinner, both of which
are consistent with the hypothesis that the peaks are caused by interactions within the
ice when the wavelength beneath the ice is shorter than the diameter of the floe. We
further note that the location of the zeros drifts away from the real axis as the real value
of the root decreases. This is consistent with the earlier observation that the peaks in the

amplitudes are more severe at lower wavelengths.

10.2.5 An Archimedean draught

For our final set of numerical results, we will consider the effect of introducing an Archimedean
draught to the ice floe. The models of the ice floe that have been used in this chapter up
until this point have all assumed no submergence at the edge of the floe, in order that we
may investigate other issues. However, we now wish to study a model that is as realistic

as possible. For an axisymmetric floe, the physically correct draught, d, is calculated from
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the Archimedean condition

R
| 4600 = pudtryyar <o
0
If the floe is uniform, then the Archimedean draught, d = d 4, is given by

.D
da(Do) = 2, (10.31)
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where D = Dy is the constant thickness of the ice.

A similar investigation was carried out for two-dimensional structures in §7.5 and it
was seen that the inclusion of an Archimedean draught had the ability to significantly
affect the scattering produced by the ice. Many of the conclusions that were drawn for
those two-dimensional problems studied are true of general structures and have been
verified (in results not presented) for the problem of an axisymmetric floe that we study
in this chapter. We may therefore narrow our investigation.

The work of §7.5 indicated that it is the extra source of scattering introduced by
a submerged portion of the ice edge that is the dominant factor in distinguishing the
Archimedean problem from that of ice with zero edge submergence. Unsurprisingly, the
effects of the inclusion of an Archimedean draught increased as the edge submergence
became greater. This is also true of the current three-dimensional problem, and hence
results need only be displayed for an edge thickness of 1m.

Furthermore, for two-dimensional problems, the influence of an Archimedean draught
was shown to be related to the length of the incident wave. For short incident waves, an
Archimedean floe is typically displaced with a lesser magnitude than the equivalent floe
with no edge submergence. This was attributed to the submerged portion of the ice edge
preventing the incident waves from penetrating beneath the floe to a certain extent. For
long incident waves, the influence of the submerged portion of the ice edge is negligible and
the small difference produced by the inclusion of an Archimedean draught was ascribed
to the change in fluid depth beneath the ice.

In this section we will be primarily concerned with the régime in which the submerged
portion of the ice edge is significant, namely incident waves that are short relative to the
dimensions of the floe. More specifically, we will look at the relationship between the
introduction of an Archimedean draught and the fine structure that has been observed
for short incident waves within axisymmetric floes. Fine stucture has also been noted in
two-dimensional floes of a finite extent but was not studied in relation to a physically
correct draught. This is because fine structure has proven to be far more prevalent in the
results presented in this chapter and an investigation is therefore more justified at this
juncture.

We will also restrict our investigation to uniform floes. This is because it allows us to
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directly study the effect of the scattering caused by the submerged portion of the ice edge.
For the finite length two-dimensional floes with an Archimedean draught used in §7.5.3,
it was found that the addition of variations to the ice surfaces had the effect of changing
the solution by varying the amount of edge submergence but achieved little else. This
also proves to be the case in the current context (although, again, we display no results
to this end).

In figures 10.20-10.22, we consider introducing a non-zero submergence to a uniform
floe of a 50m radius. The ice thickness is 1m and hence the Archimedean draught is
d = d4 = 90cm, via equation (10.31).

The amplitudes of the first two azimuthal modes, A, (i = 0,1), are shown in figure
10.20 as functions of a normalised incident wavelength. This is done for both the floe of
an Archimedean draught and that of a zero draught so that we can judge the effect of the
introduction of submergence.

Figures 10.20(a-b.i) display the amplitudes over a wide range of incident wavelengths.
For the longer incident waves, the amplitudes do not display any fine structure and al-
though a gap between the corresponding amplitudes of the two problems is evident they
are very closely matched and resulting approximations (not shown) are extremely simi-
lar qualitatively and quantitatively. This behaviour is consistent with that of the two-
dimensional configurations that we have studied.

As the incident wavelength decreases, we observe the onset of fine structure in each of
the amplitudes. For the primary amplitude, ZO, this occurs around A(®) /R = 0.55, and it is
clear that the local maximum obtained by the Archimedean amplitude is greater than the
value of the zero draught amplitude. In fact, the zero draught amplitude does not actually
produce a local maximum at this point but merely an inflection point. Both problems do,
however, produce a local maximum for the amplitude Zl around \(© /R = 0.2. Again,
the value attained by the Archimedean amplitude is greater than that of the zero draught
amplitude. This is despite the Archimedean amplitudes, in both cases, tending to be
smaller than the zero draught amplitude away from their local peaks.

Comparison of the respective amplitudes in figures 10.20(a-b.i) becomes difficult at
small incident wavelengths, due to the relatively small values of the amplitudes in this
limit. For this reason, figures 10.20(a-b.ii) plot the same amplitudes over small intervals
of short incident waves, centred around an occurrence of fine structure. This allows us
to clearly observe that the Archimedean amplitudes are typically smaller in magnitude
than their zero draught counterparts, a tendency that was commented upon for two-
dimensional configurations in §7.5 and was again alluded to above. This short wave
relationship is broken only by the fine structure, so that the Archimedean amplitude
often exceeds that of the zero draught amplitude at these points, for instance in the case

seen in figure 10.20(b.ii). However, as displayed in figure 10.20(a.ii), it is not necessarily
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the Archimedean amplitude that attains the greatest magnitude at a peak. Although
we must therefore conclude that we are unable to predict if a submergence will cause a
greater magnitude in the peaks, we note that peaks appear to occur around the same
points as when no submergence is included. This phenomenon has been observed in other
similar problems not presented here. That is, the introduction of an Archimedean draught
appears to modify the maxima of the zero draught floe rather than creating new maxima.
We may relate this to our argument of §10.1 that the peaks in the amplitudes of uniform
floes are determined by the occurrence of zeros in the Bessel functions with the argument
kR. As an Archimedean floe is of the same dimensions as its zero draught counterpart
and the slight change in fluid depth caused by the submergence will do little to the value
of the wavenumber, £, then the reasoning that led to this link may be repeated. It is
therefore unsurprising to find that the peaks in the amplitudes of these two problems
occur at almost identical frequencies. Conversely, earlier we saw that the inroduction of
a varying ice thickness caused drifts in the position of the amplitude peaks (see figure
10.16).

The displacement experienced over the floe for three specific incident wavelengths is
shown in figure 10.21. As in figure 10.15 the displacement is displayed in the form of
contour plots, with the upper half (y > 0) and lower half planes (y < 0) representing the
solutions for differing floes. Here, the upper half plane is the floe with an Archimedean
draught and the lower half is the floe that has a zero draught. The free-surface profile
around the floe is again included.

Our choice of incident wavelengths is made to highlight different situations that occur
in the short wave limit. In figure 10.21(b) the sixteen amplitudes, A (m=0,...,15),
used to represent the motion within the floe, are free of fine structure, which may be seen
graphically for the first six amplitudes in figure 10.22. Consequently, we find that scat-
tering caused by the two floes are qualitatively almost identical. The smaller magnitude
of the Archimedean amplitudes for short wavelengths, away from fine structure, results
in the displacement experienced by the Archimedean floe being significantly less than the
zero draught floe, in this case. This is again attributed to the greater reflection of the
incident wave caused by the submerged portion of the ice edge, which is supported by the
greater displacement of the free-surface around the Archimedean floe.

The case of the incident wavelength A(¥) = 7m is shown in figure 10.21(c). Tt is clear
that the fifth azimuthal mode dominates within both floes and this is confirmed if we
refer to figure 10.22 around A(¥) /R = 0.14. Although the displacement within both floes
again match qualitatively, it is the magnitude of the Archimedean floe that is the greater
in this case. This is easily attributed to the greater maximum attained by the dominant
amplitude, Z4, in the case of the Archimedean draught.

As the amplitude attached to each azimuthal mode experiences fine structure, it is
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Figure 10.20: Comparison of the amplitudes A, (m = 0, 1) of a zero draught (blue curves)
and the corresponding Archimedean draught (red) floe, as functions of non-dimensional
incident wavelength. The floes have thickness Dy = 1m and radius R = 50m.

possible for more than one of the amplitudes used in the approximation to be passing
through a local maximum concomitantly. Such a situation is given here by the incident
wavelength A(®) = 3.25m and is displayed in figure 10.21(a). We note from figure 10.22
around A(O)/R = 0.065 that, at this wavelength, both the primary amplitude, /ZIO, and the
sixth amplitude, 115, are peaking or are in the process of peaking.

As the amplitudes of the Archimedean draught and zero draught problems peak at
significantly different values, the relative size of the primary and sixth amplitudes are very
different for the two different floes. This makes the question of dominance of a particular
azimuthal mode more complicated in this case. Hence, for this wavelength, we have the
greatest qualitative difference caused by the introduction of an Archimedean draught seen
in figure 10.21. Nevertheless, the two problems remain extremely close in the structure of
their response, with the primary azimuthal mode dominant around the centre of the floe
and the sixth mode likewise at the edge of the floe.

It would be possible to find more complicated interactions of the fine structures of
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Figure 10.21: Comparison of the scattering caused by floes of an Archimedean draught
(upper half planes, parts (a-c.i)) and the corresponding zero draught floes (lower half
planes, parts (a-c.ii)). Contours plots are as in figure 10.15. The floes are uniform, of
thickness Dy = 1m and radius R = 50m. The incident wavelength is (a.i-ii) A(®) = 3.25m,
(b.i-ii) M@ = 5m and (c.i-ii) A® = 7m. Using M; = max|n| and M, = M,, we
have (a.i) M; ~ 5.72 x 1072 and M,, ~ 1.33; (a.ii) M; ~ 1.23 x 1072 and M,, ~ 1.16;
(bi) M; ~ 6.4 x 107 and M, ~ 1.27; (bii) M; ~ 1.99 x 10~2 and M, ~ 1.10; (c.i)
M; ~1.95 x 107" and M, ~ 1.33; (c.ii) M; ~ 1.33 x 107" and M, ~ 1.25.

Figure 10.22: Comparing the amplitudes A,, (m = 0,...,5) of a zero draught (solid
curves) and the corresponding Archimedean draught (dot-dash) floe, as functions of non-
dimensional incident wavelength. The amplitudes have orders M = 0 (blue curve), M =1
(red), M =2 (green), M = 3 (cyan),M = 4 (magenta) and M =5 (yellow).

the salient amplitudes in other problems, which would differentiate the zero draught and
Archimedean draught problems to a greater degree. However, we conclude that in most

situations the effect of the introduction of an Archimedean draught is mainly quantitative.
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10.3 Conclusions

The study conducted in this chapter was into the scattering of a plane wave by an axisym-
metric floe. This followed directly from the numerical formulation given in the preceding
chapter. For the purposes of our investigation in this chapter the approximation was
restricted to a single vertical mode, as it was felt that a more comprehensive study both
numerically and particularly analytically could be achieved by these means.

An analysis of the approximation under certain conditions of interest was given in §10.1
and prefaced the numerical results. Specifically, we considered floes of a uniform thickness
and a zero draught, which allowed the amplitudes of the complex waves to be calculated
in terms of the amplitude of the propagating waves via the free-edge conditions. Our
method here followed a similar procedure to that outlined in §5 for the semi-infinite ice
sheet problem. By then concentrating on relatively short waves, we were able to devise
an approximation in which the complex wavenumbers are replaced by functions of the
propagating wavenumber. This approximation was then combined with régimes in which
the radius of the floe is either large or small in relation to the wavelengths contained in the
problem, and approximate values of the unknown amplitudes that appear in the domain
occupied by the floe were obtained by using the relevant limits of the Bessel functions.
Using the approximate solutions this method generates we were then, for instance, able to
deduce the degree to which the floe reflects the incident wave as the frequency increases.

In §10.2 we conducted a numerical investigation of the scattering properties of an
axisymmetric ice floe using the single-mode approximation. Our attention was centred on
the response of the ice floe itself to an incident wave. However, at certain points we also
considered the scattering at the free-surface about the floe and the far-field response.

It was of interest to study how the properties of the floe and the incident wave af-
fected the convergence of the azimuthal modes. We deduced that the lower-order modes
dominate around the centre of the floe but that towards the edge of the floe that the
higher-order modes may be of equal importance. This is particularly true for larger, thin-
ner floes and is relative to the incident wavelength. The motion within such floes is of
a more complicated nature and a greater number of modes is required to resolve this,
especially at the ice edge.

Certain physical implications were deduced. Firstly, thinner ice is far more responsive
to the incident wave, with the disturbance generated in the ice being close to that of a
plane wave passing through the floe. Conversely, thicker ice tends to resist the forcing
wave and when waves are present within such floes, they are typically curved by the
circular shape of the ice. Another trait observed was of the amplitudes of the flexural-
gravity waves becoming damped away from the ice edge towards the centre of the floe as
the higher-order modes decay. This is therefore more evident in the larger, thinner floes

at shorter incident wavelengths, for which a greater number of modes contribute to the
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scattering motion in a vicinity of the ice edge.

We studied extensions of uniform floes by including variations to its thickness and
undulating surfaces, and also through the introduction of a physically correct Archimedean
draught. The differences caused were most noticeable around the fine structure that
appears for axisymmetric floes, when we consider relatively short incident waves. This
fine structure manifests itself as maxima in the amplitudes of the azimuthal modes and
results in a locally disproportionate displacement of the floe. From our analysis of §10.1 we
could clearly attribute these maxima to the zeros of the Bessel functions of the first kind,
in the case of uniform floes. Modifications to the floe, specifically undulating surfaces and
an edge submergence, were seen to modulate and displace the maxima, which produces
both qualitative and quantitative differences in the scattering caused by similar floes
around these points.

