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Abstract

The surge, heave and pitch motions of two solitary, thin, floating disks, extracted

from laboratory wave basin experiments are presented. The motions are forced

by regular incident waves, for a range of wave amplitudes and frequencies. One

disk has a barrier attached to its edge to stop the incident waves from washing

across its upper surface. It is shown that the motions of the disk without the

barrier are smaller than those of the disk with the barrier. Moreover, it is shown

that the amplitudes of the motions, relative to the incident amplitude, decrease

with increasing incident wave amplitude for the disk without a barrier and for

short incident wavelengths. Two theoretical models of the disk motions are

considered. One is based on slope-sliding theory and the other on combined

linear potential-flow and thin-plate theories. The models are shown to have

almost the same form in the long-wavelength regime. The potential-flow/thin-

plate model is shown to capture the experimentally measured disk motions with

reasonable accuracy.
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1. Introduction

As ocean surface waves progress deeper into the partially sea ice covered

ocean, they encounter discrete, relatively thin chunks of ice (floes) of increasing

horizontal dimensions (Squire and Moore, 1980). The range of dimensions de-

pends on the geographic location and season. However, the floe diameters can5

be as small as a metre, in the case of pancake ice, and up to hundreds of metres.

The waves are attenuated by their interactions with the floes before they reach

the quasi-continuous ice pack (Shen and Ackley, 1991), notwithstanding the

large floes pushed into the outer fringes of the ice cover by random ice motions,

which are subsequently broken up by the waves (Squire et al., 1995). The region10

of the ice-covered ocean in which wave activity remains significant is known as

the marginal ice zone (miz).

Waves impact the ice cover in the miz. They break up the ice into smaller

floes (Prinsenberg and Peterson, 2011), which are more prone to melting and

easily stirred up by winds, currents and waves. For example, waves herd the15

floes into groups (Wadhams, 1983). Further, waves cause floes to collide with

one another (Martin and Becker, 1987), which cause them to erode and produce

rubble (McKenna and Croker, 1990). Collisions sometimes turn into rafting

events, and if the floes stay in contact they bond (Dai et al., 2004). Waves also

introduce warm water and overwash the floes, which accelerates melt (Wadhams20

et al., 1979; Massom and Stammerjohn, 2010).

Arctic sea ice is retreating polewards, particularly following the summer melt

season (Stroeve et al., 2014). Strong and Rigor (2013) use satellite data from

1979 to 2011 to show that, in addition to the poleward shift of the Arctic ice

cover, the width of the miz is increasing by approximately 13 km per decade25

during the summer months. (They defined the miz based on the ice covering 15

to 80 % of the ocean surface.) Thomson and Rogers (2014), amongst others, use

models and data to show that winds generate large-amplitude waves in the areas

of open water left by the ice retreat. Squire (2011), for example, argues that

these stronger waves are contributing to the expansion of the miz, thus further30
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weakening the ice cover, accelerating ice retreat and promoting even stronger

waves.

Theoretical/numerical models have been developed to predict wave impacts

on the ice cover. Shen and Ackley (1991) used a one-dimensional model to

study collisions between floes and herding. They used the slope-sliding model35

of Rumer et al. (1979) to calculate the horizontal motions of the floes induced

by waves. The slope-sliding model is an extension of Morison’s equation, which

includes a force due to the slope of the wave field. The model is derived on

the assumption that floes do not modify the wave field, i.e. the floe diame-

ter is much less than the wavelength. It predicts the horizontal motion of a40

floe to be the sum of an oscillatory surge motion at the period of the inci-

dent wave, and a steady drift in the direction of the incident wave. Shen and

Zhong (2001) derived analytical solutions to the slope-sliding model in certain

cases. Marchenko (1999) independently derived a similar slope-sliding theory

to Rumer et al. (1979). Grotmaack and Meylan (2006) related the two theories45

and identified an error in the derivation of Rumer et al. (1979), although they

noted Marchenko (1999) neglected the floe’s added mass.

Kohout and Meylan (2008) and Williams et al. (2013a,b) modelled wave-

induced breakup of a large group of ice floes, and applied breakup criteria that

extended the earlier work of Langhorne et al. (2001). The kernel of both models50

is a model of a wave interacting with a solitary floe. The wave-floe interaction

model uses linear potential-flow theory to model water motions and thin-plate

theory to model the floe. The linear potential-flow/thin-plate model is com-

monly used to study wave-floe interactions (see the review of Squire, 2007, for

example).55

Kohout and Meylan (2008) and Williams et al. (2013a,b) used two-dimensional

models (one horizontal dimension and one depth dimension). Masson and

LeBlond (1989), Meylan et al. (1997) and Bennetts et al. (2010) developed

three-dimensional models of waves propagating through large groups of floes.

They focussed on the attenuation of wave energy into the ice-covered ocean60

and did not model breakup or any other impact of the waves on the ice cover.
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Masson and LeBlond (1989) and Meylan et al. (1997) modelled the floes using

the thin-disk models of Isaacson (1982) and Meylan and Squire (1996), respec-

tively, noting the former is a rigid model and the latter is an elastic model.

Bennetts et al. (2010) used a disk model and also a square-plate model, using65

the finite-element approach of Meylan (2002), but found the different shapes

did not significantly alter the predicted attenuation rates.

A handful of laboratory experimental studies have been conducted recently

to assess the accuracy of the theoretical models, and indicate phenomena the

models do not capture. The experiments focus on the ability of the models to70

predict interactions between water waves and thin floating plates.

Bennetts and Williams (2015) used laboratory wave basin experiments to

validate the model of Meylan et al. (1997), and the two-dimensional model

of Bennetts and Squire (2012), which was used by Williams et al. (2013a,b).

They used arrays of 40 to 80 identical wooden disks to model the ice cover,75

and measured the proportion of wave energy it transmitted for regular incident

waves over a range of wave frequencies and, in two cases, for two different am-

plitudes. The quotient of thickness, H, over diameter, D, for the disks was

H/D ≈ 3.3 × 10−2 . The quotient of the incident wavelength, λ, over the disk

diameters was in the range λ/D ≈ 0.67 to 6.28. The incident steepness, rep-80

resented by the product ka, where k = 2π/λ is the wavenumber and a is the

incident amplitude, was in the range ka ≈ 0.04 to 0.26. They showed the models

predict the transmitted energy accurately for small incident amplitudes and low

concentrations of the disks. They observed the models were inaccurate for the

larger incident amplitudes when wave overwash of the disks was strong — over-85

wash is a form of green water that refers to the wave running semi-continuously

over the top of the disks, due to their small freeboards. Further, they pro-

vided evidence to show the models were inaccurate for high concentrations due

to collisions between the disks, caused by out of phase surge motion of adja-

cent disks, and rafting, caused by out of phase heave and pitch motions. The90

potential-flow/thin-plate model does not include the highly nonlinear processes

of overwash and collisions.
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Modelling collisions between disks requires an accurate model of the surge

motion of a solitary disk. Heave and pitch motions must also be modelled to

predict rafting. However, the potential-flow/thin-plate and slope-sliding models’95

predictions of these oscillatory motions have not yet been thoroughly validated.

