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An efficient solution method is presented for linear and time-harmonic water-wave
scattering by two classes of a three-dimensional hydroelastic system. In both cases,
the fluid domain is of infinite horizontal extent and finite depth. The fluid surface
is either open, except in a finite region where it is covered by a thin-elastic plate,
which represents an ice floe, or fully covered by a plate, except in a finite region
where it is open, which represents an ice polynya. The approach outlined herein
permits the boundary between the ice-covered and free-surface fluid regions to be
described by an arbitrary smooth curve. To solve the governing equations of the
full three-dimensional linear problem, they are first projected onto the horizontal
plane by using an approximation theory that combines an expansion of the vertical
motion of the fluid in a finite set of judiciously chosen modes with a variational
principle. This generates a system of two-dimensional partial differential equations
that are converted into a set of one-dimensional integro-differential equations using
matrices of Green’s functions, which are solved numerically through an application
of the Galerkin technique. A numerical results section justifies the consideration of
an arbitrarily shaped boundary by comparing the response of differently shaped floes
and polynyas over a range of relevant wavenumbers. Comparisons are made in terms
of the magnitude and direction of the far-field scattering response, and also the
maximum average curvature of the floe and the maximum wave elevation within the
polynya.
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1. Introduction
Sea ice circumscribes both poles, forming a natural barrier from ocean wave energy

impacting on the inner masses of ice, such as the ice shelves and tongues that
characterise the coasts of Antarctica and Greenland. Its fate, in the advent of global
warming, is of fundamental importance to both the global climate and engineers
working on offshore operations in the polar regions.

Ocean waves are partially reflected and partially transmitted at the interface between
the open ocean and the ice pack, with the surviving proportion of the wave then
gradually attenuating as it penetrates deeper into the ice-covered ocean. This is due
to scattering and other processes, namely inelastic bending of the ice, hydrodynamical
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turbulence and wave-induced collisions. In particular, sea ice is responsible for filtering
out high-frequency waves at an early stage; whereas long swell waves may reach
tens to hundreds of kilometres into the ice-covered ocean (Squire et al. 1995; Squire
2007).

The structure of a region of sea ice will depend on a number of factors and
predominantly its proximity to the open ocean. When a wave enters the ice-covered
ocean it induces a flexural response in the ice, and this imposes a strain that can
fracture the ice into smaller ice floes if the amplitude is sufficient (Langhorne, Squire &
Haskell 2001). For this reason, the outskirts of the ice pack are a combination of
relatively small floes and ice cakes, separated by open water. When wave activity
is present, this is a highly dynamic area and is responsible for the aforementioned
filtering of high-frequency waves.

Beyond this zone, where the strength of the travelling waves has been reduced
sufficiently that it will no longer cause breakup, the ice covering is far more continuous
but is proliferated by imperfections such as cracks, ridges and polynyas. The latter
are pools or lakes in the ice cover that are formed either through offshore winds
separating the ice pack (latent heat polynyas) or by a localised upwelling of warm
water (sensible heat polynyas) or by a combination of both.

Recently, a number of models of wave evolution through ice-covered waters
on meaningful scales have been published in both two-dimensional (Kohout &
Meylan 2008; Squire, Vaughan & Bennetts 2009; Vaughan, Bennetts & Squire 2009;
Williams & Squire 2010) and three-dimensional (Bennetts & Squire 2009; Peter &
Meylan 2009; Bennetts et al. 2010) contexts. Whilst two-dimensional models have
much merit and the simplicity they offer is convenient for analytical and numerical
analysis, it is recognised that scattering also diffracts wave energy laterally and an
accurate representation demands a fully three-dimensional examination.

At the heart of both the large-scale two-dimensional and three-dimensional models
are solutions for individual scatterers, such as ice floes and polynyas. Particularly
for the more computationally demanding three-dimensional description, at this level
it is necessary to balance the desire to accurately model the local effects, by not
overly stylising the geometry, with the numerical expense of a fully heterogeneous
description. To this end, the current work outlines a method that allows the efficient
solution of a floe or a polynya of arbitrary shape.

The last two decades have seen a surge of research in the area of hydroelastic
scattering with applications to sea ice. Therein, the regular assumptions of linear
wave theory are common, as is the identification of sea ice as a thin-elastic plate and
the imposition of time-harmonic conditions. We retain these foundations. Matters
have progressed to the point at which isolated features in two dimensions, such as
thickness variations (Williams & Squire 2004; Bennetts, Biggs & Porter 2007), cracks
(Squire & Dixon 2000; Evans & Porter 2003) and separations (or leads) (Chung &
Linton 2005) in the ice cover, can be accommodated. A physically correct draught
can also be incorporated (Bennetts et al. 2007; Williams & Porter 2009), an effect
that can have marked effects on multiple scattering results (Williams & Squire 2010).

Three-dimensional models of wave–floe interactions have also been developed,
although many of these are restricted to circular geometry. For example, Meylan &
Squire (1996) and Peter, Meylan & Chung (2004) solve for a circular floe of
constant thickness and zero draught, whilst Bennetts, Biggs & Porter (2009) allow
for axisymmetric variations and partial submergence. A coupled boundary element
and finite element method for obtaining the scattering response of a floe of constant
thickness and zero draught but of arbitrary shape is outlined in Meylan (2002) and
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Wang & Meylan (2004), which requires the numerical discretisation of the floe to
acquire its in-vacuo dry modes. Such an approach, however, would not lend itself
readily to the polynya problem, in which the ice cover is of infinite extent. From
this standpoint the floe and polynya problems are distinguished from one another,
whereas in the method that will be outlined in this work they are unified. Sturova
(2001) also tackles the problem of a floe of constant thickness and arbitrary shape but
on shallow water, by converting the governing equations into a system of boundary
integral equations and produces a numerical solution by discretising these.

In the parallel field of wave interaction with pontoon-type very large floating
structures (VLFSs), which shares the same fundamental mathematical model, solution
methods for three-dimensional elastic plates have also been generated. These are often
of a highly numerical nature and concentrate on transient effects, although it is worth
highlighting the matched asymptotic expansion method of Ohkusu & Namba (2004)
for a finite rectangular plate of zero draught on shallow water. A review of the recent
work on pontoon-type VLFSs can be found in Watanabe, Utsunomiya & Wang
(2004) and a more recent review, Squire (2008), draws together the two fields of sea
ice research and VLFS modelling.

No solutions (to the authors’ knowledge) appear to have been generated for three-
dimensional diffraction by a polynya or, more generally, by an opening in a floating
elastic plate. This is likely to be, in part, a consequence of the difficulty presented by
the infinite extent of the ice cover, as discussed above. However, the related solution
method for wave scattering by finite straight-line cracks of Porter & Evans (2007)
using source functions is of note. This is summarised, along with all of the other
works referenced above, in the extensive recent review of Squire (2007).

Waves travel through a region of ice-covered fluid in the form of flexural-gravity
waves, which satisfy a high-order condition at the interface of the two media that
describes restoring due to the elastic response of the ice in addition to gravity. This
is as opposed to pure gravity waves that exist when the fluid is unloaded, and
satisfy the regular free-surface condition. Each of these two states possesses its own
distinct wavenumber and, as a wave encounters a boundary between them, it excites
a scattering response, so that only part of the wave survives with the remainder being
radiated across the directional spectrum.

To allow for a boundary of arbitrary shape between the ice-covered and free-surface
regions of the fluid domain at a low computational cost, we utilise approximation
methods that are capable of reproducing the full-linear solution. The first of these
involves an expansion of the vertical motion in the fluid in a finite number of the
natural vertical modes of the problem, which are the vertical functions obtained when
separation solutions are sought in a region of uniform geometry. This approach is
common in solution methods for both two-dimensional (e.g. Fox & Squire 1994;
Linton & Chung 2003; Manam, Bhattarchajee & Sahoo 2006) and three-dimensional
(e.g. Peter et al. 2004) hydroelastic wave-scattering problems, in which the fluid is of
finite depth. Such an expansion was also adopted by Bennetts et al. (2007), who used
it in conjunction with a variational principle, derived from the Hamiltonian of the
system, to produce a set of vertically averaged equations – these being the descendants
of the extended mild-slope equations that are used for free-surface flows (Porter &
Staziker 1995). In the current work, the same combination of vertical modes and
variational principle is employed. However, while the motivation of Bennetts et al.
(2007) was in investigating thickness variations and a non-zero draught in a two-
dimensional setting, our principal aim in this work is to reduce geometrical complexity
in the horizontal plane to a manageable level.
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The use of vertical averaging also allows for the incorporation of a non-zero
draught in our three-dimensional model, and the numerical implementation of this
improves on that of Bennetts et al. (2007). It is well established that a potential flow
around a geometrical corner with Neumann–Neumann boundary conditions induces
a point singularity in the fluid’s velocity field of order −1/3, and incorporating this
singularity into a solution method will enhance its convergence properties. Williams &
Porter (2009) have recently shown that using Gegenbauer polynomials to embed the
same singular behaviour at a corner with a thin-elastic plate condition on one of
the surfaces (retaining a Neumann condition on the other) results in accelerated
convergence in their approximation scheme. A similar phenomenon at the end of a
submerged, thin, porous plate (where Robin conditions are applied on both sides of
the plate) has also been demonstrated by Evans & Peter (2009). Whilst Bennetts et al.
(2007) used a direct correspondence of the structure of the fluid velocity beneath the
ice edge to that beneath the rest of the ice cover, we aim to capture the velocity at
the corner in a small number of modes by incorporating the work of Williams &
Porter (2009). Moreover, the modification of the original approximation of Bennetts
et al. (2007) to allow for an expansion beneath the ice edge of a different dimension
to that of the surrounding ice-covered and free-surface fluid regions is essential to the
success of this approach.

