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a b s t r a c t

A wave-ice interaction model for the marginal ice zone (MIZ) is reported that calculates the attenuation
of ocean surface waves by sea ice and the concomitant breaking of the ice into smaller floes by the waves.
Physical issues are highlighted that must be considered when ice breakage and wave attenuation are
embedded in a numerical wave model or an ice/ocean model.

The theoretical foundations of the model are introduced in this paper, forming the first of a two-part
series. The wave spectrum is transported through the ice-covered ocean according to the wave energy
balance equation, which includes a term to parameterize the wave dissipation that arises from the pres-
ence of the ice cover. The rate of attenuation is calculated using a thin-elastic-plate scattering model and
a probabilistic approach is used to derive a breaking criterion in terms of the significant strain. This deter-
mines if the local wave field is sufficient to break the ice cover. An estimate of the maximum allowable
floe size when ice breakage occurs is used as a parameter in a floe size distribution model, and the MIZ is
defined in the model as the area of broken ice cover. Key uncertainties in the model are discussed.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Access to the seasonally ice-covered seas is increasing due to
the impact of climate change (see, e.g., Stephenson et al., 2011)
and commercial activities there are proliferating as a result. High
precision forecasts of these regions are therefore in great demand.
This paper and its companion (referred to as Part 2, Williams et al.,
submitted for publication) is a step towards making those forecasts
as accurate as practicable, by including additional physics that is
currently absent in today’s ice/ocean models.

Improved spatial resolution has significantly enhanced how
models represent the mean sea state and its variability, but it has
also highlighted a number of problems that have previously re-
mained hidden. One of them concerns the role of surface gravity
waves in shaping the so-called marginal ice zone (MIZ), an impor-
tant region between the open ocean and the interior pack ice
where intense coupling between waves, sea ice, ocean and atmo-
sphere occurs. The MIZ is identified visually as a collection of rela-
tively small floes. Surface waves are the main agent responsible for
ice fragmentation and, depending upon wave and sea ice proper-
ties, they can propagate long distances into the ice field and still
contribute to breakage. Indeed, Prinsenberg and Peterson (2011)
recorded flexural failure induced by swell propagating within mul-
tiyear pack ice during the summer of 2009, even at very large dis-
tances from the ice edge in the Beaufort Sea. (Asplin et al., 2012,
further analyzed this event.) While the local sea ice there qualified
as being heavily decayed by melting (Barber et al., 2009), and thus
more fragile, these observations suggest that such events could oc-
cur more frequently deep within the ice pack in a warmer Arctic
that is no longer protected by a durable, extensive shield of sea ice.

Interactions between ocean waves and sea ice occur on small to
medium scales, but they have a profound effect on the large-scale
dynamics and thermodynamics of the sea ice. On a large scale the
ice cover deforms in response to stresses imposed by winds and
currents. It is customary to model pack ice as a uniform viscous-
plastic (VP) material (Hibler, 1979; Hunke and Dukowicz, 1997),
but alternatives such as the elasto-brittle rheology of Girard et al.
(2010) have been proposed to account for the discrepancies in spa-
tial and temporal scalings of ice deformations between VP model
predictions and observations (Rampal et al., 2008; Girard et al.,
2009). These models, however, function best when the sea ice is
highly compact and sustains large internal stresses with deforma-
tion primarily along failure lines.
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Fig. 1. The information flow in and out of the waves-in-ice model (WIM). An
incident wave spectrum with density function S0ðx; tÞ is prescribed at x ¼ 0, where
x is the radial frequency (2p multiplied by the frequency), t is time, and x is the
spatial variable. The ice properties shown as inputs—respectively the concentration,
thickness, effective Young’s modulus, Poisson’s ratio and breaking strain of the ice,
and the viscous damping parameter—combine with the initial floe size distribution
(FSD) to affect the three components of the WIM itself: advection, attenuation and
ice breakage. This results in the wave spectral density function Sðx; x; tÞ being
extended into the ice (i.e. into the x > 0 region), and in the FSD changing.
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In contrast, floe sizes in the MIZ are generally smaller due to
wave-induced ice breakage and the ice cover is therefore normally
less compact, internal stresses are less important than other forc-
ing because the ice floes are freer to move laterally, and deforma-
tions occur more fluently compared to the plastic-like,
discontinuous deformation of the compact central ice pack. In this
regime, internal stresses arise more from floe-floe contact forces
than from any connate constitutive relation that embodies the
behaviour of sea ice at large scales. Evidently, a model of the MIZ
requires knowledge of how waves control the floe size distribution
(FSD). Recognizing this, Shen et al. (1986) and Feltham (2005) have
proposed granular-type rheologies for the MIZ that contain an ex-
plicit dependence on floe size, while others have presented direct
numerical simulations of the MIZ using granular models with
either a single floe diameter (e.g. Shen and Sankaran, 2004; Her-
man, 2011), or with floe diameters sampled from a power-law type
FSD (Herman, 2013). Parameterizations for floe size-dependent
thermodynamical processes have also been developed (Steele
et al., 1989; Steele, 1992).

The distance over which waves induce the sea ice to break, i.e.
the width of the MIZ, is controlled by exponential attenuation of
the waves imposed by the presence of ice-cover. The rate of wave
attenuation depends on wave period and the properties of the ice
cover (Squire and Moore, 1980; Wadhams et al., 1988). Wave
attenuation is modeled using multiple wave scattering theory
or by models in which the ice cover is a viscous fluid or a visco-
elastic material. In scattering models, wave energy is reduced
with distance traveled into the ice-covered ocean by an accumu-
lation of the partial reflections that occur when a wave encoun-
ters a floe edge (Bennetts and Squire, 2012b). Scattering models
are hence strongly dependent on the FSD. In viscous models
(e.g. Weber, 1987; Keller, 1998; Wang and Shen, 2011a) wave en-
ergy is lost to viscous dissipation, so these models are essentially
independent of the FSD. We will use an attenuation model
that includes both multiple wave scattering and viscous
dissipation of wave energy. This means that there is a feedback
between the FSD and wave attenuation, since the amount of
breaking depends on how much incoming waves are attenuated,
and the amount of scattering depends on how much breaking
there is.