The effect of the maxima on the motion of the floe was only found to be of a local
significance due to the diminishing displacement experienced by the ice as the incident
wave shortens. By extending the frequency domain to include complex values, so that
the waves decay in time, we were able to relate the maxima at real frequencies to full
resonance at nearby complex frequencies.

Despite the issue of fine structure, typically similar scattering is caused by floes of
the same diameter and average thickness. The same is true of the introduction of an
Archimedean draught to a floe, although as in two-dimensional problems, away from peaks
in the amplitudes, we expect the submerged portion of the ice edge to reflect relatively

short incident waves and hence displace the floe to a lesser extent.
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Chapter 11

Final discussion

11.1 Overall summary

In areas of the ocean in which the surface layer of fluid freezes to form a sheet of sea-ice,
motion that is generated primarily by ocean waves may propagate large distances through
the ice-covered region in the form of flexural-gravity waves. These flexural-gravity waves
manifest themselves as oscillations in the position of the fluid-ice interface and exist by
virtue of the ability of the ice sheet to flex. The amount of wave energy that transfers
from ocean waves into oscillations beneath the ice sheet is dependent on the reflection
that occurs at the ice edge. The subsequent form of the flexural-gravity waves is highly
dependent on the properties of the ice and their passage through the ice is conditioned
by the way in which these properties change.

Our interest is in the part of the ice-cover that is affected by ocean waves, termed
the ‘marginal ice zone’ (MIZ). Ocean waves are thought to play the primary réle in the
fracturing of larger floes and determining the distribution of smaller floes (Squire et al.,
1995). Many different configurations of MIZ may be found, with the constituent ice
floes spanning a broad range of sizes and thicknesses that depend on the means of their
formation. For example, we may consider one of the vast ice sheets that are often created
by a conglomeration of smaller floes. Consequently, the properties of the ice may be
highly variable with pressure ridges, cracks and refrozen leads being rife. Waves that
enter the ice will be modified and scattered by these features. Alternatively, there is the
case of groups of smaller ice floes. Here, the propagation of ocean waves is determined by
interactions between the floes as well as the response of individual floes.

The motivation of our work has been into developing a mathematical model of the
scattering of wave energy for a situation of ice-covered fluid. Our prime intention was to
allow for a high degree of generality in the properties of the ice. In particular, our solution
method was outlined for an arbitrarily shaped ice sheet for which the ice thickness and

draught are permitted to vary. Furthermore, we allowed for situations of both full and
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partial ice-cover. We also wished to generate a solution method of low computational cost
and this was achieved by pursuing an approximation method capable of delivering high
accuracy at low dimensions and of attaining an approximation arbitrarily close to the full
linear solution.

To describe the situation of ice-covered fluid, we used the model that is widely accepted
at the present under linear theory. The fluid was assumed to possess some standard phys-
ical properties, namely homogeneity, incompressibility and irrotationality. This allowed
the fluid motion to be defined through a velocity potential that must satisfy Laplace’s
equation throughout the fluid domain. An impermeable bed of finite depth was used to
bound the fluid below and we permitted undulations in this surface.

The ice sheet was considered to behave like a ‘thin’ elastic plate. That is, as it flexes its
properties are not deformed, which imposes the restriction that the amplitude of a passing
wave cannot be too large and its length cannot be too short in relation to the thickness of
the ice. In accepting such a model we have ignored features such as rotational inertia and
compressibility; however, we included the property of flexure, which is believed to play
the predominant role in the passage of flexural-gravity waves through ice-covered fluid
(Robin, 1963). The physical properties of the ice were condensed into two functions, both
of which vary with the ice thickness. One, a scaled version of the mass of the ice, varies
linearly with the ice thickness, while the other, a scaled version of the flexural rigidity of
the ice, is a cubic function of the ice thickness.

Using the thin-plate model of the ice sheet, it was possible to consider the stress
experienced by the ice in terms of the displacement it undergoes at the interface between
itself and the fluid. By linearising the position of this fluid-ice interface we obtained
a fourth-order condition that describes the flexure of the ice in terms of the pressure
exerted on it and a second-order condition that defines the position of the interface.
These conditions couple the fluid and ice motions. In an ice-free domain they collapse to
the regular free-surface condition.

We considered the time harmonic problem, in which an angular frequency is set that
dictates a periodicity. This left two unknown functions, both dependent on the spatial
coordinates only. One, the reduced velocity potential, exists throughout the fluid domain,
the other, the reduced displacement of the fluid-ice interface, exists throughout the ice-
covered region, so that it has no dependence on the vertical coordinate.

In order to fully pose the boundary value problem that defines these unknown func-
tions it was necessary to impose lateral conditions that hold at the internal boundaries
between ice-free and ice-covered domains or over corners in the geometry, as well as far-
field conditions. The internal conditions take the form of jump conditions and conditions
on the dynamics at an ice edge.

To construct a solution procedure, we introduced an alternative means of defining the
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unknown functions, in terms of a variational principle. To do so, Hamilton’s principle
was used to generate a functional for which the stationary condition coincides with the
equations governing the boundary value problem. As such, the variational principle nec-
essarily contained all of the correct physical information of the problem and was, indeed,
the source of the internal lateral conditions that must be attached to the problem.

By reinterpreting the problem as a variational principle we were able to make use of the
Rayleigh-Ritz method as our solution procedure. Here, we chose to restrict the vertical
coordinate in the functional to a chosen, finite-dimensional trial space. In doing so, we
created a stationary point of the functional over the restricted space, known as the MMA,
and this approximates the unrestricted stationary point, which is the required full linear
solution. It was shown that, to obtain the stationary point over the restricted space, we
are required to solve a finite set of differential equations in the horizontal coordinates, with
accompanying boundary conditions. The combination of the Rayleigh-Ritz method and
the variational principle averages the vertical motion defined by the trial space through
an integration process. This resulted in the absence of the vertical coordinate from the
new set of governing equations, which constituted a substantial numerical saving.

It is possible to select the finite-dimensional trial space such that an approximation
of a chosen degree of accuracy may be obtained. One means of improving accuracy
was simply to increment the dimension of the space used; however, a higher-dimensional
approximation leads to a need to solve a more complex system of equations to produce the
MMA. This is not desirable as it increases the computational cost involved. In order to
minimise the dimension required to gain accurate approximations, we selected our vertical
modes, which form the basis of the trial space, so that they contained the perceived
key features of the sought solution. Specifically, we applied a pointwise correspondence
between the vertical modes of our varying geometry problem and the vertical modes of
the full linear solution in the analogous uniform geometry problem.

At each horizontal point the vertical modes were produced by solving a dispersion
relation, which results from the separation of variables in the analogous uniform problem,
for the required number of roots. The resulting approximation was described as the
natural approximation. The primary mode chosen, which corresponds to the real root of
the dispersion relation, was that which supports propagating waves in domains of uniform
geometry. As we assume the geometry to be uniform in the far-field, a substantial benefit
of this choice is that the exact form of the radiation conditions is always satisfied by
the MMA. We discussed the fact that the presence of ice has the tendency to elongate
propagating waves, especially at higher frequencies.

In the full linear solution of the uniform problem, there are also infinitely many modes
that support evanescent waves, which correspond to purely imaginary roots of the dis-

persion relation. When ice-cover is present there are an additional two ‘complex’ modes,

229



produced by ‘complex’ roots, that typically support waves that attenuate as well as os-
cillate but may also merely attenuate.

Having chosen our trial space, it was subsequently discovered that the properties
of the roots of the dispersion relation, in ice-covered domains, are non-trivial for the
purposes of our approximation method. Our difficulties centred on the additional two
roots, the complex roots, that appear in the case of ice-cover as opposed to a free-surface.
As the geometry varies, it was shown that these complex roots are liable to coalesce
on the imaginary axis and interact with the purely imaginary roots, which destroys the
differentiability that is required of their corresponding vertical modes. The parameter
régimes under which such bifurcations occur was expressed in terms of a single function
and this was used to determine that only the primary purely imaginary root was capable
of such bifurcations with physically realistic parameters.

The difficulty caused by these bifurcations was somewhat counteracted by the dis-
covery that there is a two-fold degeneracy in the complete set of vertical modes, which
are generated by the roots of the dispersion relation. This led us to make the choice to
discard the modes relating to the complex roots. Consequently, for the uniform geome-
try problem, we reinterpreted the full linear solution in terms of a linearly independent
set of vertical modes, with the horizontal waves that may attenuate as well as oscillate
redistributed amongst the remaining modes.

Through a domain of varying ice-covered geometry, the issue of bifurcations may
affect more than just the two complex roots. Specifically it may also affect the primary,
purely imaginary root. In situations for which the problem of bifurcations persisted in the
primary evanescent mode, which we wished to utilise in our trial space, we were forced
to switch to an alternative expansion set but still retain the natural approximation in
the far-field. Our choice was to exchange the purely imaginary roots of the dispersion
relation for the values that are their upper bounds and that they tend to as they increase
in magnitude, with the resulting approximation described as the hybrid approximation.
The hybrid modes were, in fact, seen to be equivalent to using a Fourier cosine expansion
for our trial space with the constant term replaced by the propagating mode. It was
our conjecture that the use of the hybrid evanescent modes would slightly diminish the
efficiency of the MMA, as these modes, unlike the natural modes, have no relation to the
ice thickness.

The theoretical structure of our solution procedure was therefore complete. For the
remainder of our work we looked to formulate the numerical calculation of the MMA in
specific problems. Our initial study was made for two-dimensional configurations in which
the geometry is considered to have a constant cross-section. Forcing in this problem was
induced by a single incident wave that propagates from the far-field at a set angle to the

cartesian coordinate frame. The governing equations of the MMA therefore reduced to a
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finite set of ordinary differential equations with accompanying boundary conditions.

In an interval of uniform geometry, it was possible to solve these ordinary differential
equations to produce an analytic form for the MMA. The main feature of this solution
was in the dimension-dependent terms that distinguished it from a truncated version
of the full linear solution. These dimension-dependent terms appeared in place of the
horizontal waves that were redistributed amongst the remaining modes when we removed
the complex vertical modes from the full linear solution. Their dimension dependency
was attributed to an awareness of all of the vertical modes missing from the MMA. In
comparison, the approximation in an interval of ice-free fluid over an uniform bed is
identical to the truncated version of the full linear solution.

The ramifications of the dimension-dependent terms in the MMA were investigated
via a comparison to an eigenfunction matching method, whose solution has the form of
a truncated version of the full linear solution in an interval of uniform geometry. Such a
comparison required the use of piecewise uniform geometry and the classical problem of
a semi-infinite ice sheet was chosen. In this problem, only the resolution of the scattering
caused at a single ice edge was required and we investigated this in relation to differing
ice thicknesses over a range of frequencies. Our results indicated that, at low dimensions,
the MMA is better able to deal with the discontinuity and this was attributed to its
construction through vertical averaging. This property was seen to become more evident
when the discontinuity was exacerbated by thick ice and a high wave frequency. However,
at other times, the high-dimensional refinements of the solution were seen to be slow in
comparison to the method that used the exact values of the complex waves. This is most
likely due to the complex waves being more significant than the high-order evanescent
waves that are also missing from the trial space of the MMA.

Two two-dimensional problems, which utilised the ability of the MMA to admit situa-
tions in which the geometrical surfaces undulate, were formulated for numerical solution.
In both, the varying geometry was permitted only over a finite ice-covered interval, with
semi-infinite intervals of uniform geometry at either side. For one problem the semi-infinite
intervals were ice-covered, so that the entire fluid domain was loaded. The incident wave
is therefore scattered only by the geometrical undulations in the finite interval. In the
other problem, the semi-infinite intervals were ice-free and the finite interval represented
a solitary ice floe. In this problem, there were sources of scattering at the edges of the
floe in addition to the undulating surfaces.

Over the finite interval of varying geometry, the governing differential equations of
the MMA require numerical resolution. Combining the analytic form we derived for the
solution in the semi-infinite intervals with the relevant jump conditions provided boundary
values for the solution of the MMA, which was then found on the finite interval via a linear

combination of numerically calculable functions. We were able to limit the number of these
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functions to two through suppression of the unknown amplitudes of the evanescent waves
in the boundary conditions. In their original form the boundary conditions would have
necessitated six linearly independent solutions for the single-mode approximation and this
number would have then increased by two for each additional mode added.

For the more simple of the two problems, in which the ice-cover is complete, we
began by studying the convergence rates of the natural and hybrid modes. It was seen
that an approximation arbitrarily close to the full linear solution could be achieved with
both expansion sets. As predicted, it was found that the convergence given by the natural
modes was superior. Moreover, by also using a Fourier cosine expansion as a trial space, we
witnessed the extra accuracy gained by inclusion of the mode that supports propagating
waves in the natural and hybrid approximations.

In all of the problems of continuous ice-cover, chosen for solution by the MMA, high
accuracy of the single-mode approximation was observed. For geometries that were clearly
not slowly varying, although additional terms were required to achieve convergence in the
qualitative detail, the accuracy of the single-mode approximation was still notable. A close
relationship between the results produced by geometries that share a common ice thickness
and fluid depth was also remarked upon. This prompted an analytic investigation, which
was made in terms of the single-mode approximation. We found that, for most frequencies,
the ice thickness is the predominant factor in determining the scattering of the incident
wave. Variations to the fluid depth only become comparable for long incident waves.
Furthermore, it was shown that a protrusion at the underside of the ice is a contributing
factor in the scattering at mid to high frequencies, unlike the fluid depth, whose influence
is negligible.

For the problem of a finite ice floe, the scattering caused by the ice edges was typically
found to require a greater number of evanescent modes to achieve convergence in the MMA
than was needed for undulating surfaces alone. Moreover, we observed that the presence
of ice edges was detrimental to the accuracy of the low-dimensional approximations in
a vicinity of the ice edges, at which point the evanescent waves are strongly activated.
In extreme cases, this led to spurious phenomena in values sensitive to the accuracy of
the approximations at the ice edges, such as the far-field response. However, through
the addition of supplementary modes all discrepancies were quickly eradicated and high
accuracy was again obtained at a relatively low cost.

