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A series of wave basin experiments is reported that investigates the flexural response of
one or two floating thin-elastic disks to monochromatic waves. The work is motivated by
numerical model validation. Innovative techniques are used to ensure the experimental
configuration is consistent with the model. This demands linear motions, time-harmonic
conditions, homogeneity of the plate and the restriction of horizontal motions of the disk
or disks. An optical remote sensing device is employed to record the deflection of the
disks accurately. Tests involving a single disk and two disks are conducted for a range
of disk thicknesses, incident wave steepnesses, frequencies and, in the case of two disks,
geometrical arrangements. A data processing technique is used to decompose the raw
data into its spectral harmonics and filter the higher-order components. Pointwise com-
parisons of the linear first-order component of the experimental deflection with numerical
predictions are presented. Satisfying agreement is found, although the model consistently
over predicts the deflection. Disk-disk interactions are observed in the two-disk tests. A
brief discussion of the shortcomings of the pointwise analysis, with associated possible
sources of discrepancy, provides a link to the study reported in the companion paper
Montiel et al. (also submitted for publication in J. Fluid Mech.).

1. Introduction

The response of floating rigid structures to ocean surface waves has received consider-
able attention for over 100 years, driven primarily by the expanding needs of the world’s
navies and their allied industries (Wehausen 1971). Notwithstanding these advances, no
floating structures are actually perfectly rigid and many flex appreciably due to the pass-
ing waves. Acknowledging that such deformations can sometimes be inelastic, the term
hydroelasticity is used to describe such phenomena. Flexural motion becomes important
in situations where the hydrodynamic loads impose significant strains on the structure,
e.g. for sloshing impacts and vibrational properties of ships (Bishop & Price 1979; Faltin-
sen & Timokha 2009; Hirdaris & Temarel 2009; Wu & Cui 2009; Ten et al. 2011), and
for the fracture of sea-ice in the polar regions. A particular consequence of flexural mo-
tion is that waves may propagate through the hydroelastic system as oscillations in the
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fluid-structure interface. Yet, despite its importance, the topic of hydroelasticity has been
comparatively less well studied, especially experimentally.

It is appropriate, therefore, that the research reported herein focuses on the response of
compliant floating structures to linear waves. The structures are characterised by thick-
nesses significantly smaller than their horizontal dimensions. Thin-elastic structures are
the basis of two contemporary research areas: firstly, the design of compliant pontoons or
mat-like very large floating structures (VLFSs); and, secondly, for modelling interactions
between ocean waves and sea-ice.

The latter application relates to the propagation of waves through the outer band
of the ice-covered polar ocean, known as the marginal ice zone (MIZ), which is a vast
collection of floes of diameters approximately equivalent to the dominant wavelengths
(see the recent reviews of Squire 2007, 2011). The elastic response of the floes to wave
forcing is a fundamental modelling consideration, as it creates so-called flexural-gravity
waves that are believed to be the dominant cause of floe breaking (Langhorne et al. 1998;
Toyota et al. 2011).

The Mega-Float test model for a floating runway in Tokyo Bay (Suzuki 2005), and
other related projects, have provided motivation for hydroelastic analysis of VLFSs (see
the review of Watanabe et al. 2004a). Research is undertaken, e.g. for the development
of efficient mitigating techniques to minimise the structure’s motion (Wang et al. 2010).

There are clear modelling parallels between wave interactions with VLFSs and sea-ice
(Squire 2008). Both research areas recognise the critical lack of experimental data to
support the expanding corpus of theoretical research (Chen et al. 2006; Squire 2007).

A unique set of wave basin experiments are reported in the current paper. The ex-
periments characterise the flexural motion of one and two floating thin-elastic disks. We
describe a new experimental procedure to record the deflection over the surface of the
disks remotely for a range of wave frequencies, wave steepnesses and disk thicknesses.
The experimental data are used to validate the standard hydroelastic model of thin disks
under regular wave forcing. The experimental procedure is designed to reproduce the
limitations of the numerical model as a means to conduct a proper validation analysis.
To the authors’ knowledge, no past experimental campaigns have tested the suitability
of the thin-elastic plate model for the three-dimensional configuration considered here.

The standard model referred to above uses a combination of thin-elastic plate theory
for the disks (Love 1944) and a potential flow for an incompressible and inviscid fluid
domain. Under time-harmonic conditions, a monochromatic incident wave train sets the
disk or disks in motion. The waves are of small amplitude compared to the wavelength
and linearity is applied to the motion of the fluid and the disks. The disks are allowed
to move freely in the vertical direction but in-plane rigid body motions (surge, sway and
yaw) are neglected. These restrictions and simplifying assumptions are important as they
delineate the requisite experimental set up. In addition, semi-analytical solutions can be
found under these conditions (see Meylan & Squire 1996; Peter et al. 2003; Andrianov &
Hermans 2005, for the single disk problem). Our analysis extends these previous works,
as we account for Archimedean draught of the disk.

Experimental programmes were also conducted in Japan in the late 1990s to char-
acterise the hydroelastic response of rectangular elastic structures under regular wave
forcing, intended to replicate VLFSs at basin scale. Typically, composite compliant struc-
tures were used to simulate the flexural motion of the VLFS being modelled (Ohmatsu
2008). The composites are not vertically uniform (violating the thin-plate assumption),
and are made of a heavy material with significant rigidity (e.g. aluminium plate), which
is fixed on top of a buoyant material (e.g. polyethylene), assumed to have negligible mass
and rigidity. Under these conditions, tests have been conducted to measure the elastic
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motion in the structure and compare the results with numerical predictions (see, e.g.,
Utsunomiya et al. 1995; Yago & Endo 1996; Kagemoto et al. 1998).

In relation to wave/sea-ice interaction research, very few experimental investigations
have been conducted to characterise the scattering by thin-elastic structures in a labora-
tory setting. Squire (1984) and Meylan (1994) attempted two-dimensional experiments
in a wave flume but failed to obtain reliable data due to perturbations induced by the
reflected waves from the beach and flooding events. The only series of tests that is rele-
vant to the present work were conducted by Sakai & Hanai (2002) in a 26 m-long wave
flume. The investigators used elastic sheets made of polyethylene (with thicknesses 5
and 20 mm) as a substitute for ice, thereby allowing for bending motion. They were able
to measure the deflection of several arrangements of adjacent plates at a few regularly
spaced points using ultra-sonic sensors. They then determined an empirical dispersion
relation for flexural-gravity waves travelling through quasi-continuous ice-covered seas.
Later, Kohout et al. (2007) utilised the experimental data of Sakai & Hanai to vali-
date the response of one, two and four floating beams, predicted by the two-dimensional
version of the numerical model used in our investigation.