The notion and importance of integrating wave-ice interactions
into an ice/ocean model is not new; indeed it was broached by the
third author (VAS) more than two decades ago. Since then, several
authors have presented numerical models for transporting wave
energy into ice-covered fluids. Masson and LeBlond (1989) were
the first to incorporate the effects of ice into the wave energy
transport/balance equation that had previously been only used to
model waves in open water (Gelci et al., 1957; Hasselmann,
1960; WAMDI Group, 1988; Ardhuin et al., 2010). Masson and Le-
Blond (1989) studied the evolution of the wave spectrum with
time and distance into the ice and their theory was used subse-
quently by Perrie and Hu (1996) to compare the attenuation occur-
ring in the ice field with experimental data. Meylan et al. (1997)
derived a similar transport equation to that of Masson and LeBlond
(1989) using the work of Howells (1960), and concentrated on the
evolution of the directional spectrum. While, like us, they ne-
glected non-linearity and the effects of wind and dissipation due
to wave breaking, they improved the floe model by representing
the ice as a thin elastic plate rather than as a rigid body. Doble
and Bidlot (in press) have also recently extended the operational
wave model WAM into the ice in the Weddell Sea, Antarctica, using
the attenuation model of Kohout and Meylan (2008). While this
model does not allow for directional scattering, it does include
the usual open-water sources of wave generation and dissipation
in the same way that Masson and LeBlond (1989) and Perrie and
Hu (1996) did.
The above papers give the framework and demonstrate some
implementations of wave energy transport into the sea ice, but
all neglect ice breakage. In fact, it is only recently that this effect
was included by Dumont et al. (2011) (hereafter referred to as
DKB) in a wave transport problem. Previous papers modeling ice
fracture are those by Langhorne et al. (2001) and Vaughan and
Squire (2011). However, those authors only looked at general prop-
erties of the ice cover, such as the lifetimes of ice sheets and the
width of the MIZ. The method used involved modeling the attenu-
ation of an incident wave spectrum and defining probabilistic
breaking criteria to decide when the strains in the ice would ex-
ceed a breaking strain. The model of DKB provides a fuller descrip-
tion of the resulting ice cover: it estimates the spatial variation of
floe sizes throughout the entire region where breaking occurs and
also allows the temporal evolution to be investigated. In addition,
it considers the coupling between the breaking and the transport of
wave energy.

Although the DKB model is one-dimensional, i.e. it only consid-
ers a transect of the ocean, it is theoretically generalizable to in-
clude the second horizontal dimension. Before this geometrical
restriction is tackled, however, important themes have been iden-
tified for discussion and investigation, which is the purpose of this
paper. Firstly, we put the work of DKB into the context of previous
work on modeling wave energy in ice (Masson and LeBlond (1989);
Perrie and Hu (1996); Meylan and Masson (2006)) and we correct
their interpretation of the spectral density function. Secondly, we
revise the floe-breaking criteria based on monochromatic wave
amplitudes employed by DKB, and propose one that is based on
wave statistics instead. Numerical issues, sensitivity analyses and
model results are reserved until Part 2.

2. Description of the waves-in-ice model

2.1. Overview

Fig. 1 shows the flow of information into and out of the waves-
in-ice model (WIM), whose three components, namely advection,
attenuation and ice breakage, are discussed in more detail in Sec-
tion 3. We briefly describe their relationship to the inputs and out-
puts here.

The advection and attenuation steps depend on the group
velocity, cg, and the attenuation coefficient, â. Both cg and â depend
on frequency in addition to the ice properties. The advection and
attenuation steps describe how the wave energy is transported
into the ice-covered ocean. The WIM therefore extends contempo-
rary external wave models (EWMs, e.g. WAM, WAVEWATCH III),
which typically do not operate in ice-covered oceans. The presence
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of waves in ice-covered oceans causes ice breakage to occur in the
MIZ, thereby altering the local FSD.

The outputs will, of course, have follow-on effects on the ice
properties when they are fed back into the ice-ocean model. For in-
stance, we use the FSD to distinguish between interior pack ice and
the MIZ. Consequently, the FSD determines which ice rheology ap-
plies to different areas and thus how the ice drifts. It can also be
used to change the thermodynamics of the ice by increasing melt-
ing or freezing due to the extra surface area exposed to the air and
water (Steele, 1992).

Another important follow-on/coupling effect is the momentum/
energy exchange between the waves, the ocean and the atmo-
sphere. Even without the complicating presence of sea ice, the
question of how to couple ocean models to the wave field is not
yet resolved (e.g. Babanin et al., 2009; Ardhuin et al., 2008). With
attendant sea ice as well, wave attenuation occurs which we in-
clude in our model by considering two processes. Part of the en-
ergy lost by the waves as they travel into an ice field is
attributed to scattering. In our model the scattering process is con-
servative and so energy lost in this way must be reflected back into
the open ocean. The proportion of reflected energy can be calcu-
lated. The remaining energy loss is parameterized in the model
by adding a damping pressure, which resists particle motion at
the ice-water interface (see Appendix A). The actual mechanisms
responsible for this energy loss are poorly understood and inade-
quately parameterized at present, and further investigation will
be required to balance momentum/energy in a fully coupled mod-
el. Notwithstanding, it is important to include damping in the WIM
to accurately predict the distance waves travel into the ice-covered
ocean, and hence the region of ice broken by the waves, i.e. the
width of the MIZ.

2.2. Inputs and outputs

The inputs to the WIM are the ice properties, the incident wave
field and the initial FSD. Technically the FSD is also an ice property,
but we treat it separately due to the special role it plays in the
WIM.

The ice properties are all considered to vary spatially but not to
vary in time. The ice concentration (c) and thickness (h) are stan-
dard variables of ice/ocean models, and so estimates for them
can be easily obtained. However, the effective Young’s modulus
(Y�), Poisson’s ratio (m) and breaking strain (ec) are non-standard
and must be estimated (see Section 4.3). A value for the damping
coefficient C, which is included to increase the attenuation of long
waves as this is underpredicted by conservative scattering theory,
is extracted from the attenuation measurements of Squire and
Moore (1980) (see Appendix A and Section 4.2).

The wave energy is described by the spectral density function
(SDF) Sðx; x; tÞ, where x ¼ 2p=T is the angular frequency and T is
the wave period. (For brevity, the SDF is sometimes written
S ¼ SðxÞ, taking the spatial ðxÞ and temporal ðtÞ dependencies to
be implicit.) The wave spectrum may be defined either in the open
ocean or within the sea ice, after having undergone some attenua-
tion. However, most EWMs only predict S inside a region known as
a wave mask, which currently stops at a conservative distance
from the ice edge. If x ¼ 0 is the edge of the wave mask, the
EWM provides the initial boundary condition for the WIM,
Sðx;0; tÞ ¼ S0ðx; tÞ, where S0 is known. The WIM advects this ini-
tial spectrum across the gap between the wave mask and the ice
mask, and then into the ice-covered ocean. The wave spectrum is
advected according to the energy transport equations in Sec-
tion 3.1—numerical details are given in Part 2.

The FSD is characterized by two spatially varying floe length
parameters, Dmaxðx; tÞ and hDiðx; tÞ, which also evolve with time.
These are the maximum floe length and average floe length,
respectively. The initial FSD is generally unknown. In our experi-
ments we assume that prior to wave-induced ice breakage all floe
lengths have a large value (e.g. 500 m; the precise value turns out
to be relatively unimportant). After the waves have traveled into
the ice and caused ice breakage, the FSD is parameterized as in
Section 4.1
3. Model components

3.1. Advection and attenuation

The waves are advected according the energy balance equation,
namely

1
cg

DtSðx; x; tÞ ¼ Rin � Rice � Rother � Rnl; ð1Þ

(Masson and LeBlond, 1989; Meylan and Masson, 2006; Ardhuin
et al., 2010), where cg is the group velocity and Dt � ð@t þ cg@xÞ.
The source terms Rin;Rice and Rother represent respectively the wind
energy input, rates of energy loss to (or due to) the ice and the total
of all other dissipation sources (e.g. friction at the bottom of the sea,
losses from wave breaking or white-capping, Ardhuin et al., 2010).
These are all quasi-linear in S. The Rnl term incorporates fully non-
linear energy exchanges between frequencies (Hasselmann, 1962;
Hasselmann, 1963).