Bennetts and Williams (2015) presented measured surge, heave and pitch

motions of a solitary wooden disk for a subset of the incident frequencies and

amplitudes used for their multiple-disk tests, as an addendum to their investiga-

tion of wave transmission through multiple disks. They compared the measure-100

ments to the predictions of the potential-flow/thin-plate model, and found the

model is, in general, accurate. They showed the model was least accurate for a

test in which strong overwash occurred. In particular, the model overpredicted

the translational motions, surge and heave, and underpredicted the rotational

motion, pitch.105

Previously, Montiel et al. (2013a,b) presented measurements of the flexural

motions of a thin plastic disk in response to regular incident waves, as functions

of the incident frequency. They used three thin disks, with H/D = 2.1×10−3 to

6.9×10−3, and incident waves with lengths ranging from λ/D ≈ 0.63 to 3.14, and

two small steepnesses ka ≈ 0.03 and 0.06. They compared the measurements to110

predictions of the potential-flow/thin-plate model. However, they used a vertical

rod through the centre of the disk to suppress surge, and a barrier around the

edge of the disk to prevent overwash.

Meylan et al. (2015) presented measurements of the surge, heave and pitch

motions of a thin plastic disk, as functions of λ/D. They used a disk with115

thickness over diameter quotient H/D ≈ 3.8 × 10−2, and incident waves with

lengths ranging from λ/D ≈ 0.9 to 12.3 and steepness ranging from ka ≈ 0.01

to 0.3. They compared the surge measurements to predictions of the slope-

sliding model. They showed the model predictions are accurate for incident

wavelengths approximately greater than two floe diameters, for suitably chosen120

model parameters. However, they also used a barrier around the edge of the

disk to prevent overwash. Thus, their findings do not imply the slope-sliding

model will accurately predict the surge motion of a disk without a barrier.
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McGovern and Bai (2014) presented measurements of the heave and a com-

posite surge and drift of model floes made of paraffin wax. They tested a variety125

of shapes, including square, rectangular and triangular shapes, but not disks.

They modelled thick multiyear floes, and hence used relatively large thickness

over characteristic length, Dc, quotients, typically H/Dc = O(10−1). They

used regular incident waves with lengths in the range λ/Dc = 0.1 to 0.75, and

steepness in the range ka ≈ 0.03 to 0.28. They studied heave and composite130

surge-drift as functions of λ/Dc and 2a/λ, but did not compare these results

to model predictions. They noted the occurrence of overwash for large incident

amplitudes and high steepnesses, and suggested it as a source of the reduced

heave responses they found in this regime, which mirrors the finding of Bennetts

and Williams (2015).135

McGovern and Bai (2014) also presented measurements of the drift of their

model floes. They compared the measurements to the predictions of Stokes drift

theory. They found the theory slightly underestimates the measurements. This

finding is consistent with that of Huang et al. (2011). Laboratory experimental

studies of the drift of floes have also been conducted by, for example, Harms140

(1987) in a two-dimensional setting.

This study presents a far more thorough experimental investigation of the

surge, heave and pitch motions of a thin floating disk induced by regular inci-

dent waves than given by Bennetts and Williams (2015), with respect to the

resolution of the incident wave frequency and steepness. In particular, two to145

three incident steepnesses are considered for each incident frequency, and four to

six steepnesses are considered for two incident frequencies to test the steepness

dependence in two different wavelength regimes. This study uses an extended

dataset to that used by Meylan et al. (2015), which includes motions of a disk

without an edge barrier. The results for the disk with a barrier are used to infer150

the effects of overwash on the motions of the disk without a barrier.

Further, the experimental measurements are compared to the surge motions

predicted by the slope-sliding model, and the surge, heave and pitch motions

predicted by the potential-flow/thin-plate model. The comparison is used to
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Figure 1: Schematic plan view of mtb. Wave probes (�) record the wave profiles at set

locations, and motion tracking cameras (�) record the motions of the disks.

estimate the limit of validity of the models and indicate phenomena they do155

not capture. The surge motions predicted by the two models are compared

analytically and numerically in the long-wavelength regime.

2. Experiments

2.1. Method

Laboratory experiments were performed at the Australian Maritime College,160

Launceston, Australia, using the Model Test Basin (mtb) facility. During the

experiments, the wave-induced motions of solitary floating disks were recorded.

Figure 1 shows the plan view of the mtb and experimental set-up.

The mtb is 35 m long and 12 m wide. It was filled with fresh water of density

ρ ≈1000 kg m−3 to a depth of h = 0.83 m. A piston-type wave maker bounds165

the mtb at its left-hand end. A sloping beach bounds the mtb at its right-hand

end.

Locations in the mtb are defined by the Cartesian coordinate system (x, y, z).

The coordinate (x, y) defines locations in the horizontal plane, parallel to the

equilibrium water surface. The coordinate x points from the wave maker to the170

beach. The coordinate z defines the vertical location. It points upwards and its

origin is set to coincide with the equilibrium water surface.
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Tests were conducted for a range of regular incident wave conditions. Target

wave amplitudes from a = 2.5 mm to 50 mm, and frequencies from f = 0.5 Hz

to 2.0 Hz, were tested. The corresponding wavelengths were approximately λ =

0.4 m to 5 m. The wavelengths are calculated as λ = 2π/k, where the wave

number k is the positive real root of the dispersion relation

k tanh kh = κ where κ =
ω2

g
(1)

is a frequency parameter, ω = 2πf is angular frequency, and g ≈ 9.81 m s−2 is

gravitational acceleration.

Four wave probes were installed around the wave basin. The measured175

incident frequencies closely matched the target values. The measured incident

amplitudes were generally slightly smaller than the target amplitudes. The

results presented in § 2.3 to § 4 use the target frequencies and the measured

amplitudes.