A new system of governing equations, which exists only in the horizontal plane,
remains to be solved. This is converted into a finite set of one-dimensional integro-
differential equations, posed on the boundary that divides the ice-covered and free-
surface fluid regions, through the use of matrices of Green’s functions. In order to
obtain an efficient numerical solution of the integro-differential system and assuming
the boundary is represented by a smooth simple contour, we invoke the Galerkin
technique, with a basis of Fourier modes, to leave a linear system of equations to be
solved for a finite set of constant values.

The solution method briefly described above is outlined in §§ 2 and 3 and is prefaced
by the governing equations of the full-linear problem. In § 4, a simple representation
for the diffracted wave in the far-field is derived and its relationship to energy
conservation is defined. A selection of numerical results is presented in § 5 that briefly
demonstrates the convergence properties of the method. It then justifies the need to
model the shape of a floe or polynya in order to recreate the motions they undergo
due to wave forcing and also their scattering response, both in terms of direction
and magnitude. To finish, a summary is given and conclusions are made in § 6. An
analytical deconstruction of the method when the floe or polynya is circular is given
in the Appendix.

2. Preliminaries and vertical expansion
2.1. The full-linear equations

In this paper, we examine two classes of geometrical configuration, one where an
ice floe floats on a fluid surface, the other in which a polynya (or pool) exists in an
otherwise continuous floating ice sheet. Much of the notation used to define these
configurations is shared and we will begin in a general setting. Therefore, consider
a fluid domain and let the horizontal plane it occupies be defined by the Cartesian
coordinates x= (x, y) and suppose that this stretches to infinity in all directions. In
the absence of ice cover, the fluid domain is of a constant finite depth h and we
set the upward-pointing vertical coordinate z to have its origin coincide with the
equilibrium surface of the fluid, so that z = −h denotes the sea bed.
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Figure 1. Schematic of the geometry in the horizontal plane.

Sea ice, of constant thickness D, covers a portion of the fluid surface, which is left
unspecified for the present. In order to ensure neutral buoyancy of the ice we allow
for a draught of d = (ρi/ρw)D = 0.9D, where ρi = 922.5 kg m−3 and ρw = 1025 kg m−3

are the densities of the ice and water, respectively, so that it satisfies the Archimedean
principle.

We now partition the horizontal plane into two regions using the closed and simple
contour Υ of length 2γ , which is parameterised using the arclength s, such that
s ∈ (−γ, γ ). The area of the horizontal plane occupied by free-surface fluid will be
denoted as Ω0 and that occupied by ice-covered fluid is Ω1. For the problem of wave
scattering by a polynya the region Ω0 is the finite domain domain enclosed by Υ and
Ω1 is the exterior, whereas in the floe problem these rôles are reversed. To facilitate
the solution process we will suppose the contour Υ to be smooth. An example of the
geometrical configuration described above is shown in figures 1 and 2.

The system of fluid and ice is set in motion by a plane incident wave that induces
a flexural response in the ice. If we consider the problem to be time harmonic, then
the position of the underside of the ice may be written as

z = −d + Re(We−iωt ). (2.1)

Here ω is some prescribed angular frequency and W = W (x) is an unknown
displacement function defining the oscillations of the ice, which must be calculated
as part of the solution process.

Under the regular assumptions of linear motions, the properties of the fluid are
defined through a velocity potential Φ = Φ(x, z, t), so that the velocity field is retrieved
from (∇, ∂z)Φ where ∇ = (∂x, ∂y). Imposing time-harmonic conditions we may write
Φ(x, z, t)=Re{(g/iω)ϕ(x, z)e−iωt}, where g = 9.81 m s−2 is acceleration due to gravity.
The (reduced) velocity potential ϕ satisfies Laplace’s equation in the fluid domain

∇2ϕ + ∂2
z ϕ = 0 (x ∈ �2), (2.2)
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Figure 2. Schematic of the geometry in the vertical plane.

for −h < z < 0 when x ∈ Ω0 and −h<z < −d , when x ∈ Ω1. It is also subject to the
bed condition ∂zϕ =0 on z = −h.

When the fluid is unloaded and the restoring force is gravity alone, the velocity
potential obeys the linearised free-surface condition

∂zϕ = σϕ (z = 0), (2.3)

where σ = ω2/g is a frequency parameter. In comparison, at the linearised fluid–ice
interface, z = −d , the velocity potential is linked to the displacement function W

through the equations

(1 − σd)W + β∇4W − ϕ = 0, ∂zϕ = σW, (2.4)

for x ∈ Ω1. In the above equation, β is a scaled version of the flexural rigidity of the
ice, which is defined by β = YD3/{12(1−ν2)ρwg}. The further parameters that appear
in this definition are Poisson’s ratio for sea ice ν = 0.3 and Young’s modulus for sea
ice Y =6 × 109 Pa.

On the boundary, Υ , that separates the ice-covered and ice-free fluid regions,
the displacement function, W , must satisfy the so-called free-edge conditions, which
ensure that the ice edge experiences no bending moment and shearing stress. These
conditions may be expressed as

β∇2W − β̃
(
∂2

s + Θ ′∂n

)
W = 0 (2.5a)

and

β∂n∇2W + β̃∂s(∂s∂n − Θ ′∂s)W = 0, (2.5b)

for x ∈ Υ , where β̃ =(1 − ν)β . Here ∂s = s · ∇ and ∂n = n · ∇, with s a unit vector
tangential to Υ , and n a normal vector that points away from Ω0, with its direction
defined as (cos Θ, sinΘ) (Θ = Θ(s)) with respect to the horizontal Cartesian frame.
We note that the differential operators ∂n and ∂s do not in general commute, and
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instead the identity

∂s∂n − Θ ′∂s ≡ ∂n∂s (2.6)

holds (see Porter & Porter 2004). An alternative form of the shearing stress condition
(2.5b) is therefore possible, but only the one given above is suitable for the solution
procedure that will be described in § 3. Furthermore, for each point v at which
the boundary Υ is not smooth this quantity is continuous (R. Porter, personal
communication 2006; de Veubeke 1979), that is

[∂n∂sW ]v− = [∂n∂sW ]v+, (2.7)

although the condition will not be required for the present work, as we restrict
ourselves to smooth boundaries.

To fully define the mathematical problem, we now need only to specify how
diffracted waves radiate away from the floe or polynya. This property differs
depending on the problem under consideration and it is pertinent to first define
the respective incident waves. For the floe problem, in which the far-field is ice free,
we define the incident wave as ϕ(I ) ≡ φ(I ) =φ(I )(x, z), with

φ(I ) = eik0(x cos τ+y sin τ ) cosh{k0(z + h)}, (2.8)

where k0 is the propagating wavenumber in the free-surface fluid (to be defined
shortly) and τ defines the angle at which the incident wave travels with respect to
the x-axis (see figure 1). Similarly, when the far-field is ice covered, we denote the
incident wave as ϕ(I ) ≡ ψ (I ) = ψ (I )(x, z), such that

ψ (I ) = eiκ0(x cos τ+y sin τ ) cosh{κ0(z + h)}, (2.9)

and κ0 is the propagating wavenumber in the ice-covered fluid (also to be defined
shortly). We note that the velocity potential for the floe and polynya geometries must
satisfy the Sommerfeld radiation condition

r1/2(∂r − ik0)
(
ϕ − φ(I )

)
→ 0 or r1/2(∂r − iκ0)

(
ϕ − ψ (I )

)
→ 0, (2.10)

respectively, as the radial coordinate r → ∞, uniformly in the angular coordinate θ .