For the WIM, we set Rother ¼ Rnl ¼ 0 and Rice ¼ âS, i.e.

1
cg

DtSðx; x; tÞ ¼ �âðx; c;h; hDiÞSðx; x; tÞ: ð2Þ

The quantity â is the dimensional attenuation coefficient, given by

â ¼ ac
hDi ; ð3Þ

where a is the non-dimensional attenuation coefficient, i.e. the
(average) amount of attenuation per individual floe, which is a func-
tion of ice thickness and wave period. The definition Rice ¼ âS does
not allow transfer of energy between directions (via diffraction by
ice floes), as done by Masson and LeBlond (1989), Perrie and Hu
(1996) and Meylan et al. (1997). This is a necessary limitation of
the one-dimensional numerical model outlined in Part 2. Rice is qua-
si-linear since an S that is sufficiently large to cause breaking lowers
the average floe size hDi and subsequently increases â, according to
(3).

The effects of neglecting Rother and Rnl are not clear. They may
be important in moving the energy across the gap between the
wave and ice masks, although we note that as the resolution of
the EWMs increases, this will become less of an issue. It is diffi-
cult to say how much effect these terms will have once the waves
are in the ice-covered ocean, or how they should change to rep-
resent the different environment there. Masson and LeBlond
(1989), Perrie and Hu (1996) and Doble and Bidlot (in press) as-
sumed some of the effects (like wind generation) were propor-
tional to the open water fraction, and that Rnl was the same in
the ice-covered ocean as in open water. (Polnikov and Lavrenov,
2007, recently confirmed the validity of this last assumption.)
We note that by including wind generation in the ice, Perrie
and Hu (1996) were able to reproduce (qualitatively at least)
the observed ‘rollover’ in the effective attenuation coefficient.
That is, instead of attenuation increasing monotonically with fre-
quency, it reaches a maximum value before starting to drop
again.

The operator Dt is the material derivative, or the time derivative
in a reference frame moving with the wave (the Lagrangian refer-
ence frame) at the group velocity cg. We can also reconfigure the
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above problem, in between breaking events, in the Lagrangian
frame, as

dx
dt
¼ cgðx; x; t�Þ; ð4aÞ

d
dx

Sðx; x; tÞ ¼ �âðx; x; t�; S�ÞSðx; x; tÞ; ð4bÞ

where t� is the last time ice breakage occurred at x, and
S�ðx; xÞ ¼ Sðx; x; t�Þ. Thus we have separated the problem into an
advection problem and an attenuation one, and in our numerical
scheme presented in Part 2, we solve (2) by alternately advecting
and attenuating.

3.2. Ice breakage

We take a probabilistic approach to define a criterion for ice
breakage. It is therefore helpful to revise some relationships be-
tween the SDF (S) and different wave statistics, before defining
the breaking criterion itself.

3.2.1. Wave energy and statistics
We assume that the sea surface elevation, g, follows a Gaussian

distribution, and neglect non-linear effects that cause slight asym-
metry (Cartwright and Longuet-Higgins, 1956; Vaughan and
Squire, 2011). The mean square sea surface elevation (vertical dis-
placement from the mean water level), or the variance in the posi-
tion of a water particle at the sea surface, hg2i ¼ m0½g�, can be
obtained from S via the formula

mn½g� ¼
Z 1

0
xnSðxÞdx; ð5Þ

(World Meteorological Organization, 1998). (We will also use the
second spectral moment, m2, later on.) The significant wave height
is defined by Hs ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffi
m0½g�

p
.

Wave heights generally follow a Rayleigh distribution, for
which the probability of a wave amplitude A exceeding a certain
value Ac is approximately

PðA > AcÞ ¼ exp �A2
c=hA

2i
� �

; ð6Þ

(Longuet-Higgins, 1952, 1980), where hA2i denotes the mean square
amplitude. If the wave spectrum has a narrow bandwidth and non-lin-
ear effects are negligible (low wave steepness), then hA2i ¼ 2m0½g�, so

PðA > AcÞ ¼ exp �A2
c=2m0½g�

� �
: ð7Þ

The mean square displacement of the ice is approximately
hg2

icei ¼ m0½gice�, where

mn½gice� ¼
Z 1

0
xnSðxÞW2ðxÞdx: ð8Þ

Here WðxÞ � kicejTj=k, where T is the transmission coefficient for
a wave traveling from water into ice (e.g. Williams and Porter,
2009), represents the amplitude response at each frequency of an
ice floe to forcing from a wave of unit amplitude in the water sur-
rounding it. The wave number kðxÞ ¼ x2=g is the usual deep water
propagating wave number, while kiceðxÞ is the positive real root of
(A.7), the dispersion relation for a section of ice-covered ocean.

The probability of Aice exceeding a certain value Ac is

PðAice > AcÞ ¼ expð�A2
c=2m0½gice�Þ; ð9Þ

which is analogous to Eq. (7). In addition, we can also estimate the
number of waves we expect in a given time interval Dt;NW, as

NW ¼
Dt
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2½gice�
m0½gice�

s
; ð10Þ
(World Meteorological Organization, 1998). (Note that factors in
Eqs. (7) and (10) have been corrected from their counterparts in
Cartwright and Longuet-Higgins, 1956.) More precisely, this is the
number of times we can expect a particle to cross its point of mean
displacement in a downward direction. The quantity NW also de-
fines a representative wave period

TW ¼
Dt
NW
¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0½gice�
m2½gice�

s
; ð11Þ

for the spectrum S at a given point and a representative (ice-cou-
pled) wavelength of kW ¼ 2p=kW, where kW ¼ kiceð2p=TxÞ. The sym-
bol TW is sometimes written Tm0;2 but we use the former to avoid
clutter in our equations. Also note the factor of 2p is necessary since
we define the moments mn in terms of angular frequency x, rather
than the frequency itself ð1=TÞ.

We can also define analogous quantities for the strain, which for
a thin elastic plate is defined as e ¼ ðh=2Þ@2

xgice. Its mean square va-
lue is he2i ¼ m0½e�, where

mn½e� ¼
Z 1

0
xnSðxÞE2ðxÞdx; EðxÞ ¼ h

2
k2

iceWðxÞ: ð12Þ

The latter is the approximate strain amplitude per metre of water
displacement amplitude for a monochromatic wave of the form
gice ¼ Aice cosðkicex�xtÞ (with A ¼ 1 m, so Aice ¼W m). It does not
account for non-linear interactions between frequencies, which
could potentially be important approaching an ice breakage event.
For now we assume brittle failure of the ice, so that a linear
stress–strain law applies right up to the point where the ice breaks.
If we define the significant strain amplitude to be Es ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
m0½e�

p
,

which is two standard deviations in strain, then the probability of
the maximum strain from a passing wave EW exceeding a breaking
strain ec is

Pe ¼ PðEW > ecÞ ¼ expð�e2
c=2m0½e�Þ ¼ expð�2e2

c=E2
s Þ: ð13Þ
3.2.2. Breaking criterion
To determine whether the ice will be broken by waves, we de-

fine a critical probability threshold Pc such that if Pe > Pc the ice
will break. If it breaks, the maximum floe size is set to
Dmax ¼maxðkW=2;DminÞ where Dmin is the size below which waves
are not significantly attenuated and is set to 20 m (Kohout, 2008).
These two quantities Dmin and Dmax determine the FSD (see
Section 4.1).