Tests were conducted for two matrices of incident wave amplitudes and fre-180

quencies. The first matrix contained more frequency entries than amplitude

entries. The second matrix contained more amplitude entries. Table 1 sum-

marises the tests conducted. Tests were not conducted for the largest amplitude

and highest frequency combinations, to avoid wave breaking and non-planar

waves. Non-planar waves were observed for incident wave steepnesses exceede-185

ing ka ≈ 0.21.

Two thin plastic Nycel disks were installed in the mtb. Nycel is an expanded

rigid foam pvc. The disks had radii R = 200 mm, thickness H =15 mm, density

ρd ≈ 636 kg m−3, and hence equilibrium draft d ≈ 9.55 mm and massm = 1.2 kg.

An edge barrier was attached to one disk, which is referred to as Disk B. The190

disk with no barrier is referred to as Disk NB. The left-hand panel of Figure 2

shows a photo of Disk B. The edge barrier is a 50 mm high and 25 mm thick

styrofoam ring. The barrier is used to prevent waves overwashing the surface of

the disk, due to its small freeboard, and hence investigate whether the overwash

affects disk motions.195

The locations of the centres of mass of the disks at time t are denoted
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Matrix 1

f [Hz] 0.5 0.55 0.6 0.65 0.7 0.8 0.9 1.05 1.25 1.4 1.5 1.6 1.7 1.8 1.9 2

λ [m] 4.91 4.31 3.81 3.37 3.00 2.38 1.91 1.41 1.00 0.80 0.69 0.61 0.54 0.48 0.43 0.39

a = 10 mm • • • • • • • • • • • • • • • •

a = 20 mm • • • • • • • • • • • • •

a = 40 mm • • • • • • •

Matrix 2

a [mm] 5 10 15 20 30 40

f = 1.25 Hz • • • • • •

f = 1.5 Hz • • • •

Table 1: Summary of test matrices.

Markers

Edge barrier

Tether

0.4m

0.83m

6�x

z

Figure 2: Left-hand panel: photo of Disk B. Edge barrier, and rods and markers are visible.

Right-hand panel: cross-sectional schematic of Disk B, which shows the mooring system.
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Figure 3: Schematic of Disk NB, including coordinate system and oscillatory motions.

(x, y, z) = (X(t), Y (t), Z(t)). The two disks were initially positioned approxi-

mately halfway down the basin. They were placed 4 m apart to minimise their

scattered waves interfering with one another. Similarly, they were each placed

4 m from the mtb side walls, to minimise the effect of their scattered waves be-200

ing reflected back to them. The origin of the Cartesian coordinate system in the

horizontal frame is set to coincide with the geometric centre of Disk NB in the

horizontal plane, and, thus, X(0) = Y (0) = 0 for Disk NB and X(0) = 0 and

Y (0) = 4 m for Disk B. The disks were anchored to the floor via loose elastic

tethers to prevent them from drifting too far down the tank and to assist in205

resetting the initial positions after each test.

Four light-weight tracking balls were attached to each disk via aluminium

rods. Figure 2 shows the markers and rods on Disk B. The position of each

marker was captured by the Qualisys non-contact motion tracking system. The

system consists of eight pairs of infrared cameras and receivers installed along210

the perimeter of the wave basin. Qualisys records the locations of each marker

in real-time at 200 frames per second. It uses this information to calculate

the translational and rotational motions of the disks. The markers were placed

at different heights to minimise the chance of them overlapping in the camera

image. Data was collected from t = 0, when the wave maker was activated, up215

to t = 60 s, when the wave maker was turned off.

Motions in the six rigid-body degrees of freedom of the disks were recorded.

The symmetric motions, with respect to the x-axis, were dominant due to the

plane incident waves. No significant asymmetric motions were recorded, apart
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Figure 4: Left-hand panel: example motion in z-direction (−). Steady-state interval is denoted

by vertical lines (- -). Right-hand panel: close-up of smoothed signal (−). Local maxima and

minima (◦) are shown. Mean maxima and minima are denoted by horizontal lines (- · -).

from, in some tests, long-period translational oscillations in the y-axis due to an220

initial offset with respect to the base of the tether. Other asymmetric motions

(i.e. rotations about the x- and z- axes) were, on average, less than 10% of the

incident wave steepness.

The translational motion in the x-direction is a combination of drift, restora-

tion due to the mooring system, and surge, which is an oscillatory motion at225

the frequency of the incident waves. The translational motion in the z-direction

is oscillatory heave. The rotational motion in the xz-plane is oscillatory pitch.

Figure 3 illustrates the oscillatory motions, which are analysed in this investi-

gation.

2.2. Data processing230

Figure 4 shows an example time series provided by Qualisys for the trans-

lational motion of Disk B in the z-direction. The test shown used an incident

wave with frequency f = 1.25 Hz and measured amplitude a = 8.5 mm.

Motions are considered within a steady-state interval, with respect to the

oscillatory motions. This steady-state interval begins after the initial transient235

phase of the motions pass, and ends when waves reflected by the beach begin

to interfere with the motions. The interval is approximated using the phase
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velocity of the wave, c = fλ. It is then refined manually.

The left-hand panel of Figure 4 shows the interval with vertical dotted lines.

The interval runs from approximately 24 s to 45 s, which is 26.25 incident wave240

periods. A consistent interval is used for analysis of all motions for a given test.

The intervals used for the analysis have a mean length of approximately 23 wave

periods, over all of the tests considered.

The matlab smooth function with the lowess method is used to eliminate

noise from the raw signal and accurately identify the local maxima and minima.245

The smooth function applies a local regression method using a weighted linear

least squares algorithm. The degree of smoothing is controlled by the smoothing

parameter — a factor of 0.01 is specified here. The right-hand panel of Figure 4

shows the smoothed signal for a 5 s interval at the beginning of the steady-state

interval.250

The maxima, minima, and their means are identified, as shown by the circles

and horizontal dashed lines in the right-hand panel of Figure 4. The heave

amplitude, aH , is calculated as half the difference between the average peak and

trough values. The same procedure is used to calculate the pitch amplitude, aP ,

from the time series of the translational motion.255

Note that in the example given in Figure 4, the mean maxima and minima

values are not centred about the zero ordinate axis. This is due to small dis-

turbances, with amplitude of approximately 0.5 mm, to the surface of the wave

basin at the start of the test. However, this does not affect the calculation of

the heave amplitude.260

The left-hand panel of Figure 5 shows the translational motion in the x-

direction, for the same test considered in Figure 4. Initially the disk drifts

freely. The tether is engaged after it drifts approximately 60 mm down the basin.

The combined drift and mooring forces create the long-period oscillation, which

begins in the second half of the series shown. Surge is the relatively short-265

period oscillations superimposed on the free-drift and subsequent long-period

oscillation.