2.2. Expansion of the vertical motion

The governing equations for either the floe or polynya geometries presented in
the previous section present a formidable challenge. As such, our first recourse is
to implement an approximation method that reduces the spatial dimension of the
problems but that is capable of reproducing the full-linear solution to any desired
accuracy. Thus, we let the velocity potential, ϕ, be expressed as

ϕ(x, z) ≈ φ(x, z) =

N∑
n=0

φn(x)ζn(z) (2.11a)

in the free-surface fluid region, and

ϕ(x, z) ≈ ψ(x, z) =

N∑
n=0

ψn(x)ηn(z) (2.11b)

in the ice-covered fluid region.
In the above approximations, the z-dependence of the velocity potential has been

restricted to a finite dimensional space spanned by the natural vertical modes of the
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respective geometries, ζn(z) = cosh{kn(z+h)} or ηn(z) = cosh{κn(z+h)} (n= 0, . . . , N).
The quantities kn are the roots k of the free-surface dispersion relation

k tanh(kh) = σ, (2.12)

with k0 real and positive and kn (n= 1, . . . , N) purely imaginary and ordered such
that 0 < − ikn < − ikn+1. Similarly, the quantities κn are the roots κ of the ice-covered
(fluid) dispersion relation

(1 − σd + βκ4)κ tanh(κH ) = σ, (2.13)

where H = h − d denotes the fluid depth beneath the ice. As with the roots of the
free-surface dispersion relation, we set κ0 to be the unique real, positive root and κn

(n= 1, . . . , N) to be the roots that lie on the positive imaginary axis and order them
in increasing magnitude. The complex roots of the ice-covered dispersion relation
can be ignored when creating the approximation (2.11a, b) due to linear dependence
(see Bennetts et al. 2007, for details). Instead, the motions that they represent will
reappear in an alternative form at a later stage in the solution method. We note here
that the set of free-surface fluid modes are orthogonal but that the ice-covered fluid
modes are non-orthogonal. Uniform convergence using the latter was established for
related two-dimensional problems by Evans & Porter (2003) and Williams (2006, § 4).

By using a sufficiently large value of N , the approximations (2.11a, b) will improve
without limit, so that the full-linear solution may be obtained to any desired level of
accuracy. However, we wish to balance this accuracy with the computational expense
incurred by increasing the dimension of the approximation. It has been shown
previously, for geometries involving partial ice-covering, both in two-dimensional
(see Bennetts et al. 2007) and simplified three-dimensional (see Bennetts et al. 2009)
settings, that the above choice of vertical modes produces accurate results for relatively
low dimensions.

It remains to define the unknown functions φn and ψn (n= 0, . . . , N), which exist
in the horizontal plane only. A new set of governing equations may be obtained by
substituting the approximate forms of the velocity potential given in (2.11a, b) into
a variational principle that is equivalent to the governing equations of the full-linear
problem and was presented in Bennetts et al. (2007). Combination of this variational
principle with the above expansion of the vertical dependence of the solution has
the effect of averaging the motion defined by the vertical modes, leaving a finite set
of z-independent equations. Despite having no vertical dependence of its own, the
method also generates a corresponding approximation of the displacement function
w(x) ≈ W (x) through its association to the velocity potential, which must also be
calculated.

In the region of free-surface fluid, we are left to solve the Helmholtz equations

∇2Φ + K2
0Φ = 0, (2.14)

for the vector Φ =Φ(x) = (φ0(x), . . . , φN (x))T, where the matrix K0 = 	k0, . . . , kN
, and
the notation 	 · 
 will be used from this point on to indicate a diagonal matrix. For
the domain in which the fluid is ice-covered, the variational principle produces the
system of second-order equations

A1∇2Ψ +
(
A1K

2
1 − C1ooTK1S1

)
Ψ + σC1ow = 0, (2.15a)

which is coupled to the fourth-order equation

(1 − σd)w + ∇2ŵ − oTC1Ψ = 0. (2.15b)
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Here o = (1, . . . , 1)T is a (N + 1)-length vector and we define the size (N + 1)-square
matrices K1 = 	κ0, . . . , κN
, C1 = 	cosh(κ0H ), . . . , cosh(κNH )
, S1 = 	sinh(κ0H ), . . . ,
sinh(κNH )
 and

{A1}j+1,i+1 =

∫ −d

−h

ηjηi dz (i, j = 0, . . . , N). (2.16)

Equations (2.15a, b) are to be solved for the vector Ψ =Ψ (x) = (ψ0(x), . . . , ψN (x))T

as well as w = w(x) and ŵ = ŵ(x), where we have defined ŵ = β∇2w for convenience.
The conditions of vanishing bending moment and shearing stress are unaffected, as

the displacement function is only indirectly approximated. We may therefore write

ŵ − β̃
(
∂2

s + Θ ′∂n

)
w = 0 (x ∈ Υ ) (2.17a)

and

∂nŵ + β̃∂s(∂s∂n − Θ ′∂s)w = 0 (x ∈ Υ ). (2.17b)

The continuity condition (2.7) is also retained although this is inconsequential for the
current work as a smooth boundary Υ has been assumed.

Our choice to take the primary vertical mode as being that which supports
propagating waves means that the incident wave can be represented exactly in our
approximation. It follows that the Sommerfeld radiation conditions imposed on the
full-linear solution are also satisfied by our approximations, so that, for the floe and
polynya problems, respectively,

r1/2(∂r − ik0)
(
φ − φ(I )

)
→ 0, r1/2(∂r − iκ0)

(
ψ − ψ (I )

)
→ 0, (2.18)

as r → ∞, uniformly in θ .

2.3. Corner singularity and joining conditions

As fluid near the surface flows between the ice-covered and free-surface fluid regions
it encounters a step caused by the draught of the ice. At this point the fluid must
traverse the corner presented by the submerged portion of the ice edge and this results
in a sharp change in the fluid velocity.

For a Laplacian flow around a fixed right-angled wedge, that is one that enforces
Neumann conditions on both adjoining boundaries, it can be shown from an
asymptotic analysis in the vicinity of the corner that the fluid’s velocity has an
order −1/3 singularity at this point. Analytical insight becomes more difficult when
a thin-elastic plate condition is applied on one boundary but, by assuming the same
order of singularity as in the fixed-wedge case, Williams & Porter (2009) elicited
exponential convergence for two-dimensional problems involving partial ice cover
with non-zero draught included. Since locally the corner created by the submerged
portion of our floe or polynya will be the same as those studied by Williams & Porter
(2009), we assume that

|∇ϕ| = O
(
δ−1/3

)
as δ → 0, (2.19)

where δ is the shortest distance of the field point from the corner created by
the submerged ice edge, which is defined by the contour {x, z : x ∈ Υ, z = −d}.
The incorporation of this singularity into the approximate solution is influential in
determining its convergence rates and this motivates the technique we employ below.

Concomitantly, the vertical expansions (2.11a, b) partition the problem into the ice-
covered and free-surface fluid regions, and it is therefore necessary to link the
respective solutions at the boundary Υ , where the singular behaviour described above
is relevant. Although it is inevitable from the partitioning that the approximate
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solution will incur a discontinuity at the boundary of the water column located at
x ∈ Υ , the joining conditions that will be outlined below ensure that continuity of
fluid pressure and velocity will be recovered as the number of vertical modes is
increased. The accuracy gained by using the natural vertical modes, relevant to the
two particular surface conditions, far outweighs that lost by accepting approximations
that possess a discontinuity at the interface between the free-surface and ice-covered
fluid domains.

By introducing an auxiliary function u, which exists only beneath the ice edge
x ∈ Υ , it was shown by Porter & Porter (2004) that the variational principle will
assimilate the continuities

ϕ(x+, z) = ϕ(x−, z), ∂nϕ(x+, z) = ∂nϕ(x−, z) = u(x, z), (2.20)

for x ∈ Υ and z ∈ (−h, −d), in the set of its natural conditions. This idea was then
utilised by Bennetts et al. (2007) and in subsequent works, in conjunction with an
expansion of the auxiliary function

u(x, z) ≈
U∑

n=0

un(x)Un(z), (2.21)

where the functions Un are known, to provide joining conditions for the approximate
velocity potential. However, as noted by Bennetts et al. (2007), their choice of
expansion set, namely Un = ηn, was not expected to be optimal and was restricted so
that its dimension matched that of the surrounding domains, that is U = N .

The structure of u is dominated by the singularity (2.19) as z → −d and, although, of
course, it is not essential, accounting for this feature when forming its approximation
leads to enhanced convergence properties. To correctly embed the singularity we
choose to set the modes Un as

Un(z) = C (1/6)
2n

(
z + h

H

)
(n = 0, . . . , U ), (2.22)

where

C (α)
n (t) =

n!22α(n + α)Γ 2(α)

πΓ (n + 2α)H
(1 − t2)α−1/2C(α)

n (t), (2.23)

in which Γ is the Gamma function and C(α)
n is a Gegenbauer polynomial (see

Abramowitz & Stegun 1964, § 22). This approach follows that of Williams & Porter
(2009) who adopted an identical expansion. Weighted Gegenbauer polynomials were
originally used as trial functions to capture the singularity in the fluid velocity field
around a corner in a step on the seabed by Porter & Porter (2000).

