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WAVE ATTENUATION THROUGH MULTIPLE ROWS OF
SCATTERERS WITH DIFFERING PERIODICITIES∗

LUKE G. BENNETTS†

Abstract. A solution method is proposed for calculating wave scattering by a multiple-row
array in which the rows are permitted to have different periodicities. Each individual row contains
an infinite number of identical and equispaced scatterers, which can be solved through standard
techniques by invoking periodicity. Previous studies have investigated the wave attenuation produced
by multiple-row arrays but in which the periodicity in the rows is fixed. However, this leads to
difficulties around the resonant points, at which the number of scattering angles produced by the
rows changes. The method outlined in the present work involves a discretization of the directional
spectrum. This is combined with a mapping of the individual rows onto neighboring geometries that
fit into the discrete system so that, as the mesh is refined, the geometry converges to its intended
form. The method is applied to a canonical problem in which a potential function exists in the
two-dimensional plane exterior to an array composed of circular scatterers, which have a Neumann
condition imposed on their boundaries. Forcing is provided by an incident wave. Wave attenuation is
investigated in a numerical results section using ensemble averages in which the row spacings and in-
row spacings are chosen from normal distributions. Convergence of the solutions with respect to the
numerical method is established, and examples of the smoothing effects gained from incorporating
variation in the in-row spacing are given.
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1. Introduction. Multiple-row arrays provide a computationally manageable
means of calculating linear and time-harmonic wave fields traveling through a vast
number of scatterers. They have been utilized in applications such as acoustic trans-
mission in tube bundles [6], the calculation of electromagnetic properties of metallic
and dielectric cylinders [12], water wave propagation through surface-piercing cylindri-
cal obstructions [5], and the interaction of water waves with periodic topography [17].
Recently they have also been applied to determine the attenuation rates of ocean
waves passing through the marginal ice zone produced from scattering by ice floes
[3, 15, 1], and it is one of the findings of the most recent study in this sequence that
provides the motivation for the current work.

The assumption that underpins the interaction theory in a multiple-row array
is that each row is composed of an infinite number of evenly spaced and identical
scatterers. Theoretical analysis of such a configuration (known in some applications as
diffraction gratings) has provided stimulus for many of the leading figures in the area
of wave scattering, beginning with [18]. Numerous works have since been published,
and the prevailing approaches can be categorized into addition theorem methods [21],
multipole methods [8], and quasi-periodic Green’s function methods [16], each of
which relies on invoking the periodicity of the problem. In addition to its extension
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to multiple-row arrays, the single-row configuration has been successfully adapted to
account for the effects of the boundary of the array, first for a semi-infinite row [9, 14]
and later for a long, finite row [20].

There is a clear connection between a multiple-row array and a doubly periodic
array [11]. Principally, the passing-band/stopping-gap structure that occurs in the
latter is also evident in the former for a small number of approximately identical and
equispaced rows [4, 11, 3, 15]. However, this does not resemble the exponential decay
of waves that is observed through large collections of scatterers when randomness is
significant, such as in the situation of ice floes in the marginal ice zone [19]. But,
by creating an ensemble average in which the row spacings and the properties of the
scatterers obey a Gaussian distribution, this behavior can be reproduced in most cases
[15, 1].

In response to an incident plane wave, an individual row will transmit and reflect
waves at a finite number of so-called scattering angles. The number and values of
these scattering angles depend on the periodicity of the problem, which is determined
by a relationship between the in-row spacing and the incident wave. Previous studies
of multiple-row arrays have assumed that the periodicity (i.e., the in-row spacing) in
each row is the same in order to restrict the wave interactions between rows to this
set of angles. However, it was found in [1] that this assumption causes difficulties
when attempting to calculate an attenuation rate around resonant points, at which
the number of scattering angles changes. It is this phenomenon that is investigated
in the current work.

A generalization in which the scatterers themselves are composed of a finite num-
ber of subscatterers is also possible [12, 15] and is a method that has elements in
common with the technique that will be adopted here. But a common periodicity
between the rows must still be maintained, and, to the author’s knowledge, it has not
been shown that this approach alleviates problems around the resonant points.

A canonical problem is considered here, in which a potential function exists in the
two-dimensional plane exterior to an array of circular obstructions, on the perimeters
of which a Neumann condition is imposed. An incident wave propagates towards
the array and its diffracted form is sought. The rows that comprise the array are
permitted to have different periodicities, which is accommodated in the solution pro-
cedure by discretizing the directional spectrum. An approximation is then formed
by projecting the geometry in each row onto neighboring geometries, which have
scattering properties that fit into the discrete framework. This enables the solutions
for individual rows to be combined in an iterative manner to obtain the response of
the entire array. As the discretization is refined, the geometry converges to its true
state.