The smooth function is used with a smoothing factor of 0.9 to extract the
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Figure 5: Left-hand panel: as in left-hand panel of Figure 4 but for motion in x-direction.

Right-hand panel: close-up of smoothed motion (−), and decomposed into surge (- · -) and

drift (- -). Local maxima and minima of surge motion (◦) are shown.

drift from the Qualysis data. The surge motion is the difference between the

full data and the drift. The right-hand panel of Figure 5 illustrates the decom-270

position for the small time interval. The surge amplitude, aS , is subsequently

calculated using the same procedure as for heave and pitch.

For the example considered in Figure 5, the steady-state intervals span the

interval of free drift and long-period oscillation. This occurs in most of the tests.

Comparisons of surge amplitudes in the intervals of free drift and long-period275

oscillations show small differences only. For example, in Figure 5, the average

surge amplitudes sampled from 27 s to 32 s and 40 s to 45 s differ by less than

3%. Similar results are observed in other tests. Further, note that the errors

bars presented later accommodate effects of the mooring system on surge, pitch

and heave.280

2.3. Response amplitude operators

Figure 6 shows response amplitude operators (raos) of Disk NB for surge,

heave and pitch, as functions of the incident wavelength nondimensionalised

with respect to the disk diameter, D = 2R. The results are for the first test

matrix. The surge rao is aS/{a coth kh}, where a coth kh is the horizontal285

extent of the trajectory of a fluid particle at the free surface. The heave rao
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Figure 6: Raos for Disk NB for Matrix 1, as functions of nondimensional incident wavelength.

Data are grouped according to target incident wave amplitude: a =10 mm (�), 20 mm (+)

and 40 mm (4).

λ/D = 8.4 λ/D = 1.7

Figure 7: Example of changes to the wave field in the long- and short-wavelength regime

(left-hand and right-hand panels, respectively).

is aH/a. The pitch rao is aP /ka, where ka is the incident wave steepness. In

the sub-panels, data are grouped according to incident wave amplitude (using

different symbols and colours). Error bars are omitted here for clarity. They

are presented in Figures 13 to 15.290

Visually, the raos appear to be independent of the incident wave amplitude.

The mean range of the corresponding raos for the different amplitudes is ap-

proximately 0.053. Moreover, no behavioural trend with varying amplitude is

evident. The results suggest a linear relationship exists between the amplitudes

of oscillatory motion and the incident wave amplitude.295

The raos are approximately unit valued for λ/D greater than 3. The disk

does not affect the incident waves in this long-wavelength regime. The left-hand
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Figure 8: Raos for Disk B (×) and Disk NB (◦) for Matrix 1. Trend lines for Disk B (−) and

Disk NB (−) are shown. Raos calculted by Bennetts and Williams (2015) are also included

(•). Encircled bullets denote large-amplitude tests.

photo in Figure 7 shows an example of this behaviour. The disk simply follows

the path of a fluid particle at the free surface.

The raos decrease as the incident wavelength decreases. The disks scatter300

the incident waves in the short-wavelength regime. The right-hand photo of

Figure 7 shows an example of this. Scattering results in less energy being

transferred into the oscillatory motions, and thus reduces the raos.

Figure 8 compares the raos of the two disks for the tests in the first matrix.

Tests with different incident amplitudes are not distinguished from one another.305

Disk NB generally has slightly smaller raos than Disk B. The difference is

greatest for heave at 16.4% and least for surge at 7.1%. The percentages quoted
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represent the mean of the difference in the mean raos for the two disks, for an

incident wavelength and rao combination. Differences between the raos for

the two disks are most pronounced in the short-wavelength regime, λ/D < 3.310

The largest difference is 0.24, which occurs for heave at λ/D = 0.9.

Figure 8 also includes the rao trend lines for each disk. Trend lines are gen-

erated using the mean raos at each incident wavelength. The smooth function

is first applied to calculate a curve of best fit to the mean raos. The polyfit

function is then used to generate a 7th-order polynomial approximations (trend315

lines), p7(λ/D), to the best fit curves. The trend lines are accurate to within

6% of the mean raos.

The relative change of the gradient of the trend lines, with respect to the

incident wavelength, i.e. p′′7/p
′
7, where a prime denotes differentiation with re-

spect to λ/D, is used to quantify the transition from the strong dependence of320

the raos on the incident wavelength in the short-wavelength regime to insensi-

tivity in the long-wavelength regime. For Disk NB the change in gradient has

maxima of 1.14 at λ/D ≈ 2.2 for surge, 1.21 at λ/D ≈ 2.5 for heave and 1.74

at λ/D ≈ 2.7 for pitch. For Disk B the maxima are 0.86, 1.14 and 1.16 for

surge, heave and pitch, respectively, all at at λ/D ≈ 3.2. This indicates that325

the long-wavelength regime is attained for slightly longer incident wavelengths

for the disk without a barrier, and that the transition is slightly sharper for the

disk with the barrier.

Further, Figure 8 shows the raos calculated by Bennetts and Williams

(2015). These are the only existing cognate results, as Montiel et al. (2013a,b)330

used a vertical rod to prevent surge motion of the thin, flexible disks used in

their experiments. Recall that Bennetts and Williams (2015) used a wooden

disk without an edge barrier, with a thickness over diameter quotient H/D =

3.3×10−2 slightly less than the value H/D = 3.8×10−2 for the dataset analysed

here. The density of the wooden disk was ρd ≈ 545 kg m−3, which is smaller335

than the density of the pvc disks ρd ≈ 636 kg m−3. Their disk was anchored to

the floor via a series of springs and a steel cable.

The raos for the wooden disk are generally consistent with the pvc disks.
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Figure 9: Deviation of surge rao from the mean (- -) for Matrix 2, as a function of wave

steepness. Incident frequency is f = 1.25 Hz (left-hand panel) and 1.5 Hz (right). Results for

Disk B (×) and Disk NB (◦). Error-bar limits represent deviation of the raos corresponding

to maximum and minimum individual amplitudes.

The only notable exceptions are the marginally larger surge raos for the two

longest incident waves considered by Bennetts and Williams (2015), noting that340

this difference is within the error bars reported by Bennetts and Williams (2015)

(not shown here) and those we present for our data in Figure 13. The raos for

the wooden disk match the raos for Disk NB better than Disk B, especially for

heave and pitch.

Figure 9 shows the surge rao, as a function of the incident wave steepness,345

ka, calculated from tests in the second matrix. Surge motion is presented here,

as it is the focus of this study. Cognate behaviours occur for heave and pitch

motions (not shown).