The kernel of our investigation concerns the response of a single disk. In this case, the
experimental setup consists of a compliant circular disk floating at the surface of a wave
basin. The disk is equipped with appropriate additional components to comply with the
restrictions imposed by the numerical model. The deflection of the disk is recorded using a
remote sensing motion tracking device, providing time series of the vertical displacement
at many points of the disk’s surface. The influence of the transient regime, the basin
boundaries and possible non-linear effects is removed from the associated time series by
a sliding-window Fourier analysis. We then obtain the linear steady-state amplitude of
the deflection at each measuring point, which can be compared to the value predicted by
the linear time-harmonic model. Extensions of the setup and data analysis for two disks
follow straightforwardly from those of the single disk.

A thorough description of the single-disk setup is given in §2, including the mea-
surement techniques and the novel technical solutions designed to impose appropriate
restrictions on the disk’s motion. An outline of the two-disk setup and a discussion of
the parameters varied as part of the campaign are also proposed. In §3, a preliminary
comparative analysis involving unprocessed deflection data is proposed. It provides qual-
itative insights with regards to the form of the signals measured in comparison to the
model predictions. In §4, a data processing technique, based on a sliding-window Fourier
analysis, is derived for the measured time series. The method is used to check the re-
peatability of the experimental procedure. A selection of pointwise comparative results of
the vertical displacement is presented in §5. We analyse the displacement at four different
points for the single-disk case and investigate the proportion of second-order harmonic
components on the motion. Results for the two-disk case are also given. Finally, a justi-
fication of the limitations of the pointwise comparative study conducted in this paper is
given in §6, which demonstrates the need for additional comparative analyses in terms
of integrated quantities over the disk surface. This provides a link to the investigation
presented in the companion paper to the current study (Montiel et al. 2012), hereinafter
referred to as Part 2.

The work presented here and in Part 2 is a subset of that reported by Montiel (2012).
Additional details regarding the design of the single-disk setup are provided by Marsault
(2010).
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Figure 1. Simplified schematic of the wave basin and the single-disk setup.

2. Experimental campaign

We conducted a series of experiments at the Laboratoire de recherche en Hydrody-
namique, Énergétique et Environnement Atmosphérique of École Centrale de Nantes in
a wave basin of length L ≈ 15.5 m, width W ≈ 9.5 m and depth h ≈ 1.9 m. The wave
basin is bounded in length by a wavemaker at one end and a beach at the opposite end.
The wavemaker is unidirectional and is composed of two identical parallel hinged flaps
controlled by a computer. In addition, the basin is equipped with two platforms attached
to bridges moving on rails, allowing us to fix parts of the experimental setup in the
laboratory’s frame of reference. A simplified schematic of the basin is given in figure 1.

2.1. Single-disk setup

We set the origin of a Cartesian coordinate system Oxyz to coincide with the centre of
the disk, and the free surface at rest. The z-axis points vertically upwards. The x-axis is
parallel to the side walls and points towards the wavemaker. We use xc and yc to denote
the distance from the disk centre to the wavemaker and the closest side wall, respectively
(see figure 1).

A material with suitable density and elastic properties must be chosen to test the
validity of the thin-elastic plate model experimentally. We used an expanded polyvinyl

chloride (PVC) FOREX
R©

, which is known to be reasonably compliant. Disks of radius
R = 0.72 m were formed by a high precision milling procedure from PVC sheets of
thickness D = 3, 5 and 10 mm. We determined experimentally the density, ρ, and Young’s
modulus, E, of the PVC to compare to those specified by the manufacturer. A series of
four-point bending tests was conducted to measure the Young’s modulus (see Marsault
2010). A summary of the properties of the PVC relevant to the present study is given in
table 1, where the subscripts ‘exp’ and ‘spec’ denote values of the parameter measured
experimentally and specified by the manufacturer, respectively. It is assumed here that
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Figure 2. Snapshot of the experimental setup for a disk of thickness D = 10 mm. Seven
markers are labelled for reference throughout the paper.

D (mm) Eexp (MPa) Espec (MPa) ρexp (kgm−3) ρspec (kgm−3) ν

3 838 1300 623 700 0.3

5 503 750 547 500 0.3

10 496 750 530 500 0.3

Table 1. Properties of the expanded PVC.

the Young’s modulus does not depend on frequency. The influence of this parameter will
be considered in Part 2. Poisson’s ratio, ν, is also indicated and is set to a typical value
for polymeric foams of 0.3, which coincidentally is also commonly taken for sea-ice and
VLFS models. Figure 2 shows the 10 mm disk and part of the experimental equipment
that we discuss subsequently.

A significant feature of the experimental setup consists of enforcing the restriction
of the surge, sway and yaw components of the motion of the disk, consistent with the
numerical model’s simplifying assumptions. In addition, these restrictions are required to
allow accurate measurements of the disk deflection to be made (see §2.2). A mechanical
device was designed to comply with these requirements. It is composed of two vertical
aluminium rods. The rods are fixed from their upper end to the platform. One rod,
of diameter 3 mm, goes through a hole in the disk at its centre to inhibit horizontal
oscillations, and is referred to as the central rod. The second rod, referred to as the edge
rod, has a diameter of 5 mm and goes through the disk on the x-axis close to the edge
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Figure 3. Cross-sectional view of the mechanical device used to restrict the disk’s motion in
the xy-plane (not to scale).

(x < 0, y = 0). Mitigation of yaw motion is then achieved by the coupled action of the
rods. The rods are indicated in figure 2. Both rods have their lower end free and located
approximately 0.15 m under the disk’s lower surface.

Figure 3 shows a schematic of the cross-sectional view of the two-rod arrangement.
The edge rod is guided through a hole in the disk by a thin tube. We found that setting
a 2.5 mm clearance is sufficient to mitigate the yaw rotation and to reduce the contact
between the rod and the tube, which is a potential source of friction in the motion. On
the other hand, we minimise the horizontal oscillations by setting a 0.35 mm clearance
around the central rod. The guide is composed of two vertically aligned aluminium plates,
fixed on each side of the disk, which are pierced by a 3.7 mm diameter hole. Note that the
disk itself has a much larger hole (10 mm), which reduces the surface of contact between
the rod and its guide. The reduced clearance allows for better guidance than for the
edge rod, but increases frictional effects arising from the contact between the rod and its
guide when the system is set in motion. To reduce friction due to the rod bending under
surge- and sway-induced forces, we minimise the distance between the clamped upper
end of the rod and the disk, allowing for sufficient vertical clearance to avoid contact
during tests with relatively high amplitude waves. Although significant efforts have been
put into moderating frictional effects, their influence on the motion is unclear and will
be discussed further (see Part 2).