Inserting this approximation into the variational principle results in the following
joining conditions:

VT
0 Φ = VT

1 Ψ , (2.24a)

representing an approximate form of continuity of fluid pressure, and

A0(∂nΦ) = V0u, A1(∂nΨ ) = V1u, (2.24b)

where the vector u = u(s) = (u0, . . . , uU )T, which is an approximate version of
continuity of fluid velocity. The matrix A0 that appears in these conditions, like
A1, is square, of dimension N + 1 and is defined by

{A0}j+1,i+1 =

∫ 0

−h

ζj ζi dz (i, j = 0, . . . , N). (2.25)
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This contrasts with the matrices V0 and V1 that are non-square and of size (N +
1) × (U + 1), as we allow for dimensions of the auxiliary function that are different
to that of the approximate velocity potential. Their entries are given by the inner
products

{V0}j+1,i+1 =

∫ −d

−h

ζj Ui dz = Γ (α)

(
2

ikjH

)α

(2i + α) (−1)iJ2i+α(ikjH ), (2.26)

and

{V1}j+1,i+1 =

∫ −d

−h

ηj Ui dz = Γ (α)

(
2

iκjH

)α

(2i + α) (−1)iJ2i+α(iκjH ) (2.27)

(see Abramowitz & Stegun 1964, § 10), where Jn is the Bessel function of the first kind
of order n and α = 1/6. The freedom of having the dimensions N and U independent
is important from a numerical standpoint when seeking accurate solutions and the
technique for dealing with the non-square matrices in the solution process will be
outlined in the following section.

3. Integro-differential equations
3.1. Formulation

The imposition of the joining conditions (2.24a, b) completes the new set of governing
equations and our task is now to calculate the vectors of unknown functions Φ and
Ψ that define our approximation (2.11a, b) of the velocity potential, along with
the corresponding approximation, w, of the displacement of the fluid–ice interface.
During this process we will recover the vector u, which defines the approximation
of the auxiliary function u that represents horizontal fluid velocity beneath the ice
edge. Although these functions exist in the horizontal plane only, their retrieval still
constitutes a significant obstacle due to the arbitrary shape of the contour Υ that
divides the ice-free and ice-covered fluid regions and prevents the application of
a straightforward decomposition of the governing equation, which is possible for
circular scatterers (e.g. Meylan & Squire 1996).

Before outlining the method that we will employ to obtain our approximation, it
will be of algebraic benefit to rewrite the governing equations for the ice-covered fluid
region in a single expression. Combining (2.15a, b) gives

B−∇2Ψ̃ + B+Ψ̃ = 0, (3.1)

where the (N + 3)-length vector of unknowns Ψ̃ = Ψ̃ (x) = (Ψ T(x), w(x), ŵ(x))T, and
the (N + 3)-square matrices B− and B+ are defined by

{B−}j,i = {A1}j,i , {B+}j,i =
{
A1K

2
1 − C1ooTK1S1

}
j,i

(i, j = 1, . . . , N + 1),

{B−}N+j,N+j = 1 (j = 2, 3), {B+}N+2,N+3 = −1/β,

{B+}N+3,j = −{oTC1}1,j (j = 1, . . . , N + 1), {B+}N+3,N+2 = 1 − σd,

⎫⎪⎬⎪⎭ (3.2)

with all unspecified entries being zero. It is possible to simplify expression (3.1) by
diagonalising B−1

− B+, to produce

∇2Ψ̃ + CK̃
2
C−1Ψ̃ = 0. (3.3)
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The matrices K̃ and C are defined by K̃ = 	κ0, . . . , κN, κ−1, κ−2
 and

{C}n,n = 1, {C}N+2,n = σ −1κn−1 sinh(κn−1H ), {C}N+3,n = −βκ2
n−1{C}N+2,n,

{C}n,N+i = {c(κ−i)}n, {C}N+2,N+i = 1, {C}N+3,N+i = −βκ2
−i

}
(3.4)

for n=1, . . . , N +1 and i = 2, 3. Appearing in the definition of these matrices are the
quantities κ−i (i = 1, 2), which are the roots κ of the quartic equation

(βκ4 + 1 − σd) + βoTC1A
−1
1

(
K2

1 + κ2I
)
K1S1o = 0, (3.5)

which exist in the upper-half complex plane, and also the vector c = c(κ) that is
calculated from

A1c + β
(
K2

1 + κ2I
)
K1S1o = 0, (3.6)

where I is the identity matrix of size N + 1. The motion associated to the κ−i and the
c(κ−i) (i = 1, 2) recreates the oscillatory-evanescent waves that are supported by ice-
covered fluid and corresponds to the two modes left absent from the approximation
due to linear dependence (see Bennetts et al. 2007).

We now recast the governing equations in the free-surface and ice-covered fluid
regions as sets of integral representations from which it is possible to derive a solution
method. Application of matrices of Green’s functions along with Green’s theorem in
the plane turn (2.14) and (3.3), respectively, into

εΦ(x) = Φ (I )(x) − 1

4i

∫
Υ

{(∂NH0(R))Φ(X) − H0(R)(∂NΦ(X))} dS (x ∈ Ω0), (3.7a)

and

εΨ̃ (x) =
1

4i

∫
Υ

{(∂NH1(R))Ψ̃ (X) − H1(R)(∂N Ψ̃ (X))} dS (x ∈ Ω1), (3.7b)

for the floe problem, or

εΦ(x) =
1

4i

∫
Υ

{(∂NH0(R))Φ(X) − H0(R)(∂NΦ(X))} dS (x ∈ Ω0), (3.8a)

and

εΨ̃ (x) = Ψ̃
(I )

(x) − 1

4i

∫
Υ

{(∂NH1(R))Ψ̃ (X) − H1(R)(∂N Ψ̃ (X))} dS (x ∈ Ω1), (3.8b)

for the polynya problem, where the quantity ε is defined as ε = (1/2) (x ∈ Υ ) and ε = 1
(x /∈ Υ ). In these equations, the arclength S and normal derivative ∂N on Υ are with
respect to X .

The above expressions give the unknown functions in their respective domains in
terms of convolutions involving themselves and matrices of Green’s functions and
their normal derivatives, where the integrals are over the contour Υ . The matrices of
Green’s functions, namely H0 and H1, are defined as

H0(R) = 	H0(k0R), . . . , H0(kNR)
, (3.9a)

and

H1(R) = C	H0(κ0R), . . . , H0(κNR), H0(κ−1R), H0(κ−2R)
C−1, (3.9b)

where H0 denotes the Hankel function of the first kind of order 0. Each Green’s
function represents circular waves emanating from a source point X , so that they
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depend only on the Cartesian distance of the field point x from the source point, that
is R = |x − X |. In (3.7a), the incident wave for the floe problem, φ(I ), appears through
the vector Φ (I ) = (φ(I ), 0, . . . , 0)T, which is of length N + 1, and likewise in (3.8b) the

incident wave for the polynya problem, ψ (I ), appears through Ψ̃
(I )

= C(ψ (I ), 0, . . . , 0)T,
which is of length N + 3.

Allowing the field point x to tend to the boundary Υ from the respective free-
surface and ice-covered fluid domains in (3.7a, b) and (3.8a, b) produces a set of
integral equations. As these integral equations are posed on Υ we may implement
the free-edge conditions (2.17a, b) to eliminate the unknowns ŵ and ∂nŵ in favour of
terms involving w and ∂nw, although this leaves us with a set of integro-differential
equations. These integro-differential equations may be written as

1

2
Φ = Φ (I ) − 1

4i

∫
Υ

{(∂NH0)Φ − H0(∂NΦ)} dS (x ∈ Υ ), (3.10a)

and

E1Ψ̂ =
1

4i

∫
Υ

{F1Ψ̂ − G1(∂NΨ )} dS (x ∈ Υ ), (3.10b)

for the floe problem, where Ψ̂ = (Ψ T, w, ∂nw)T. Analogous expressions are produced
for the polynya problem. The matrices E1 =E1(R) and F1 = F1(R) are size (N + 3)-
square and are differential operators defined by

{E1}j,j = 1
2
(j = 1, . . . , N + 2), {E1}N+3,N+2 =

β̃

2
∂2

s , (3.11)

{E1}N+3,N+3 =
β̃

2
Θ ′, {F1}j,i = {∂NH1}j,i (j = 1, . . . , N + 3, i = 1, . . . , N + 1),

(3.12)

{F1}j,N+2 = {∂NH1}j,N+2 + β̃
{
(∂NH1)∂

2
S − H1∂SΘ

′∂S

}
j,N+3

(j = 1, . . . , N + 3),

(3.13)

and

{F1}j,N+3 = β̃
{
Θ ′∂NH1 + H1∂

2
S

}
j,N+3

− {H1}j,N+2 (j = 1, . . . , N + 3). (3.14)

The matrix G1 = G1(R) is size (N + 3) × (N + 1) and is defined as

{G1}j,i = {H1}j,i (j = 1, . . . , N + 3, i = 1, . . . , N + 1). (3.15)

The number of unknowns can be reduced further still by applying the second of the
joining conditions (2.24b) to replace ∂nΨ and ∂nΦ by u and leaves

1

2
Φ = Φ (I ) − 1

4i

∫
Υ

{(∂NH0)Φ − H0A
−1
0 V0u} dS (x ∈ Υ ), (3.16a)

and

E1Ψ̂ =
1

4i

∫
Υ

{F1Ψ̂ − G1A
−1
1 V1u} dS (x ∈ Υ ), (3.16b)

for the floe problem and similarly for the polynya problem.