The results are grouped according to the incident wavelength used (different

panels) and which disk the results refer to (different symbols and colours). The

raos are presented in terms of their relative deviation from the mean, defined

by

∆rao =
Surge rao− 〈Surge rao〉

〈Surge rao〉
, (2)

where angled brackets 〈·〉 denote the mean with respect to both disks and dif-

ferent steepnesses. The error bars denote rao values for the maximum and350
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minimum surge amplitudes in the tests.

For the longest incident wavelength tested, λ/D = 2.50, the rao values

generally deviate by no more than 10% from the mean. The deviations here

do not display a consistent trend and are, therefore, attributed to measurement

errors. For the shortest wavelength tested, λ/D = 1.73, the raos for Disk B355

are insensitive to steepness. In comparison, the raos for Disk NB decrease as

steepness increases. This is attributed to the overwash phenomenon. Overwash

becomes stronger as the incident amplitude, and hence steepness, increases.

The above finding is consistent with the amplitude dependence noted by

Bennetts and Williams (2015) for λ/D ≈ 1.42, shown in the left-hand and mid-360

dle panels of Figure 8. In contrast to our finding, Bennetts and Williams (2015)

results show pitch rao marginally increases when the amplitude is doubled for

λ/D ≈ 1.42. However, Bennetts and Williams (2015) used two incident ampli-

tudes only, and steepness for the largest amplitude was relatively low, ka ≈ 0.11.

3. Theoretical Models365

3.1. Slope-sliding model

The slope-sliding model assumes the floating body, here the disk, moves

along the wave profile due to gravity. Its movement is resisted by drag between

the body and water. The equation of motion in the x-direction is thus

m(1 + cm)
dV

dt
= −mg

[
∂η

∂x

]
x=X

+ ρcdl|V̂ |V̂ . (3)

This is the version of the model derived by, for example, Grotmaack and Meylan

(2006). It is a nonlinear ordinary differential equation, which is solved for the

horizontal velocity of the disk, V (t) = dX(t)/dt.

The term on the left-hand side of Equation (3) is the inertial force of the370

disk. The coefficient cm is the added mass of the disk, i.e. its increased resistance

to motion due to contact with water. The first term on the right-hand side is

the sliding force due to gravity. The quantity η(x, t) is the wave profile. The

second term is the drag force. The quantity V̂ (t) = Vw(t)−V (t), where Vw(t) is
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the velocity of the water particle on the free surface at the horizontal location375

of the disk x = X(t). The coefficient cd is the drag coefficient and l = πR2 is

the wetted surface area of the disk, noting that the slope-sliding model assumes

the body sits on the wave surface, i.e. no submergence.

The model further assumes the disk diameter is small in relation to the

incident wavelength. As discussed in § 2.3, in this regime the incident wave

profile is not modified by the disk, and is specified to be

η(x, t) = a sin(kx− ωt). (4)

The phase of the incident wave does not affect the raos extracted from the

model, and it is therefore normalised to the origin.380

Following Grotmaack and Meylan (2006), using the wave profile (4) and the

notation Q(t) = kX − ωt, Equation (3) reduces to the autonomous dynamical

system

dV

dt
=
−mgka cosQ+ ρcdl|V̂|V̂

m(1 + cm)
, (5a)

where V̂ (t) ≡V̂(V,Q) = ωa sinQ coth kh− V , and

dQ

dt
= kV − ω. (5b)

The system is defined on the surface of a cylinder, with azimuthal coordinate

0 < Q < 2π and longitudinal coordinate V ∈ R. Figure 10 shows the phase

plane for an example problem, with zero drag and added mass, cd = cm = 0,

and an incident wave of amplitude a = 50 mm and length λ = 6 m.

The zero-drag problem is analogous to the classic nonlinear pendulum model385

(e.g. Hirsch et al., 2013, § 9). It possesses two fixed points. For the example

considered in Figure 10, with zero added mass, the fixed points are located at

(Q,V ) = (π/2, ω/k) and (3π/2, ω/k). They can only be reached for an initial

velocity, V (0), comparable to that of the incident wave. The right-hand fixed

point is a centre, i.e. the trajectories surrounding it are closed. The left-hand390

fixed point is a saddle node, which has lower and upper homoclinic connections.

This is the so-called surfing solution.
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Figure 10: Phase diagram for slope-sliding model, using ω = 2.68, cm = cd = 0, a = 0.05 m

and λ = 6 m. Vectors show the flow field. Two fixed points (•) exist at (1.57, 2.56) and

(4.71, 2.56). The two curves emanating from the left-hand fixed point represent upper (−)

and lower (−) homoclinic connections. The elliptical curve centred around the right-hand

fixed point (−) represents a closed trajectory. The lower curve (−) represents a periodic

orbit.

Trajectories below the lower homoclinic connection in the phase plane are

closed orbits. The periodic orbits represent disk motions consisting of a steady

surge (causing the amplitude of the orbit) and drift (the difference in period of395

the orbit and the incident wave period). These are the relevant solutions for

the present investigation. Figure 10 shows the orbit passing through the origin,

i.e. a disk with zero initial velocity. The predicted surge motion is insensitive

to perturbations of the initial condition.

For small non-zero values of the drag coefficient, the fixed points are shifted400

and the right-hand fixed point becomes a stable spiral. Trajectories below the

lower homoclinic connection tend to the limit cycle, which oscillates around

the Q-axis, i.e. it is analogous to the periodic orbit shown in Figure 10. For

large values of the drag coefficient, the fixed points disappear in a saddle-node

bifurcation. All orbits then tend to the limit cycle.405

In practice, the periodic orbit/limit cycle is obtained by solving system (5)

as the second-order ordinary differential equation

m(1 + cm)
d2X

dt2
+mgka cos(kX − ωt)− ρcdl|V̂ |V̂ = 0, (6)
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with zero initial displacement and velocity, i.e. X = dX/dt = 0 for t = 0. The

solution to (6) is obtained numerically using the matlab function ode45, which

is based on a fourth and fifth-order Runge-Kutta method. For non-zero drag,

the continuous function V̂ tanh(100V̂ ) is used in place of the |V̂ |. The steady

solution, i.e. the periodic orbit/limit cycle, is decomposed into surge and drift410

components, as for the experimental data.

The values of the added mass and drag coefficients are obtained via com-

parison with experimental data. Meylan et al. (2015) compared the surge rao

obtained from the slope-sliding model to the experimental surge data for Disk B.