In the following section the mathematical setting for the above problem is defined.
The solution method for a single row that is applied in this study is briefly reviewed at
the beginning of section 3 and is followed by a description of the discrete framework for
the interactions of multiple rows. Numerical results are presented in section 4. After
a brief investigation for simple one- and two-row arrays, the results focus on ensemble
averages of the transmitted wave field for a large number of rows, in which the row
spacings and in-row spacings are selected from prescribed normal distributions. The
results first verify that convergence is achieved as the resolution of the directional
spectrum is increased, and then go on to illustrate the pronounced smoothing of the
transmitted wave field that ensues from allowing variation in the periodicity of the
rows. A modification of the solution method for a single row at the resonant points,
which is based on the work of [10], is outlined in the appendix.
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2. Preliminaries. We consider wave scattering in an infinite two-dimensional
plane defined by the Cartesian coordinates x = (x, y). Occupying this domain is an
array composed of a finite number of rows, M , say, each containing an infinite number
of circular scatterers (or obstructions). In the exterior to these obstructions, Ω, say,
it is assumed that a potential function exists, for which we seek a time-harmonic
solution �e{φ(x)e−iωt} at a given frequency ω. The complex function φ satisfies the
Helmholtz equation throughout the exterior domain, that is,

(∇2 + k2)φ = 0 (x ∈ Ω),

where k is a wavenumber, related in some manner to ω, and we assume that k ∈ R
+.

As the intention of this work is to study the interactions between rows, on the bound-
aries, Γ, say, of the obstructions, we choose to impose the simple Neumann condition

∂nφ = 0 (x ∈ Γ).

The governing equations therefore represent wave scattering by rigid obstructions:
either acoustic, or electromagnetic, or of reduced potential water waves. The cor-
responding Dirichlet problem could just as easily have been prescribed, and it has
relevance in the former two application areas. Moreover, the method that will be out-
lined can be adapted to the situation of water wave scattering by an array of floating
elastic plates, which provided the motivation for this work.

The obstructions in a particular row are identical and evenly spaced. Without
loss of generality, we suppose that the rows are aligned with the y-axis, so that they
may be counted in ascending order with respect to the x-axis. Let row m contain
obstructions of radius rm and suppose that one of these is centered at the point
xm = (xm, 0). As the rows may not overlap, the row spacing qm = xm+1 − xm must
satisfy qm ≥ rm+rm+1 (m = 1, . . . ,M−1). If the spacing between centers of adjacent
obstructions in a row, hereinafter known as the in-row spacing, is denoted sm ≥ 2rm,
then the centers of the obstructions in row m are situated at the points xm+ j(0, sm)
(j ∈ Z). It is possible to consider a realignment in which the second component of
each xm is nonzero [3], but, as it is not expected to have a significant influence on our
study, this freedom is abandoned in favor of presentational ease. An example of the
geometry just described is shown in Figure 2.1.

Forcing is provided by an incident wave, φi, which propagates from x → −∞
towards the array. For what is to follow, it will be advantageous to consider forcing
across the directional spectrum from the outset, that is, a sum of waves traveling at
all possible angles. The incident wave is therefore of the form

(2.1) φi(x) =

∫ 1

−1

ι(u)eik(vx+uy) du,

in which u is a nondimensional angle parameter, v = v(u) =
√
1− u2 ∈ R

+, and ι is
some prescribed amplitude function.

For a plane incident wave at the oblique angle τ (with respect to the x-axis, see
Figure 2.1), which is denoted

φi(x : u0) = eik(v0x+u0y),

where u0 = u0(τ) = sin τ and v0 = v0(τ) = cos τ =
√
1− u2

0, the amplitude function
is given by ι = δ(u − sin τ), where δ is the Delta function. During the scattering



MULTIPLE ROWS WITH DIFFERING PERIODICITIES 543

τ

φi

x1 x2 xM

s1 s2 sM

. . .

. . .

. . .

x

y

Fig. 2.1. Schematic of the geometry.

process the energy carried by the incident wave is redistributed across the directional
spectrum, with a proportion being reflected and a proportion being transmitted. Ex-
ponentially decaying evanescent motions are also generated and are defined by |u| > 1
and v ∈ iR+. The potential is therefore represented on either side of the array as

(2.2a) φ(x) = φi(x) +

∫ ∞

−∞
a(u)e−ik(vx−uy) du (x < x0 − r1)

and

(2.2b) φ(x) =

∫ ∞

−∞
b(u)eik(vx+uy) du (x > xM + rM ),

in which a and b are reflection and transmission amplitude functions, respectively,
that are to be calculated. In the far-field the evanescent waves have decayed, and the
potential reduces to the propagating wave components, so that

φ(x) ∼ φi(x) +

∫ 1

−1

a(u)e−ik(vx−uy) du (x → −∞)

and

φ(x) ∼
∫ 1

−1

b(u)eik(vx+uy) du (x → ∞).

3. Formulation.

3.1. A single row. A number of efficient methods have been devised for the
single-row problem (see [21, 8, 16, 2], for example), all of which rely on invoking the
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periodicity of the problem. Specifically, for a row with spacing s and a plane incident
wave of angle τ , a quasi-periodic potential is sought, such that

(3.1) φ(x, y + s : u0) = eisku0φ(x, y : u0),

so that the solution need only be calculated in one strip of length s in the y-direction in
order to obtain the solution throughout the entire domain. (Notice that we emphasize
the dependence of the solution on the angle of the incident wave through the parameter
u0.) For solution purposes, we choose this strip to be Ω0 = {x : x ∈ R, |y| < s/2, |x| ≥
r}, which contains a single (whole) obstruction, and we assume that this obstruction
is centered on the origin and has radius r.