3.2. Solution via the Galerkin technique

Our objective of determining the wave-scattering properties of three-dimensional
geometries has now been reduced to finding the solutions to two classes of finite
systems of one-dimensional integro-differential equations. In order to solve these
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integro-differential systems, we will make use of the Galerkin technique. This entails
the expansion of the unknowns in a set of chosen trial functions, {χp : p ∈ �} say,
and the truncation of these expressions, and we write

[Φ]Υ ≡ p0(s) ≈ 1

2γ

M∑
m=−M

p0,mχm(s), [Ψ ]Υ ≡ p1(s) ≈ 1

2γ

M∑
m=−M

p1,mχm(s), (3.17a)

and

[Ψ̂ ]Υ ≡ q1(s) ≈ 1

2γ

M∑
m=−M

q1,mχm(s), u(s) ≈ 1

2γ

M∑
m=−M

umχm(s), (3.17b)

where M is an arbitrary positive constant that provides desired accuracy. Whereupon,
inner products of the equations are taken with each of the trial functions in turn to
convert the problem into a matrix system. As the boundary Υ has been assumed to
be smooth, the unknown functions are clearly periodic and it is appropriate to use
exponential functions for our expansions, so that

χm = χm(s) = eiµms, µm =
mπ

γ
(m = −M, . . . , M). (3.18)

The case in which piece-wise continuous boundaries are admitted produces some
interesting and non-trivial features in the solution that will be investigated in a future
work.

Implementing the Galerkin technique on our floe problem (3.16a, b) and the
analogous polynya problem, using the above approximations and choice of trial
functions, and noting that the tangential derivatives of the displacement functions
may be evaluated explicitly, leads to a linear system of equations for the unknown
constant vectors p0,m, q1,m (containing p1,m) and um (m = −M, . . . , M). This system
may be expressed as

1
2

p̂0 = f̂ 0 − F̂0 p̂0 + Ĝ0û (3.19a)

and

Ê1q̂1 = F̂1q̂1 − Ĝ1û, (3.19b)

for the floe problem, and

1
2

p̂0 = F̂0 p̂0 − Ĝ0û (3.20a)

and

Ê1q̂1 = f̂ 1 − F̂1q̂1 + Ĝ1û, (3.20b)

for the polynya problem. Here the length (2M + 1)(N + 1) vector p̂0, length
(2M + 1)(N + 3) vector q̂1 (containing the length (2M + 1)(N + 1) vector p̂1) and
length (2M + 1)(U + 1) vector û amalgamate the respective unknowns, such that

p̂i =

⎛⎜⎝
pi,−M

...

pi,M

⎞⎟⎠ (i = 0, 1), q̂1 =

⎛⎜⎝
q1,−M

...

q1,M

⎞⎟⎠ , û =

⎛⎜⎝
u−M

...

uM

⎞⎟⎠ . (3.21)

The size (2M + 1)(N + 1)-square matrix F̂0, size (2M + 1)(N + 1) × (2M + 1)(U + 1)

matrix Ĝ0, size (2M + 1)(N + 3)-square matrices Ê1 and F̂1, and size (2M + 1)(N +

3) × (2M + 1)(U + 1) matrix Ĝ1 collect together the various inner products, with their
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block entries given by

{F̂0}j,i = 〈〈∂NH0, χi, χj 〉〉, {Ĝ0}j,i =
〈〈

H0A
−1
0 V0, χi, χj

〉〉
, (3.22)

{Ê1}j,i = 〈E1χi, χj 〉, {F̂1}j,i = 〈〈F1, χi, χj 〉〉, {Ĝ1}j,i =
〈〈

G1A
−1
1 V1, χi, χj

〉〉
, (3.23)

for i, j = −M, . . . , M , using the notation

〈f, g〉 =
1

2γ

∫ γ

−γ

f (s)g(s) ds, 〈〈F, g, h〉〉 =
1

8γ i

∫ γ

−γ

∫ γ

−γ

F (s|S)g(s)h(S) dS ds,

(3.24)
and where the brackets {·} are used in these instances to indicate a relevant block
entry. Forcing is provided by inner products of the incident waves, which are contained
in the vectors

f̂ 0 =
(
〈Φ (I ), χ−M〉T

, . . . , 〈Φ (I ), χM〉T)T
, (3.25)

in (3.19a) for the floe problem, and

f̂ 1 =
(
〈Ψ̃

(I )
, χ−M〉T, . . . , 〈Ψ̃

(I )
, χM〉T

)T
, (3.26)

in (3.20b) for the polynya problem.
It is well known that two-dimensional Green’s functions contain a logarithmic

singularity at the point at which the source and field points coincide and this issue
requires special attention when constructing numerical routines to find the entries of
the above matrices. Specifically, the singularities occur in the Hankel functions, with

H0(kR) ∼ 2i

π
ln(R) (R → 0). (3.27)

It is a standard technique when considering such problems to subtract the singular
term from the integral to leave a bounded function amenable to numerical integration,
and evaluate the contribution of the logarithm analytically. In order to do this, it is
of great benefit to encapsulate the singularity in a more appealing function, by noting
that

ln(R) − ln

(
|1 − eiµ1(s−S)|

µ1

)
→ 0 (R → 0), (3.28)

so that the value of the integral containing the singularity is independent of the
shape of Υ . Due to our assumption of a smooth boundary Υ , the normal derivative
∂NH (kR) is bounded as the contour Υ is traversed and its limit may be derived in
a straightforward manner, meaning that the integrals it appears in are conducive to
direct numerical evaluation.

For the floe problem, the simple rearrangements of (3.19a, b)

p̂0 =
(

1
2
I + F̂0

)−1
( f̂ 0 + Ĝ0û), q̂1 = −(Ê1 − F̂1)

−1Ĝ1û, (3.29)

where now I is used to denote the identity matrix of dimension (2M + 1)(N + 1),

allow the vector p̂0 to be expressed in terms of the forcing term f̂ 0 and the vector
of unknowns û and the vector q̂1 to be expressed in terms of û alone. It only
remains to enforce the first of the joining conditions (2.24a), and this is achieved via
the Galerkin technique, so that VT

0 p0,m = VT
1 p1,m (m = −M, . . . , M). Collecting these

conditions together and substituting for p̂0 and p̂1 using (3.29) we have

V̂ 0

(
1
2
I + F̂0

)−1
( f̂ 0 + Ĝ0û) = −V̂1[(Ê1 − F̂1)

−1Ĝ1] p̂1
û, (3.30)
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where V̂i (i = 0, 1) is a (2M +1)(U +1) × (2M +1)(N +1) block-diagonal matrix with
entries Vi and [·] p̂1

denotes the restriction of a matrix to only those rows pertaining
to p̂1, that is leaving out every (N + 2)th and (N + 3)th row. The linear system
of (2M + 1)(U + 1) equations represented by this equation may be manipulated in
a straightforward manner to calculate the vector û, from which we may obtain all
unknowns on Υ using (3.29) and expansions (3.17) and subsequently in the entire
horizontal domain using expressions (3.7a, b), thus completing the solution process.
An identical method is applied to solve the polynya problem.

4. Far-field representation and energy conservation
A region of particular interest in wave-scattering problems is the far-field (r → ∞),

as analysis of the diffracted field there allows us to ascertain some of the key
properties of the scattering source, which in our case is either the floe or the polynya.
Therefore, let the diffracted part of solution be φ(D) = φ(D)(r, θ, z) for the floe problem,
where φ(D) = φ −φ(I ), and similarly ψ (D) = ψ (D)(r, θ, z) for the polynya problem, where
ψ (D) = ψ − ψ (I ). From the Sommerfeld radiation conditions (2.18), we may deduce
that the most slowly decaying part of the outgoing wave in each problem has the
form

φ(D) ∼
√

2

πk0r
eik0(r−π/4)A0(θ)ζ0(z), ψ (D) ∼

√
2

πκ0r
eiκ0(r−π/4)A1(θ)η0(z), (4.1)

as r → ∞, where A0 and A1 are known as diffracted far-field amplitudes (DFFAs).
In order to find accessible expressions for the DFFAs, note that when the source

point is on the contour Υ and the field point is far away from it, the following
representations for the functions H0 and H1 hold:

H0(R) ∼
√

2

πk0r
Ĩ0

∑
m∈�

J̃ 0,m(X)eimθ , H1(R) ∼
√

2

πκ0r
CĨ1C

−1
∑
m∈�

J̃ 1,m(X)eimθ , (4.2)

for |x| → ∞ and X ∈ Υ , where the functions

J̃ 0,m(X) ≡ Jm(k0�)e−im(ϑ−π/2), J̃ 1,m(X) ≡ Jm(κ0�)e−im(ϑ−π/2), (4.3)

contain � and ϑ , which are the source equivalents of r and θ , respectively. The matrix

Ĩi is size (N + 1)-square for i = 0 and (N + 3)-square for i =1, and both have a unit
entry in the top-left position and zeros elsewhere.