Our results indicated that as the frequency increased, an ice edge has the tendency
to reflect a greater proportion of the incident wave. This form of scattering becomes
dominant in this limit, far outweighing that of an undulating surface, and is proportional
to the thickness of the ice edge. However, we noted that there is a stage before the
ice edge scattering dominates in which both sources of scattering are discernible. For

waves existing beneath the ice that were short in relation to the length of the floe, we
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observed that there are frequencies for which locally disproportionate responses occur in
the displacement experienced by the ice. This phenomenon was attributed to interaction
between the scattering produced at either end of the floe and was also observed in a fine
structure shown by the behaviour of the far-field.

An advantage of the MMA method of solution is that it allows for the inclusion of a
physically correct Archimedean draught. It was shown that the addition of submergence
could cause significant changes to the solution. In particular, we found that the inclusion
of an Archimedean draught is important for thicker ice and for medium to high frequencies.
It is for these régimes that the scattering caused by the submerged portion of the ice edge
has a major role. We discovered that its main property is that of preventing the incident
wave from penetrating beneath the ice to a certain extent. Consequently, our results
showed that the ice floe experiences less displacement when a non-zero edge submergence
is present.

A specific version of the complete ice-cover problem in two-dimensions was studied
separately. In this problem, the geometrical variations that occur over the finite interval
were of a periodic construction. For such a structure, in which the geometry may vary
rapidly and we wish to study an arbitrary number of periods, a different numerical method
is required to produce computational efficiency. This meant that we reformulated the
problem by retaining the amplitudes of the evanescent waves, so that the scattering caused
by the entire interval could be determined from the properties of a single period. To do
so, a transfer matrix approach was utilised, which relates the complete set of amplitudes
at either end of a period.

Our interest in the periodic problem stemmed predominantly from the existence of
resonances caused by periodically undulating beds for free-surface flows. Following the
work of previous authors in this field, we developed a wide-spacing approximation, which
ignores the interaction of evanescent waves between adjacent periods but is illuminating
in the analysis of resonance. Using the wide-spacing approximation, we were able to link
the build-up of a resonance to an increasing number of periods when the eigenvalues of
the transfer matrix lie in a certain configuration.

Resonances in periodic problems are well-known to occur around the so-called Bragg
values. Although we found this to be the case when ice-cover is present, the elongation
of propagating waves that occurs beneath an ice sheet meant that a Bragg value was less
likely to be encountered by realistic parameters in such a situation. The resonances that
we observed were strong in comparison to those found for free-surface flows. Specifically,
we found that large responses were created by relatively few periods over large intervals
and that this behaviour was maintained over a number of Bragg values. A feature discov-
ered for ice-covered fluid, which is not known for free-surface flows, is the existence of a

drift away from the Bragg value in the right as well as left direction, as the amplitude of
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the periodic geometry increases. A correspondence was made between leftward drift and
thinning ice, and rightward drift and thickening ice.

The final configuration considered was one of a fully three-dimensional nature. This
was the problem of an axisymmetric floe, forced by an incident plane wave. To efficiently
formulate the solution of the MMA in these circumstances we transformed the horizontal
coordinates from cartesian to polar, so that the geometrical functions varied only in
terms of the radial coordinate. This allowed us to utilise the axisymmetry and expand the
azimuthal dependence of the unknown functions in the form of Fourier cosine series, which
we truncated to a dimension chosen to achieve a given degree of accuracy. Consequently,
the governing equations of the MMA decoupled to leave a finite set of ordinary differential
equations in the radial coordinate, with accompanying conditions at the ice edge. The
reduction of our computations to a single coordinate constituted a significant numerical
saving.

In a domain of uniform geometry it was again possible to obtain an analytic form
for the MMA. This analytic form mirrored that produced in analagous two-dimensional
situations, although the exponential functions that appeared there are replaced by Bessel
functions in this case. For the axisymmetric floe problem, the analytic form was used in
the ice-free region away from the floe, where the bed was assumed to be flat. In doing so
we were able to easily ensure satisfaction of the Sommerfeld radiation condition as well
as reproduce the incident wave. The analytic form was also of use when dealing with
the singularity that arises at the centre of the ice floe due to the transformation to polar
coordinates, without the need for complicated and costly numerical methods.

It was possible to make many inferences about the behaviour of circular floes by
studying the problem in which the ice is restricted to uniform thickness. Thinner ice
is more compliant with the incident wave and we observed near-plane waves, like the
incident wave, travelling through the floe. On the other hand, when the ice becomes
thicker, it is more resistant to the incident wave, and if a propagating wave does exist in
the displacement of the floe then it is curved by its circular shape. We also observed the
phenomenon of the damping of waves beneath the ice away from the edge.

A feature of axisymmetric floes is the prevalence of fine structure, which occurs in each
of the azimuthal modes. As in the case of finite floes in two-dimensions, the fine structure
was produced when the wave beneath the ice is short in comparison to the length of the
floe, and leads to a locally disproportionate response in the displacement of the floe. The
phase and magnitude of the peaks in the amplitudes that constitute this fine structure
were found to be sensitive to the properties of the ice. For example, the addition of a
thickness variation through the floe could displace such a peak and result in a vastly
different response. However, away from these peaks mild variations to the ice thickness

did not have a drastic effect. Similarly, the fine structure complicated the analysis of
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the introduction of an Archimedean draught. Although at relatively high frequencies,
the property of a diminished displacement, when an edge submergence was included, was
again present for an axisymmetric floe, the relationship was often broken by a peak in an
amplitude that contributed to the solution. This meant that the Archimedean floe may
experience a locally disproportionate response that outweighs that of the zero draught

floe and results in a greater displacement when the submergence is included.

11.2 Future work

Possibilities for extending this work are numerous. To begin with there are many aspects of
our work, both in the formulation of our solution procedure and the particular problems
that we have studied, that may be elaborated upon or receive a more comprehensive
examination. The former would be of interest if we believed that we could improve the
accuracy given by the MMA in relation to numerical cost, either in a general sense or
in relation to some particular quantity. In contrast, further study of the problems that
we have formulated for numerical solution would probably be based on a desire to gain
knowledge of some particular property of the model. Furthermore, the formulation of the
MMA was made in the general three-dimensional setting. This was done specifically so
that it would be available for any geometrical configuration that we may wish to study.
Therefore, many more challenging problems and problems with greater physical relevance
may be formulated and solved using the MMA. In this section we will elaborate on a few
ideas for continuing our work.

Looking at the structure of MMA, the main area open for extended study is in the
vertical modes that have been used. The prime aim here would be to seek a way of
accelerating the convergence of the approximation. Although we have found that the
natural approximation provides accurate solutions at a low numerical cost, it may be
that there exists a more optimal choice of modes. For instance, it has been seen that
the high-dimensional refinements of the MMA to the full linear solution may be slow
in certain difficult situations. This is primarily in situations of partial ice-cover, where
short incident waves strongly excite the evanescent waves around the ice edges. The
inability of low-dimensional MMAs to exactly reproduce the full linear solution at these
points was attributed to the lack of the complex modes in the trial space. It may be
that it is possible to incorporate the complex modes in the trial space without causing
numerical singularities and without the need to remove any of the important properties
of the vertical structure in doing so, thereby resolving this issue.

A closely related issue is in further exploring the properties of the dimension-dependent
wavenumbers of the approximation, which are denoted iy ;) (¢ = 1,2). These quantities

may be regarded as approximations of the complex roots of the dispersion relation, al-
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though their role is, in fact, as approximations of all of the roots of the dispersion relation
that are not included in the MMA at dimension N. We have not studied the rate at
which these approximate wavenumbers converge to the complex roots as the dimension,
N, is increased, which is a property that may be relevant to the approximation. Consider,
for example, the fact that the complex wavenumbers, like the propagating wavenumber,
tend to a limit as the fluid depth is increased. However, the rate of convergence of
the dimension-dependent wavenumbers is affected by the values of the purely imaginary
roots, which continue to become smaller as the fluid depth increases. The result of this
is that a greater dimension is required for the approximate wavenumbers to converge as
the fluid depth increases, which will adversely affect the cost of producing the refined full
linear solution with the MMA if the complex waves are strongly activated in a particular
problem.

There is also scope for improving the alternative approximation that we use in situa-
tions for which the validity of the natural evanescent modes is compromised by bifurca-
tions in the roots of the dispersion relation. Our method was to simply replace the purely
imaginary roots with their limiting values, and we termed the resulting approximation the
hybrid MMA. This choice has many advantages, not least that it is implemented at a low
numerical cost. However, these replacement evanescent modes are completely unrelated
to the thickness of the ice, a property that we have found to be of prime importance in
the passage of flexural-gravity waves. We may therefore expect a more accurate approx-
imation to be given if we are able to incorporate the ice thickness into the alternative
evanescent modes. As it is only the root that exists in the first interval of the imaginary
axis which has a strong dependence on the ice thickness, with all subsequent roots almost
indistinguishable from their limiting values, it is likely that modifying the primary hybrid
evanescent mode alone would be sufficient to improve the approximation. One option
would be to interpolate between a number of chosen values of the root (or roots) present
on the first interval of the imaginary axis.

There are many physical parameters available for variation in our model. Due to the
constraints of this work we have only been able to deal with a few of those that we regard
as important, namely the thickness of the ice and its draught. In particular, very little
attention has been paid to the role of the bed in our results, and we have routinely assumed
a flat bed of 10m-20m depth in our numerical models. If we were to closely study the
influence of the bed, we may also wish to gain knowledge of the solution at this boundary.
To do this in a situation in which the bed undulates, the addition of a ‘bed mode’, in the
vein of Athanassoulis & Belibassakis (2005) or Chamberlain & Porter (2006), would be
important. We would therefore wish to modify our trial space by including a mode which,
unlike the natural modes, does not have a vanishing normal derivative at the bed. This

would then allow the MMA to converge to the full linear solution at this point.
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It would also be of interest to study the effect of variations in the material properties
of the ice. For example, we could allow the value of Young’s modulus, E, to fluctuate
across the ice sheet. Such a study would be of relevance as the possibility of a varying
Young’s modulus has been noted by Fox et al. (2001). Implementing this example (or any
other similar example) in our model would require a slight reformulation of the MMA. The
flexural rigidity of the ice, 3, would become not only a function of the ice thickness but also
of Young’s modulus. Similarly, the roots of the dispersion relation would also be functions
of Young’s modulus. Consequently, we would need to calculate all derivatives not only in
terms of variations in the geometrical functions D, h and d but in E also. In practice,
this would cause of little inconvenience, merely adding to the algebraic complexity.

There are a number of geometrical constructions that may be solved using the MMA,
which would require only minor alterations to the formulations that appear in our work.
Take the case of the periodic problem, which was studied in §8. In that chapter we
considered a finite interval of periodic variations in an otherwise uniform ice sheet. The
scattering was therefore caused solely by the periodic variations and we discovered the
existence of resonance around Bragg values. In order to solve this problem we utilised a
transfer matrix, Py say, that linked the amplitudes of the evanescent waves as well as the
propagating waves at either side of an individual period. The transfer matrix, P, say, for
an interval of an arbitrary number, M, of these periods (and hence the scattering matrix
for the entire interval) was then built-up from the transfer matrix for the single period,
with Py, = PM.

We could modify our transfer matrix approach to deal with an analogous problem in
which there exists a single floe of finite length, with surfaces that undulate periodically.
The transfer matrix, Fy, that operates between periods would be identical to the one
that was calculated in the case of complete ice-cover. However, for the two periods that
coincide with the ends of the floe, different transfer matrices, P, and Pg say, would
require calculation. In order to calculate these new transfer matrices we would need
to solve problems that involve a single period of varying geometry, one end of which is
attached to an interval of uniform ice and the other end forming an ice edge. The transfer

matrix for the entire floe would then be composed as
PM - ﬁRP0M72ﬁL.

Although resonance would be produced around the Bragg values by the P, term in the
same way that it was in the complete ice-cover problem, it would be of interest to see
whether the inclusion of ice edges either strengthened or weakened these responses.
Alternatively, we could equally use the transfer matrix approach to study a situation
in which we have an interval of any number of identical floes that are equally spaced, Im

apart say, in an otherwise infinite ice-free interval. The relevant transfer matrix, Py say,
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for this problem would be one that relates amplitudes at the mid-points in the intervals of
ice-free fluid between the floes. For consistency, we would place fictitious boundaries } /2m
away from the floes at the extreme right and left. The transfer matrix for M floes, P, say,
would then be calculated as Py = PM. Such a problem would be of benefit in the study
of multiple floe interactions. Furthermore, it is likely that resonances would appear, and,
unlike the previous two periodic problems described, the parameter values that coincide
with Bragg numbers would be physically plausible, as the incident wavenumber for each
period is taken from the free-surface dispersion relation.

For the three-dimensional problem of an axisymmetric floe we would also wish to
extend to situations that involve multiple floes. Our goal here would be to effectively
model an arbitrary number of circular floes of differing radii and varying thicknesses, and
in any alignment, interacting with one another. Such a model would begin to resemble a
realistic configuration in the MIZ.

We are already able to calculate the scattering problem defined by each individual
axisymmetric floe, so the issue is that of determining the interaction between these scat-
tering processes, which in this case would take place in the ice-free regions between the
floes. This is analogous to the way in which we solve two-dimensional problems for which
more than one scatterer is present (e.g. periodic structures).

In order to formulate a solution procedure for this problem we would be likely to follow
the method of Peter & Meylan (2004). Although their work was for floes of an arbitrary
shape with a uniform thickness and a zero draught over an infinite bed, and therefore
did not invoke any vertical averaging, their form for the scattered solution in the ice-free
region between the floes would be very similar to that which we would use.