From (13), the criterion Pe > Pc can be written in terms of Es; ec

and Pc as

Es > Ec ¼ ec

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2= log Pcð Þ

q
: ð14Þ

Thus the single parameter Ec combines the effects of both ec and Pc.
Note that Pc ¼ e�2 � 0:14 corresponds to the criterion of Langhorne
et al. (2001), i.e. Es > ec, and the upper limit tested by Vaughan and
Squire (2011).

The default value for Pc that will be used in our numerical re-
sults is based on the condition for a narrow spectrum. For a mono-
chromatic wave that produces a strain amplitude EW, the breaking
condition would be EW > ec. Therefore, since he2i ¼ E2

W=2 in that
case, the breaking condition is Es > ec

ffiffiffi
2
p

. This corresponds to
choosing Pc ¼ e�1 � 0:37 in (14). We note that this value is easily
changed in our model when better observational information be-
comes available.
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4. Model sub-components

4.1. Floe size distribution

Prior to 2006, numerous researchers (e.g. Weeks et al., 1980;
Rothrock and Thorndike, 1984; Matsushita, 1985; Holt and Martin,
2001; Toyota and Enomoto, 2002) made observations of floe sizes
in Arctic areas. It was found that the FSD generally obeyed a
power-law (Pareto) distribution, where the probability of finding
a floe diameter D greater than D� is given by

PðD > D�Þ ¼ PðDÞ ¼ ðDmin=D�Þc for D > Dmin; ð15Þ

where Dmin is the minimum floe diameter. The expected value of Dn

is therefore

hDni ¼ �
Z 1

Dmin

Dn@DPðDÞdD ¼ c
c� n

Dn
min:

The fitted exponent c was usually found to be greater than 2, which
implies that the expected diameter and area are defined. However,
there are problems with trying to treat small floes with the above
distribution, i.e. if we try to let Dmin ! 0. Therefore Toyota et al.
(2006) investigated the FSD of small floes of diameter 1 m–
1.5 km, using data obtained from the southern Sea of Okhotsk. They
found that floes smaller than about 40 m still obeyed a power law,
but were best fitted by a smaller value of c (about 1.15). This regime
shift was also observed in Antarctica in the late winter of 2006 and
2007 by Toyota et al. (2011), based on observations in the north-
western Weddell Sea and off Wilkes Land (around 64�S, 117�E) with
a helicopter-borne digital video camera. Concurrent ice thickness
measurements were also made, using a helicopter-borne electro-
magnetic sensor above the Weddell Sea and a video system off
Wilkes land. The regime shift was consistent with the value

Dc ¼
p4Yh3

48qgð1� m2Þ

 !1=4

; ð16Þ

which corresponds to the diameter below which flexural failure
cannot occur (Mellor, 1986).

Toyota et al. (2011) proposed an explanation of the exponent
governing the smaller floes in terms of a breaking probability P,
related to c by

P ¼ nc�2 or c ¼ 2þ lognP; ð17Þ

where P is the probability that a floe will break into n2 pieces. A
similar explanation was suggested by Herman (2010), who pro-
posed a generalised Lotka-Volterra model for the implementation
of breaking. Such models produce distributions that are asymptoti-
cally like power-law distributions, but with better behaviour near
D ¼ 0 (i.e. Dmin can be zero).

Note that the model of Toyota et al. (2011) always predicts
c < 2, so other mechanisms are required to explain the exponent
for the larger floes being greater than 2. Toyota et al. (2011) sug-
gested herding with subsequent freezing together of floes could
be one explanation. The simulations of Herman (2011) lent credi-
bility to this as they showed that floes tended to group together
in clusters, and that the diameter of these clusters obeyed
power-law distributions with exponents often greater than 2
(depending on the concentration).

We use the simpler approach of DKB, who restricted themselves
to small floes and took the FSD to be over the finite interval of
Dmin < D < Dmax. The distribution inside was based on the ideas
and parameters of Toyota et al. (2011), deriving a novel formula
for the mean floe size hDi. We set (as they did), the fixed values
of Dmin ¼ 20 m, n ¼ 2, and P ¼ 0:9. It is important that Dmin is
not too small as â, as given by (3), will be very large when hDi is
small. However, Kohout and Meylan (2008) found that floes with
lengths less than 20 m produced negligible scattering, so this value
of Dmin is a reasonable choice. It may also be possible to relate P to
our breaking probabilities in the future.

4.2. Attenuation models

As discussed in Section 1, attenuation models based on multiple
wave scattering are closely linked to the FSD since waves encoun-
ter more floe edges after ice breakage occurs, and hence more scat-
tering events occur. Viscosity models only depend on the
concentration and are unaffected by ice breakage. We implement
an attenuation model in which wave scattering is the dominant
attenuation mechanism, but we also include additional attenuation
provided by a particular damping model due to Robinson and Pal-
mer (1990). Accordingly, the dimensional and non-dimensional
attenuation coefficients are written, respectively,

a ¼ ascat þ avisc and â ¼ âscat þ âvisc: ð18Þ
4.2.1. Multiple wave scattering attenuation models
The multiple scattering model is based on linear wave theory.

The model predicts the spatial profile of time-harmonic waves in
a fluid domain, which has a surface that is partially covered by a
large number of floes. The floes are represented by thin-elastic
plates and respond to fluid motion in flexure only. The wave num-
ber for the ice-covered ocean is kice and for the open ocean is k. In
general kice – k, so scattering is produced by an impedance change
when a wave moves from the open ocean into a patch of ice-cov-
ered ocean, or vice versa, at a floe edge.

Attenuation due to multiple wave scattering by floe edges alone
is sufficient for the present investigation (Bennetts and Squire,
2012b), but extensions to scattering by other features in the ice
cover, e.g. cracks and pressure ridges, are possible (see Bennetts
and Squire, 2012a).

The model is confined to two-dimensional transects, i.e. one
horizontal dimension and one depth dimension (see Appendix A).
It cannot yet account for lateral energy leakage or directional evo-
lution of the waves. Attenuation models capable of describing
these features are being developed (Bennetts et al., 2010), but are
not yet sufficiently robust to be integrated into the WIM. Even with
the restriction to only one horizontal dimension, computational
expense can be large as there is an infinite sum of reflections and
transmissions of the wave between each pair of adjacent floe
edges. In the full multiple scattering problem exponential decay
is a product of localization theory, which relies on positional disor-
der and requires proper consideration of wave phases.