In this work a modified version of the solution method outlined in [2] will be uti-
lized. This involves an application of a quasi-periodic Green’s function G = G(x|X :
u0) (see [13, 7]) using the source point X = (X,Y ), which corresponds to the field
point x. This function may be expressed as

(3.2) G(x|X : u0) =
1

2iks

∞∑
j=−∞

1

vj
eikvj |x−X|−ikuj(y−Y ),

where, if we define the nondimensional periodicity parameter p = 2π/ks, the quanti-
ties

uj = uj(u0) = u0 + jp, vj = vj(u0) =
√
1− u2

j (j ∈ Z)

are constant for a given incident angle and extend the definitions of u0 and v0 given
in the previous section. Using Green’s second identity, the potential can be expressed
as a sum of the incident wave and a convolution of the Green’s function and itself,
where the integral is taken around the boundary of the obstruction Γ0 = {|x| = r,
−π < θ ≤ π}, with θ being the regular azimuthal coordinate. Specifically,

(3.3) εφ(X : u0) = φi(X : u0)− r

∫ π

−π

[∂nG(x|X : u0)φ(x : u0)]|x|=r dθ (X ∈ Ω0),

where ε = 1 if x /∈ Γ0 and ε = 0.5 if x ∈ Γ0. The potential is obtained by allowing
the field point x tend to Γ0 in (3.3) and solving the resulting integral equation via a
Fourier expansion of the azimuthal coordinate.

Of particular note in the single-row problem, with plane wave forcing, is that the
scattered field can be expressed as a discrete sum, consisting of a finite number of
propagating waves and an infinite number of evanescent waves. For the incident plus
reflected field this sum takes the form

φ(x : u0) = φi(x : u0) +

∞∑
j=−∞

R̂je
ik(−vjx+ujy) (x < −r),

and the transmitted field is similarly

φ(x : u0) =

∞∑
j=−∞

T̂je
ik(vjx+ujy) (x > r),

where R̂j = R̂j(u0) and T̂j = T̂j(u0) are reflection and transmission coefficients,
respectively, that can be calculated once φ is obtained on the boundary. The real
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values of the set {vj : j ∈ Z} define the propagating scattered waves and determine
their directions, known as the scattering angles. All other values of vj are purely
imaginary and define evanescent waves. It is clear that the incident angle is always
in the set of scattering angles (through v0). Multiple scattering angles will exist, for
some range of incident angles τ , only if the nondimensional parameter p ≤ 2, which
is governed by a relationship between the in-row spacing s and the wavenumber k.
When p ≤ 2 the number of scattering angles will change as τ is varied.

At the points at which the number of scattering angles changes, either one or
two values of vj = 0, which defines waves that travel parallel to the row. As these
points are approached the reflection and transmission amplitudes possess resonant
behavior (see [8, 2]). They are therefore influential to the interaction theory that
will be outlined in the following section, but it is clear from the representation of the
Green’s function (3.2) that the solution method is unsuitable in its present form for
these situations. However, a solution can be obtained through some straightforward
modifications. The details of these modifications are contained in the appendix and
owe much to the work of [10].

The solution for a more general forcing, as in (2.1), can be obtained by superposing
the plane wave solutions in the form

φ(x) =

∫ 1

−1

ι(u)φ(x : u) du.

The corresponding reflection and transmission amplitude functions are similarly de-
duced from

a(u) =

∞∑
j=−∞

ι(u − pj)R̂j(u− pj), b(u) =

∞∑
j=−∞

ι(u − pj)T̂j(u− pj),

where the definition of the incident amplitude function has been extended to ι(u) = 0
for |u| > 1. It will be more convenient to express the relationship between the reflected
or transmitted amplitude function and the incident amplitude function in the form

a(u) =

∫ ∞

−∞
R(u : u0)ι(u0) du0, b(u) =

∫ ∞

−∞
T (u : u0)ι(u0) du0,

where the reflection and transmission functions, R and T , respectively, give the re-
sponse at u to the forcing at u0 and are defined by

R(u : u0) =

∞∑
j=−∞

δ(u− uj)R̂j(u0), T (u : u0) =

∞∑
j=−∞

δ(u− uj)T̂j(u0).

It should be noted that a solution that satisfies condition (3.1) is not necessarily
unique, as Rayleigh–Bloch waves may exist for certain frequencies. Rayleigh–Bloch
waves travel along the row with some other periodicity and decay exponentially with
distance away from it. They would therefore be disregarded in the interaction theory
implemented between the rows in this study. Furthermore, they typically exist only for
k < π/s [16], which is the regime in which only a single scattering angle is generated.

3.2. Multiple rows. If each row has the same in-row spacing sm = s (m =
1, . . . ,M), then, for a plane incident wave, the scattering angles supported between
each pair of adjacent rows, and hence those generated by the full array, will be the
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same as the scattering angles produced by an individual row. Based on this, efficient
interaction methods have been developed [5, 6, 12, 17, 15, 3]. However, it has been
shown recently [1], in the context of wave scattering in a large field of ice floes, that
the in-row spacing restriction produces unwanted effects around the resonant angles
(vj = 0) when calculating attenuation through the array, and it is this finding that
motivates the present investigation.