Substituting these representations into the integral expressions (3.7a) and (3.8b) for
the respective floe and polynya problems, the DFFAs are found to be

A0(θ) =
1

4i

∑
m∈�

∫
Υ

{J̃ 0,m(X)
(
∂Nφ0(X)

)
−

(
∂N J̃ 0,m(X)

)
φ0(X)} dS eimθ , (4.4a)

and

A1(θ) =
1

4i
cT
1

∑
m∈�

∫
Υ

{J̃ 1,m(X)
(
∂N Ψ̃ (X)

)
−

(
∂N J̃ 1,m(X)

)
Ψ̃ (X)} dS eimθ , (4.4b)

where c1 = {C−1}1,n for n= 1, . . . , N + 3. These quantities may be calculated once the
unknown functions have been obtained on the interface Υ using the theory presented
in § 3.

Whilst the functions A0 and A1 define the angular distribution of the diffracted
wave in the far-field, it is often informative rather to possess a single value to assess the
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Figure 3. The displacement of crooked egg-shaped floes and the surrounding diffracted wave
fields. The incident wave propagates along the x-axis from x → −∞ and the (non-dimensional)
free-surface wavelength λ=2π/k0 is 2 in (a) and 1 in (b).

relative magnitude of the outgoing wave. Therefore, consider the so-called scattering
cross-sections (SCCs)

S0 =
1

2π

∫ 2π

0

|A0(θ)|2 dθ, S1 =
1

2π

∫ 2π

0

|A1(θ)|2 dθ, (4.5)

which are non-dimensional quantities that are proportional to the ratio of the flux of
the diffracted wave to the flux of the incident wave across a unit length taken parallel
to one of its wave crests (see Norris & Vemula 1995, for further information).

Applying Green’s theorem to the pair (φ0, φ0) for the floe problem or (ψ0, ψ0) for
the polynya problem leads to the identities

S0 = Re{A0(τ )}, S1 = Re{A1(τ )}. (4.6)

This is a familiar result in many applications and is conventionally known as the
optical theorem. In a study closely related to our own, that of wave scattering by finite
straight-line cracks in floating ice sheets, the optical theorem has also been obtained
(Porter & Evans 2007). Although the identities given in (4.6) ensure that energy
conservation is obeyed and thus serve as a useful numerical check, it is important
to realise that they apply for all dimensions N of the vertical expansions (2.11a, b)
and hence do not imply that convergence has been achieved with respect to this
approximation.

5. Numerical results
The numerical results that are presented in this section are intended to demonstrate

the efficiency of the solution method outlined in this work and also to justify the
need to model the shape of a scattering source. Due to the wealth of parameters that
are at our disposal during the numerical investigation, for the results shown here the
thickness of the ice will be set as D = 1 m and the depth of the free-surface fluid
as h = 20 m, as these are typical values and are not quantities associated with our
primary interest, which is the shape of the floe or polynya.

Figures 3 and 4 display the wave elevation within the floe or polynya at the instant
t = 0, along with the surrounding diffracted wave field. The crooked egg shape of the
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Figure 4. As in figure 3 but for polynyas.

scattering source is defined parametrically by

x = A(ξ ) cos(ξ ), y = A(ξ ) sin(ξ ); A(ξ ) = a0(cos3(ξ ) + sin3(ξ )) (0 < ξ < π). (5.1)

This curve is overlaid on the plots with thick black lines and is chosen to be
asymmetric with respect to the incident wave that propagates along the x-axis from
x → −∞ (τ = 0). The responses of both the floe and the polynya to two incident
wavelengths are shown. In figures 3(a) and 4(a), λ= 2π/k0 = 2, and in figures 3(b)
and 4(b), λ= 1, where the horizontal scale has been non-dimensionalised with respect
to a length scale of the scatterer (≈30 m, so a0 ≈ 1.5). The above choice means that
the corresponding panels of figures 3 and 4 are consistent in terms of frequency but
differ in terms of incident wavelength, as ice cover is known to elongate waves.

The results given here are taken to be converged. To quantify this, consecutive
values of the L2 relative error of the wave elevation at the boundary Υ were made
to diminish to O(10−3) as the respective dimensions of the expansion of the velocity
potential in vertical modes (N), the expansion of the fluid velocity beneath the ice
edge in Gegenbauer polynomials (U ) and the Galerkin expansion (M) were increased.
For the floe forced by the longer incident wave this required ten vertical modes,
three Gegenbauer polynomials and fifteen trial functions in the Galerkin expansions.
When the floe is forced by the shorter wave, the only significant change in terms
of dimensional requirement is to the Galerkin expansion, which demands twice the
number of trial functions. The polynya problems of figure 4 necessitate slightly
fewer terms to be used to gain the same degree of accuracy as their floe problem
counterparts but this is interpreted as simply being due to the issue of differing
incident wavelengths.

It is interesting to note the behaviour of the wave fields in the situations depicted
in these figures. For the floe problems of figure 3, there is a significant influence of the
shape of the scatterer on the diffracted wave. In particular, there is prominent activity
in the vicinity of the floe where it is concave (approximately 0< ξ, θ < π/2) and it
can also be seen that the floe shape bends the wave, although the circular waves
(4.1) that radiate away into the far-field are not in evidence at this close range. The
majority of the wave energy that is scattered appears to travel in a direction close to
that of the incident wave but altered slightly downwards. Of course, the behaviours
described are more accentuated for the higher frequency. The wave elevation in the
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Figure 5. A schematic of the problem in the horizontal plane considered in figures 6–11 for
the case in which the floe (Ω = Ω1) or polynya (Ω = Ω0) is elliptical and stretched in the y
direction.

polynyas takes the form of peaks and troughs, and in the shorter wavelength case,
where a number of these features are excited, there is marked rotation in their shape
across the pool.

Let us now turn to the question of how differently shaped floes and polynyas
diffract incident waves. For this purpose we consider four shapes of scatterers, one
circular of radius a =50 m, the crooked egg shape of figures 3 and 4, and two ellipses,
representing circles stretched in directions parallel to the x- and y-axis, respectively.
All of the shapes are scaled so that the area of the horizontal plane they occupy is
consistent. In the case of the ellipses, the stretch factor is 3 and a schematic of the
problem posed by the latter of these is shown in figure 5.

In figures 6 and 7, the DFFAs given in (4.4a, b) are shown for each of these shapes,
where the incident wave angle is τ = 30◦ and for two wavelengths λ= 1 and 2, which
have been non-dimensionalised with respect to the radius a. It is striking that there
is much variation of this far-field response between the different shapes for both the
floe and the polynya problems and for both wavelengths. Although some consistent
traits are evident in these results, it is not often possible to prescribe a behaviour to
a particular shape, which is a product of the complicated nature of the phenomena
being modelled.

In almost all situations, as would be expected from previous studies (e.g. Sturova
2001; Bennetts 2007), a large proportion of the scattered wave energy appears in a
peak centred around the direction of the incident wave, which are generally wide and
of moderate amplitude for the circular and crooked egg-shaped scatterers and tighter
and of larger amplitude for the elliptical scatterers. The only instances in which a
peak is not located in the direction of the incident wave is for the crooked egg-shaped
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Figure 6. The modulus of the DFFA produced by floes, as a function of the azimuthal
coordinate. The shape of the floe is: (a, e) circular, (b, f ) crooked egg-shaped, (c, g) elliptical
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floe is a and all of the floes share the same area. Results are shown for two wavelengths: (a–d )
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Figure 7. As in figure 6 but for polynyas.

floe forced by the longer incident wave (figure 6b) and the circular polynya forced
by the shorter incident wave (figure 7e). This could indicate the presence of near
resonance in these cases.

Whilst the far-field amplitudes of the circular and crooked egg-shaped scatterers
are to some extent dominated by this primary scattering direction, both of the
elliptical scatterers are distinguished with a secondary peak that is of approximately
the same magnitude as the primary one. For the ellipse stretched in the x direction
this secondary peak is roughly centred around θ = −30◦ and in certain instances
merges with the primary peak (most clearly demonstrated in figures 6c and 7c).
In contrast, the ellipse stretched in the y direction has its secondary peak located
around θ = 150◦. This mimics the qualitative reflection properties predicted by the
corresponding two-dimensional analyses, when the lengths of the ellipses are supposed
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to extend infinitely in their stretched direction. As this is relative to the length scales
involved in the problem, it is unsurprising that the similarity to the two-dimensional
analogues becomes more evident for the shorter wavelengths. However, the peaks
in these three-dimensional problems do occur over a significant range of angles and
other smaller but non-trivial peaks exist in other directions.