They found the parameters cm = 0.1 and cd = 0 provided a good fit to the data415

for λ/D > 2, approximately. For shorter incident wavelengths, the slope-sliding

model does not capture the surge for any choice of added mass and drag coeffi-

cients.

3.2. Linear potential-flow/thin-plate model

The linear potential-flow/thin-plate model assumes the disk oscillates about

its equilibrium position. The oscillations are time harmonic at the frequency of

the incident wave, and are symmetric with respect to the x-axis, i.e. in-line with

the incident wave. The location of the disk’s centre of mass in the x-direction

is denoted

X(t) = Re{ASe−iωt}, (7)

where AS is the complex-valued surge amplitude, such that its magnitude is

the surge amplitude, aS , and its argument is the phase of surge motion. The

vertical location of its lower surface oscillates about its equilibrium draught,

and is denoted Z(x, t) = −d+ Re{w(x)e−iωt}. The displacement function w is

decomposed as

w(x) = AH +APx+

∞∑
n=1

ξnwn(x). (8)

Here AH and AP are complex-valued amplitudes of heave and pitch motions,420

respectively, such that aH = |AH | and aP = |AP |. (Here, pitch is defined with

respect to rotations around the geometric centre of the disk’s lower surface,
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as opposed its centre of mass. This has a negligible effect for the thin disk

considered.) Meylan and Squire (1996) originally proposed a decomposition of

the form (8) for a thin floating disk. However, they neglected draught and surge,425

i.e. they set d = AS = 0. Bennetts et al. (2009) extended the disk model to

include draught, and Montiel (2012, § 7.3) extended it to include surge.

The functions wn are the (symmetric) flexural modes of vibration and ξn

are the corresponding amplitudes. Itao and Crandall (1979) and Meylan and

Squire (1996) provide expressions for the flexural modes. For the incident wave430

and disk parameters studied here, the amplitudes ξn ≤ 5 × 10−5 mm, i.e. the

disk responds to the incident waves in its rigid modes only.

Disk motions are forced by differential pressures from the surrounding water

due to hydrodynamics. Air pressure is assumed to be constant, p0 say. Water

pressure is modelled using the linearised version of Bernoulli’s equation

p = p0 − ρ
∂Φ

∂t
− ρgz. (9)

Here Φ is the velocity potential of the water, i.e. the water velocity field is the

spatial gradient of Φ. Following potential-flow theory, it has been assumed the

water is inviscid, homogeneous, incompressible and in irrotational motion.435

Water motions are also assumed to be time harmonic, and the velocity po-

tential is expressed as

Φ(x, y, z, t) = Re
{ g

iω
φ(x, y, z)e−iωt

}
. (10)

The reduced (time independent) velocity potential, φ, satisfies Laplace’s equa-

tion throughout the water domain, i.e.

∇2φ+
∂2φ

∂z2
= 0 where ∇ = (∂/∂x, ∂/∂y), (11)

and a no-normal-flow condition on the floor of the basin, i.e.

∂φ

∂z
= 0 on z = −h. (12)

The water is assumed to extend to infinity in all horizontal directions, i.e. reflec-

tions from the basin boundaries are not considered. In the far-field, the velocity
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potential is composed of the incident-wave potential

φI(x, y, z) =
aeikx cosh k(z + h)

cosh kh
, (13)

and a geometrically decaying scattered-wave potential, which satisfies the Som-

merfeld Radiation condition

√
r (∂r − ik) (φ− φI)→ 0 as r →∞, (14)

where r =
√
{x2 + y2} is the radial coordinate.

The amplitudes of the waves and disk motions are assumed to be sufficiently

small that linear theory is applicable. Conditions on moving boundaries are

therefore approximated by linearised conditions applied on the corresponding

equilibrium boundaries. The linearised free-surface condition is

∂φ

∂z
= κφ on z = 0, (15)

where κ is the frequency parameter defined in the second component of Equation

(1). Equation (15) holds at all horizontal points (x, y) /∈ Ω, where Ω = {x, y :

x2+y2 = r2 ≤ R2} is the projection of the disk in equilibrium onto the xy-plane.

Following Kirchhoff-Love thin-plate theory (Timoshenko and Woinowsky-

Krieger, 1959), the linearised equation of motion in the z-direction is

(1− κd)w + F∇4w = φ on (x, y) ∈ Ω, z = −d. (16)

Here F = EH3/{12ρg(1− ν2)} is the scaled flexural rigidity of the disk, where440

E = 530 MPa is the Young’s modulus, as measured by a three-point bending test

on a strip of Nycel. The quantity ν = 0.3 is chosen as a typical value of Poisson’s

ratio for Nycel. Note, the model is insensitive to the elastic parameters, E and

ν, as the disk responds rigidly.

The motion of the disk and the velocity potential are also coupled via the

linearised kinematic conditions

∂φ

∂r
= κ cos(θ)AS on (x, y) ∈ δΩ, −d < z < 0, (17a)
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where θ = tan(y/x) is the azimuthal coordinate and δΩ = {x, y : x2 + y2 = R2}

is the boundary of Ω, and

∂φ

∂z
= κw on (x, y) ∈ Ω, z = −d. (17b)

Lastly, the vertical displacements of the disk satisfy the linearised free-edge

conditions

∇2w − (1− ν)

(
1

r

∂w

∂r
+

1

r2

∂2w

∂θ2

)
= 0 and (18a)

∂

∂r
∇2w + (1− ν)

1

r

∂

∂r

(
1

r

∂2w

∂θ2

)
= 0, (18b)

both for (x, y) ∈ δΩ.445

Equations (11) to (18) define a boundary value problem for the velocity

potential, φ. The vertical displacement of the disk, w, is obtained as part of

the solution. At this juncture, the surge amplitude, AS , is a parameter of the

problem.

The velocity potential and vertical displacement function are decomposed as

φ = φ̂+ASφ̌ and w = ŵ +ASw̌. (19)

The functions φ̂ and ŵ are the solutions of equations (11) to (18) with the disk450

artificially restrained in surge, AS = 0. The functions φ̌ and w̌ are the solutions

of equations (11) to (18) with no incident wave forcing, a = 0, but with the

disk forced to oscillate with unit amplitude in surge, AS = 1. These boundary

value problems are solved using an eigenfunction matching method, which is

described by Linton and McIver (2001) for prototype hydrodynamic problems.455

The surge amplitude, AS , for the full problem is found via the linearised

equation of motion of the disk in the x-direction, which is

−(ω2m+ γm)AS = f. (20)

The surge motion is forced by the pressure field around its edge created by the

incident wave, i.e.

f = ρgR

∫ 0

−d

∫ π

−π
cos(θ)[φ̂](x,y)∈δΩ dθ dz. (21)
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Figure 11: Slope-sliding model prediction of surge motion for λ/D = 6, a = 20 mm and

cm = cd = 0. The surge component of the full numerical solution (−) and the analytical

long-wavelength solution (- -) are shown.