In the current model the in-row spacings sm (m = 1, . . . ,M) in the array are
permitted to differ, and the corresponding nondimensional periodicity parameters are
denoted pm = 2π/ksm (m = 1, . . . ,M). When two rows with different in-row spacings
are combined, the set of scattering angles generated through their interactions is
governed by the periodicity parameter produced by the in-row spacing that is equal to
the lowest common multiple of the two component in-row spacings. If no such multiple
exists, then waves will travel across the directional spectrum. To keep track of the
scattering angles for more than two rows, this process must be repeated in a systematic
way for each additional row, and the numerical expense incurred in performing this
task for every new array would be significant. Moreover, for arrays composed of many
rows with randomized properties, which are of interest when calculating attenuation,
the set of scattering angles can be expected to either become large enough to make
dealing with each individual angle computationally inefficient, or become infinite,
in which case there is no established interaction theory between rows. To avoid
these severe drawbacks, an approximation method will be proposed, which fixes the
scattering angles according to a specified tolerance, irrespective of the arrays under
consideration.

Prior to introducing this approximation, it is pertinent to consider the structure
of the wave field between adjacent rows. As an incident wave field of the form given
in (2.1) has been set, it is appropriate to allow for waves traveling back and forth
across the directional spectrum and also exponentially decaying at all possible rates.
The potential between rows m and m+ 1 is therefore expressed as

φ(x) =

∫ ∞

−∞

{
am(u)e−ik(vx−uy) + bm(u)eik(vx+uy)

}
du,

where am and bm (m = 1, . . . ,M − 1) are the leftward and rightward traveling am-
plitude functions, respectively, and include waves decaying in that direction. At the
ends of the array, the representations (2.2a)–(2.2b) hold, and, for consistency, the no-
tations a0 = a and bM = b are used for the unknown scattered amplitude functions,
and b0 = ι and aM = 0 are used for the known incident amplitude functions.

Let the reflection and transmission functions for row m be denoted Rm and Tm,
respectively. The amplitude function bm is associated with an incident wave for row
m + 1 and a scattered wave for row m, and, vice versa, am is associated with an
incident wave for row m and a scattered wave for row m + 1. It follows, noting the
symmetry of the individual rows, that we may express the amplitude functions as
(3.4a)

am−1(u) =

∫ ∞

−∞

{
e−i(v0+v)xmRm(u : u0)bm−1(u0)+ei(v0−v)xmTm(u : u0)am(u0)

}
du0

and
(3.4b)

bm(u) =

∫ ∞

−∞

{
e−i(v0−v)xmTm(u : u0)bm−1(u0) + ei(v0+v)xmRm(u : u0)am(u0)

}
du0
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for m = 1, . . . ,M , where v = v(u) and v0 = v(u0). The exponential functions that
appear in these expressions account for the phase changes incurred by having the
row located at xm rather than on the y-axis. The above identities (3.4a)–(3.4b)
(m = 1, . . . ,M) give a set of 2M equations, which will be used to obtain the 2M
unknown amplitude functions am−1 and bm (m = 1, . . . ,M).

Before proceeding, let a wide (row) spacing approximation (WSA) be invoked,
which supposes that

(3.5) φ(x) ≈
∫ 1

−1

{
am(u)e−ik(xv−yu) + bm(u)eik(xv+yu)

}
du

at the point at which wave interactions take place between rows m and m + 1. It
is therefore assumed that all significant wave interactions involve only propagating
waves. This can easily be adapted to include a proportion of the evanescent waves by
extending the interval of integration in the approximation (3.5). However, the WSA
has been shown to give high accuracy in related problems [15, 3], and for the purposes
of this study it is considered sufficient.

The method that is used to obtain the amplitude functions from (3.4a)–(3.4b) is
based on a discretization of the directional spectrum. This entails dividing the interval
u ∈ [−1, 1] into the set of evenly distributed points {u(n) = n/N : n = −N, . . . , N},
which is represented by the vector

u = [u(−N), . . . , u(N)]
T .

The discretization parameter N is an arbitrary finite integer and is chosen large
enough to achieve the desired accuracy.

For the scattering angles produced by the rows to fit into this discrete system, a
discretization of the periodicity parameter spectrum is also required. Projecting the
periodicity parameters, pm, onto this mesh defines a set of approximate periodicity
parameters to be

p̃m =
�pmN


N
(m = 1, . . . ,M),

where �·
 denotes the nearest integer. These approximate values are produced by
mapping the geometry in each row onto the neighboring geometry with radii r̃m =
pmrm/p̃m and in-row spacings s̃m = pmsm/p̃m. This is, in effect, imposing an artificial
periodicity on the array, with a corresponding periodicity parameter p̃ = 1/N . As the
discretization parameter N is increased the approximate geometries and periodicities
return to their original values. The problems posed by the approximate geometries
are solved for each of the individual rows for all points in u, noting that it is necessary
only to solve on the interval u(n) ∈ [0, p̃/2] if p̃ < 2 and u(n) ∈ [0, 1] if p̃ ≥ 2 to obtain
the required reflection and transmission coefficients due to symmetry and periodicity.