The crooked egg-shaped scatterers also display evidence of a secondary peak around
θ = −150◦, although it is less prominent than those of the ellipses. With reference
to the shape of the crooked egg, shown in figures 3 and 4, it can be seen that it
is approximately symmetric with respect to the incident wave angle and this peak
indicates direct reflection.

In general, there is more fine structure in the scattering response of the crooked
egg-shaped floes and polynyas than their circular equivalents and even more so in
the elliptical obstructions. This is reflected in a larger number of trial functions being
required in the Galerkin expansions in these cases.

Meylan (2002) also investigated the effects of floe shape on its scattering response
as a function of angle, albeit that produced only by the motion of the floe and
averaged over its orientation. For the polygonal shapes considered in that work, in all
cases scattering is dominated by the incident angle and consequently the differences
between the floes were primarily in the magnitude of their response in this direction.
Fine structure is also evident when the scattering caused by the floes is significant but
decays in amplitude away from the incident angle.

Having ascertained that the directional properties of the radiated wave have a close
relationship to the shape of the scattering source, it is now of interest to investigate
how the overall strength of the radiated wave varies with shape. For this purpose,
figures 8 and 9 show the SCCs, S0 or S1, as continuous functions of the non-
dimensional wavenumber aκ0, for the same four shapes of scatterer used in figures 6
and 7 and the incident wave angle τ =30◦. The range of wavenumbers considered in
these figures approximately translates to free-surface wavelengths from 28 to 643 m
and ice-coupled wavelengths from 79 to 628 m.

In all cases, there is a trend for the value of the SCC to rise with increasing
wavenumber, until the wavelengths become relatively short and wave interactions
within the scatterer results in fine structure in its response. These behaviours are to
be expected and similar observations have been made in many other related studies.
However, our interest is in how the characteristics of the SCCs differ between the
various floe and polynya shapes.

It is reasonable to assert that for a large proportion of the range of wavenumbers
considered here, the magnitude of the scattering responses between the different
shapes are comparable. This is not the case though for the larger wavenumbers,
towards the right-hand ends of the panels, where the shorter waves are able to
differentiate between the shapes. Clearly, also the point at which the fine structure is
instigated depends on the shape of the scatterer, which is implicitly understood to be
related to its length with respect to the direction of the incident wave. Similarly,
we see that the fine structure limit arises earlier for the polynyas, which is a
consequence of identical values of κ0 generating shorter waves within polynyas than in
floes.

A prominent feature in the results displayed in figures 8 and 9 is the relatively
wide troughs that occur for modest values of wavenumber and deviate from the
otherwise locally monotonic increase in the SCC with wavenumber. The presence,
position and dimensions of these minima appear to be very sensitive to the shape of
the scattering source, and consequently, in their vicinity, the magnitude of scattering
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Figure 8. The SCC produced by floes, as a function of non-dimensional wavenumber. The
shape of the floe is (a) circular, (b) crooked egg-shaped, (c) elliptical with x-stretch factor 3
and (d ) elliptical with y-stretch factor 3. The radius of the circular floe is a and all of the floes
share the same area.

produced by the different shapes can vary significantly (note that the ordinate axes
are on a logarithmic scale in these figures). For instance, in the polynya problems the
minima are pronounced when the polynya is circular or the x-stretched ellipse but are
merely points of inflection for the other two shapes. However, for the floe problems
the minima are most evident for the two ellipses. The inconsistency here demonstrates
that the feature is not a product of a simple relationship between the length
of the scatterer and the salient wavelength. It has also been found, in results not
presented in this work, that the minimum is related to the flexural response of
the ice.

Thus far the influence of the shape of the scatterer has only been considered in
terms of the far-field response it produces. At this juncture attention is redirected
towards the motions occurring within the scatterer itself and for each of the two
different classes of geometry quantities that are of interest in the phenomena they
model will be studied. This requires the solutions in the finite domains to be recovered
from either of the integral expressions (3.7b) or (3.8a), depending on the problem
in hand. Calculating values efficiently near to the boundary is a non-trivial task, as
near-singular behaviour must be appropriately negotiated. However, a full account
of the numerical techniques employed would be long and arduous and would detract
from the current investigation.
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Figure 9. As in figure 8 but for polynyas.

We begin with the floe problem, for which curvature is relevant, as this may be
used to deduce the strains it undergoes, which are directly related to its propensity
to fracture (Squire et al. 1995). Therefore, a suitable quantity to study is the average
curvature Re(∇2w) = Re(ŵ/β) (see Timoshenko & Woinowsky-Krieger 1959), which
is independent of direction and is easily recovered from our solution method.

Figure 10 displays the maximum of the average curvature at the instant t =0
attained over the floe, denoted M1 = max{Re(∇2w) : x ∈ Ω1}, for the same range of
non-dimensional wavenumbers used to analyse the SCC. Results are given for the
same four floe shapes used previously and for the incident wave angle τ =30◦, which
is representative of results generated by all other angles.

Moving inwards from the left-hand end of each the individual panels, initially the
qualitative behaviours of the maximum average curvatures are similar for the four
floe shapes, with monotonic increase to a local maximum before a relatively sharp
drop to approximately zero average curvature. The position of this maximum varies
between aκ0 = 2.5 and 3 for the different shapes and its height is also affected by the
shape of the floe, with that of the crooked egg being notably smaller than the others.
For all but the x-stretched ellipse, the curves then exhibit a second well-defined peak,
which is larger in amplitude than the first, and the presence of a third can be inferred
for larger wavenumbers not shown on these figures. Again the position and height
of these second peaks are shape-dependent. In contrast, the x-stretched elliptical floe
displays a series of three less well-defined peaks, which are smaller in magnitude than
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Figure 10. The maximum average curvature experienced by a floe, as a function of
non-dimensional wavenumber. The shapes of the floes are as in figure 8.

the first. The more complicated structure of the average curvature seen here can be
attributed to the extra length of the floe (in relation to the incident wave) allowing
for more wave interactions within the floe.

In figure 11, results are presented for the maximum wave elevation at t = 0
in polynyas, denoted M0 = max{Re(φ) : x ∈ Ω0, z = 0}. The non-dimensional
wavenumber used is ak0, so that the wavelengths within the scatterer are consistent
with figure 10. Again, for the smaller wavenumbers, here roughly ak0 < 1.5, the shape
of the obstruction does not greatly affect the motion it experiences, but this simply
indicates that negligible scattering is occurring and the elevation is that of the passing
incident wave.

For larger wavenumbers, where appreciable scattering occurs, the maximum wave
elevation inside the polynyas is affected more strongly by their shape. Over the interval
of wavenumbers considered, the elliptical polynyas display monotonic increase of M0,
with the growth marginally more rapid for the x-stretched ellipse. The behaviours
of the circular and crooked egg-shaped polynyas are more complicated. Both of
these polynyas produce maximum elevations that grow relatively slowly at first
but that suddenly increase and form local maxima. The sharp transition between
these two states is due to a jump in the position within the polynyas at which
the maximum elevation is attained. Although the qualitative nature of the results
generated by these two shapes are alike, there are notable distinctions between them.
In particular, the transition occurs for a larger wavenumber in the case of the crooked
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Figure 11. As in figure 10 but for the maximum surface displacement within polynyas.

egg-shaped polynya, and in the intervening interval a local maximum develops, and
following the transition the gradient of its maximum elevation is far greater and
results in a significantly larger maximum value of M0.

6. Summary and conclusions
A method for reducing problems of water-wave scattering by three-dimensional

hydroelastic geometries to systems of one-dimensional integro-differential equations
has been presented, where the scattering source is of an arbitrary shape. Two classes
of geometry were considered, both involving a fluid domain of infinite extent that is
partially covered by a floating thin-elastic plate. In one case, the covering is finite,
representing an ice floe, and in the second the covering is infinite but containing a
finite opening, representing an ice polynya.

Approximation methods, capable of delivering the full-linear solution to any desired
tolerance, were employed. This consisted of an expansion of the velocity potential in
a finite number of vertical modes in conjunction with a variational principle, followed
by an implementation of Green’s theorem in the plane using matrices of Green’s
functions. It was then shown how the resulting integro-differential equations could be
solved efficiently through an application of the Galerkin technique. A Fourier basis
underpinned this latter approximation, which is valid for all smooth boundaries. The
extension to shapes involving piece-wise continuous boundaries is the topic of work
that is currently in preparation.
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The Archimedean draught of the floating plate was admitted in the model. It was
recognised that this creates a geometry in which fluid must traverse a sharp corner
and the expected singular behaviour of the fluid velocity that ensues at this point was
embedded in the solution method using Gegenbauer polynomials in order to enhance
convergence properties.