Reliance on disorder implies the use of an averaging approach.
The attenuation coefficient due to multiple wave scattering is
hence calculated as an ensemble average of the attenuation rates
produced in simulations that are randomly selected from pre-
scribed distributions. It is natural to calculate a non-dimensional
attenuation coefficient, ascat (i.e. per floe), for these types of prob-
lem, but this is easily mapped onto the dimensional attenuation
coefficient âscat (i.e. per meter) for use in the WIM. The distribution
of floes used in the model has a large impact on the predicted
attenuation and hence the width of the MIZ. This will be demon-
strated using numerical results below, and the underlying reasons
will discussed at that point.

4.2.2. Viscosity-based attenuation models
Recent model-data comparisons (Perrie and Hu, 1996; Kohout

and Meylan, 2008; Bennetts et al., 2010) have shown that multiple
wave scattering models give good agreement with data for mid-
range periods (6–15 s quoted by Kohout and Meylan (2008)). For



86 T.D. Williams et al. / Ocean Modelling 71 (2013) 81–91
large periods, however, scattering is negligible and other unmod-
eled dissipative mechanisms are more important, although it is un-
clear which mechanism is dominant in this regime. Plausible
candidates include secondary creep occurring when flexural strain
rates are slower, and frictional dissipation at the ice-water inter-
face. While this issue remains unresolved, the attenuation of large
period waves is modeled here with the damped thin elastic plate
model of Robinson and Palmer (1990) (see Appendix A). It contains
a single damping coefficient C, which produces a drag force that
damps particle oscillations at the ice-water interface.

In practice, we solve the dispersion relation (A.7) and use the
imaginary part of the damped-propagating wavenumber
Kðx;CÞ � kice þ id (see Appendix A), and set the viscous attenua-
tion coefficients to be

avisc ¼ 2dhDi and âvisc ¼ 2dc: ð19Þ

The magnitude of the damping coefficient, C, is set using data from
the most complete single experiment on wave attenuation available
at present, that of Squire and Moore (1980). More experimental
data, with detailed descriptions of prevailing ice properties and
wave conditions, would help to tune C or to compare different
models of wave dissipation.

Most other viscosity-based attenuation models take a similar
but more complicated approach and model the ice as being an
incompressible viscous fluid or viscoelastic medium of finite thick-
ness, with constitutive relations involving tuned viscosity parame-
ters. The attenuation rate from these models is also typically
predicted by solving a dispersion relation and finding the analo-
gous parameter to d.

Weber (1987) assumed that the ice was so viscous that it was in
quasi-static equilibrium, with pressure and friction balancing each
other out. The ocean was also given a viscosity which was tuned to
roughly agree with observations. De Carolis and Desiderio (2002)
developed this model further by letting the ice viscosity take a fi-
nite value. Wang and Shen (2011b) used a viscoelastic model for
the sea ice, but with the underlying ocean taken to be inviscid.

An associated model in which attenuation is produced by drag
due to the bottom roughness of floes was proposed by Kohout
et al. (2011). This also has a drag coefficient which requires tuning.
However, it is notable that the model of Kohout et al. (2011) does
not predict exponential attenuation.
(a) (b)

(c) (d)

Fig. 2. Behavior of the different attenuation models (A: � 	 �; B, C ¼ 0 Pa s m�1: –;
B, C ¼ 13 Pa s m�1: –) (a, b): a is plotted against period for thicknesses 1 m (a) and
2 m (b). (c,d): The drop in Hs (c) and Es (d) as a Bretschneider spectrum with peak
period 7 s and initial Hs of 1 m travels past N floes of thickness 2 m. In (d), the strain
that Es must exceed to produce breaking, Ec, is plotted as a dotted line. (Here we
have used ec ¼ 4:99
 10�5 and Pc ¼ e�1, so Ec ¼ 7:06
 10�5.)
4.2.3. Comparison of two attenuation models
Fig. 2 shows comparisons of predictions made by two different

versions of the attenuation model. The first model considered, de-
noted A and constructed for this paper only, uses a seemingly plau-
sible choice for the distributions. The FSD is based on a power law
discussed in Section 4.1, which was observed for small floes
( K 20–40 m) in Antarctic locations (Toyota et al., 2011). Floe sep-
arations are arbitrarily generated from an exponential distribution
PðG > gÞ ¼ expð�g=hGiÞ, with hGi ¼ hDiðc�1 � 1Þ and in this exam-
ple the ice concentration is c ¼ 0:9, although the discussion applies
equally well to any concentration. The attenuation coefficient
a ¼ ascat (avisc ¼ 0 for this model) is calculated as the average of
100 randomly generated simulations.

The second model, denoted B, is based on the recent work of
Bennetts and Squire (2012b). Rather than considering spatial dis-
tributions, Bennetts and Squire (2012b) considered the wave
phases as uniformly-distributed random variables and averaged
over all possibilities. They argued that the model is not intended
as a true replica of the MIZ, so detailed predictions about the exact
distribution of wave phases cannot be relied upon. An assumption
of uniformity is thus the simplest possible in the absence of a more
realistic model. In this setting the attenuation coefficient may be
calculated analytically rather than relying on a numerical approx-
imation. The expression for the attenuation coefficient can be sim-
plified further if the floes are assumed to be long, so that only the
reflection produced by a single floe edge is required, and the atten-
uation coefficient due to scattering is then given by
ascat ¼ �2 logð1� j Rj2Þ, where R is the reflection coefficient by
the edge of a semi-infinite floe of the specified thickness (calcu-
lated here using the method of Williams and Porter (2009)). Model
B is also adapted to include the effect of viscous scattering (for dif-
ferent values of C), i.e.
a � ascat þ avisc ¼ �2 logð1� j Rj2Þ þ 2dhDi: ð20Þ

Fig. 2(a) and (b) shows the attenuation coefficients produced by
the different attenuation models, computed for two different ice
thicknesses, and different values of the viscosity parameter (model
B only). Because the B curves with C ¼ 13 Pa s m�1 include an
empirical inelastic contribution, they produce the greatest attenu-
ation for large periods. As expected from Appendix A, the damping
is also less pronounced as the thickness increases. The value
C ¼ 13 Pa s m�1 was fitted using the attenuation coefficients for
the three largest periods of Squire and Moore (1980) (see Table 2).
They were measured for thinner (h � 0:5 m) Bering Sea ice, so we
used h ¼ 0:5m in our tuning procedure.

Curves corresponding to model A are markedly different from
the other curves. Due to the small values of average floe length
hDi (in Fig. 2(a), hDi is approximately 40 m, while in Fig. 2(b)–(d)
it is about 64 m), the attenuation of large period waves is several
orders of magnitude too small, which qualitatively contradicts
the observations of Squire and Moore (1980) mentioned above.
There is also some additional fine structure in the attenuation from
model A for lower periods. In particular, there is an interval of peri-
ods between about 6 s and 12 s (the interval moves to higher peri-
ods as ice thickness increases), where there is much less
attenuation than the other models. This has a profound effect on
the ice breakage that is able to be produced by model A, as waves
from that range of periods can produce very large strains if they re-
main unattenuated.