In brief, we would suppose that there are K floes and that, in addition to the global
polar coordinate frame (r,#), each floe is endowed with its own local polar coordinate
system (r;,0;) (j =1,..., K) with an origin set to coincide with the centre of the partic-
ular floe. For each floe, all unknown functions would then be expanded around the floe
in a complete Fourier series, rather than a Fourier cosine series, as we may no longer as-
sume symmetry in the local y-axis. In the local coordinate frame, the single-vertical-mode

approximation, for example, would then be given by

p(rj0;) = olry) + > i™{om(r))e™ + (=1)"p_pu(ry)e ™} (j=1,...,K),

m=1

where, assuming that the bed is flat, we have
om(rj) = AngJm (K1) + By jHu(8075) - (5 =1,..., K), (11.1)

for the free-surface wavenumber k() and constant amplitudes A, ; and B,,;, which are
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the unknowns of the problem. The Bessel functions of the first kind represent the forcing
waves, which are comprised of the incident wave given in equation (9.17) that propagates

from the far-field and we here rewrite as

o0
or(r,0) =1, { )+ Z mJ eml 4immy_ (kO r)eimg)} ,
=1
together with the propagating waves scattered by all of the other (K — 1) floes. In
the multi-mode case the waves scattered by the other floes will consist of evanescent as
well as propagating waves and we will have to make an allowance for this. The Hankel
functions of the first kind are the scattered waves. Continuing with the specific example
of the single-vertical-mode approximation, we have a means, given by the solution process
outlined in §9, to relate each of the the scattered amplitudes, B,, ;, to its corresponding
forcing amplitude, A,, ;, so that we may write By, j = §m j(Am,;), for some known function
Sm,;j- This relation may be used to remove the scattered amplitudes B,, ; whenever they
appear, and therefore only the amplitudes A, ; (j =1,..., K; m € Z) must be found in
order for us to determine the solution. Moreover, we can express the forcing amplitudes
explicitly in terms of the amplitude of the incident wave, Iy, and the amplitudes of the
waves scattered by the other floes, By,; (i=1,...,K; i # j). To do this, we would need
to transform all of the relevant motion that will force a particular floe, i.e. the incident
wave and the propagating waves scattered by the other floes, into its local coordinates via

Graf’s addition formula for Bessel functions. Therefore, the incident wave is written as
Ing(k(O)r)eime = Ioeimao’jJ (k(O)T‘O j)Jo(k(O)T‘j)

1m90 g Z{ nJm+n k 7" )ein(ﬂ+00,j)Jn(k(U)Tj)einﬁj

+ Jm_n(k(o)T.OJ)e—in(ﬂ'-I-@O,j)J_n(k(O)T.j)e—inGj 1

(11.2a)
where 7 ; represents the distance from the global origin to the jth local origin and 6, ;
is the corresponding angle. Similarly, to transform the waves scattered by the other floes

we have
Bm’iHm(k‘(O)T‘i)eimei = Bm ieimgi’jH (k(O)T‘i’j)Jo(k(O)T'j)

+ Bm ze 0 ; Z{ mHm+n ( )Ti’j)ein(n+0i,j)Jn(k(0) T,j)eim%

+ Hm_n(k(o)ri,j)e—in(ﬂ'-l-ﬂi,j)J_n(k(O)Tj)e—inﬂj 1

(11.2b)
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where 7; ; represents the distance from the ith local origin to the jth local origin and
0; ; is the corresponding angle. If the azimuthal motion is approximated by truncating
all infinite sums to M terms, then it is possible to obtain the amplitudes A,,,; (j =
1,...K;m = —M,..., M) by solving a matrix system of dimension (2M + 1)K. This
system of equations is derived by comparing the expansions (11.2a-b) to the form of
the solution defined in equation (11.1). The extension to multiple vertical modes is
straightforward.

As the interactions of floes rely on the scattering caused in a vicinity of each floe,
a study of multiple floe interactions would need to be prefaced by a more thorough ex-
amination of the effect of a solitary floe on the free surface that surrounds it. We could
then progress by adding a second floe and investigate the factors that affect the strength
of the interactions between the two floes. There are many options here that could be
considered such as the relative sizes of the two floes, their positions in relation to the
incident wave, their distance apart from one another, their shape, their edge thicknesses
and their submergences. We may, for example, expect a second floe that is placed directly
‘downstream’ of the first floe to be displaced to the greatest extent, as we have seen that
the majority of the scattered wave lies in this direction. It may also be supposed that
a realistic submergence would produce stronger interactions as a greater amount of scat-
tering is caused when a portion of the ice edge is submerged. Another issue that could
be of interest here is in whether the fine structure, which was observed in the solutions
of individual floes, would be significant in multiple floe interactions. One possibility is
that a disproportionately large response in the displacement of a particular floe could be
accompanied by a relatively small displacement in the free-surface, thus leading to weaker
interactions with other floes.

Once we have established a means of calculating the scattering properties of multiple
three-dimensional floes, we may wish to make some general inferences about the amount
of energy that passes through a pack of ice floes. That is, for a wave that is incident on a
region that contains a number of floes, how much of the wave energy propagates through
to the other side of the region? The findings of such an investigation could be applied to
situations in which the edge of a large sheet of ice fractures into smaller floes, which then
damps oceans waves so that it, in effect, provides a protective barrier for the inner ice.
To analyse the overall damping properties of a region of ice floes we would need to keep
some parameter values constant, say the density of the ice across the region in which they
are contained and the average thickness of the ice. We would then be likely to pursue a
statistical method by taking the average response of a large number of possible variants.

Another option in the three-dimensional axisymmetric setting would be to consider the
problem in which the circular region is ice-free and the outer region is ice-covered. This

situation models a ‘pool’ in a large expanse of ice. The formulation for this configuration
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would require a simple modification of the axisymmetric ice floe problem, and geometrical
variations could, for example, be included in an annulus that surrounds the ice-free disc.
In fact, the only amendment that we would need to make to the axisymmetric ice floe
problem would be to apply the ice-ice jump conditions at the outer boundary of the
annulus and the water-ice jump conditions at the inner boundary, rather than the opposite
way around. We would then expand the scattered solution in the ice-free region in terms
of Bessel functions of the first kind and in the ice-covered far-field in Hankel functions of

the first kind, in order to satisfy the Sommerfeld radiation condition
ri/? (0 —ik) ps = 0 (r — 00),

where k represents the propagating wavenumber in the far-field and ¢g the scattered
solution.

A related problem, described as the ‘moon pool’ problem, in which a rigid plate of
uniform thickness surrounds a disc of open fluid has been studied previously by Molin
(2001). In particular, resonances were discovered in the moon pool problem, and it would
be of interest to study to what extent, if any, these resonances transfer into our elastic
plate model.

The circular pool problem could then be extended to more general shapes. It is possible
that certain configurations, such as ellipses, may be solved by performing transformations,
although difficulties caused by the free-edge conditions may prove to be intractable. How-
ever, for most shapes we would undoubtedly have to resort to more numerical techniques
and these would be highly dependent on the particular geometry of the pool.

If we were to consider a pool that was long in comparison to its width then it could be
used to model the situation of a lead. Leads are familiar occurrences in ice sheets that are
created when a crack is forced apart to leave an area of open water. These areas of open
water are prone to refreezing, in which case they are described as refrozen leads. This
situation could also be modelled by supposing that the pool contains ice of a different
property (most probably due to its thickness) to that of the outer region.

Let us consider a straight lead that is long to the extent that there are points at which
the scattering of cross-sections of the lead away from the ends are not influenced by their
presence. We may therefore model this inner scattering problem in two-dimensions. So,
let the finite interval x € (0,1) contain ice-free fluid and the two semi-infinite intervals at
either end contain ice-covered fluid. A similar problem was studied by Chung & Linton
(2005) using the residue calculus technique that they earlier applied for a semi-infinite ice
sheet in Linton & Chung (2003). As in the case of a semi-infinite ice sheet, their model
assumed that the ice was of a uniform thickness and had a zero draught. We could easily
add not only a realistic draught but also variable geometry, say in the intervals (—Z(], 0)

and (I,141;), where the I; (i = 0,1) are positive constants. This would mean for instance
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that the properties of the ice would be permitted to vary in a vicinity of the lead.
To solve this problem, supposing the bed to be flat throughout, we use equation (4.22)

to derive the analytic expressions

T (2) = €O AT AC) 4 =i e-l)B(-)} @ < i)
\Ilgvﬂ () = c(+){em<+>(z+il—m)A(+) + e—iA(+)(l+[l_x)B(+)} (> 1+ [1)’

contain the incident amplitudes and

T

the reflected amplitudes. In the ice-free interval the expression for the MMA, which is

given by equation (4.30), is
3\ (1) = " A0 4 7N BO), (11.3)

where A and B are full vectors of length (N 4 1) and contain unknown constants.
In the intervals of varying geometry, (—lo,0) and (1,1 + I;), the MMA must satisfy the
differential system (4.4), and the solutions are linked at the connected ice boundaries,
= —ly and = [+ I; by the jump conditions (4.10a-b) and at the ice edges, z = 0
and z = [, by the conditions (4.11a-b). As in previous problems, we write the solution in
intervals of varying geometry as linear combinations of numerically calculable functions,
here
U(z) =ily_ (2)(AT) =B +iL, (2)(AQ —BO) (=, <z <0),

and
U(z) = iLoy (2)(AD) = B 4L, (2)(e™MAO® — e TMBO)Y (1< z<i+1),

where the quantities Loy are square matrices of dimension (N +3) and £, are matrices of
size (N +3) x (N +1). The columns of these matrices satisfy the differential system (4.4)
with appropriate boundary values, which ensure that the MMA satisfies the conditions
(4.10b) and (4.11b) at the relevant points. The scattered wave amplitudes are then
obtained via application of the remaining conditions (4.10a) and (4.11a), which requires
inversion of a matrix of dimension (4N + 8).

Again, this model may in a straightforward manner be modified to switch to the case

of a refrozen lead. We would require the expression for the MMA in the lead, equation
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(11.3), to be changed to the form for a uniform interval of ice-covered fluid, equation
(4.22), and the conditions applied at the ends of this interval to be those for a connected
ice sheet, equations (4.10a-b).

It is clear then that there is a wide range of avenues available for continuing our work,
of which we have outlined just a few. In all of the ideas discussed above the problem is
that of calculating the direct scattering caused by more challenging configurations. This
assumes retention of the thin-elastic plate model of the ice, and linear and time-harmonic
conditions.

However, there are many different approaches that can be explored. For example,
rather than the direct problem, we may wish to look at an inverse problem in which we
seek to reconstruct the shape of an ice floe given its scattering properties. Alternatively,
we could incorporate a more sophisticated model of the ice, say by the inclusion of addi-
tional properties such as dissipation or by adding one or more of the rigid-body motions.
These possibilities consitute sizeable undertakings and it is inappropriate to consider them

further here.
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Appendix A

The coefficients of the MMA

Here we give the explicit formulae that are needed to calculate the coefficients a;;, d;;,
b;i, vj; and @;,; involved in the governing equations of the MMA, as well as their free-
surface equivalents that take the superscript (0). These coefficients were defined in §3.2.1
in terms of a set of inner-products of the vertical modes and their derivatives, which are
described in full below.

Let a general mode be defined as
wi(z,y,2) = w; cosh{r;(z + h)},

where the quantity x;, the weight w,; and bed depth A are all functions of the horizontal

cartesian coordinates. Following §3.2.1, we redefine this mode as
wi(x,y, z) = Wi(D, h,d, z),

so that it is a function of the geometrical variables D, h and d in addition to the vertical
coordinate z. We therefore also regard x; and w; as functions of D, h and d.

If the mode w; is a natural mode then x; = k; is a root of the (ice-covered) dispersion
relation (3.13) and is indeed a function of D, h and d. Alternatively, w; may be an
evanescent mode in which case xk; = 122 = im;, which is a function of h and d but not
(0)

the ice thickness D. In an ice-free region x; = k; ’, which is a root of the free-surface

dispersion relation (3.16) and is a function of the bed depth A only.

From now on the notation
s; =s;(z) =sinh ki(z + h), ¢ =c¢i(z) =coshri(z+h), Z(z) =z,
will be used for brevity. Recall that we have defined the inner-product notation

—d
(f.9) = /h fgd-.
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Use of the free-surface equivalent, which is usually endowed with the superscript (0), will
be implicit.
We wish to write the required inner-products of the vertical modes, in terms of inner-

products of known hyperbolic functions only, so that, for example
(Wi, W;) = wiw;(ci, ¢j).
In a case in which a derivative is present, we will make use of the equality
OxW; = w;(0xk;)Zs; + w;(0x (k;h))s; + (Oxw;)ci,
where X (and/or Y) = D, h or d. This leads to the expression
(Wi, 0xWj) = w@iw;(0xn;)(ci, Zs;j) + wiw; (Ox (kh))(¢i, 85) + @i(Ox ;) (¢, ¢5),
from which the further equality

Oy (Wi, 0xW;) = {(Ovmi)w; + @i(Oyw@;) H{(Oxr;)(ci, Zs;) + (Ox (ki) (cirs5) }
+ @iw;{(OyOx ;) (ci, Zs;) + (Ox ;) (O (¢i, Z55)) }
+ @iw;{(Oy Ox (k;h))(ci,s5) + (Ox (k;h)) (Oy (ciys5)) }
+ {@i(9y Ox@;) + (Oy ;) (Ox ;) Hei, ¢5)
+ @i(0xw;) (9 (ci, ¢5)),

is straightforward to derive, as is
(Oy Wi, 0xW;) = wiw;(Oyki)(Oxk;)(Zsi, Ls;) + wiw;(Oy (k:ih))(Ox (k) (si, 85)
+ wiw;{ Oy (kih))(Oxk;) + (Ov ki) (Ox (k) }(Zsi, s))
+ (Ovwi)w;(Ox (kjh)) (i 85) + (Ox ;) @i(dy (kih))(si, ¢))

+ (Oy i) (Ox ;) (ci, ¢j).