Preliminary basin tests showed that flooding events occur under wave forcing, which
induce additional loads acting on the top surface of the disk, and that are usually referred
to as green water loads. These loads are not included in our hydroelastic model as they
originate from highly non-linear phenomena. To prevent such loads from affecting the
response of the disk, we installed a barrier around the edge of the disk. We used adhesive
strips (with rectangular cross-section) of neoprene foam (waterproof synthetic rubber),
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Figure 4. Two snapshots of the experimental setup displaying (a) the two IR cameras positioned
on the side of the wave basin and the calibration frame, and (b) the third camera located above
the disk.

fixed around the circular contour of the disk. For the 5 and 10 mm disks, the strip is
stuck over the circular side surface, providing a barrier of height 50 mm. On the other
hand, the 3 mm disk did not provide a side surface sufficiently large to stick the strip. In
this case, the strip rests on the top surface of the disk along the contour.

The edge barrier is shown in figure 2 for the 10 mm disk. The influence of the barrier on
the response of the disk (in terms of adding an extra weight and stiffening the structure
along the edge) is difficult to estimate experimentally, but a theoretical investigation of
its effect is presented in Part 2.

2.2. Measurements

The amplitude of the waves generated by the wavemaker is recorded using resistive wave
gauges. Five gauges are located in the vicinity of the disk position in the basin, and
the incident wave data are collected during tests with no disks. This allows us to feed
the numerical model accurate incident wave amplitudes required for comparisons with
experimental data. Note that the wave measurements are accurate to O

(

10−4 m
)

.
The goal of the present experiment is to measure the deformation experienced by the

disk under wave forcing. The deflection is recorded by a motion tracking device composed
of three infrared (IR) cameras that capture the three-dimensional position of markers over
time by stereoscopy. The markers are polystyrene spheres of diameter 30 mm, covered
with a retro-reflective tape (detectable by the IR cameras), which are fixed to the surface

of the disk, as shown in figure 2. The motion tracking device is developed by Qualisys
R©

and includes the software package Qualysis Track Manager (QTM 2009, v2.3, Qualysis
AB, Sweden) for the reconstruction of the stereoscopic data as well as the control of the
calibration and acquisition procedures.

Assuming symmetry with respect to the x-axis, deflection measurements are only re-
quired on half the disk. An optimal grid of 39 markers covering half the disk was found
(Marsault 2010), such that all the markers are seen at all times by the three IR cameras
utilised during the tests. In results not shown here, we have shown that the relative dif-
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ference in displacement between two symmetric markers is less than 3% in most cases,
thereby validating the symmetry assumption. Note that the restriction of yaw motion is
necessary to force the markers to remain in the same half plane during the tests. Min-
imising horizontal oscillations also improves the accuracy of the measured data. Analyses
of experimental data have shown that the amplitude of these motions is limited to one
order of magnitude less than that of the incident wave amplitude.

Each marker weighs approximately 3 g so that the markers-to-disk weight ratios are
3.5%, 2.6% and 1.4% for the 3, 5 and 10 mm disks, respectively. The hydrostatic equi-
librium is then slightly modified as the draught is increased. The influence of the extra
draught on the motion of the disk is, however, insignificant (Montiel 2012). Therefore,
the effect of the markers is neglected throughout this study.

The camera setup is shown in figure 4. Two cameras are located along a side wall of
the wave basin (see panel a) and the third camera is fixed to a bridge above the disk
and points downwards (see panel b). The initial position of the markers is found after
calibration of the motion tracking device. This procedure consists of determining the
accurate location of four reference markers fixed onto an L-shaped frame (see panel a),
set approximately 0.4 m above the disk, which constitutes the frame of reference of the
device. Note that this measuring device provides accurate data to O

(

10−5–10−4 m
)

.

The stereoscopic measurements of the disk’s motion are directly controlled by the QTM
software. A sampling frequency of 64 Hz is used for the acquisition procedure, which
is launched by an external trigger, this being the wavemaker control software. QTM
generates data files (.mat) to be analysed by MATLAB, containing the coordinates of
each marker at each time step in the reference frame defined by the calibration frame.
Knowing the location of the markers with respect to the disk centre then allows us to
express the coordinates of the markers in the system Oxyz defined previously.

2.3. Two-disk setup

Consider the case of two disks with spacing s (centre to centre) and angle $ (with respect
to the x-axis), as shown in figure 5. The objective is to measure the deflection of the two
disks in their four halves (regions 1–4). As the incoming wave is propagating from right
to left in figure 5, we refer to the rightmost disk as the front disk and the leftmost one
as the back disk.

The IR cameras used to capture the location of the markers have a limited field of
view and optical resolution (ability to distinguish two markers close to each other), so
that we cannot use a single arrangement of cameras to locate markers on two different
disks accurately. This requires each test to be performed twice (one disk analysed at a
time).

For symmetric arrangements (i.e. $ = 0), the deflection in regions 2 and 4 need not
be measured, so that only two tests are required. For non-symmetric arrangements (i.e.
0 < $ < π/2), the motion in regions 2 and 4 must be measured independently from
that in regions 1 and 3. Preliminary tests showed that markers located close to the edge
barrier in regions 2 and 4 could not be seen by the two cameras on the side of the basin.
Therefore, the motion in region 2/4 is obtained by translating the up-wave/down-wave
disk into the lower/upper half plane, preserving spacing and angle.

The influence of the side walls may be critical in this experiment, as for certain angles
a disk may be close to a wall and interact with it in a way that affects its response.
Particular care must be taken while analysing the data to detect and ameliorate such
effects.
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Figure 5. Experimental arrangement involving two disks. Four regions representing half a
disk are defined.

2.4. Summary of tests achieved

We operate the wavemaker to generate regular waves in the frequency range f0 =
0.6–1.3 Hz, with corresponding wavelengths in the range λ ≈ 0.9–4.3 m. The amplitude A
of each wave generated is determined by the steepness, defined here as ε = 2A/λ. Tests
are conducted for approximate steepnesses 1% and 2%, allowing us to check the validity
of the linearity assumption. For the ratios of the wavelengths to the disk diameter con-
sidered here, the disks may be regarded as large and diffraction effects are significant.
Specifically, the non-dimensional wavenumber takes values in the range ka ≈ 1–5, where
k = 2π/λ and a = R. We conducted tests for a range of eight frequencies (see table 2).
The values of kh displayed in table 2 show that deep water wave conditions (kh � 1)
apply over most of the frequency range.

Tests were conducted for eight frequencies. The parameter values for the incident
wave are given in table 2. The amplitudes given here are provided by the incident wave
measurements (tests with no disks), conducted with the group of five wave gauges at two
locations x ≈ 7 m and x ≈ 10.5 m.

Two series of experiments were carried out that involve a single disk, corresponding
to two positions of the disk in the wave basin, xc ≈ 7 m and xc ≈ 10.5 m. This allows
us to check the potential variability of the disk response with the distance from the
wavemaker due to that of the generated wave field (e.g. higher-order harmonics and
noise). The repeatability of the experimental procedure can then be deduced. At each
location, we conducted tests for three disk thicknesses, D = 3, 5 and 10 mm, two wave
steepnesses and eight frequencies, as mentioned above. For the single-disk experimental
campaign 96 tests were performed.