In Fig. 2(c) and (d), we show the effects of the different attenu-
ation models on the signficant wave height Hs and the significant
strain Es as they travel into an ice field. As a simple example spec-
trum, we take the initial wave spectrum, S0, to be a Bretschneider
spectrum, i.e.



T.D. Williams et al. / Ocean Modelling 71 (2013) 81–91 87
S0ðxÞ ¼
1:25H2

s T5

8pT4
p

e�1:25ðT=TpÞ4 ; ð21Þ

where T ¼ 2p=x is the period, and Tp is the peak period (7 s in this
example). Initially Hs ¼ 1 m, but in general, after traveling past N
floes it and Es are given by

Hs ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðNÞ0 ½gice�

q
; Es ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðNÞ0 ½e�

q
; ð22Þ

where

mðNÞ0 ½gice� ¼
Z

S0ðxÞW2ðxÞe�aðxÞNdx; ð23aÞ

mðNÞ0 ½e� ¼
Z

S0ðxÞE2ðxÞe�aðxÞNdx: ð23bÞ

The significant effect of the FSD on the attenuation model is fur-
ther illustrated in Fig. 2(c) and (d), which show how both the signf-
icant wave height Hs and the significant strain Es decay with N, the
number of floes that the waves have passed. After only a small
number of floes it can be seen that Hs and Es for model A (chained
curve) are several orders of magnitude larger than for the other
two curves, which are roughly the same.

We can also see that for model A, Es remains very close to the
approximate breaking strain for the range of values of N that are
plotted. Both Es curves produced by model B drop below Ec after
a relatively small number of floes. This suggests that the width of
the MIZ, LMIZ, will be similarly small under either of these models
but will be significantly larger for model A if strain failure is the
main breakage mechanism. In fact, in simulations involving model
A (not presented), we found that a 450-km transect was almost al-
ways entirely broken, when the expected range is about 50–
200 km. We therefore disregard model A for the numerical results
presented in Part 2, on the basis that the predicted attenuation
rates are insufficient to replicate what is observed. Note that the
power-law FSD model is still used for the WIM itself.

4.3. Ice properties

Timco and O’Brien (1994) collate and analyse nearly a thousand
flexural strength measurements conducted by 14 different investi-
gators under a variety of conditions and test types, namely, in situ
cantilever tests and simple beam tests with 3- or 4-point loading,
to show that the flexural strength rc has the following very simple
dependence on brine volume fraction tb:

rc ¼ r0 exp �5:88
ffiffiffiffiffi
tb
p

ð Þ; ð24Þ

where r0 ¼ 1:76 MPa. This is plotted in Fig. 3(a), and shows a
monotonic decrease from r0 as tb increases. Brine volume is often
a parameter in ice-ocean models but, if necessary, it can also be cal-
culated from the ice temperature and salinity, using the formula of
Frankenstein and Gardner (1967).
(a) (b) (c)

Fig. 3. Behavior of the flexural strength (a), and our models for the effective Young’s
modulus (b) and the breaking strain (c) with the brine volume fraction tb.
Flexural strength tests are normally analyzed by means of Eu-
ler–Bernoulli beam theory, in which the stress normal to the beam
cross section is related to the analogous strain. In principle, there-
fore, to convert flexural strength into a breaking strain ec for a
beam of sea ice, all we require is the Young’s modulus Y for sea ice.

In the course of a typical flexural strength test and during the
recurring cyclic flexure imparted by ocean surface gravity waves,
it is expected that the sea ice will experience stress levels and rates
such that the total recoverable strain eT � ei þ ed, where ei is the
instantaneous elastic strain and ed is the delayed elastic (i.e.
anelastic) strain, also known as primary, recoverable creep. This
suggests a variation on the instantaneous elastic Young’s modulus
Y which allows for delayed elasticity to act, which is often called
the effective modulus or the strain modulus and that we shall de-
note by Y�.

Timco and Weeks (2010) report a linear relationship for YðtbÞ of
the form Y ¼ Y0ð1� 3:51tbÞ, where Y0 � 10 GPa is roughly the va-
lue for freshwater ice at high loading rates. But, whilst increased
brine volume leads to a reduction in the effective modulus Y�,
the data are too scattered for an empirical relationship for Y�ðtbÞ
to be expressed. For ‘‘average’’ brine volumes ranging from 50 to
100 ppt (tb ¼ 0:05 to 0.1, Frankenstein and Gardner, 1967), this
suggests Y will reduce to between � 6–8 GPa.

As we have noted above, the effect of brine volume on Y� is
more difficult to pin down, but we believe the same kind of reduc-
tion would not be unreasonable. More challenging is determining
the effect of anelasticity (delayed elasticity) on reducing Y to Y�.
The mechanisms that achieve this power-law primary creep with
no microcracking cause relaxation processes to occur during cycli-
cal loading, so the rate of loading is important. Few data can help
us here but Fig. 4 of Cole (1998) shows model predictions for the
effective modulus at four loading frequencies that include those
associated with surface gravity wave periods, i.e. 10�2–100 Hz (or
0.01–1 Hz), and, incidentally, the reduction in Y due to total poros-
ity, i.e. air plus brine. The latter effects are comparable in magni-
tude to the reductions in Y given above; the effect of rate is
about 0.5 GPa as wave period is changed from 1 s to 10 s, and about
1 GPa from 10 s to 100 s. We therefore consider a reduction of
1 GPa is reasonable in our model, and in summary we use

Y� ¼ Y0ð1� 3:51tbÞ � 1 GPa; ð25aÞ

ec ¼
rc

Y�
: ð25bÞ

The effective Young’s modulus and breaking strain given by Eq.
(25) are plotted as functions of brine volume fraction in Fig. 3(b)
and (c). We observe that an appropriate choice of a value for the
effective Young’s modulus is important from the wave modeling
perspective, as the higher Y� becomes the more energy is reflected
at each floe present and the greater the attenuation experienced by
the wave train. However, because the same value of Y� is used to
convert from flexural stress to failure strain, the analysis is self-
consistent.

The breaking strain has a minimum value of approximately
4:8
 10�5 when tb ¼ 0:15 (Y� ¼ 3:8 GPa). The value is approxi-
mately constant for tb 2 ½0:1;0:2�. It shows an increase for
both higher and lower brine volumes—the less porous ice is pre-
dictably stronger, while the more porous ice is more compliant
so will be able to sustain more bending before breaking. If tb ¼
0:05; ec � 6:5
 10�5 (Y� ¼ 7:2 GPa), while if tb ¼ 0:1, the breaking
strain drops to ec � 5:0
 10�5 (Y� ¼ 5:5 GPa). Although lower val-
ues of Y� have been measured in the field, (e.g. by Marchenko et al.
(2011), in the Svalbard fjords), the temporal and spatial variability
of sea ice, and the origin and special character of the ice floes in the
East Greenland Current, suggests it is wiser to use the value for Y�

we have deduced, noting that it is a straightforward matter to
change it.
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The final property we will need to consider in our wave model-
ing is Poisson’s ratio. Langleben and Pounder (1963) determined it
to be m ¼ 0:295� 0:009 from seismic measurements, so in most
wave calculations involving ice (e.g. Fox and Squire, 1991) it is sim-
ply taken to be 0.3.