A.1 Inner-products of the hyperbolic functions

In order to evaluate the above expressions we will need to calculate a set of inner-products

of hyperbolic functions. This can be done directly and we begin with those that do not
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contain any derivatives. Thus,

( risi(—d)cj(—=d) — kjsi(—d)ei(—d)

(Ci,C]’):< ya C?— ! .
| =)
( HiCi(_d)SJ(_Z)Z : Z]ZC]( d)si(—d) (1 # 9),
(Siﬁsj) = 3 ' ’
k Sz(—d)Cig;d) — leH (Z _ ]),
and
K + Kisi(—d)s;(—d) — k;c;(—d)ci(—d) (i 7).
(Ci’ Sj) = " 2_ g
T (i =)

These expressions may be used to aid calculation of the inner-product that contain an

additional z dependency, with

( d{risi(—d)c;(=d) — kjci(=d)s;(=d)} + ri(si, ;) — K;(ci,s))

(Zciycj) = S o
dQ — h2 _ dSi(—d)Ci —d) + (Si,Ci) ( . )
\ 1 e, L=
( d{rici(=d)s;(=d) — ksi(=d)c;(=d)} + Ki(ci,s)) — k(s ¢5) (i )
K2 _ 2 J)
(Zsiys5) = < Y
d2 — h2 dSi(—d)Ci(—d) + (Si, Ci) i
D 2 (i =),
\ Ri
he; + d{ksi(=d)s;(—d) — kjci(=d)c;(=d)} + Ki(si, 85) — K(ci, <))
(Zcissj) = — 2 2
K — K
for i # j, and

(Z Cis Si) — h — d{C?(—d) + S?(;zz)} — (Cia Ci) - (Si, Si) ‘

There are also two inner-products required that contain a z? term, these being

d2{I€iSi(—d)C]’(—d) — HjCi(—d)Sj(—d)} — Q{HZ(Z Si, Cj) — Hj(Z Ci, Sj)}

(Z Ci, Z Cj) =

for i # 7,
dQSZ(—d)CZ(—d) — 2(Z Ci, Si) d3 — h3
(Z Ci,ZCZ’) = o — 6 s
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d*{kici(=d)s;(—d) — r;8i(=d)c;(=d)} — 2{ri(Zci,8)) — K;(Zsi, ¢;)}

2 2

(Z Si, Z Sj) =

for 7 # j, and
dQSi(—d)Ci(—d) — 2(Z C;, Sz') d3 — h3
+ .
2I€Z’ 6
Finally, we must find certain derivatives of the above inner-products, which are required
to evaluate the term Oy (W;, 0xW,); these are calculated via Leibniz’s rule to be

(Z Si, Z Si) =

Oy (ciscj) = (Ovki)(Zci,s;) + (Oy(kih))(ci,s;) + (Ov ;) (Zsi, ¢j)
+ (Ov(K;h))(si, ) — (Oyd)ci(—=d)c;(—d) + (Oyh),

Oy (ciysj) = (Ovki)(Zsi,s;) + (Oy(kih))(sisj) + (Ovkj)(Z e, cj)
+ (9 (k;h))(ci, ¢j) — (Oyd)ci(—d)s;(—d),

and

Oy (Zci,s;) = (Ovki)(Zsi, Zs;) + (Oy (kih))(Zsi,s;)
+ (v ) (Z° ciy cj) + Dy (Kjh) (Z ey cg)

The second derivative

Ox0y(ci,cj) = (OxOvki)(Zs;,c;) + (0x0yk;)(Zei,sj)
+ (Ox 0y (Kih))(si, ¢5) + (Ox Oy (kjh))(c;, 85)
+ {(Ox£:) Oy k;) + (Oy ki) (Ox i) HZsi, Zs,)
+ {(0x£:) Oy (rjh)) + (Oy ki) (Ox (K5h))
+ (9x(kih))(Oyk;) + (Oy (kih))(Ox k5) } (Zsi,s;)
+ {(Ox (xih))(0y (k;h)) + (O (k:h))(Ox (K;h))}(si,s5)
+ {(Ox£:) (O ki) + (Ox5) (Oy ;) } (2, Zicy)
+ {(Oxk:) Oy (Kih)) + (Oy £:) (Ox (Kih))
+ (Oxk;) (0 (kjh)) + (Ov ;) (0x (k;h)) }H(Zeis ¢5)
+ {(Ox (xih)) (v (kih)) + (9y (k;h))(0x (k;h))}(ci, ¢;)
+ (Oxd){((Oy ki)d — (9y (kih)))si(—d)c;(—d)
+ ((Ovk;)d — Oy (kjh)))ei(—d)s;(—d)
+ Oy d){((Oxki)d — (Ox (Kih)))si(—d)c;
d)s

A~ ~—

d)s
—d)

+ ((Oxk;)d = (9x(kjh)))ci(=d)s;(—d)}
+ (Oxd)(Ovd){risi(—d)c;(=d) + rjci(—=d)s;(—d)},
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is also of use when calculating the second derivative of the normalising weighting w; =
—1/2

a;;

A.2 Derivatives of the roots of the dispersion relation

Various derivatives of the quantity x; = k;(D, h,d) appear in the inner-products above.
These must also be given in an explicit form.
To begin with, let us assume that x; = k; is a root of the (ice-covered) dispersion

relation, which we write as
f(k,D)tanh(kH) = k: f(k,D) = (1 — k(D) + B(D)k*)k. (A1)

We will assume that the root k; has been found by some means (see §3.2.2). In which

case, its required first derivatives may then be calculated from
Ei(Opki) = —(0p fi) sinh(2k; H),  E;(04k;) = 2fiki,  Ei(Onks) = —2fiks,

where the notation f; = f(k;, D) has been used. Similarly, E; = E(k;), where the function
E is defined as
E(k) = (Opf(k)) sinh(2kH) + 2H f (k).

The second derivatives then follow as

Ei(03k;) = —(OnE;) (0gki)* + 4(0aki){ fi + ki(Ox fi) cosh® (k;H) }, (A.2¢)
Ei(OpOnki) = —(0kE;)(Opk:)(Onki) — 2ki(Op fi) — 2(Opki){ fi + ki(Or.fi) }

(A.2d)
Ei(0pO4k;) = —(0nE;)(Opki)(Oaki) + 2ki(Op fi) + 2(Opki){ fi + ki(Ok fi) } (A.20)

—(aki){(9x0p f;) sinh(2k; H) + 2H (9p f;)}, |

and

Ei(04Onki) = —(0kL;)(Oaki)(Onks) + 2(0nki){ fi + ki(Ok fi) cosh(2k;H ) } (A2f)

—2(0gki){ fi + ki(Onfi)}- '

To evaluate the above expression we need derivatives of the functions f and E, and these
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are

Onf=1—ra+58k, Opf=—D 'k(ka— 38k"),

and
OXf =208k, 0%f =6D2BK°, 0O opf = —D '(ka — 153k"),

and
OE = (02 f)sinh(2kH) + 4H (0, f) cosh®(kH ).

The function E may be recognised as a scaled version of the derivative of the dispersion
relation (A.1) with respect to k. As such, if it were to vanish at a particular root, k;
say, then k; would necessarily be a multiple root of the dispersion relation. However,
we would be unable to obtain its derivatives from equations (A.2a-g), as then E; = 0.
This corresponds to the comment made in §3.2.2 concerning the unboundedness of the
constituent roots in the vicinity of a bifurcation.

(0)

Turning to the situation in which the ice is absent and the quantity x; = kio is a root

of the free-surface dispersion relation
k@ tanh(k©h) = &,

then, as previously mentioned, it is a function of the bed depth A only. The required first

and second derivatives of k§°) are, respectively,
EO @) = ~2 (k).
and
ED(02k) = —4h cosh? (KO h) (0,57)? — 4k (0,k) (1 + cosh?(k{Vn)),
where

E” = sinh(2kh) + 2k;h.

For the limiting values
) NI
Ky = i, =1—,

H
which are used in the hybrid approximation, the expressions for the roots are trivial, but

for completeness, we give them here. Thus,

nm nm
OpTp = g2 OqTyn = ma
and 5 5 5
nm nm nm
8}2171'71 == ﬁ, ahadﬂ'n = —F, 8371'” = ﬁ
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Appendix B

Identities in two-dimensional

problems

In this Appendix we derive an equation that can be used to show that for two-dimensional
configurations the MMA maintains the energy balance that is satisfied by the full linear
solution. We will then use this equation to deduce some of the identities that were used

to analyse the scattering in a two-dimensional setting.

B.1 An energy balance equation

The energy equation that we will derive in this section is the extension of that which
appeared in Porter & Porter (2004) in their equation (5.20) for the single-mode approxi-
mation.

Begin by letting the functions, ¥ = (@%), XE%%, X%)T’ be defined as solutions of the
governing differential equations of the MMA in two-dimensions, which were defined by

equations (4.3a-b). Here we write the equations as
1 ) (@ ) (@
ﬁ(q)(ﬂ)a XE();) =0, hl(XE(}%: XE();) = O; h?((I)(O); XE(]%: XE();) = O;
where
H(®(0); Xfo) = 0x(A0:® () + D3, ® (o) + (B — ¢*A)®(q) + kx(y)CF, (B.1a)

bi(x(o)- X{o)) = B(92 — a*)X{o) — X(o)» (B.1b)
b2 (@(0), X{o)» X{a)) = (02 — a*)x(g) + {(1 = »)(2B) + 1 — ra}x() — £ CB(.  (B.lo)
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Now define the functions ¥y = (<I>(T1), XE ;, X(l))T as the solutions of the related system
« 1 1) (2 ) (2
’6 ((ﬁ(l)a XElg) = 07 hl(XElga Xglg) = Oa h?(é(l)a XEI%’ XEI;) = Oa
where
9 (@), XEB) = 0,(A0,®n)) + 3;1;(5‘1)(1)) +(B" - QQA)‘I)(I) + "GXEBCf'
By applying the symmetries A = AT and D = —D” to the combination
1 X 1
B0 H(®(0) xlo) — (97 (R, X)) By,
we arrive at the equality
02 A(0:2(0)) — (0, (1) A®(0) +2(1) DB (o)} + 51" O{x(g) @ (1)~ X{1) @)} = 0. (B.2a)
Similarly, by rearranging the terms nghl(x(lg, X%) - ng)hl(xgg, Xg;) we find that

0 I @ox(8)) = X @axX!D} = {@ax ) @ax)) — (X)) (@ax1) )~

produces

1 2 1 2 1 2 1 2
0. (1) (Dex(s) = X{a) (Dax(1)} = L@x () (@x(a) = (Dax(5) (Pex (D))
(1,2 (1,2 (1) (1) _
—*{xX©) — XXt — T IR0 — X0 B} = 0.
A linear combination of equations (B.2a-c) then gives

0{ 21y A0:%(0) — (0:2())" AB(0) + B[} DB (o)}

(B.3)
1 2 1 2 2 1 2 1
_’iam{XE&(amXEUg) - Xgog(amXES) + Xglg(amXEob - Xgog(amXES)} = 0.

Alternatively, we may express equation (B.3) in the more compact form

0, { W], OA0, %)) — (0,T (1)) OAT ) + T[; D)} = 0, (B.4)
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where the matrix

I 0 0
Oo=|0" 0 -k |,
o' —x 0

is of size (N + 3) x (N + 3).
Over an interval of suitably smooth geometry (zg,x1), that is geometry for which the
operators (B.la-c) are well defined, equation (B.4) may be integrated to give the energy

balance
~ 1
T OA0: ¥ () — (0.9 1))  OAF () + B}, DT g =0. (B.5)

T=xq

This may be extended if both ;) (i = 0,1) are subject to the jump conditions
VM), = (VM)
and
VIH(AME, )y + (QNT ;) } = VI{(AME, () + (QN T ;) .

In this case it can be shown by using the identity Q@ — QT = D that the above energy
balance holds for any two points in an interval of ice-covered fluid, regardless of whether
there are discontinuities in the geometry.

In an interval of ice-free fluid the energy balance (B.5) reduces to

~ T
B[ A(0:®0) — (0:@1))  A®() + B[,y DD = 0.

T=x0

Now suppose that the interval (x¢,z;) extends from an ice-free interval into an ice-covered

interval, and that the joining conditions
(V@) = (V@)
and
Vi (AMO )1 + (TN® ;)4 b = VIH{(AMO ) - + (TN T )1,

apply at the ice edge, for 7+ = 0,1. The ice-covered and ice-free energy balance equations
may then be combined, to give
|7, A0, @) — (0:21))"AD (o) + BF, DP(g)| =
[‘I’(Tl)(’)fl(am‘l’(o)) — (0,2 1)) TOA® () + Wﬁ)ﬁq’(o)]m:xl :
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B.2 Identities involving the linearly independent func-

tions

The energy balance (B.5) given above may be used to derive some of the identities that
were used in our earlier work. Specifically, we wish to establish relationships between the
linearly independent functions that are combined to form the MMA in two-dimensional
problems. For instance, if the ice-cover is complete we define the MMA over an interval
of varying geometry in equation (4.37) in terms of functions denoted £.. Similarly, in the
case of a floe of a finite extent and a varying thickness, equation (4.37) defines the MMA
in terms of different functions £4. There is also the problem of a periodic structure, for
which the MMA is defined in each period by equation (8.3), where the linearly indepen-
dent functions are denoted £, ; (i = 1,...,M). In each case, the linearly independent
functions satisfy the system of ordinary differential equations (4.4) that govern the MMA

in two-dimensions. The energy balance (B.5) is therefore applicable to these functions.