Tests involving two disks were performed on a limited range of parameters, due to the
two additional parameters involved (s and $). Consequently, we only considered two disk
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f0(Hz) 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

λ(m) 4.3 3.2 2.4 1.9 1.6 1.3 1.1 0.9

ka 1.0 1.4 1.9 2.4 2.8 3.5 4.1 5.0

kh 2.7 3.7 4.9 6.2 7.4 9.1 10.7 13.1

A1%(mm) 22.3 15.6 12.6 9.9 8.2 6.8 5.4 4.5

A2%(mm) 44 30.8 25.1 20.1 16.6 13.8 10.8 8.8

Table 2. Wave conditions for the single-disk series of tests.

thicknesses, D = 3 and 10 mm, and one wave steepness, ε ≈ 1%. However, we conducted
the analysis on the whole range of eight frequencies, as for the single disk experiment.
Four two-disk arrangements have been tested that allow us to test the influence of the
spacing on a symmetric configuration and the angle for a given spacing. Two symmetric
arrangements with respect to the x-axis (i.e. $ = 0) were tested with s = 1.88 m and
s = 3 m. For non-symmetric arrangements, we set the spacing s = 3 m and performed
tests for $ = 30◦ and $ = 45◦. A total of 64 experimental tests were conducted with two
disks, using incident wave data determined for the single disk experiment, recalling that
two and four tests are required for each symmetric and non-symmetric arrangements,
respectively.

3. Preliminary comparisons

In this section, we are concerned with the response of a single disk. Results for a
two-disk system will be given §5.3.

3.1. Numerical model

Under the simplifying assumptions outlined in §1, we derive a model for the time-
harmonic response of a floating thin-elastic disk. The model is identical to that used
by Peter et al. (2003), with the addition that the draught of the plate, d say, is in-
cluded. From Archimedes’ principle, d = (ρ/ρ0)D, where ρ0 ≈ 1000 kgm−3 is the den-
sity of the fluid. The motion of the fluid is described in terms of the velocity potential
Φ(x, t) = Re{φ(x) e iωt}, where ω is the radian frequency and the (reduced) potential φ is
complex-valued. Cylindrical coordinates, x = (r, θ, z), are used to denote the location of
points in the fluid domain. The horizontal coordinates, (r, θ), are related to the Cartesian
coordinates (x, y) defined earlier via x = r cos θ and y = r sin θ.

The potential, φ, satisfies Laplace’s equation throughout the fluid domain, Ω, and a
no-flow condition over the seabed surface, i.e.

∆φ = 0, (x ∈ Ω) and ∂zφ = 0 (z = −h). (3.1a)

Additional conditions hold on the upper surface of the fluid domain. The motion of the
free surface is governed by

∂zφ = αφ (r > R, z = 0), (3.1b)

where α = ω2/g, and g ≈ 9.81 m s−2 is acceleration due to gravity. At the disk/fluid
interface, the potential satisfies

(

β∇4 + 1 − αd
)

∂zφ = −αφ (r ≤ R, z = −d), (3.1c)
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where β = F/ρ0g, with F = ED3/12(1 − ν2) the flexural rigidity. The vertical displace-
ment w of the disk is obtained through the kinematic condition on the plate’s underside,
w(r, θ) = (1/ iω)∂zφ(r, θ,−d). Free-edge conditions, representing the vanishing of bending
moment and shearing stress, are also applied. They are expressed as

[

r2∇2 − (1 − ν)(r∂r + ∂2
θ )

]

∂zφ =
[

r3∂r∇
2 + (1 − ν)(r∂r − 1)∂2

θ

]

∂zφ = 0, (3.1d)

respectively, for r = R and z = −d. The inclusion of draught adds the final condition

∂rφ = 0 (r = R, −d < z < 0), (3.1e)

which imposes no flow through the submerged portion of the disk.
We derive eigenfunction expansions for the solution using separation of variables in the

free-surface and plate-covered fluid regions. Specifically, the displacement of the disk/fluid
interface is given by

w(r, θ) =

∞
∑

p=−2

∞
∑

n=−∞

Bp,nIn(κpr) e inθ (r ≤ R). (3.2)

Here, In denotes the modified Bessel function of the first kind of order n, and Bp,n denote
unknown amplitudes that are determined by the solution method, which is outlined in
Part 2. The wavenumbers κp, p ≥ −2, are roots of the dispersion relation

(

βκ4 + 1 − αd
)

κ tanκ(h − d) = −α. (3.3)

We obtain numerical values for the displacement at any point of the plate from (3.2),
by truncating the infinite sums, so that the required level of convergence is achieved.
The theoretical results presented in this paper are given with an accuracy of at least
two decimal places (for a unit incident wave amplitude), which is more than satisfactory
given the accuracy of the experimental measurements.

3.2. Model/data comparisons

The time-harmonic response of the system is equivalent to its oscillatory steady state
under a transient regular wave forcing from rest, which characterises the wavemaker
forcing in our tests. We designate steady-state conditions in the wave basin by defining
a time window that starts after the initial wavefront has passed, t1 say, which can be
estimated roughly as xc/Gg, where Cg is the group velocity of the wave generated.

Although the beach acts as a dissipation zone, it reflects a non-negligible proportion
of the incoming waves (reflection coefficient of 5–15% depending on the frequency; see
Marsault 2010). However, waves reflected by the side walls will interfere with the motion
of the disk prior to that of the beach. To avoid contamination of the data by the reflected
waves, we truncate the time series at a maximum time, t2 say, corresponding to the
estimated time at which reflected waves from the closest boundary (here the closest side
wall) disturb the disk motion. Theoretical estimates are given by t2 = (xc + 2yc)/Cg.

Table 3 shows the values of t1 and t2 for each frequency and both disk locations.
The time window bounded by t1 and t2 corresponds to a rough estimate of the steady-
state regime in an unbounded fluid domain. For each test conducted, we define a proper
steady-state window (t1 + δ1T0, t2 − δ2T0), where T0 is the incident wave period and the
non-dimensional coefficients δ1 and δ2 are adjusted manually to capture the constant
portion of the signal in the interval (t1, t2).