For the interactions of the rows, the discrete analogues of (3.4a)–(3.4b) are

am−1 = Em−RmEm−bm−1 + Em−TmEm+am

and

bm = Em+TmEm−bm−1 + Em+RmEm+am,

respectively, for m = 1, . . . ,M . The length 2N + 1 vectors am and bm contain the
approximate values of the amplitude functions on the mesh u, that is,

am ≈ am(u), bm ≈ bm(u)
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for m = 0, . . . ,M . The dimension 2N+1 square matrices Rm and Tm are the discrete
versions of the reflection and transmission functions Rm and Tm, respectively, and are
calculated using the approximate geometries. They are defined by

{Rm}j,i = Rm(u(j−N−1) : u(i−N−1)), {Tm}j,i = Tm(u(j−N−1) : u(i−N−1))

for i, j = 1, . . . , 2N + 1 and m = 1, . . . ,M . The phase changes are contained in the
diagonal matrices Em± = diag{e±ivxm}, where the vector v =

√
1− u2 is the discrete

version of the function v.
The solution method now proceeds in a fashion similar to that often used in the

fixed in-row spacing problem, that is, by combining the equations for each row in an
iterative manner. Therefore, let the discrete reflection and transmission matrices that

operate over rows i to j (i ≤ j) be denoted by R(±)
i,j and T (±)

i,j , respectively. They are
defined by

(3.6) ai−1 = R(−)
i,j bi−1 + T (+)

i,j aj , bj = T (−)
i,j bi−1 +R(+)

i,j aj .

Note that the phase changes have been encapsulated in these equations, and that

the symmetries R(−)
i,j = R(+)

i,j and T (−)
i,j = T (+)

i,j cannot be assumed. Using these
definitions, it is straightforward to show that the reflection and transmission matrices
for rows i to j + 1 can be obtained from those for rows i to j, and those for the
individual row j + 1 alone, through the identities

R(−)
i,j+1 = R(−)

i,j + T (+)
i,j (I −R(−)

j+1R
(+)
i,j )−1R(−)

j+1T
(−)
i,j ,

T (+)
i,j+1 = T (+)

i,j (I − R(−)
j+1R

(+)
i,j )−1T (+)

j+1 ,

R(+)
i,j+1 = R(+)

j+1 + T (−)
j+1 (I −R(+)

i,j R(−)
j+1)

−1R(+)
i,j T (+)

j+1 ,

and

T (−)
i,j+1 = T (−)

j+1 (I − R(+)
i,j R(−)

j+1)
−1T (−)

i,j ,

where I is the identity matrix of dimension 2N + 1. The reflection and transmission

matrices for the entire array, R(±)
1,M and T (±)

1,M , can thus be obtained by starting at row
1, for which

R(−)
1,1 = E1−R1E1− and so on,

and repeatedly applying the above identities. Discrete approximations of the reflected
and transmitted amplitude functions, a and b, can then be found using the respective
components of (3.6) with (i, j) = (1,M). Although the solution throughout the
domain Ω can be derived using the same equations, the calculation of these far-field
response functions will be sufficient for the numerical investigation of attenuation in
the following section.

4. Numerical results. The results that will be presented in this section are
intended to demonstrate the effects of allowing for different periodicities (i.e., in-row
spacings) between rows on wave attenuation through the array of scatterers. It is
convenient to first nondimensionalize with respect to the wavenumber k, and for the
remainder of our study k ≡ π. The periodicity parameter, p = 2/s, is then determined
only by the nondimensional in-row spacing between adjacent obstructions, s.
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From the construction of the problem and solution method given in sections 2–3
it is clear that the role of the incident angle is crucial to the structure of the wave
field traveling through the array. For this reason the results that will be presented
are of the modulus of the transmitted amplitude, T ≡ |b|, as a function of the non-
dimensional angle parameter u ∈ [−1, 1]. Furthermore, the incident amplitude is
set as ι(u) ≡ 1. Although it has no physical relevance, this choice serves the cur-
rent investigation well, as it does not influence the shape of the transmitted wave
field.

The method outlined in section 3 is intended for an ensemble average of arrays
composed of a large number of rows. This is so that unwanted resonant behaviors can
be moderated. Nonetheless, it is informative to begin by studying how the method
performs on simple one- and two-row arrays. One significant benefit of this is that,
in certain cases, the wave interactions between rows can be calculated exactly.

The top panels of Figure 4.1 show the transmitted wave fields for rows with
periodicity parameters p = 4/3 and p = 5/3, respectively. The bottom panels show
the results for two-row arrays, composed of these rows in the given order, and with row
spacings q = 2 and 4, respectively. Note that both rows generate multiple scattering
angles for certain intervals of u. The radii of the scatterers in the rows is set as
r = 0.3s. It is clear that for any combination of these rows the wave interactions will
be calculated exactly if the discretization parameter, N , is chosen to be a multiple
of 3. But the interest here is rather to observe the behavior of the approximation
when N is chosen to be other values.

Convergence of the approximation is shown using the three values N = 20, 40,
and 80. Exact values, calculated using N = 24, are also plotted. In the results for
the individual rows it is evident that the exact transmitted amplitude is attained for
a relatively small value of N , even in the intervals of multiple scattering angles.

For the two-row arrays, the situation is more complicated. Although the approx-
imations capture the exact solution at most points, they struggle for certain isolated
values. Unsurprisingly, these values correspond to the resonant points at which the
number of scattering angles changes, and the poor performance here is to be expected,
as the transmitted amplitude is highly sensitive around these points. It is the elimi-
nation of this type of sensitivity that is intended in the large arrays by allowing for
different in-row spacings.

The investigation now turns to the intended application for the method—that of
an ensemble average of arrays composed of a large number of rows. From here on,
the number of rows is set as M = 100, as this is large enough to ensure that the
appropriate attenuation properties are produced.