B.2.1 Diagonality of the matrix CTO.AC

Before we seek relationships between the linearly independent functions, we must first
prove an intermediate result that will facilitate our analysis. This is that the matrix
CTOAC is diagonal. Recall that

C = [e(N), .., e(An), e(A 1), &(A 2)],

where
In+1
inh (%, H
)= 00 |, M0 = M%M’ YO (\) = — Bk ().
72 ()
forn=20,..., N,
UN,(j)
. L) sinh (o H)
ey =1 10 |, YO(A) = ) — () ’
7(2)()\7])

and YP(\_;) = —ﬁu?vy(j)fy(l)()\_j) for j = 1,2. The vector vy, is defined by

Avy g+ B1DO ) (K 4 sy DESE=0 (j=1,2), (B.5)
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where the roots uy ;) are calculated from
(Bun )y +1— ka) + pETCANK? + 43, () DKSE =0 (j =1,2).
Evaluating the entries of the matrix CTO.AC directly, we find that

{CTOACY;; = {A + g (KSHTK®S + K3Sﬂ'TKS)} (i,j=1,...,N+1), (B.9a)

Jst

{CTOACY; 111 = {CTOACY N 14iy = {Avw .y + By (A ) (K® + pi ) 1) K ST,
(B.9b)
foryj=1,....,N+1andi=1,2, and

{CTOACY N1+ N 4140 = U%,(i)AUN,(j) + "057(1)()\—07(1)()\—j)(lﬁv,(i) + /ﬁv,(j)) (B.9c)

for 7,7 = 1,2. We now wish to show that the off-diagonal entries are zero. Making use of
the dispersion relation (3.13) and the definition of the coefficients a;; given in (4.15), we
find that, for the block defined in equation (B.9a), the off-diagonal entries (i # j) are

aj;i + gkj sinh(k; H)k; sinh(k;:H ) (k3 + k7)

1
— m {k (k;sinh(k;H) cosh(k;H) — k; sinh(k;H ) cosh(k,;H))
D)
+ pkjsinh(k,;H)k; sinh(kiH)(k;% _ kf)}
1
— m {k (k;sinh(k;H) cosh(k;H) — k; sinh(k;H ) cosh(k,;H))
D)

+ kj Slnh(k]H) (/i COSh(kiH) + Iiaki Slnh(sz) — kz Slnh(sz))

— kisinh(k;H) (v cosh(k; H) + mak; sinh(k; H) — k; sinh(k; H))}
1 ) ‘
= w2 =1) {k (k;jsinh(k;H) cosh(k;H) — k; sinh(k;H) cosh(k,;H))
J 7

—  (kjsinh(k;H) cosh(k;H) — k; sinh(k;H) cosh(k;H))} = 0.

The vanishing of the entries defined in (B.9b), which are all off-diagonal, is a trivial
consequence of the definition of the vectors vy ;) (i = 1,2) given in (B.8). To show that
the entries in equation (B.9c) are zero for i # j, we use the definition of the eigensystem
(4.12a-b), which states that

(A(K? = pi3 1) = CEET K S)uw ) + £V (A)CEf = 0, (B.10a)

and
(Biy + 1 — ka)yD(A) — £ Cup ) = 0, (B.10b)

261



for 2 = 1,2. We deduce from the former that
v%’(j)(AK2 — CEfTKS)un i) — M?V7(Z-)U]7\}’(j)AUN7(i) + /vy(l)()\,i)vﬁ’(j)(]f =0 (B.11)

for i, j = 1,2. Then, taking the difference of the (j,7) = (1,2) and (j,7) = (2,1) cases of
(B.11) results in the equality

(K1) — o) Va @ Avn, ) + £ (A2) vk oy = YD (A1) vk ) CF = 0. (B.12)

Similarly, by using the cases i = 17 = 2 of (B.10b), multiplied through by v"(A_;) and
7 (A_}) respectively, and taking their difference, the identity

5(#?\7,(1) - /ﬁv,(g))V(l)()\—1)7(1)()\—2) = (7(1)0\—2)“%,(1) - 7(1)()\—1)?&,(2))6Yf (B.13)
follows. Combining equations (B.12)-(B.13) leads to

(M?v,u) - M?v,(g))vjjx;,(g)AUN,(1) + Hﬁ(ﬂ?v,m - lﬁv,(z))V(I)()\—1)7(1)()\—2) =0,
and dividing through by (N?v,a) — /ﬁv,@)) produces the required result. All off-diagonals

have been accounted for and proof of the diagonality of the matrix CTO.AC is complete.

B.2.2 Complete ice-cover

During our analysis of the scattering matrix, S, made in §4.4, it was stated that

[Z"ACTOACT]| _, b_L(0)=[I"ACTOACT] _ L6 Lo(D), (B.14)

0 l

where the linearly independent functions £ are those used to calculate the MMA in the

case of complete ice-cover. Recall that the operator
bov(z) =Z{ €7 (ze)M(z )V w2V (w5) M () v(25),

is a scalar quantity. We now wish to prove the statement (B.14).
Both £ satisfy the differential equations (4.4) over the interval of varying geometry
(0,1). Additionally, these functions satisfy the boundary conditions

[V‘l{AMaxL_ + é_c_}] = TAMeN) T, (B.15a)
[v—l{/uvtamc+ + é_c+}] =0, (B.15b)
[V—l{AMa,,.L_ + é+£_}] =0, (B.15¢)
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and

VHAMOL, + QLY = —(VIAMEN T, (B.15d)

which were originally defined in equations (4.38a-b). We will make use of the commutative
properties

OA= A0, 0Q=00, OV=VO, (B.16a)

of the matrix O, and also its ‘near-commutative’ properties
OM=M"0, ON =NT0O, (B.16b)

all of which are easily established. We will also make use of the fact that the matrices M
and N commute with A, Q and V.

As the functions £ are solutions of the differential system (4.4) we may take (¥(y), ¥(9)) =
(L_, L) and the interval (zg,z1) = (0,1) in (B.5), so that

~ I—
LYOA0,L ) — (0.L)TOAL + LTDL = 0. (B.17)

=04
Consider the contribution to (B.17) from the boundary 2 = 0,. Firstly, we may remove
the derivatives via the boundary conditions (B.15a-b), with
LT (0)OA(B, L (0)) = LT (0)O (—M;lé,ﬁ,(()) + MATY YA M C A ﬂl)
and
(0, L4(0)TOAL_(0) = —L.(0)T QT M TOL_(0),

where the subscript 1 denotes evaluation of the quantity at 0, and likewise the subscript

| denotes evaluation of the quantity at 0_. From equations (4.36a-b), we have the matrix
@_ defined as

Q = QM +iQ (B.19)

where

é— — VTVJIAiMici/lifCi_lMiVJTVTTMT_l,

We will now split the matrices (’)MT_IQ_ and @TMT_T(’) in terms of (B.19) and evaluate

the their components. From the commutative relationships (B.16a-b), we find that
T AT A—-T () — -1T

so that
OMT' QN = N QT MO = D, (B.20)

where we have again used the equality Q — QT = D and additionally OD = D. For the
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second term, which includes the matrix O_ defined in (B.20), we find that

MV IMTe TFACT MTAY, TVIMTO
= MV MICTTFACTOACCII MYV VM
= MTVVIMICTCTOAC, FALC " MYV VM
= OMIVYV ITAMCAFC I MYV VM

Here we have again used (B.16a-b), as well as the diagonality of the matrix ACTOAC. Tt
follows that
OM:'Q_ — Q" M;TO =0. (B.21)

Applying (B.20) and (B.21) to the contribution from the lower boundary in (B.17) gives

[L£OA(axL_) — (0L )TOAL_ + LIDL_

.’,C:O+
= ﬁi (0)OMTflATilVTVJlAiMJKCiAiII

= TV ACTOALCC " MYV VAT M L(0)

= [ZTACTOACTL ], _, b_L(0).

=0

Here, we have again used the diagonality of the matrix CTO.AC.
Similarly, evaluating the contribution to (B.17) from x = [_, we find that

z=l

[ﬁi@A(amz,) — (0,L)TOAL_ + Ezﬁﬁ,} = [T ACTOACT,]

r=I_

. b L (1).
The net result from these manipulations to (B.17) is the identity

[Z7ACTOACT| b L,(0) = [I] ACTOACT,] V6L,

=0 =l

which we were seeking.

B.2.3 Partial ice-cover

The analogous identity to (B.14) in the case of a finite ice floe is

[TTAAT], ) b_£4(0) = [I"AAT] _, b,L (D).

The functionals are here defined as

biv(z) = IlTV_T(xi)VT(ij)]N-"V(:E;).
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The linearly independent solutions, L., of the differential system (4.4) satisfy the bound-
ary conditions (4.43a-b). For the purposes of this section, let

T
L:I: = (LLXSEI),X(?) )

where the vectors L. satisfy the boundary conditions

[v—l(A(axL_) + @_L_)] = (VAN

[V*l(A(a,,,.Lg + @,LQ] —0,

VAL )+ QL) =0,

and
[V‘l(A(amL,)qL@JFL,)} = (AN,

where the matrices

-~

Qx(2) = Q(r5) £iV(2:)V (1) A() Mar) FV T (22) V" (25),

and F = diag{0,1,...,1} is a square matrix of dimension (N + 1).
The functions X(ij) (j = 1,2) satisfy the no bending moment and shearing stress

conditions, here written as
A +u@d =0, 0x® —u(@)dx + v@nd) =0, (B.23)

where u(z) = 8(z)(1 — v)¢? and v(z) = (9,6(z))(1 — v)q¢>.
It is more convenient in this case to use the energy balance in the form given in
equation (B.3), so that

[L”A@0,L ) — (9,Ly)"AL_+LTDL_

I

(B.24)
=P (@x?) = X (@x?) + X (0:xY) = @Yy, =0,

Closely following the case of complete ice-cover, we have
LY (0)44(0,L(0)) = L} (0) (~QL (0) + ViV A AT )
and

(0,Ly)TAL. = —(QL_(0))"L_
= —L_(0)"Q"L_.
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We note that

-~

QT = (Qr =iV AN FV VT
= QrxiViV 'TFA ATV TV
= QT iV TANFV TV
which uses the diagonality of A;. This is a consequence of the orthogonality of the natural
modes in ice-free intervals. We therefore have
[LIA@,L ) - (9,L)"AL +LIDL |, = LI(0)V;V, 'A AL

= TAALITVTVILL(0)  (B.25a)
= [ITAAL]__ b _L,(0).

Similarly,

[LYA@,L-) - (9,Ly)"AL_+LIDL ] _, = [ITAAL] _, b,L_()). (B.25b)

=l

It remains to consider the terms including the functions ng') (j =1,2), namely

I
@) =D 0x2) + P 0x) —xP (0]

CC:0+

Consider the lower boundary x = 0, we substitute the functions Xf) for X(il) via the

conditions (B.23) to give

PO =XV @) +xP 0 = X P 0!

CE:0+

= [Xg)(uaxx(_l) — UX(_I)) — x(_l)(uamxgrl) — vxgrl)) — uxgrl)(amx(_l)) + ux(_l)(amxg:))

=04
= 0.
(B.26a)
Following an identical method at the upper limit x = [_ gives
W @x) = 20X ) + 1P @x) = P @] =0, (B-26b)

T=l_

Inserting equalities (B.25a-b) and (B.26a-b) into the energy balance (B.24) produces the
required result (B.14).

B.2.4 The periodic problem

In the periodic problem we define the MMA in equation (8.3) for the mth period in

terms of two matrices, L+ (), whose columns are linearly independent solutions of the
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differential system (4.4). We need only consider the first period (m = 1) and let

Lio)= [Ex)s---Ex,n13)) -

We may therefore express the boundary conditions for £ gy, which were defined in (8.5a-
b), as
VHAME ) + (QNE )], _,, = [V " AMCAT]

[V H{AMOE, ) + (QNEL (3} ] =0,

=04

z=0_"

[V HAMDub_ i) + (QNE_ i}, =0,

CU:lO_

and

VHAMOE o) + (QNE o}, = [V AMCAL]

r=lo4+
fori=1,...,N +3.
We wish to prove the identities (8.15a-c). To do so, we use the energy balance (B.5)

with (¥ (g), ¥(1)) equal to the pairs (£ i),§ (), (§4.6), §a.) and (§ iy, € 5)) for (4,5 =
1,..., N+ 3). Noting the symmetry that

T ..
(L OALs ) = &L OALewy (5,5 =1,...,N +3),

then we find that all of the calculations required for manipulation of the energy balance
with the above three combinations of functions in order to produce the required results

are given by

(€50 OA1)],_y, = — [6£)OM QN (2:61.1)],_y, » (B.28a)
T . —  _ |eT -1 .
[gi,(i)OA(axé—,(a))Lh = [gi,(i)OM Q'M(axg_’(j))]xzo_ (B.28b)
+ [LACTMAAY VMO )]
T : = — [T -t ;
[gi’(i)OA(angr,(J))]x:L = [gi,(i)OM Q”N(axg’(]))]x:u (B.28c)
— [T MIAYTVIM T O )]
and
[0 OADE )], == [ELwOM ANt 6)],,, (B.284)

where the subscripts 1 and | are used to denote evaluation from the upper and lower limits

respectively. Using equalities (B.28a-d) in the energy balance (B.5) for the three cases
(To), Tr1)) = (€0, E5))s (Ers E0) and (§4,0), € ), and again using Q — QT = D
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and OD = 5, leads to

[ZiACy MUAY VMO )], = [TACE MUAY TVIMTOG )],
(B.29a)
(LA CTMAAYTVIMT 06 )] = [LACTMAVTVIMTO6 )] .

(B.29b)

and

AT MAYTVIMTT 06, )], = [TACTMAYVTTVIMITTOE )],
(B.29¢)
for i,7 = 1,..., N + 3. The final results (8.15a-c) then follow straightforwardly by col-

lecting the combinations of 7 and j to form the matrix versions of (B.29a-c)

T

Q0(04)L4(0)(0) = (QO(O+)£+,(0)(O)) ;

Q0(l0-) L 0(lo) = (Qolle-) £ (0y(le)) ",

and

Q0(0:)L1,0)(0) = (Qo(lo_) £ 0y (lo)) ",

where

Qo(ws) = Aa)C" (w2)M(z2) A(22)V " (@2)V" (22) M7 (22)O.