5. Summary and discussion

We have set the theoretical foundations of a waves-in-ice mod-
el (WIM) in this, Part 1 of a two-part series. The WIM will provide
the first link between wave models, e.g. WAM, WAVEWATCH III,
and sea ice models, e.g. CICE, LIM. The primary output of the
WIM is a floe size distribution (FSD), which can be used to define
the marginal ice zone (MIZ) as a subregion of the ice mask. The
FSD will then be available as an input for MIZ-specific dynamic
and thermodynamic models in future research.

Wave-ice interactions occurring in an MIZ comprise

(i) the attenuation of the waves due to the presence of ice
cover; and,

(ii) the breaking of the ice cover due to wave motion.

The WIM proposed in this work includes both components. It is a
more developed version of the WIM proposed by Dumont et al.
(2011), which, to our knowledge, was the first published model
to combine attenuation and ice breakage.

We advected the wave spectrum, S, through the ice-covered
ocean using a modified version of the energy balance equation.
We neglected parameterizations of dissipation due to all conven-
tional sources, e.g. winds and white-capping, and also non-linear
interactions. However, we included a new term, Rice ¼ âS, which
parameterizes dissipation due to the ice cover.

We used an attenuation model to calculate the attenuation
coefficient, â, which defines the rate of exponential decay of the
waves. The multiple wave scattering, attenuation model of Ben-
netts and Squire (2012b) was summarized. We noted striking dif-
ferences in the attenuation coefficient when using a seemingly
plausible power-law FSD in the attenuation model, rather than
the random wave phase model proposed by Bennetts and Squire
(2012b). Furthermore, we included viscous damping to simulate
the unmodeled attenuation of large period waves.

We considered the attenuation coefficient to be a function of
wave frequency and also to depend on the properties of the ice
cover, including the FSD. The power-law FSD model of Toyota
et al. (2011) was used for local regions of the ice cover in the
WIM. We created a link between the FSD model and the local wave
spectrum by setting the maximum floe size to be half the dominant
wavelength if the wave spectrum was sufficient to cause the ice to
break. Breakage would therefore abruply alter the FSD, and conse-
quently the attenuation coefficient, in the WIM.

We outlined a criterion to determine the occurrence of ice
breakage. The criterion was based on the integrated strains im-
posed on the ice by the passing wave spectrum. We derived a crit-
ical strain, which incorporates a critical probability and a breaking
strain, above which ice breakage was applied. In the absence of
experimental or theoretical data, the value of the critical probabil-
ity was set according to the limit for monochromatic waves.

The mechanical properties of the ice cover provide important
input parameters for the attenuation model and the ice breakage
criterion. We formulated an expression for the breaking strain,
by means of a relationship for flexural strength due to Timco and
O’Brien (1994) using an Euler–Bernoulli beam model for the sea
ice. Further, we also proposed the use of an effective Young’s mod-
ulus in this relationship, so that both instantaneous and delayed
elasticity are incorporated, and derived an expression for this
quantity.
The above summary highlights the presence of uncertainties in
the model. These are: (i) the viscosity parameter that determines
the attenuation of large period waves; (ii) the breaking strain of
the ice cover; and (iii) the critical probability above which the ice
will break. Sensitivity studies are therefore required with respect
to these quantities, and this forms the kernel of the numerical
study that follows in Part 2. An additional uncertainty in the model
is the amount of wave energy lost during ice breakage. Our treat-
ment of the energy loss is closely related to the numerical imple-
mentation of the WIM, and its discussion is therefore contained
entirely in Part 2.

The numerical implementation of the WIM itself is non-trivial
and a full description of our methods are given in Part 2.
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Appendix A. Thin elastic plate model with the inclusion of
damping

In this appendix we present the physical basis behind the dis-
persion relation of Robinson and Palmer (1990) (hereafter denoted
RP90), which is derived by adding a damping coefficient to the
usual thin elastic plate equation. Let z ¼ 0 be the mean position
of the ice-water interface and let z ¼ gice be the position of the
interface (the z coordinate axis points upwards, and the single hor-
izontal coordinate axis, the x-axis, points to the right). We assume
that gice is small enough that we can linearise about z ¼ 0. In the
formulation of RP90, the thin plate equation is modified to:

F@4
x þ qiceh@2

t

� �
gice ¼ Pjz¼gice

� C@tgice; ðA:1Þ

where F is the flexural rigidity of the plate, qice is the ice density, h is
the ice thickness, C is the damping coefficient and P is the water
pressure. The parameter C contributes to a drag pressure (�C@tg)
that is proportional to the particle velocity—this is usually absent
from the thin plate formulation. The rigidity is given by
F ¼ Y�h3

=12ð1� m2Þ, where Y� is the effective Young’s Modulus
(see §4.3) and m ¼ 0:3 is the Poisson’s ratio.

If we assume that the water is inviscid and incompressible and
its flow is irrotational we can write the fluid particle velocity as
u ¼ ðu;wÞT ¼ r/, where r ¼ ð@x; @zÞT . The pressure P is related to
/ through the linearized Bernoulli equation, and / satisfies La-
place’s equation (incompressibility) and the sea floor condition
for infinitely deep water:

P � Patm ¼ �q gzþ @t/ð Þ; ðA:2aÞ
r2/ ¼ 0; ðA:2bÞ
lim

z!�1
@z/ðx; z; tÞ ¼ 0; ðA:2cÞ

where Patm is the atmospheric pressure, q ¼ 1025 kg m�3 is the
water density and g ¼ 9:81 m s�2 is the gravitational acceleration.
We also need to apply a (linearized) kinematic condition at the
surface:
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@tgice ¼ wðx;gice; tÞ � wðx; 0Þ ¼ @z/ðx;0; tÞ: ðA:3Þ

Thus

@tPjz¼gice
¼ �q@t ggice þ @t/ðx;gice; tÞð Þ

� �q g@z þ @2
t

� �
/ðx;0; tÞ; ðA:4Þ

which, when combined with the time-derivative of (A.1), implies
that

F@4
x þ qðg � d@2

t Þ þ C@t
� �

@z/ðx;0; tÞ ¼ �q@2
t /ðx;0; tÞ; ðA:5Þ

where d ¼ qiceh=q ¼ 0:9h is the draft of the ice.
We now look for harmonic waves that obey (A.3) and (A.5)

when the water depth is infinite:

giceðx; tÞ ¼ Re Aiceeiðjx�xtÞ� �
; ðA:6aÞ

/ðx; z; tÞ ¼ Re Aice
x
ij

eiðjx�xtÞþjz
h i

; ðA:6bÞ

where Aice is the amplitude of the ice displacement, x ¼ 2p=T is the
radial frequency (T is the wave period), and j is a complex wave-
number. A non-zero amplitude is only possible if j satisfies the dis-
persion relation of RP90:

Fj4 þ qðg � dx2Þ � ixC
� �

j ¼ qx2: ðA:7Þ

When C ¼ 0, the primary root of interest, which we denote kice, is
positive and real. For non-zero C, we denote the root closest to
kice by Kðx;CÞ ¼ ~kice þ id, where ~kice; d > 0. For physical ranges of
C (CK 15 Pa s m�1) this is a unique choice, and kice ¼Kðx;0Þ.