3.2.1. Pointwise comparisons

We perform initial comparisons for the deflection of marker 2 (see figure 2) between
the raw time series provided by the motion tracking device, denoted by z2(t), and the
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f0(Hz) 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

Cg(m s−1) 1.34 1.12 0.98 0.87 0.78 0.71 0.65 0.60

xc ≈ 10.5 m

t1(s) 7.9 9.5 10.9 12.2 13.6 15 16.4 17.7

t2(s) 14.2 17 19.4 21.9 24.4 26.9 29.3 31.6

xc ≈ 7 m

t1(s) 5.3 6.3 7.2 8.1 9.1 10 10.9 11.7

t2(s) 11.8 14.1 16.1 18.2 20.3 22.3 24.4 26.3

Table 3. Theoretical estimate of the start and end times of the steady-state window for each
frequency and each disk location.

model’s predictions. To ensure that the compared signals are in phase, the theoretical and
experimental deflections have to be synchronised by means of the phase of the incident
wave. Under steady wave generation, the time delay of the experimental incident wave
in reaching the centre of the disk is given by

tϕ = td − xc/Cϕ, (3.4)

where td = 0.93 s is the wavemaker trigger delay (inherent to the device) and Cϕ = ω/k
is the phase velocity of the incident wave. Therefore, the appropriate synchronisation
is obtained by multiplying the theoretical deflection by exp( iωtϕ), so that the time-
harmonic deflected surface is given over time as

W (r, θ, t) = Re
{

w(r, θ) e iω(t+tϕ)
}

. (3.5)

Figure 6 shows a comparison of the theoretical and experimental time series of z2(t)
over a time interval that contains the steady-state window. The signals are compared for
the three thicknesses D = 3, 5 and 10 mm, at four different frequencies f0 = 0.6, 0.8, 1.1
and 1.3 Hz, for a steepness ε ≈ 1% and the disk location xc ≈ 7 m. The time-harmonic
signals predicted by the numerical model are obtained for incident wave amplitudes
provided by table 2. We observe that once the experimental signal has reached its steady
state, it is in phase with the theoretical harmonic signal. This also suggests that the
dispersion properties of the disk-covered region in experiments and model agree. However,
tests on larger disk-covered regions would be required to make a conclusive statement on
the dispersion properties.

In terms of amplitude, we observe a reasonable agreement in the steady-state window
for all cases considered, suggesting that the experimental setup described in §2 provides
sensible data. In particular, the experimental (at steady state) and theoretical time series
coincide for the 3 mm disk. For the 5 and 10 mm disks, the numerical model slightly
overestimates the amplitude measured experimentally. On the other hand, the amplitudes
of the experimental signals become more variable over time as the frequency increases
(and therefore as the magnitude of the motion decreases), suggesting that non-linearities,
such as noise or higher-order harmonics, affect the response of the disk.

3.2.2. Visual comparisons

We extend the pointwise comparisons to analyse the response of the full disk. This
provides a step towards our ultimate goal to characterise the flexural motion of the disk, as
discussed in §1. Using the deflection data of all the markers and their symmetric images,
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Figure 6. Time-dependent deflection of marker 2 for (a–c) f0 = 0.6 Hz, (d–f) f0 = 0.8Hz, (g–i)
f0 = 1.1 Hz and (j–l) f0 = 1.3 Hz. For each frequency considered, the time series are plotted
for (a,d,g,j) D = 3mm, (b,e,h,k) D = 5mm and (c,f,i,l) D = 10 mm. The dataset obtained
for the wave steepness ε ≈ 1% and the disk location xc ≈ 7m are used. In each panel, the
corresponding theoretical time-harmonic signal is given (dotted line) for comparison and the
characteristic times t1 and t2 are shown as vertical dashed lines.

we can interpolate the displacement at any point of the disk. This allows us to obtain the
deflection of the whole disk from the data of 39 points only. A visual comparison of disk
deflections then provides qualitative insights on the agreement regarding the bending
motion of the disk. We form a regular polar grid composed of 2921 nodal points, at
which we estimate the deflection by bilinear interpolation.

Figure 7 shows the deflection surfaces W (r, θ, t) obtained experimentally and theoret-
ically for the 5 mm-thick disk at f0 = 0.8 Hz and f0 = 1.1 Hz, for ε ≈ 1% and xc ≈ 7 m.
The experimental surfaces are shown at t = 14.7 s and t = 18.2 s for f0 = 0.8 Hz and
f0 = 1.1 Hz, respectively, i.e. within the steady-state window. We find a good agree-
ment in terms of phases for both cases, extending the observations from the pointwise
comparison shown in figure 6 to the disk surface.

It is more difficult to quantify the agreement between the experimental and theoretical
deflection surfaces in terms of amplitudes. We observe that the numerical model slightly
overestimates the response for both frequencies, generalising the results found for marker
2 to the whole disk surface. In addition, the theoretical surfaces display a higher degree
of curvature than those obtained from the experimental data, especially near the disk
edge on the y-axis.

The good qualitative agreement between the theoretical and experimental deflected
surfaces provides evidence that the experimental setup performs reasonably well. Addi-
tional analyses are required to interpret the agreement over the frequency range consid-
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Figure 7. Deflection of the 5mm disk for a wave steepness ε ≈ 1%, xc ≈ 7m and frequencies
(a,c) f0 = 0.8 Hz and (b,d) f0 = 1.1 Hz. For each frequency, the theoretical time-harmonic deflec-
tion (panels a,b) is compared to the deflection obtained by interpolation from the experimental
data (panels c,d). The deflection surfaces obtained experimentally are shown at t = 14.7 s and
t = 18.2 s for f0 = 0.8 Hz and f0 = 1.1 Hz, respectively. The circles on the experimental surfaces
represent the markers.

ered and filter potential non-linear components contained in the measured time series.
The data processing technique devised in §4 generates data that are consistent with the
linearity assumption of the model.

4. Data analysis

4.1. Fourier analysis

Although we conducted tests at low incident wave steepness (ε � 1), non-linearities may
arise from unexpected sources, due to imperfections of the setup or the wavemaker. In
particular, the time series obtained for each marker and the wave gauge may be contam-
inated by higher-order harmonics and noise due to external perturbations or inherent to
the measuring devices. Therefore, we seek to filter wave components of frequency higher
than the frequency of excitation, and extract the linear first-order part of the time series
to improve comparisons with theoretical predictions.

We decompose each time series into its frequency domain Fourier components using
a discrete Fourier transform (DFT). Evaluating the DFT components within a time
window provides the spectral decomposition of the signal at a given time. By repeating
this procedure on successive windows over the duration of the test, we obtain the time
variations of each spectral component. This is a discrete version of the short-time Fourier
transform (STFT; see, e.g., Allen & Rabiner 1977; Cohen 1989). Given a time series, the
STFT processing algorithm is outlined as follows:

1. multiply the time series by a rectangular window sampled properly (equally spaced
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and including the end points) and centred at t with width T , which is taken to be an
integer number of wave period;

2. compute the DFT components of the windowed time series using the fast Fourier
transform (FFT). This is the discrete convolution of the signal’s DFT with the window
function’s DFT;

3. select the first-order amplitude associated with the fundamental frequency, f0 say,
to extract the linear component;

4. discretise the time domain of the duration of the test and repeat the procedure
described in 1–3 successively at each time step;

5. take the mean value over the steady-state window (defined in §3.2), which represents
the linear time-harmonic amplitude, free of the effects of the transient regime and the
basin boundaries.