Through use of the energy balance that was derived in the first section of this Ap-
pendix, in §B.2 we have been able to deduce a set of identities, which involve the linearly
independent functions that must be calculated over intervals of varing geometry in two-
dimensional problems in order to obtain the MMA. These identities enable us to obtain

relations between the scattering coefficients, which appear in the main text.
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Appendix C

A circular uniform floe

During our investigation of the circular floe of uniform thickness and zero draught forced
by a plane wave, we produced expressions for the single-mode approximation that hold
under certain circumstances. These approximations were given in §10; however, many of
the details of the calculations were suppressed for presentational purposes. Here, we will

provide those details.

C.1 The régime kH < sinh(kH)

We assumed that the bed was sufficiently deep in relation to the length of the incident
wave that the régime kH < sinh(kH) would apply. This was then used to write the
complex wavenumbers ju;) (j = 1,2) and the corresponding weights, vy (j = 1,2), in
terms of terms of the propagating wavenumber beneath the ice, namely k.

For the single-mode approximation the complex wavenumbers, p;y (j = 1,2), are

defined by the quartic equation
capiyy + c2pily) + co = 0,

where
1 — ko

co = k*sinh(kH) cosh(kH) + a 5

¢y = ksinh(kH) cosh(kH),

sinh(kH) cosh(kH) + kH
2k '

This quartic may be solved straightforwardly for the squared quantities ,u?j), and we have

that 12
2
s 0 .. [ 4coes — 5

=3 (M)

Cy = a =

Taking the two terms that appear in the above expression separately, we apply kH <
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sinh(kH), so that we may treat cosh(kH) and sinh(kH) as being identical and eliminate

the terms that do not involve these hyperbolic functions, to give

¢ k’sinh(kH)cosh(kH)
2c4  sinh(kH)cosh(kH) + kH
~ k?
and
deges — 5 k*sinh(kH) cosh(kH)(sinh(kH) cosh(kH) + 2kH) . 1 — ka
4¢3 B (sinh(kH) cosh(kH) + kH)? I5;
1 - ka
~ k' +
g

We wish to remove the value k from the second expression as its value varies with the

wavenumber k, and this is achieved by using the dispersion relation (3.13) as follows

l—ka cosh(kH)
5~ "Bksinh(kH)
(1+ Bk*) cosh(kH)
B(cosh(kH) + aksinh(kH))
1+ Bk*
B(1+ ak)

k' +

Therefore, we have the approximation

40\ 1/2
”5’“)) | (C.2)

2‘%_2__1]" - e
g~ —h ()1<ﬂ(1+ak

for kH < sinh(kH). If additionally the parameters are such that 1> ok and 1 < Sk?,

then we have the simplification
Lﬁl& ~ k?
B(1+ ak) ’

whence
iy ~ —(1+ (1)K (C.3)

Therefore, the complex wavenumbers are approximated by
[i(1) & 21/4kei37r/8’ [i2) & 21/4kei57r/8’ (04)

when the régimes kH < sinh(kH), 1 > ak and 1 < $k* hold. For the parameters given

in §2.1 these régimes translate to

kD < 1.11, k*D? > 2.20 x 1075,
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which imposes some bounds on the value of the wavenumber, &, relative to the ice thickness
D. With the geometries and wave periods that we commonly use these conditions are
usually satisfied, for instance, if D = 1m and H = 20m, then for a wave period of

T = 2.5secs
ED=1.06x10"'< 111, k'D*=128x10"*>2.20x 107,

and the conditions are met.

We note that the approximate values of the complex wavenumbers (C.2) are deter-
mined by the propagating wavenumber and the geometrical parameters a and (3. Fur-
thermore, the simplified approximation (C.4) is in terms of the propagating wavenumber
only. In both cases the complex wavenumbers form a symmetric pair, pi) = —f), and
have a magnitude which is of the order of the propagating wavenumber.

We now turn to the weights, v(;) (j = 1,2), of the complex waves. As we deal
primarily with the displacement function, it is pertinent to consider the scaled quantities
U(y = vyksinh(kH)/v(pe))k. Using the definition of v(;), which is given in equation
(10.2) we have that

23k?sinh(KH)(k* + 1)) ksinh(kH)

Yoy = ~ sinh(kH) cosh(kH) + kH 8 K
L 2/3k* sinh(KH ) (k* + M ) o cosh(kH) + aksinh(kH) (C.5)
sinh(kH) cosh(kH) + kH 1+ pk*
201+ ok)BR* (K + i)
a 1+ Bk* ’

which holds if kH < sinh(kH). The quantity ~(j;)) is arbitrary and is usually set as
in equation (4.21); however, its value will not have a bearing on the final approxima-
tions. If the additional conditions 1 > ak and 1 < Bk* hold, then using the relevant

approximation of the complex wavenumbers (C.3), we deduce that
B+ udy = B = (14 (=1)7)k° = —(=1)%ik?,
and the approximation of the weights (C.5) simplifies to
Oy ~ (—1)72i. (C.6)

Let us assume that the most simple expressions for the wavenumbers, p;) (i = 1,2),
and corresponding weights, v;), which are given in equations (C.4) and (C.6), hold. Then

the single-mode approximation, which is a combination of the functions ¢, (1) = @, (1) A
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(m=0,...,M), where

Pu(r) = Tu(kr) = 3 0 Ai’szR > i )R;)Jm(,u(i)r), (C.7)

1=1,2

and A, is defined in equation (10.6a-b), is therefore dependent on the values of the
propagating wavenumber k, the radius of the floe R and the amplitudes A,,.

Each amplitude A,, is dependent on the properties of the ice-covered region and also
the region away from the ice, specifically the free-surface wavenumber k() and their

values are obtained via the condition

a v© v(© 2i

Hy (KO R)——— (0,8m(R)) — (0, Hp (k' R)) — & (R) ¢ Ay = —— C.8
(K0 R) 5 @0 () = (O (KOR) * = () 2 ey
where we assume the bracketed quantity on the left-hand side is non-vanishing. In the
régime kH < sinh(kH) we may make use of the approximations

a v 2k sinh(kH) v k+k© sinh(kH)

— A — = . C.9
al® v k + E© sinh(kOH)” 00 2k sinh(k(OH) (C9)

These were given earlier in the main text in equations (7.8a-b). As discussed in the main
text, it is actually the scaled amplitudes

~  Ioksinh(kH)

A, = An (m=0,...,M),

K

where I is the incident amplitude, that we consider in order to make inferences about the
properties of the floe, as these quantities have the correct physical dimension of metres.
The expression (C.7) may be simplified by noting that the symmetry ju o) = —fi(7) of

the complex wavenumbers leads to the relationship in their corresponding Bessel functions
In(er) = (1" In(uyr)s 0 Jm(p@r) = (=1)"0, Tm(uayr)-
Furthermore, we then have that the functions 2,, and %, are such that
Zn(uyr) = (1" Zn(pyr),  Fmlner) = (=1)"Fm(payr),

and this may be used in the definition of the quantities A, (kR, p1¢i_yR) and Ay, (piy R, pi_)R)
to show that

272



and

Am(ﬂ(l)Rﬂ M(2)R) = (=™ {%m(ﬂ(l)R)@m(M(l)R) - c%fm(ﬂ(l)R)@m(,u(uR)}
= (=1)"2i8m (2 (5 R Zu (i B) )

Also noting that the approximate values of the weights, 0(;) (i = 1,2), given in equation

(C.6), are such that (1) = O(2), we deduce that

(=100 A kR, pyR) I (pyr)
(—1)m2iSm (%m(u(l)R)m)
(—1)m5(1) A (kR, N(l)R)m
"2i3m (%m(u(l)R)W>

The original form of the functions @, (m = 0,..., M), given in equation (C.7), may

therefore be written as

Om = J(kr) — —
7 Sm (f%M(M(l)R)QM(M(I)R))

(C.10)

C.2 The régime kR > 1

By making assumptions about the relationship between the wavenumbers & and k9, and
the radius R, we may deduce approximations of the amplitudes beneath the ice, Em, and
hence infer certain behaviour about the response of the floe in these circumstances. To
begin with we suppose that the radius is large in comparison to the incident wavelength
as well as the wavelength beneath the ice, so that XOR > 1 and kR > 1. As the
wavelength beneath the ice is typically greater than in the open water, satisfaction of
kR > 1 is sufficient.

For the régime kR > 1 we are able to utilise the limits of the Bessel function of the

first kind (which are given in Tranter, 1968, for example)

1/2 m o0 V(4 4
Tm(kR) (%) {COS (kR_ : 47—: 1) Zj!é(nlz)—ri +J1r/]2)+(21k/fz))2j

=0

: 2m + 1Y\ (=1)’T(m +j +3/2)
_Sm<kR_ An )Z(j+1)!F(m—j+3/2)(2kR)2j+1}’
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to find that

2 \'? 2m + 1
~ - — C.11a
Jm(kR) <ka> am(kR - ), ( )
for m =0,..., M, where I' is the Gamma function. It follows that its derivative satisfies

2 \'* om + 1
OpJm(kR) ~ —k <m> sin (kR ~ )

for m =0,..., M. Similarly, for large k() R the Hankel function of the first kind has the

asymptotic behaviour

(C.11b)

0 2 1/2 i (0) p_j2m+1
Hm(k( )R) ~ <m> e' _IT, (C].]_C)
and 5

for m =0,..., M, which are also give in Tranter (1968).
From our above approximations of the complex wavenumbers, we have O(|x;)|) = O(k)
(¢ =1,2). Thus, the argument 1(;) R is large and we use the asymptotic limit of the Bessel

function of the first kind to find the expressions

]_ 1/2 Cx : :2m+1
I, zR ~ Sm(p)) R —iRe(p () ) R+ =7 , C11
(n@R) <27T,u(i)R> e e ( e)
and 12
. ]- Sm . _iRe A i2m+1
Ordn (p(iyT0) ~ —1piy <2M(i) R) el el T, (C.11f)

Note the presence of an exponentially growing factor in these limits.

Consider the functions
Zn(w) = (0> = (1 = v)m?) I (w) + w(1 = V) (DI m(w)), (C.12a)
and
Drn(w) = (0 + (1 — v)m?) w(Opdm(w)) — (1 — V)M T (w). (C.12b)

For large arguments w, using the above asymptotic limits of the Bessel functions and the
fact that O, = 0,/k, we find that J,,,(w) and 0,,J,,(w) are of the same order of magnitude
if we ignore the oscillatory terms. The leading order terms in the functions (C.12a-b) are
therefore

T (W) = W I (W), (W) = w0y I m(w), (C.13)

for large w.
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The above approximations of the functions 2, (w) and %, (w) are of use in calculat-
ing the values of A, (kR, unyR) and 2 (u1yR)% (11(1)R), which appear in the simplified
definition of the functions @, given in equation (C.10). We also require an approxi-
mation for the derivative 0,¢,,, for which an expression in terms of A, (kR, q)R) and
2 (uyR)% (uyR) is easily obtained via equation (C.10).

Using approximations (C.13) and (C.11e-f) we have

Q

Z (R (nyR) = iy BT () R) X 8 R0+ I (1) R)

Q

2 p2 1 V2 (1)) R ,—iRe(pn 1) ) R+i 2mtL
R Sm(pn)) R =iRe(ue) ) RH =
H(1) (27TM(1)R> € €

. 1 1/2 x R iR R 2m+1
< AT T <2W( )R> oSm(H(r) R giRe(i(r)) Rmi 222

— | 1 |4R4 eQSm(M(l))R’
27r|u )l

from which it follows that

4R4§Re(,u(1)) 28m(u()) R
e €
27| ()|

44
il Cos (kR — 2m + 1) e2Smn)) R

™ A7

Sm (2 (ny P (e B))

Q

(C.14)

Q

where we have used the approximation of y 1) given in equation (C.4) to deduce the latter
approximation. Again using (C.13) and (C.11e-f), along with (C.11a-b), in (10.6a-b) we
find that

Am(kRa N(l)R) ~ k2R2Jm(kR) X M?l)R3au(1)er(u(l)R)
— /L% )R2Jm(,u(1)R) X k3R38k,Jm(kR)
= k2 (1)R5 { [ )Jm(kR)aM(l)er(u(l)R) — kJm(IL@)R)ak,«Jm(kR)}

2,2 1/2
’Wu)R < 1 ) (M) R giRe(pry) R 222

2 1 2 1
x dksin (kR -~ ) - ipynycos | kR — T .
dm AT

We now note that, from (C.6)

Q

\9m< YA (ER, 1y R) I m (u(l)r)) ~ —2%e (Am(kR, M(1)R)Jm(u(1)7“)) , (C.15)
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and we therefore evaluate

Q

FPEn?R (1 " . 2mn
Am(kR, p(1yR)Im (11y7) Q) < ) oSk R o= Re(n) RHIHE o
4 ki)

2 1 2 1
{k sin (kR _amt ) + ifi(1) cos <kR _amt ) }
A7 4

y < 1 ) e%m(u(l))Reme(u(l))R_i272:1
QWu(l)R

2 P4 1/2 —2

— X
™ 2nkR |/L(1)|

2 1 2 1
{k sin (kR _amt ) + ifi (1) cos <kR _ams ) }
A7 4

KR

2147 \ 27k R
2 1 2 1

{sin (kR— Tr;+ >+i21/4e5”/8(:0s (ls:R— m )},

7 A7

Q

1/2
) e?Smma) B (1 4 1)

which leads to the approximation

Re (Am(kR, M(1)R)Jm(ﬂ(1)T))

414 1/2
KR < 1 ) ngm(u(l))R{Sin<kR_2m+l>

S oVAg \ 27kR 47

—2'/*in 5_7r cos kR—2m+1 — 2% cos 5_7r cos kR—2m+1 ,
8 4 8 47

(C.16)
where we have again used our approximation of ji ) given in (C.4). Combining the
approximations (C.14), (C.15) and (C.16), we then deduce that

Sm <ﬁ(1)Am(l€Ra N(I)R)Jm(u(l)r))
Sm (ﬂ(u(l)R)W)