To give us some idea of the important non-dimensional quanti-
ties we can let L5 ¼ F=ðqx2Þ, and �j ¼ jL. This turns (A.7) into

�j4 þ ða� ibÞ
� �

�j ¼ 1; ðA:8Þ

where

a ¼ g
Lx2 �

d
L
; b ¼ C

qxL
¼ C

q0:8x0:6F0:2 :

The non-dimensional viscosity parameter b, which is Oð10�4Þ for
higher frequencies, but is slightly bigger (Oð10�3Þ) for lower fre-
quencies, measures the importance of the damping effects. As well
as decreasing with frequency, it also decreases with thickness (h)
through the rigidity F.

Some asymptotic analysis shows that:

Kðx;CÞ ¼ kice 1þ ibðkiceLÞ
4ðkiceLÞ5 þ 1

 !
þ Oðb2Þ;

so effectively ~kice � kice. Also d is approximately Oð10�8 m�1Þ for
higher frequencies but increases to Oð10�6 m�1Þ for smaller fre-
quencies. Therefore the effects of C can be neglected for small scale
calculations such as the estimation of the strain in a single floe, or
the reflection by a single ice edge. However, it is important in large
scale calculations such as the attenuation by a large number of floes,
so d needs to be included to produce enough attenuation of long
waves (Bennetts and Squire, 2012b).

Appendix B. The WIM of Dumont et al. (2011)

B.1. Amplitude spectrum

Dumont et al. (2011) (hereafter called DKB) considered small
frequency intervals, Dx wide, and set

1
2
A2ðxÞ ¼

Z xþ1
2Dx

x�1
2Dx

Sðx0Þdx0 � DxSðxÞ: ðB:1Þ

This was based on the arguments that wave groups around the cen-
tral frequency would separate as they traveled into the ice due to
dispersion, and so the different wave groups would not interfere
with each other. It was partly done in response to the numerical is-
sue that ocean spectra produced by external wave models, if they
weren’t given parametrically, would only be given at discrete
values.

However, approximation (B.1) has the fundamental flaw that, as
the frequency resolution tends to zero, Dx! 0, the amplitude also
tends to zero, A! 0. Therefore, as a rough approximation, Dx was
replaced by x, i.e.

S ¼ 1
2x

A2: ðB:2Þ

This clearly causes problems when x is significantly higher than
Dx. However, we resolve the issue of the frequency resolution by
considering numerical integrals of S which actually converge better
as Dx! 0.

B.2. Energy transport

Substituting (B.2) into the energy balance equation for waves in
the MIZ (2) gives

1
cg

DtA ¼ �
â
2
A: ðB:3Þ

This is the continuous version of the equation used by DKB to ad-
vect wave energy, so the two equations are equivalent. However,
advecting S is more natural since it adds linearly, unlike A.

B.3. Breaking criterion

The breaking criterion used by DKB in connection with the
amplitude spectrum (B.2) was that the ice would break if
AðxÞ > AcðxÞ where Ac was a critical wave amplitude, applied
for any of the frequencies in the range appropriate to water waves.
As mentioned above, this assumed wave groups would separate in
the ice, and does not allow for the possibility of constructive inter-
ference between waves of different frequencies. By integrating S
over all frequency space when determining the breaking probabil-
ity of Section 3.2, we allow for the latter possibility implicitly.

The value used for the critical amplitude Ac was
Ac ¼ minfAe

c;A
r
c g. The condition AðxÞ > Ae

c represents one stan-
dard deviation in the strain for the wave group centered at fre-
quency x being greater than their breaking strain ec, while the
condition AðxÞ > Ar

c represents one standard deviation in the
stress being greater than the flexural strength rc. Our breaking cri-
terion applies the strain criterion in a different way (in order to al-
low for constructive interference, as discussed above), but we do
not apply a stress criterion.

The method used by DKB to estimate the stress was intended to
allow for the effects of cavitation and wetting. During cavitation,
the ice floe does not follow the wave profile exactly and potentially
causes a strong localized stress on the floe. However, the criterion
predicts greater stress when the waves are longer than when they
are shorter. This is unphysical in this regime as ice is relatively
unaffected by long waves because of their low slope/curvature,
normally small amplitude, and the low velocities they force surface
objects to move at. As long waves also experience the least atten-
uation in the presence of ice cover, the stress criterion results in an
unphysically wide MIZ. As a result, our parameterization does not
invoke the stress criterion of DKB. However, a different method of
allowing for cavitation and wetting could still be considered in the
future.

We also note that Marchenko et al. (2011) derived an ice break-
age criterion based on measured sea floor water pressure during an
observed breakage event. Breakage was attributed to an increase in
wave amplitudes (and hence stress and strain) produced by shoal-



90 T.D. Williams et al. / Ocean Modelling 71 (2013) 81–91
ing, so that the ice would break if the water depth H was less than a
certain critical depth. This critical depth agrees with the one calcu-
lated using our method (adjusted for shallow water instead of infi-
nitely deep water) to within reasonable uncertainty limits
ð� 11%).
B.3.1. Fatigue
The discussion of the anelastic response of sea ice in Section 4.3

does not preclude the possibility that floes can gradually fatigue
due to repeated bending imposed by passing waves. Fatigue,
whether of the high-cycle type associated with elastic behavior
and growth of microscopic cracks that eventually reach a critical
size for fracture, or low cycle fatigue where the stress is sufficient
for plastic deformation, is characterized by cumulative damage
such that materials do not recover when rested, i.e. they behave
inelastically as opposed to anelastically. Accordingly, the effective
modulus approach described above, which includes only fully
recoverable elastic deformation, cannot accommodate fatigue.
There is, however, a suggestion (Langhorne et al., 1998) that an
endurance limit, i.e. a value of stress for which a material will re-
tain its integrity even when subjected to an infinite number of load
cycles, exists for sea ice. This value, 0.6, was determined on station-
ary shore fast sea ice in McMurdo Sound, Antarctica. DKB therefore
reduced their flexural strength by a factor of 0.6. We, on the other
hand, have chosen not to do this because (i) the ice and wave con-
ditions change rapidly in the MIZ so, while a stress greater than
0:6rc can cause failure in principle, it may still occur at a timescale
that is well beyond that associated with the local dynamics (recall
that the endurance limit is for infinite time), (ii) fatigue strictly ne-
gates the use of an effective modulus, as permanent irrecoverable
damage is gradually done to the sea ice either by the nucleation
and propagation of cracks or by secondary and tertiary creep,
and (iii) the fast ice data of Langhorne et al. (1998) show consider-
able scatter, which is a common feature of fatigue experiments
even for simple materials. We rest content, therefore, with the
expression for Y� defined in Eq. (25a), noting that fatigue can easily
be added at a later point if results indicate that it plays a role.
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