The efficiency of the STFT method is mainly determined by its resolution. The fre-
quency resolution of the window function (ability to distinguish two frequency compo-
nents close to each other) is best for a rectangular window (Chu 2008), which motivates
our choice for the window function. The time resolution is characterised by the duration
of the window, T , as the associated spectral decomposition is well localised in time within
a short window, i.e. sudden variations of the signal over time are captured. Reducing the
window duration decreases the frequency resolution, however, which is known as the Ga-
bor limit (a signal cannot both time-limited and band-limited; see Cohen 1989). For the
time series analysed here, we favour increasing the time resolution by taking a window
duration of, typically, twice the period of the incident wave, i.e. T = 2T0. This allows us
to characterise the steady-state window accurately in time, which is critical to define a
reliable time-harmonic experimental amplitude.

In order to illustrate numerically the spectral properties of a typical measured time
series, and the STFT method, we consider the vertical displacement of the central marker
(marker 2, see figure 2). The unprocessed vertical displacement is denoted z2(t). We
analyse the test defined by the following parameters: ε ≈ 1%, f0 = 0.8 Hz, D = 5 mm
and xc ≈ 7 m. Using steps 1–4 of the STFT algorithm, the signal ZT

2 (f, t) is calculated for
frequencies f that are multiples of the sampling frequency 1/T (1/T , 2/T , . . . ), where the
higher-order components are obtained by extending step 3 of the algorithm. As indicated
above, the window duration is set to be twice the period of the wave generated. A time
step of 0.2 s is used between successive windows.

In figure 8(a) the processed data are analysed in the form of a spectrogram, which is
a three-dimensional display of the time-varying spectral decomposition of a signal. We
set fmax = 10 Hz as the upper boundary of the frequency domain and the grey color
map characterises the amplitude

∣

∣ZT
2 (f, t)

∣

∣, such that the saturation is reached at its
maximum for f ∈ [0, 10] and t ∈ [0, 25]. The characteristic times t1 and t2 are also
given as an estimate of the steady-state window (see §3.2). As expected, we observe
that, for t > 9 s (i.e. after the wavefront has passed), the signal’s frequency content is
dominated by the fundamental harmonic at f0 (black strip). A second strip is also visible
at f = 2f0 = 1.6 Hz corresponding to the second-order harmonic, although its magnitude
is much lower (light grey) than that of the fundamental harmonic. To support the latter
assertion, figure 8(b) shows the cross-sectional views of

∣

∣ZT
2

∣

∣ at f = f0 (thick solid line),
f = 2f0 (dotted line) and f = 3f0 (thin solid line). It is clear again that the motion is
dominated by the fundamental component during the steady-state window, defined by
t ≈ 10–15 s. This is confirmed quantitatively by the ratios

∣

∣ZT
2 (2f0, t)/Z

T
2 (f0, t)

∣

∣ ≈ 8%

and
∣

∣ZT
2 (3f0, t)/Z

T
2 (f0, t)

∣

∣ ≈ 1% in the steady-state window. The influence of the second-
order harmonic is not negligible, however, and will be analysed further in §5.2.
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Figure 8. Short-time Fourier transform analysis of the vertical displacement of marker 5 for
ε ≈ 1%, f0 = 0.8 Hz, D = 5mm and xc ≈ 7m. The spectrogram of the signal and the cross-sec-
tional views at f = f0, 2f0 and 3f0 are shown in panels (a) and (b), respectively.

Note that in further analyses, we define the steady-state window manually during step
5 of the STFT algorithm, based on the spectrogram reading corresponding to the time
series analysed.

4.2. Repeatability of the measurements

We can estimate the inherent error of the wavemaker forcing, the measuring devices and
the STFT method (reading error on the spectrogram due to the amplitude-averaging
performed within the steady-state window) by analysing the variability of a measured
quantity over a set of equivalent tests. The variability is quantified by the standard devi-
ation of the corresponding measured values. For instance, we obtained ten independent
measurements of the incident wave amplitude (five wave gauge data at two locations)
for each frequency and steepness, assuming that the presence of a gauge does not affect
the wavefield measured by the adjacent gauges. The incident wave amplitudes, processed
by STFT at each frequency, are given in table 2 for the steepnesses 1% and 2%. The
standard deviation, calculated over the ten values, provides an estimate of the error.

To determine the repeatability of the experimental procedure, we define the relative
error of a data set D = {(X1, . . . , Xn), n ∈ N, n ≥ 2}, as the standard deviation to mean
ratio, i.e.

E =
1

X̃

√

√

√

√

1

n − 1

n
∑

i=1

(

Xi − X̃
)2

, (4.1)

where X̃ is the mean value of the elements of D. The relative error is expressed as a
percentage. It is given for the incident wave data in figure 9(a) for the two values of the
steepness considered. We find a relative error of approximately 5–7% for all cases, except
at f0 = 0.7 Hz, for which it reaches 9%.

We conduct a similar analysis on the vertical displacement of marker 2 to characterise
the variability associated with time series obtained from the motion tracking device. For
each frequency, wave steepness and disk thickness, we have two measurements corre-
sponding to the two disk locations. Letting A2 denote the the mean value of the funda-
mental component of the deflection of marker 2 over the steady-state window (obtained
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Figure 9. Relative error (in percents) of (a) the incident wave data and (b) the vertical dis-
placement data of marker 2, as a function of frequency. In panel (a), the relative error is given
for the wave steepnesses ε ≈ 1% (circles) and ε ≈ 2% (squares), and in panel (b), it is given for
D = 3mm (circles), D = 5mm (squares) and D = 10 mm (diamonds).

by STFT), we define the scaled amplitude A2 = A2/A. Under the linearity assumption,
this quantity does not depend on the steepness parameter, so that the values obtained
for ε ≈ 1 and 2% are theoretically the same. Therefore, we conduct our repeatability
analysis by calculating the relative error using four values of the scaled displacement A2,
corresponding to two disk locations and two steepnesses.

Figure 9(b) shows the relative error of the scaled vertical displacement of marker 2 for
the three disk thicknesses considered. We find a relative error of 5% or less in all cases,
except for the 5 mm disk (squares), where the error is larger (10–15%) for f ≥ 0.9 Hz.
This suggests that the setup is more reliable for the 3 and 10 mm disks in this regime.
Results for other markers (not shown here) show less variability for the 5 mm disk (≈ 5%
error), so that the variability observed for marker 2 probably arises from local effects.
More tests would be required to obtain error estimates with more statistical relevance.
However, the results obtained here are satisfactory. In particular, the accuracy of the data
is sufficient to conduct relevant comparison analyses with the theoretical predictions.