It is necessary at this juncture to identify three different regimes. The first is
p > 2, for which multiple scattering angles are not generated by the array for any
incident angle. In the second, 1 < p ≤ 2, and additional wave angles are produced for
only certain intervals of wave angles. The final case is p ≤ 1, so that multiple angles
exist for every incident wave angle, although the number will change as this quantity
is varied. Results are thus based on the three different mean periodicities, p = 2.5,
1.75, and 1, which represent the above regimes. It is simple to show that these values
are given by the in-row spacings s = 0.8, 8/7, and 2, respectively.

Previous investigations of wave attenuation through multiple-row arrays have
been made with fixed periodicities [3, 15, 1]. It was demonstrated that, away from the
resonant frequencies, by forming an ensemble average of a number of simulations that
use identical geometries, but with row spacings selected from a normal distribution
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Fig. 4.1. The transmitted wave field after M = 1 row (top panels) and M = 2 rows (bottom
panels). The row used for the top left panel has periodicity parameter p = 4/3, and the row used for
the top right panel has p = 5/3. The two-row arrays are composed of these rows, with row spacing
q = 2 (bottom left) and q = 4 (bottom right). Three discretizations are shown for each panel, with
N = 20 (light gray curves), N = 40 (dark gray), and N = 80 (black). Exact values are shown with
symbols.

with a sufficiently large standard deviation (the value of the mean is irrelevant), an
exponential decay of wave energy is produced. This strategy avoids Bragg resonance,
in which wave coherence due to a repeated row spacing creates transmission that is
approximately full or absent after a small number of rows.

Benefitting from this understanding, the results presented in this section are de-
rived from an ensemble average of 50 simulations, in which the distances between the
rows are selected from a normal distribution (with standard deviation approximately
q/3). New to this study is the ability to choose different in-row spacings, and here
the values of the spacings and radii are taken from normal distributions, with mean
values μ and ν, respectively. For the purpose of the current investigation the ratio
ν/μ = 0.25 is set, so that it is necessary only to refer to the value of μ from here on.
Results, which are not presented, confirm that this value does not affect the behaviors
that will be observed. The corresponding standard deviations are given by σμ and
σν, where the quantity σ is a chosen positive constant. The effects of changing the
values of μ and σ is the principal component of this numerical investigation.

An efficient way of generating the ensemble average is to calculate and store the
results for J single rows, where the geometries are selected from the desired normal
distribution (μ, σ). Random permutations of these are then used to form the multiple-
row arrays that comprise the ensemble average.
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Fig. 4.2. The transmitted wave field after M = 100 rows for different values of the number of
single-row solutions, J, used in the ensemble average. The top left panel shows the case in which
the mean in-row spacing is μ = 0.8; the top right shows μ = 8/7 and the bottom shows μ = 2. The
three values J = 10 (light gray curves), 30 (dark gray), and 50 (black) are shown for each. In all
cases the standard deviation parameter is σ = 0.4 and the discretization is such that N = 80.

In Figure 4.2 the value of J that is necessary to produce accurate representations
of the transmitted wave fields is investigated. The different panels show the three
cases indicated previously, with mean in-row spacings μ = 0.8, 8/7, and 2. Here, the
standard deviation parameter is set as σ = 0.4, and the discretization of the angle
parameter, which is investigated in Figure 4.3, is N = 80.

Results are shown for the three different values J = 10, 30, and 50. From these
results, and others which are not presented, it appears that J = 50 is sufficient to
give accurate results for the parameter regimes that will be used in this work, and
this value is used for the remainder of our investigation. It is, however, interesting to
note that the results are more sensitive for larger periodicities.

Before proceeding, it is important to verify that the numerical results obtained
by implementing the method outlined in the previous section will converge as the
discretization of the angle parameter is refined. To this end, in Figure 4.3 the conver-
gence of the transmitted wave field with respect to the discretization parameter N is
examined. As in the previous figure, the panels refer to the three different regimes, us-
ing mean in-row spacings μ = 0.8, 8/7, and 2, respectively, and the standard deviation
parameter is set as σ = 0.4.

In each case, the four different discretizations N = 10, 20, 40, and 80 are shown.
It is reasonable to deduce from these results that convergence of the transmitted wave
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Fig. 4.3. The convergence of the transmitted wave field after M = 100 rows with respect to the
discretization parameter, N . The top left panel shows the case in which the mean in-row spacing is
μ = 0.8; the top right shows μ = 8/7, and the bottom shows μ = 2. The four values N = 10 (light
gray curves), 20 (mid gray), 40 (dark gray), and 80 (black) are shown for each. In all cases the
standard deviation parameter is σ = 0.4 and the number of single-row solutions used is J = 50.

fields is achieved as N is increased and that N = 80 is sufficient to produced accurate
data. This value is therefore maintained in the numerical results that follow.

It is interesting to note that the second case, μ = 8/7, is most responsive to the
refinement of the discrete system. This can be attributed to the sensitivity of the
transmitted wave field to the angle parameter when the first additional wave angle
cuts in, which will be highlighted in Figure 4.5. Another feature of the convergence
shown in Figure 4.3 is the tendency for coarse discretizations to overestimate the
attenuation produced when multiple waves are present. This is likely to be caused
by an insufficient representation of the reflection and transmission produced by the
individual rows around the resonant points.