The complex quantity γm is defined by

γm = ρgR

∫ 0

−d

∫ π

−π
cos(θ)[φ̌](x,y)∈δΩ dθ dz. (22)

The real and imaginary components of γm are known as the damping and added

mass terms, respectively (Mei, 1983). The full solutions, φ and w, are obtained

by substituting AS into Equation (19).

3.3. Long-wavelength regime

At λ/D = 3, which is approximately the transition between the short- and460

long-wavelength regimes, the slope-sliding model predicts that the drift velocity

is O(10−3) m s−1. It decreases to O(10−4) m s−1 at λ/D = 12. This holds for

zero and non-zero values of the drag and added mass coefficients. Therefore,

the slope-sliding model predicts the local (in time) horizontal motion of the disk

is dominated by oscillatory surge in the large-wavelength regime.465

Meylan et al. (2015) show that the slope-sliding model predictions of the

raos are insensitive to drag. Neglecting drag, the slope-sliding model (3) is

(1 + cm)
dV

dt
= −g

[
∂η

∂x

]
x=X

= −gak cos(kX − ωt).

(23)
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Assuming, without loss of generality, the disk is centred at the origin, the slow

drift velocity is translated to the condition |kX| � 1. The slope-sliding model

is, therefore, manipulated into the form

(1 + cm)
dV

dt
= −gak cosωt+ O(kX), (24)

which, assuming zero initial velocity, is integrated to give

V (t) =
−gak sin(ωt)

ω(1 + cm)
+ O(kX). (25)

Thus, to leading order in kX, the displacement of the disk is

X(t) =
gak cos(ωt)

ω2(1 + cm)
=
a coth(kh) cos(ωt)

1 + cm
, (26)

where the final expression is derived using the dispersion relation. It follows

that the slope-sliding model predicts the surge amplitude to be

aS =
a coth(kh)

1 + cm
(27)

in the long-wavelength regime. Figure 11 shows the leading-order displacement

(26) accurately approximates the surge motion of the full solution for λ/D = 6,

a = 20 mm and cm = cd = 0.

The long-wavelength regime approximation that the disk does not modify

the incident wave translates to φ̂ ≈ φI in the potential-flow/thin-plate model.

Using this approximation, the forcing term, f , in the horizontal equation of

motion (20) is

f ≈ ρgR

∫ 0

−d

∫ π

−π

cos(θ)eikR cos θ cosh k(z + h)

cosh kh
dθ dz

= iagk πR2dρ+ O
(
(kR)2

)
.

(28)

Therefore, to leading order in kR, the (complex-valued) surge amplitude, AS ,

is

AS =
−iagkm

ω2m+ γm
, (29)

in which the Archimedean principle m = πR2dρ has been used. Applying the

dispersion relation, as before, it follows that the surge amplitude, aS = |AS |, is

aS =
a coth kh

|1 + qm|
, where qm =

γm
ω2m

. (30)
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Figure 12: Left-hand panel: potential-flow/thin-plate model predictions of added mass (−)

and damping (- -) coefficients (i.e. imaginary and real parts of qm, respectively), as functions

of nondimensional incident wavelength. Right-hand panel: potential-flow/thin-plate model

prediction of surge motions for λ/D = 6 and a = 40 mm. Full numerical solution (−) and

analytical long-wavelength solution (- -) are shown.

The potential-flow/thin-plate model therefore predicts a surge amplitude of the

same form as the slope-sliding model in the long-wavelength regime. The models470

differ only in the second term on the denominator.

The left-hand panel of Figure 12 shows the real and imaginary parts of qm,

as functions of nondimensional wavelength. These two terms, which are scaled

versions of the damping and added mass coefficients, respectively, are calculated

from Equation (22). As expected, the figure shows that both coefficients tend to475

zero as λ/D →∞. The right-hand panel of Figure 12 shows the approximation

with qm = 0 accurately captures the full solution of the potential-flow/thin-

plate model. The incident wave used in this example is the same as that used

for Figure 11. Further, the analytical long-wavelength solution is within 10% of

the full solution when λ/D is approximately greater than 4.480

4. RAOs: potential-flow/thin-plate model and data comparison

The left-hand panels of Figures 13 to 15 show the raos predicted by the

potential-flow/thin-plate model for surge, heave and pitch, respectively, as func-
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Figure 13: Left-hand panel: comparison of surge raos predicted by potential-flow/thin-plate

model (−), the slope-sliding model with when cd = 0 and cm = 0.1 (- -), and experimental data

from Matrix 1 (Disk B, × and Disk NB, ◦). Error-bar limits represent raos for maximum

and minimum amplitudes. Right-hand panel: differences between potential-flow/thin-plate

model and slope-sliding model (- -), and experimental data when grouped according to incident

wavelength and disk (symbols and bars). Symbols represent group means. Error-bar limits

represent overall group maximum and minimum differences.

tions of non-dimensional incident wavelength. Figure 13 includes the surge raos

predicted by the slope-sliding model, using zero drag, cd = 0, and added mass485

cm = 0.1, as proposed by Meylan et al. (2015). The model predictions are over-

laid on the raos calculated from the experimental data, as given in Figure 8.

Error bars are included for the experimental results here. As in Figure 9, the

upper and lower limits are calculated using maximum and minimum amplitudes

for each test.490

Visually, the potential-flow/thin-plate model predicts the mean raos mea-

sured during the experiments with pleasing accuracy over the range of incident

wavelengths tested. Moreover, the surge rao predictions lie within the error

bars for all tests. The heave predictions only lie outside the error bars for Disk B

when λ/D < 1.74. The model consistently underpredicts the heave of Disk B495

in this regime. The pitch predictions generally lie inside the error bars, except

for Disk NB when λ/D < 1.74. The model consistently overpredicts the pitch

of Disk NB in this regime.
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Figure 14: As per Figure 13 but for heave.
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Figure 15: As per Figure 13 but for pitch.
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The slope-sliding model predicts the surge raos accurately in the long-

wavelength regime only, λ/D ≥ 3. Note, however, that the high accuracy shown500

was achieved by tuning the added mass.