5. Pointwise comparisons

5.1. Single-disk analysis

We consider the vertical displacement of markers 1, 2, 3 and 4 (see figure 2). The ampli-
tude of each marker is taken to be the mean value of the fundamental component over
the steady-state window (STFT method; see §4.1). Scaling each amplitude by the cor-
responding incident wave amplitude, we define the non-dimensional amplitudes A1, A2,
A3 and A4, extending the notation introduced in §4.2. These quantities are estimated
theoretically by the modulus of the vertical displacement |w| for an incoming wave of
unit amplitude.

Figure 10 shows the scaled vertical displacement of the four markers for each disk thick-
ness considered here. Each experimental data point represents the mean of the scaled
amplitudes for four experimental measurements corresponding to two wave steepnesses,
ε ≈ 1% and 2%, and two disk locations, xc ≈ 7 m and 10.5 m. Following the repeata-
bility analysis conducted in §4.2, we include error bars, calculated from the standard
deviation of the set of four values. The theoretical data are given in the frequency range
f = 0.5–1.4 Hz. We observe a good general agreement between theory and experiments,
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Figure 10. Vertical displacement of markers (a–c) 1, (d–f) 2, (g–i) 3 and (j–l) 4 scaled by the
incident wave amplitude, as a function of frequency, for the three disk thicknesses considered,
i.e. D = 3mm (panels a,d,g,j), D = 5mm (panels b,e,h,k) and D = 10 mm (panels c,f,i,l).
The experimental data (crosses) include error bars determined using four recorded data for
each test. The theoretical data are given continuously as dashed lines over the frequency range
f = 0.5–1.4Hz.

particularly for the 3 and 10 mm disks. In most cases, it is seen that the numerical model
slightly overestimates the displacement of the disk, however.

The quantitative discrepancy between the experimental data points and the theoretical
curve is consistent over the frequency range considered. We find a relative difference
∆ = 5–20% between theory and experiments for most experimental frequencies. Overall,
the agreement is best for the 3 mm-disk (∆ = 5–10%) and worst for the 5 mm-disk
(∆ = 10–20%). In addition, it is observed that model and experimental data agree best
for marker 1 (∆ = 5–10%) and worst for marker 4 (∆ = 10–20%), which is the only
marker not located on the x-axis. This suggests that three-dimensional effects are less
accurately represented by the numerical model.

We have obtained local information on the vertical displacement and observed a rea-
sonable agreement although the numerical model consistently overestimates the response.
However, we cannot give reliable quantitative estimates regarding the flexural motion of
the disk using the pointwise analysis. An extension of the present analysis is given in
Part 2, in which integrated quantities are considered to measure the bending of the disk.

5.2. Second-order analysis for a single disk

The STFT method, used to process the raw experimental time series (see §4.1), allows
us to analyse the effects of higher-order harmonics on the response. In particular, we
may determine how much of the amplitude captured at a measuring point has a non-
linear source. Although we only considered waves of low steepness, non-linear effects still
need to be quantified. A preliminary analysis of the spectrograms associated with the
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Figure 11. Second-order relative harmonic for (a) the incident wave amplitude and (b) the
vertical displacement of markers 2 (in percents), as a function of frequency. In panel (a) the
data are given for wave steepnesses ε ≈ 1% (circles) and ε ≈ 2% (squares). In panel (b), the
data are given for disk thicknesses D = 3mm (circles), D = 5mm (squares) and D = 10mm
(diamonds).

displacement of the disk (not shown here) demonstrated that non-linearities in the motion
are characterised mainly by second-order effects (f = 2f0). Components of higher order
are too small to be captured by the measuring devices, and will not not be considered in
the present analysis.

We determine the proportion of second-order harmonics in the incident wave amplitude

and disk displacement. We define the relative second-order harmonic amplitude A
(2)
h as

the second-order to fundamental amplitude ratio. This quantity is given in figure 11(a) for
the incident wave. We observe that the second-order harmonic, composed of second-order
bound and spurious free waves in the basin, represents less than 3% of the fundamental
amplitude for most cases considered. The proportion of second-order harmonic is larger
for the 2% wave steepness in most cases, as could be expected. It is also seen that for
a given steepness, the frequency-dependent data remain reasonably constant over the
frequency range considered, which confirms that the wave steepness is the determining
parameter for the second-order effects in deep water.

The relative harmonic amplitude of the vertical displacement of marker 2 is plotted
in figure 11(b) against frequency for the second-order harmonic only. As in figure 10,
each data point represents the mean value over four tests (two steepnesses and two disk
locations), theoretically identical when scaled. Error bars are not shown for clarity. In
most cases, we find relative harmonic amplitudes similar to those of the incident wave.
These second-order effects can be either due to those in the incident wave or generated
upon scattering of the incident wave by the disk edge. At low frequencies (f < 1 Hz),
for D = 5 mm, we observe higher relative harmonic amplitudes (8–15%), suggesting that
additional sources induce second-order motion for this thickness. During the wave basin
tests involving the 5 mm disk, we observed visually a resistance to the motion at the disk
centre for high amplitude wave forcing, suggesting the presence of friction. Therefore,
we conjecture that the frictional effects along the central rod represent a source of non-
linearities observed in figure 11(b). Note that similar non-linear effects were observed for
other markers.

5.3. Two-disk analysis

Consider the symmetric two-disk arrangement with a 3 m centre-to-centre spacing (s =
3 m, $ = 0◦) and the non-symmetric arrangement with a 30◦ angle (s = 3 m, $ = 30◦).
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Figure 12. Deflection of markers (a,e) 1, (b,f) 2, (c,g) 3 and (d,h) 4 for the two-disk arrangement
characterised by the spacing s = 3 m and angle $ = 0◦, as a function of frequency. Results are
shown for the disk thicknesses (a–d) D = 3mm and (e–h) D = 10 mm. Each panel contains
the theoretical and experimental data associated with the front disk (dotted lines and circles,
respectively), the back disk (dashed lines and pluses, respectively) and the corresponding single
disk (solid lines and crosses, respectively).

We present a model/data comparative analysis for the vertical displacement of markers
1, 2, 3 and 4 of both disks in these two configurations. Note that when the system is
rotated from a symmetric arrangement to a non-symmetric arrangement, the four points
analysed are rotated by the same angle, so that they are aligned differently with respect
to the horizontal axis going through the centres of the disks.

Recall that to define experimental time-harmonic amplitudes, we average the first-
order component of the corresponding time series in the steady-state window (see §4.1),
which is chosen to remove the effects of the transient regime and the reflections from
the wave basin’s boundaries. For the tests involving two disks, our goal is to determine
how the motion in the disks differ from that of a single disk. Therefore, the steady-state
window starts after one interaction cycle (i.e. scattered waves travelling from one disk to
the other one and back).

Figure 12 shows the theoretical and experimental deflection of the four markers for the
symmetric arrangement with spacing s = 3 m. Graf’s interaction theory (Kagemoto &
Yue 1986) is used to incorporate wave interaction between the two disks in the numerical
model. The data associated with the front and back disks are compared with those of
the single disk for both disk thicknesses considered. At low frequencies (f < 0.9 Hz
approximately), the two disks do not interact (for both theory and experiments) and
both behave as the single disk.