Having established some confidence in the solution method and numerical routine,
we now move to the primary objective, which is investigating the effects of allowing for
differing periodicities between the rows on wave attenuation. Thus, Figures 4.4–4.6
show how the transmitted wave fields are modified by an increasing level of variation
in the in-row spacings for the mean values μ = 0.8, 8/7, and 2, respectively. In each
figure the top left panel shows the case in which the periodicity is fixed (σ = 0), and
the cases σ = 0.1, 0.2, and 0.4 are shown by the top right, bottom left, and bottom
right panels, respectively.
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Fig. 4.4. The effects of allowing variation in the periodicity of the rows on the transmitted wave
field, with mean in-row spacings μ = 0.8. The top left panel shows the case in which no variation is
included (σ = 0); the top right shows σ = 0.1, the bottom left σ = 0.2, and the bottom right σ = 0.4.
In all cases the discretization is such that N = 80 and the number of single-row solutions is J = 50.

For the situation displayed in Figure 4.4, the mean periodicity produces no ad-
ditional scattered wave angles for all incident angles. It is therefore unsurprising to
see that adding some variation to the spacing has little effect on the magnitude and
shape of the transmitted wave field. This retains its concave appearance, with at-
tenuation decreasing as the incident wave angle moves away from normal incidence
(u = 0). Increasing the level of variation, so that some rows that produce multiple
scattering angles are present, does have the one notable effect of smoothing away the
sharp drop to zero in the transmitted wave energy as grazing incidence is approached
(u = ±1).

In Figure 4.5 the mean periodicity generates an additional scattered wave angle
only on the intervals |u| ≥ 0.75. It is clear from the transmitted wave field shown in
the top left panel, in which the in-row spacings of the rows in the array are identical,
why problems in calculating attenuation have been encountered around the resonant
points in previous studies. Within the interval in which no multiple wave angles oc-
cur, |u| < 0.75, the transmitted wave field resembles those of the previous figure.
However, when additional waves cut in, there is a sharp drop in the transmission
of between 30–40 orders of magnitude over an interval of approximately 0.05 in u,
and it is followed by volatile, spiky behavior as the incident wave angle is increased.
In these double wave angle intervals it would be very hard to ascertain a meaning-
ful attenuation rate, as the wave field is extremely sensitive to the incident wave
angle.
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Fig. 4.5. As in Figure 4.4 but with mean in-row spacings μ = 8/7.

Despite this highly unsettled behavior for a fixed periodicity, a dramatic smooth-
ing is created by the introduction of only a small proportion of variations in the
in-row spacings. With σ = 0.1, as the resonant angles are approached from below,
the transmitted amplitude levels out to a relatively constant value. Conversely, for
the majority of the interval in which only a single scattering angle exists, the wave
field is not significantly altered by using σ = 0.1. However, as the variation is in-
creased, the concavity of the wave field here is also smoothed away. The result is that
with σ = 0.4, the transmitted wave field is almost completely insensitive to direction,
and its average magnitude is in the range of T , which was calculated in the single
scattering angle interval for the fixed periodicity case.

Figure 4.6 shows results for the regime in which the mean periodicity produces
multiple wave angles for all incident angles. Unsurprisingly, for the fixed periodicity
case the transmitted wave field is again highly unsettled, although in this case the
ordinate axes range only over 20 orders of magnitude. It may therefore be speculated
that the sensitivity of the transmitted wave field is greatest when the first additional
wave angle cuts in.

Here it is striking that only a small proportion of variations in the in-row spacings
of the rows is required to produce a settled transmitted wave field. Increasing the
variation further appears to be inconsequential. As with the previous case (μ = 8/7),
the transmitted wave field produced when variation in the in-row spacings is permitted
is insensitive to direction. Its average magnitude is comparable to the higher end of
the range of the values of T attained when the periodicity is fixed.
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Fig. 4.6. As in Figure 4.4 but with mean in-row spacings μ = 2.

5. Summary and conclusions. The investigation conducted in this work was
motivated by the difficulties encountered in previous studies when attempting to cal-
culate the attenuation rate of waves traveling through arrays composed of multiple
rows of scatterers. In this setting, each row contains an infinite number of equispaced,
identical obstructions, so that periodicity may be invoked to calculate its scattering
response to an incident plane wave at a given angle.

An existing solution method was adapted to allow for the freedom of having an
array composed of rows with different periodicities. The method was applied to a
canonical problem, in which a potential function exists in a two-dimensional plane
exterior to the array, and satisfies a Neumann condition on the circumferences of the
circular scatterers. Forcing is provided by an incident wave that propagates from the
far-field towards the array.

For an individual row, the scattered wave field can be expressed as the sum of a
finite number of propagating waves and an infinite number of evanescent waves. The
set of scattering angles, at which the propagating waves travel, is determined by a
relationship between the forcing wave and the periodicity of the row. If a consistent
periodicity is maintained in all rows of the array, then interactions between the rows
are confined to the set of scattering angles generated by the individual rows, and hence
the single-row solutions can be composed in a straightforward manner to determine
the overall scattering of the array. However, if different periodicities are permitted,
then the interactions generate waves that travel at angles not present in the scattered
fields of the individual rows, unless they are multiples of one another. For an array
composed of a large number of randomized rows it is tedious and inefficient to track the
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set of scattering angles, and it may become infinite. Instead, a method was proposed,
which is based on a discretization of the directional spectrum followed by a projection
of the geometry of each row onto the corresponding mesh. This essentially assigns an
artificial periodicity to the entire array that gets larger as the mesh is refined and the
geometry approaches its natural state. Given a discretization, the set of scattering
angles for any number of rows is generated by this known periodicity, and the response
of the entire array can be calculated from the solutions of its constituent rows in an
iterative manner. A wide spacing approximation was also applied to simplify the
interactions between adjacent rows.