PWARRY 1\, 2m 4 1
~ sIn(/fJ(l))-R 1 k- —
{ T (27rkR> ¢ (sm ( R 4m )
2 1 2 1
—24 cos 5_7r cos | kR — m+ — 924 cos 5_7r cos | kR — m+
8 47 8 47
4 P4
- { MR cos <kR — 2m + 1) ezgm(“(”)R}
T 47
21/4 1 1/2
_ sin (kr— 2mt1
cos(3m/8) \ kR 4r

3 2 1 3 2 1
+2'7% cos o cos | kR — mt — 24 cos o sin | kR — mt ,
8 4 8 47
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and then that

Sm (’0(1)Am(kR: M(IJR)Jm(M(l)T)>
S (2 (4 7 (a ) )

2 \'? (| 2m + 1 2m 4 1
~ - /2 — _1/4 1 —
(WkR) {2 oS (kR in ) + 27 /% cse(m/8) sin (kR ym )} ,
(C.17)

where the final expression follows from straightforward manipulations using trigonometric

identities. Similarly, to gain an approximation for 0,¢,,, we note that

Sm (ﬁ(l)Am(kRa M(I)R)aer(:U’(l)r)) ~ —2Re (Am(kR: ,U/(l)R)aer(:U’(l)r)) s

and calculate the approximation

A (kR p11y R)Op I (p11y7)

2—2 4 1/2
i B < 1_> S R o—iRe(uen) ) Ri 2 {k sin (kR e 1)
™ k,u(l) A7

— 2m +1 . . o . -
+1/i(1) cos (kR - )} (—1u(1)) <27TM(1)R> eSm (1)) RpiRe(u(1)) =

KR (1 \ 5 2m + 1
= < ) 1) |e29m(na)) R {ik,u(l) sin <kR - W;+ )
T

T 2rkR
2m +1
—,u(1)2 cos <kR T T ) }

k4 R 1 \Y? : om + 1
21/4l€ 23m(p(py) R -21/4 i57/8 3 kLR —
T <27rkR> ¢ e - 4m

(1 +1) cos <kR— Qm“)}

Q

Q

47

whence

Re <Am(kR7 M(I)R)aer(M(l)r))
kAR 1\ 5 om + 1
~ _21/4 - 2%m(,u(1))R 21/4 : el : .
- k <27rkR> e sin S sin | kR =

— COS (kR— 2m+1>}‘
47
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We therefore have the approximation

S (00 8n (kR iy RJ o (10y7))
%m(( R ))

R)0,
(
B k4R4 e2Sm(p)R [ 91/4 i1y o sin [ kR — am 1
- 27rkR 8 in
2 1 k-4 4 2 ]. x
—cos | kR — m < l cos | kR — mT e?Smln)R
Ar T 47
23/4 1 1/2 5% 2m+1
= — k 21/4 i o i kR -
cos(3m/8) (TkR> { o ( 8 ) - ( An )
— cos (ls:R— 2m+1>}
47
2 1/2 1 T 2m + 1
— — /4 o -
k (WkR) {2 csc(s)cos (kR i )

2m+1
1/2 _
+2 cot<8)sm (kR i )}
(C.18)

Inserting the approximations (C.17)-(C.18) into the expression (C.10) for @, and the

Q

equivalent expression for 0,p,, gives

9 1/2 9 1/2
@m(R) ~ (m) Xma a’r@m(R) ~ _k <7T/€R> Ym (sz,...,M)

where
2 1 2 1
X = (1—2"%)cos | kR — ML) o1 e (f) sin (kR — 20F ,
47 8 47
and
2 1 2 1
Y,, = 24 cse (z) cos | kR — m + <1+21/200t (E))sin kR — mt ,
8 47 8 47

as in §10.1. These approximations hold in the régimes kH < sinh(kH), ak < 1 < Bk*
and kR > 1.

It is now a simple matter to substitute our above approximations of ¢,, and 0,9,
along with the asymptotic limits of the Hankel functions (C.11c-d) and approximations

of the coefficients (C.9) into the equation from which the amplitudes are obtained, (C.8),
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to give

2 (KON o s sinh(kH) 2% k+ k© ~
—— (= T kY, + 1 EOX, 4 A,
wR( k ) ¢ T SO H) {k+k(0) o }

_ 2iksinh(kH)
mRE© sinh(k© H)

Q

By cancelling terms common to either side we are left with

21* '7k+k(0) A (kT —ik(0) R4 2mtL
{mym“ o Xm}"‘m“(m) ¢ . (C1o)

from which approximations to the amplitudes Em may be calculated.

Now, we assume that the wavelength beneath the ice is far longer than that in the
surrounding free-surface (i.e. k& < k), which is often the case when the frequency is
not especially small and the ice is not very thin (see figure 5.10(a)). Disregarding the
influence of the oscillatory terms in X,, and Y,,, we have that the term in the bracketed
quantity on the left hand side of approximation (C.19a) involving X, will outweigh that

which involves Y,,. Consequently, we deduce the simplified expression

~ 2 k 5/2 1k (0) Ry 2m1
Am ~ X— (W) eﬂ AT (sz,...,M), (Clgb)
m
when k < k(.
Equations (C.19a-b) give the required approximations that are quoted in equations

(10.19a-b). These approximations are validated numerically in figure 10.1.

C.3 The régime kR < 1

We now consider the opposing limit in which the radius of the floe is small in comparison
to the two wavelengths involved in the problem. This situation is described by the régimes
kR < 1 and kYR < 1, and as before the relative sizes of the two wavenumbers means
that we need only specify one of these régimes, here kR < 1.

We will once again make use of standard asymptotic limits of the Bessel functions in
our chosen régime. In this case, the arguments of the Bessel functions at the interface

between the ice-covered and ice-free domains are small, and beneath the ice we have that

m —kQ—R (m =0)
2m(m — 1)! '
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Recall that we have assumed conditions such that the approximations (C.4) of the complex
wavenumbers hold. Hence arguments involving the complex wavenumber, p (7 = 1,2),

will also be small, so that the same limit applies, and thus

2
iy R
1 [ p@R\™ - (2) (m =0),
I R) ~ —5 | =5 o 0 m(n@yr)]r=r ~ e (i B)™1 (C.20b)
omm 11 70

Note that, as opposed to the large floe régime, there is no oscillatory part in the limits of
the Bessel functions here, which would lead to exponential growth when their arguments
have a complex component.

Referring to (C.20a-b) we deduce that, as the complex wavenumbers are of the same
order of magnitude as the propagating wavenumber beneath the ice, the corresponding

Bessel functions of the first kind are also of the same order of magnitude, with
Jn(kR) = O ((KRY™). () ) = O ((kR)™).

O(F’R)  (m=0).

O e = (ER)™) (m #0),

and
O (kR) (m=0),

87"Jm )T )lr=rR =
[0 m (11y7)] O ((R)™) (m £0),

for i = 1,2. Furthermore, the functions A, (kR, p;)) and Ay, (g, i) are of the same
order of magnitude. It then follows that the function ¢,, is of the same order of magnitude
as the Bessel functions J,,(kR) and J,,,(p@u) R), so that

N N Gok’R (m = 0),
Pm(R) ~ gm(ER)™,  0rom(R) ~ . (C.21)
gmk™R™" (m # 0),

where the constants ¢, and g, are of order 1 whose values can be calculated but will not
be needed.

This information will be used to deduce the relative magnitudes of the amplitudes
A, (m =0,..., M), which are obtained from equation (C.8). We therefore require the

relevant limits of the Hankel functions for the small argument £R, and these are

4 In(k©R) (m = 0),
Hu(KOR) ~ 00 Ty m (C.22a)
( - ) <k(0)R> (m # 0),
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and )
21

R
im! 2 \"™
77TRm+1 <W> (m # O)

Applying the limits (C.22a-b) and the approximations of the coefficients given in (C.9)

(m=0).

[aer(k(O)T)]rzR ~ (C.22b)

to equation (C.8), for m = 0 we have

2i 2k sinh(kH) 2 k+ k© sinh(kH) ~
ZIn(kYR)-— 0,%0(R)) — — Zo(R) p A
{w k) k@ s i) P ) — R S s g P ) Ao

20 ksinh(kH)
' 7REOsinh(kO H)’

which simplifies to

k4 kO 2@ ) - k

We now consider equation (C.23) in terms of orders of magnitude of the small quantities
kR and k) R. It is legitimate to ignore the first of the bracketed terms as (kR)? In(k(¥ R) <

1, whence
- E\?
Ay =0 ((W) ) . (C.24)

Similarly, for m # 0, we begin by substituting the limits of the Bessel functions into

equation (C.8) to give

2 \"™ 2k 2 \"k+&O ~ k
{R(m 1)! (k(O)R> 1 5O (0rPpm(R)) +m! <k(0)R> ok Om(R) p Ap & Qk(o)’

and then simplify this expression using (C.21), which results in

25\ 4+ kO ]~ O\
PLGRTCTE U Nl Ny S LA S O WP (s B 2
(m=1) {k+k(0)g’"+m T ( k ) (C.25)

If the bracketed terms on the left-hand side of (C.25) are of an identical order of magnitude
and we cannot progress directly to a clear expression for Zm However, if we return to
the situation k() > k, then the second term outweighs the first and

A, =0 ((%)M) (m=1,..., M), (C.26)

follows.
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We may condense the results (C.23) and (C.25) into

- O\ ™!
Gm(k,ko)Am: <—> (sz,,M),

where the function G,,, is such that

k+ kO 2k
Go(k, k@) = o go—(kR)2ln(k(0)R)k+0k(0)go,
and
2k k+ k©
0)y — _ 1\19om—1 0 ~ KT R _
Gk, k™) = (m —1)!2 {k+k(0)gm+m o Im (m=1,...,M).

This order of magnitude holds for kR < 1 and the conditions kH < sinh(kH) and
ak < 1 < Bk*. If additionally ) >> k then we have the more usable results (C.24) and
(C.27), which may be written as

An=0 ((%)m_j (m=0,...,M). (C.27)

In the main text the above results were given in equations (10.22)-(10.23) and were dis-

played graphically in figure 10.2.
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Notation Index

Symbol Description Reference
T, Y, 2 Cartesian coordinates figure 2.1
r, 0 polar coordinates equation (9.6)
n, s normal & tangential coordinates page 22
om partial /full derivative with respect page 18
to x
\Y% horizontal gradient operator page 18
(f,9)* the inner product of f and g equation (3.19)
(s (()) jump in the included quantity page 25
across a contour & a surface, respec-
tively
D, H ice thickness & fluid depth figure 2.1
d undisturbed position of fluid-ice in- figure 2.1
terface
h bed depth figure 2.1
w angular frequency equation (2.8)
T wave period page 20
K frequency parameter equation (2.10)
o scaled ice mass equation (2.10)
Iv) scaled flexural rigidity equation (2.5)
Pis Puw ice & fluid densities section 2.1
E Young’s modulus page 19
v Poisson’s ratio page 19
g gravity page 19
o* reduced velocity potential equation (2.8)
n reduced displacement function equation (2.8)
Lo*, Iy functionals section 2.2
r internal boundary/ice edge figures 2.2-2.3
u auxiliary function page 27
m, & bending moment & shearing stress equations (2.22a-b)
operators
€ normalised displacement equation (5.13)
Wy * vertical modes page 30
{wg, ..., wy} trial space page 30

*A superscript (0) is added to indicate when the quantity is evaluated in an ice-free domain.
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Symbol Description Reference

Y™ approximate reduced velocity po- equation (3.1)
tential

X approximate reduced displacement page 31
function

wy* weight function page 37

©On* amplitude functions equation (3.1)

Dy* vectors of amplitude functions page 33

Uy vector of amplitude functions equation (4.5)
and approximate displacement
functions

A* incident wavelength page 40

ko* real roots of the dispersion relation page 40
/propagating wavenumber

k, =io,* (n>1) purely imaginary roots of the dis- page 41

ky, =im, (n > 1)
Vi,j

pnGy (1=1,2)

UN!(Z’j)

C, S, K
P(X)* P(X,Y)*
*’ d. >

yE

SR

*
a371 3 Y]t

A*, B*, D*

persion relation

limiting values of the purely imagi-
nary roots

complex roots of the dispersion re-
lation

redistribution weights of the com-
plex waves
approximate complex roots/
dimension-dependent wavenumbers

of the MMA in a domain of uniform

geometry
approximate redistribution
weights/ dimension-dependent

eigenvector entries

matrix of the eigenvectors of the
MMA in a domain of uniform ge-
ometry

diagonal matrices

inner-products of the vertical modes
coefficients of the governing differ-
ential equations of the MMA
respective matrices of above coeffi-

cients
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equation (3.43)
page 41
equation (3.40)

equation (4.20)

equation (4.26)

equation (4.24)

equations (4.13a-b)
section 3.2.1

page 32

page 33



Symbol Description Reference

A, B, D respective extensions of above ma- page 55
trices to include the coefficients of
the fourth-order displacement equa-
tion

Q" vji* coefficients of the jump conditions equations (3.8)-(3.9)
of the MMA

Q*,V* respective matrices of above coeffi- equations (3.8)-(3.9)
cients

Q,V respective extensions of above ma- page 56
trices to dimension (N + 3)

M, N, M, N matrices containing the coefficients page 57
of the displacement boundary con-
ditions

S scattering matrix page 65

Ry, Ty reflection & transmission coeffi- equation (4.44)
cients

1,7, nth column of the identity matrix of
size (N+1) and (N+3), respectively

f vector of 1s page 33

F identity matrix appended with two page 67
colums of zeros

) incident angle in the two- page 53

dimensional problem

incident & reflected amplitudes in
two-dimensional problems

length of obstruction in two-
dimensional problems

diagonal matrix of the exponential
values of the diagonal entries of the
matrix M

matrix associated with the two-
dimensional energy balance equa-
tion

incident amplitude in the axisym-
metric problem

radius of axisymmetric floe

Bessel & Hankel functions of the

first kind of order m
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equation (4.1a)
figures 4.1-4.2

equation (4.23)

equation (4.48)

equation 170

figure 9.2