The theoretical data give insights on how the two disks influence each other’s response.
In particular, we observe that the deflection data of the markers in the front disk os-
cillate about those of the single disk. We conjecture that the oscillatory behaviour is
associated with the natural modes of the hydroelastic system composed of the two plates
in a horizontally unbounded fluid domain. It is more difficult to observe these oscilla-
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Figure 13. As figure 12 but for $ = 30◦.

tions in the front disk experimental data. The frequency variations are less smooth than
those of the single disk, particularly for the 10 mm disks (see panels e–h), although the
variability in the data (not considered here as the tests were not repeated) may explain
this behaviour. We obtain a reasonable agreement overall for the front disk, which is
quantitatively similar to that discussed in §5.1 for the single disk.

For f > 0.9 Hz, the theoretical data associated with the back disk have significantly
lower amplitudes than those of the front disk. This result is sensible as the presence of
the front disk alters the incident wave by scattering, so that the back disk undergoes
excitations due to waves with reduced energy. For the 10 mm disks (see panels e–h), we
observe a minimum at f ≈ 1.2 Hz for all four points considered here, suggesting that the
back disk is almost immobile. We find a consistent behaviour from the experimental data
and, more generally, we obtain a very good agreement between theoretical and exper-
imental data over the frequency range for both thicknesses. These conclusions validate
the two-disk experimental setup in providing reliable data for a symmetric arrangement.

Figure 13 shows the deflection of the four points considered in this analysis for the non-
symmetric arrangement with angle $ = 30◦. Similarly to the symmetric arrangement,
the low frequency behaviour shows no signs of interactions between the disks, and the
deflection theoretical and experimental data in the front disk oscillate about those of
the single disk. Note that the theoretical resonances for the front disk markers slightly
differ from those of the symmetric case, even though the natural modes of the system are
unchanged, as the four points analysed are aligned differently with respect to the axis
going through the disks’ centres.

At mid to high frequencies, the deflection in the back disk differs significantly from
that observed for the symmetric case, as the magnitude of the motion is higher than
in the front disk. We will investigate this phenomenon more thoroughly in Part 2. This
behaviour is consistent for both theoretical and experimental data, although it is less
clear for the experimental data associated with the 10 mm disk (see panels e–h). In this
case, the deflection data do not vary smoothly over the frequency range. It is unclear
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whether this behaviour is due to oscillations similar to those in the theoretical data or
the variability inherent to the setup. Nonetheless, the comparisons are satisfactory and
allow us to conclude on the validity of the experimental procedure described in §2.3 for
non-symmetric arrangements.

6. Summary and discussions

A unique series of wave basin experiments were conducted at the Laboratoire de
recherche en Hydrodynamique, Énergétique et Environnement Atmosphérique of École
Centrale de Nantes. The goal of the experimental campaign was to provide benchmark
data for the validation of a linear time-harmonic model of wave scattering by one and
two circular thin-elastic plates with uniform vertical properties. We designed an experi-
mental setup for compliant disks made of expanded PVC, which adheres to the common
restrictions and simplifying assumptions of linear hydroelastic models. Novel technical
solutions have been implemented to enforce the restriction of the horizontal motions
of the disks and potential flooding events. To measure the deflection of the disks, we
deployed an optical remote sensing device that tracks dynamically a group of markers
fixed on the surface of the disk with infra-red cameras. For the single-disk setup, basin
tests have been performed for three disk thicknesses, eight wave frequencies, two wave
steepnesses and two positions in the basin. For the two-disk setup, two disk thicknesses,
eight frequencies and four arrangements were tested.

After giving a brief description of the numerical model, preliminary comparative re-
sults were presented for a single disk using the unprocessed time series provided by the
motion tracking device. Reasonable agreement was found for pointwise comparisons of
the deflection and visual comparisons of the disk’s deflected surface (in phase and am-
plitude), therefore allowing us to conclude that the experimental setup provides sensible
data.

We then conducted signal processing to ensure the data are consistent with the nu-
merical model’s assumptions of linearity, time-harmonicity and unrestricted horizontal
domain. A method of time/frequency decomposition was devised to extract the linear
component from a raw time series. The method is based on the short-time Fourier trans-
form (STFT) and allows us to obtain the transient evolution of the filtered linear com-
ponent of the time series and capture the linear first-order harmonic in a steady-state
window, which removes the influence of the transient regime and the basin boundaries.

A repeatability analysis for the incident wave and pointwise deflection measurements
showed that the experimental measurements have low variability with less than 8% rela-
tive error in most cases, although the error estimates lack statistical relevance. Additional
tests would be required to conclude on the inherent variability of the experimental pro-
cedure.

We conducted pointwise model/experiments comparisons of the disk’s vertical dis-
placement using processed data. We compared the deflection data at four points of the
disk scaled by the incident wave amplitude, over the frequency range considered. We
observed a good agreement overall, even though the model consistently overestimates
the response for all thicknesses and frequencies, with a relative difference of 5–20%. The
results obtained provide a validation of the STFT method.

Pointwise comparisons were also conducted for a symmetric and a non-symmetric two-
disk setup. Although the discrepancies noted for the single disk comparisons remained
in evidence, we obtained pleasing agreement between model and experiment for the
interactions between the disks. In particular, the energy partition between the disks was
consistent between theory and experiments.
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The discrepancy between theoretical and experimental deflection data for a single disk
may originate from different sources. In this paper, we have examined the influence of
second-order harmonics on the motion and found that non-linear effects are low overall.
They are less than 5% of the fundamental amplitude in most cases, and can be explained
by non-linearities inherent to the incident wave and being transferred to the disk motion,
or second-order harmonics generated by scattering.

A number of other physical processes may be identified as possible sources of discrep-
ancy between theoretical and experimental data. These arise from processes neglected in
the numerical model that are relevant in the experiments or unexpected phenomena oc-
curring due to the disk’s experimental equipment. In particular, the influence of the edge
barrier on the plate’s vibrational behaviour and the frictional effects at the disk’s centre
due to the central rod need to be analysed further. In addition, we have not determined
the validity of the thin-elastic plate model to characterise the vibrational behaviour of
the disks considered in the experiments. An analysis of these additional processes is pro-
posed in Part 2, where we characterise these effects theoretically to examine how they
influence the motion of the disk.

Moreover, although the pointwise comparisons made in this paper are a necessary
first step in the analysis, they provide no information on how well the numerical model
replicates the flexural motion of the disk. In Part 2, we therefore introduce the natural
modes of vibration of the disk in vacuo. This will allow us to decompose the displacement
of the disk into its rigid body modes and an infinite set of flexural modes. Further
inferences regarding the model/experiment discrepancies will result from this analysis.
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