Numerical calculations of the transmitted wave fields produced by the method
were then given. To begin with, a set of simple one- and two-row arrays was used.
This allowed the discretization to be chosen so that the wave interactions would be
exact. These exact results were compared with approximations formed by different
discretizations. It was seen that the approximations gave high accuracy, even for
coarse discretizations, except close to the resonant points.

The remainder of the numerical results were calculated from ensemble averages
in which the row spacings and in-row spacings were chosen from normal distributions
with a given mean and standard deviation. Convergence of the results was established
for both the number of single-row solutions required in the ensemble average and the
discretization of the directional spectrum. Three situations were considered, in which
the mean periodicities correspond to arrays that produce multiple scattered wave
angles for (i) no incident wave angles; (ii) only certain intervals of incident wave
angles; and (iii) all incident wave angles. It was evident from the results for arrays
in which the in-row spacings were fixed why difficulties were encountered in previous
studies when seeking an attenuation rate. Allowing for in-row spacing variation in
situation (i) did little but to smooth the sharp drop in the transmitted amplitude
as grazing incidence is approached. However, for situations (ii)–(iii) the addition of
variation in the in-row spacing had a fundamental effect on the transmitted wave field,
smoothing the erratic behavior produced by the multiple scattered wave angles, and
resulting in a wave field that appeared insensitive to direction.

The ramifications of this work for studies of wave attenuation through multiple-
row arrays is clear. The findings will be most significant for applications in which
the structure of the scatterers is in some sense randomized, such as ice floes in the
marginal ice zone, which was the stimulus for this work. Before considering such an
undertaking, it would be prudent to investigate the effects of easing the wide spacing
approximation to allow for some influence of the least rapidly decaying waves on the
interactions between rows.

Appendix. Solutions for individual rows at single and double reso-
nance. Here modifications are considered that must be made at resonant points to
the integral equation solution method for an individual, outlined in section 3.1. As
in section 3.1, let the radius of the obstructions be denoted r and the in-row spac-
ing be s. Forcing is provided by a plane incident wave, with wavenumber k, which
propagates from x → −∞ at the oblique angle τ . The method that is employed at
the resonant points is adapted from that of [10], which dealt with modifications to a
solution method for an individual row based on Graf’s addition formula.



MULTIPLE ROWS WITH DIFFERING PERIODICITIES 557

Resonance indicates that there exists either one or two zeros in the set

{vj : vj =
√
1− u2

j , j ∈ Z}, uj = u0 + pj,

where u0 = sin τ and p = 2π/ks. The definition of the quasi-periodic Green’s function
G given in (3.2) clearly displays that it is singular at these points. However, the
potential φ, defined in integral form by (3.3), which is a physical quantity, can be
expected to remain bounded, and the modifications to the solution method are based
on this premise.

A.1. Single resonance. Suppose that there exists an indexm for which vm = 0,
so that |um| = 1, and all other vj �= 0. Define a modified Green’s function G̃M as

G̃M(x|X) =
1

2iks

∑
j∈Z/M

1

vj
eikvj |x−X|−ikuj(y−Y ),

and the function g(x : u) = eikuy, so that at the resonant point we may write

G(x|X) = G̃m(x|X) +
1

2iksvm
g(X : um)g(x : −um),

which isolates the singular term in G. In order for the integral appearing on the
right-hand side of (3.3) to be bounded, the expansion

(A.1) Im(vm) = c1vm + c2v
2
m + · · · ,

where

Ij =

∫ π

−π

[(
∂ng(x : −uj)

)
φ(x)

]
|x|=r

dθ,

is required to hold in a vicinity of the resonant point. We are therefore left with two
integral expressions,

εφ(X) = φi(X)− r

∫ π

−π

[(
∂nG̃m(x|X)

)
φ(x)

]
|x|=r

dθ − r

2iks
c1g(X : um) (X ∈ Ω0)

and

Im(0) = 0,

to calculate the function φ and constant c1. When solving these equations via a
Fourier expansion of the azimuthal coordinate, it is useful to note that

1

2π

∫ π

−π

g(x : ±1)e−iαθ dθ = Jα(±kr),
1

2π

∫ π

−π

(
∂ng(x : ±1)

)
e−iαθ dθ = ∂nJα(±kr)

for |x| = r, where Jα is the Bessel function of the first kind, order α.

A.2. Double resonance. In this case there exist two indices m and n for which
vm = 0 and vn = 0 simultaneously. Without loss of generality, it can be assumed
that um = −1 and un = 1. The construction of the solution method under such
circumstances is similar to that of the single resonance case, but now the following
expansion must be imposed:

In(vn) = d1vn + d2v
2
n + · · · ,
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in addition to (A.1). The three integral expressions,

εφ(X) = φi(X)−r

∫ π

−π

[
(
∂nG̃m,n(x|X)

)
φ(x)]|x|=r dθ−

r

2iks

(
c1g(X : −1)+d1g(X : 1)

)
for X ∈ Ω0,

Im(0) = 0, and In(0) = 0,

can then be solved to obtain the function φ and constants c1 and d1.
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