The right-hand panels of Figures 13 to 15 show the differences, δ-rao, be-

tween the raos calculated from the experimental data and predicted by the

potential-flow/thin-plate model. Here, the experimental data are grouped ac-

cording to the incident wavelength and the disk type. The symbols denote the505

group means for each disk. The error bars represent the overall maximum and

minimum differences for each group, i.e. the maximum and minimum for the

raos calculated from the maximum and minimum individual amplitudes.

For Disk B, the largest mean difference, with respect to incident wavelength,

between the experimental group means and the potential-flow/thin-plate model510

is 0.04 units for heave, and the least is 0.01 units for surge. For Disk NB, the

largest difference is −0.07 units for heave, and the least is −0.04 units for surge.

Differences between the model and data are generally larger for short incident

wavelengths than long incident wavelengths. For instance, for the heave rao

for Disk B, the mean difference is 0.13 units for λ/D < 3 and 0.02 units for515

λ/D > 3. There is a clear tendency for the model to overpredict the raos of

Disk B in the short-wavelength regime, and underpredict its raos in the short-

wavelength regimes. In comparison, the model tends to overpredict the raos of

Disk NB in both regimes.

Figure 13 includes the difference between the surge raos predicted by the520

slope-sliding and potential-flow/thin-plate models. The slope-sliding model

predicts smaller raos than the potential-flow/thin-plate model in the long-

wavelength regime. The difference reaches an asymptotic value, as indicated

by the analysis of § 3.3. The slope-sliding model predicts larger raos than the

potential-flow/thin-plate model in the short-wavelength regime. The difference525

increases monotonically as the incident wavelength decreases, as the surge raos

predicted by the potential-flow/thin-plate model are decreasing more rapidly

than those of the slope-sliding model in this interval. This behaviour will not

persist for smaller incident wavelengths as the potential-flow/thin-plate model
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Figure 16: As per Figure 9, but for deviation of experimental data from disk model.

predicts a surge rao of approximately zero for the smallest wavelength consid-530

ered here.

Figure 16 shows the deviation of the experimental data for surge from the

potential-flow/thin-plate model, using data from the second test matrix. The

deviation is defined and presented as in Figure 9, but with the model predictions

replacing the mean. The model generally underpredicts the measured surge535

raos for the longer wavelength, λ/D = 2.50, noting that this value is close

to the transition between the short- and long-wavelength regimes. There are

two exceptions, both for Disk NB. The mean deviation is 11.5% for Disk B

and 2.1% for Disk NB. The model, therefore, predicts the surge of the disk

without a barrier more accurately than the disk with a barrier. The model also540

underpredicts the surge motion of Disk B for the shorter wavelength, λ/D =

1.78. The deviation for Disk B has mean 9.7%. The model underpredicts the

surge of Disk B for the lowest steepness only. The decrease in surge raos

for Disk NB with increasing steepness, noted in § 2.3, results in the model

overpredicting the surge motion, with the deviation from the rao up to −15.8%545

for the steepest wave considered.
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5. Summary and discussion

Results from a series of laboratory wave basin experiments were reported.

In the experiments the motions of two solitary, floating, thin, plastic disks were

measured. The motions were forced by regular incident waves. Tests were con-550

ducted for incident wavelengths ranging from approximately one to 12 times the

disk diameter, and for a range of incident amplitudes. One disk had a barrier

attached to its edge to prevent waves overwashing it. It was used to infer the

impact of overwash on the motions of the disk without a barrier. Amplitudes

of the dominant oscillatory motions were extracted from the recorded time se-555

ries. They were presented as response amplitude operators (raos). Particular

attention was given to the surge rao.

The key findings were:

1. The disks move like a particle on the water surface for incident wavelengths

approximately three times greater than the disk diameter. This ratio560

was used to define the transition between the short- and long-wavelength

regimes.

2. For the disk with a barrier, the surge, heave and pitch raos are insensitive

to the incident wave amplitude.

3. The disk without a barrier’s raos are slightly smaller than those of the565

disk with a barrier. The differences are most pronounced in the short-

wavelength regime and for heave motion.

4. For a relatively short incident wavelength, the disk without a barrier’s

raos decrease as the incident amplitude increases. For a larger incident

wavelength, the raos are insensitive to the incident amplitude.570

The amplitude dependence occurring only for the disk without a barrier

implies that it is related to the overwash phenomenon. The presence of overwash

on the disk is likely to suppress its motions. Moreover, the overwash is generated

at the disk edge in lieu of a surface for the wave to apply pressure to. The absence

of this surface is also likely to reduce the disk motions.575
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The experimental study was motivated by theoretical models of wave-induced

motions of sea ice floes, which often model floes as thin floating disks. Two the-

oretical models were considered here. The first model is based on slope-sliding

theory, in which gravity pulls the disk down the wave profile. The second model

is based on combined linear potential-flow and thin-plate theories, in which disk580

motions are forced by differential pressure around the wetted surface of the disk.

It was shown analytically that the two different theories predict the same

form for the surge amplitude in the long-wavelength regime. The model predic-

tions differ only in the added mass terms used. The potential-flow/thin-plate

model predicts the added mass tends to zero in the long-wavelength regime.585

The added mass is user set in the slope-sliding model. It therefore retains this

extra unknown as a tuning parameter.

The raos predicted by the models were compared to the raos extracted

from the experimental data. The key findings were:

1. The potential-flow/thin-plate model captures the raos with pleasing ac-590

curacy, when viewed as a function of incident wavelength. The model is

most accurate for surge and least accurate for heave.

2. In the long-wavelength regime, the potential-flow/thin-plate model tends

to overpredict the raos. In the short-wavelength regime, it tends to un-

derpredict the raos of the disk with a barrier and overpredict those of the595

disk without a barrier. The latter property is exacerbated by increasing

the incident amplitude, which, as noted above, decreases the raos.

3. The slope-sliding model captures the surge rao accurately in the long-

wavelength regime, with appropriate tuning of the added mass.

The findings imply that linear potential-flow/thin-plate theory is viable to600

model the oscillatory motions of a thin floating disk. However, a certain degree

of caution is necessary. In the long-wavelength regime the model slightly over-

predicts the raos, although within the error bounds for the measurements. The

additional tuning parameter available in the slope-sliding theory provides im-

proved model-data agreement for surge. In the short-wavelength regime and for605
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moderate incident amplitudes, the findings imply that extending the potential-

flow/thin-plate model to incorporate overwash will improve its accuracy, noting

that Skene et al. (2015) recently showed that the potential-flow/thin-plate model

can be used to predict overwash depths when the overwash is relatively shallow.
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