Numerical results initially illustrated the convergence properties of the method
and then sought justification for modelling the shape of a floe or polynya. It was
seen that the angular distribution of the most slowly decaying part of the diffracted
wave field is highly sensitive to the shape of the scattering source. In particular,
the dimensions of the floe or polynya accentuate reflection and transmission in
certain directions. Furthermore, the otherwise monotonic increase in magnitude of
the scattering response with increasing wavenumber displays a wide trough for modest
wavelengths, and this feature varies significantly with the shape of scatterer.

Quantities of interest within the scatterers themselves were also studied. For the
floe, this was the maximum average curvature and for the polynya the maximum
wave elevation. In each case, it was seen that when non-trivial scattering occurs the
shape of the scattering source is important both qualitatively and quantitatively, with
certain features being created or accentuated or vice-versa.

The method outlined in this work will form the core of a model of ocean wave
propagation through vast expanses of the ice-covered Arctic Ocean, which will be
embedded in a global climate model as part of a project that is due to start this year.
The numerical investigations that have been presented here are the first phase of
the analysis that must be conducted during this forthcoming assignment. Prominent
amongst the outstanding issues is to determine the importance of shape when a large
field of interacting scatterers is considered.

It is hoped that the project will also furnish experimental data, which will provide
a much needed means of validating mathematical models. Further such data are
anticipated from a voyage to the Antarctic, which is scheduled for 2012 and will
dedicate time to recording wave evolution in ice infested waters. Moreover, these
field data will be complemented by wave tank experiments that are to be performed
by collaborators at the Laboratoire de Mécanique des Fluides, Ecole Centrale de
Nantes later this year, in which the interaction of water waves with a small number
of synthetic floes will be studied under controlled conditions.

The authors would like to thank Vernon Squire (University of Otago) for his advice
on the geophysical aspects relating to this work. L.G.B. is supported by the Marsden
Fund Council from Government funding administered by the Royal Society of New
Zealand and by the University of Otago. T.D.W. holds a post-doctoral fellowship
from the New Zealand Foundation of Research, Science and Technology.

Appendix. Circular obstructions
The solution method outlined in § 3 has been developed for floes and polynyas

of arbitrary shape and the system of equations that has been generated can hence
appear somewhat abstract. With this in mind, it is pertinent to consider a simplified
obstruction, specifically a circular floe or polynya, to illustrate an application of the
method in an analytic setting. This has the added benefit that alternative solution
methods exist (e.g. Meylan & Squire 1996; Peter et al. 2004), which enables us to
verify our results.
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For a circular obstruction that, without loss of generality, we may suppose to be of
unit radius, the contour Υ is defined using the polar coordinates, so that the Galerkin
expansions (3.17a, b) are Fourier series with respect to the azimuthal coordinate.
These Fourier series may be mirrored in the other functions involved in the problems
by making use of Graf’s addition formulae (cf. Abramowitz & Stegun 1964, § 9).
Firstly, for the incident wave field via

eik(x cos τ+y sin τ ) =
∑
m∈�

Jm(kr)Im, (A 1)

where the scalars Im depend on the incident angle τ and are easily calculated. We
thus denote the incident waves as

Φ (I )(x) =
1

2π

∑
m∈�

J0,m(r)i0,meimθ , Ψ̃
(I )

(x) =
1

2π

∑
m∈�

J1,m(r)i1,meimθ , (A 2)

where the vectors i i,m (i =0, 1) are of length N + 1 and N + 3, respectively, and are
known, and the matrices Ji,m contain Bessel functions and will be defined shortly. For
the matrices of Green’s functions explicit expansions occur as a Fourier series with
respect to the angle between the source and field points, using

H0(kR) =
∑
m∈�

Jm(kr−)Hm(kr+)eim(θ−ϑ), r± = max / min{r, �}, (A 3)

where Hm is the Hankel function of the first kind, order m.
In order to use the above expansion of the Hankel function in the method outlined

in § 3, we must recall that there is a logarithmic singularity at the point R = 0 that
manifests as non-convergence of the series (A 3) at this point. The series representation
therefore cannot be differentiated directly, and instead its normal derivative is found
to be

∂rH0(kR) =
∑
m∈�

{
J ′

m(k)Hm(k) +
i

π

}
eim(θ−ϑ)

=
∑
m∈�

{
Jm(k)H ′

m(k) − i

π

}
eim(θ−ϑ), (A 4)

when |x|, |X | =1, and in which a prime indicates differentiation with respect to r .
Unsurprisingly, due to the circular geometry, the Fourier modes decouple, so that

when solving the equations produced by the Galerkin technique there is no need
to amalgamate the unknowns, as in (3.19a, b) or (3.20a, b). As explicit Fourier
expansions of the matrices of Green’s functions and incident wave are available, it is
possible to calculate all of the inner products needed to calculate the unknowns on Υ

analytically. After some manipulation, the system of equations given by implementing
the Galerkin technique on the integro-differential equations may be written as

H′
0,m p0,m − H0,mA−1

0 V0um =
2i

π
i0,m, EJ,mq1,m − GJ,mA−1

1 V1um = 0, (A 5a)

on r = 1, for the floe problem, and

J′
0,m p0,m − J0,mA−1

0 V0um = 0, EH,mq1,m − GH,mA−1
1 V1um =

2i

π
i1,m, (A 5b)
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on r = 1, for the polynya problem (m = −M, . . . , M). The size (N +1)-square matrices
J0,m and H0,m in these equations are

J0,m(r) = 	Jm(k0r), . . . , Jm(kNr)
, H0,m(r) = 	Hm(k0r), . . . , Hm(kNr)
 (A 6)

and the size (N + 3)-square matrices EX,m and size (N + 3) × (N + 1) matrices GX,m

(X = J, H ) are

{EX,m}j,i = {X ′
1,m}j,i , {GX,m}j,i = {X1,m}j,i (j = 1, . . . , N + 3, i = 1, . . . , N + 1),

(A 7)

{EX,m}j,N+2 = {X ′
1,m}j,N+2 − β̃m2{X ′

1,m − X1,m}j,N+3, (A 8)

{EX,m}j,N+3 = −{X1,m}j,N+2 + β̃{X ′
1,m − m2 X1,m}j,N+3, (A 9)

for j = 1, . . . , N + 3 and X = J or H , in which the matrices

J1,m(r) = C	Jm(κ0r), . . . , Jm(κNr), Jm(κ−1r), Jm(κ−2r)
C−1 (A 10)

and

H1,m(r) = C	Hm(κ0r), . . . , Hm(κNr), Hm(κ−1r), Hm(κ−2r)
C−1 (A 11)

are both size (N +3)-square. Equations (A 5a) or (A 5b) are combined with the joining
condition (2.24a), which also decouples to give

VT
0 p0,m = VT

1 p1,m (m = −M, . . . , M), (A 12)

in order to retrieve p0,m, q1,m ( p1,m) and um for each m = −M, . . . , M independently.
It is then possible to obtain the solution throughout the horizontal plane in terms of

the values calculated on Υ . Using our expressions for the incident wave and matrices
of Green’s functions in the relevant integral expression (3.7a, b) or (3.8a, b), we find
that

Φ(x) = Φ (I )(x) +
1

2π

M∑
m=−M

H0,m(r)a0,meimθ , Ψ̃ (x) =
1

2π

M∑
m=−M

J1,m(r)a1,meimθ , (A 13a)

where r > 1 and r < 1, respectively, for the floe problem, and

Ψ̃ (x) = Ψ̃
(I )

(x) +
1

2π

M∑
m=−M

H1,m(r)b1,meimθ , Φ(x) =
1

2π

M∑
m=−M

J0,m(r)b0,meimθ , (A 13b)

likewise, for the polynya problem, where the vectors ai,m and bi,m are

a0,m =
π

2i

(
J0,mA−1

0 V0um − J′
0,m p0,m

)
, a1,m =

π

2i

(
EH,m p0,m − GH,mA−1

1 V1um

)
(A 14a)

and

b0,m =
π

2i

(
H′

0,m p0,m − H0,mA−1
0 V0um

)
, b1,m =

π

2i

(
GJ,mA−1

1 V1um − EJ,m p0,m

)
, (A 14b)

in which the matrices J0,m, H0,m, EX,m and GX,m (X = J, H ) are evaluated on r = 1.
Let us now consider another solution method that is restricted to circular

obstructions. In this case, a logical starting point would be to expand all of the
unknowns as truncated Fourier series throughout the horizontal plane. Seeking
separation solutions and imposing boundedness at the origin and the far-field
conditions leads to expressions identical to (A 13a, b) but in which the vectors ai,m and
bi,m (i = 0, 1) are unknown. To obtain these quantities, the solutions in the ice-covered
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and free-surface fluid domains must be matched at their common boundary Υ . For
consistency of notation with the previous solution method, let

p0,m = p0,m(r) ≡ J0,m(r)i0,m + H0,m(r)a0,m and q̃1,m = q̃1,m(r) ≡ J1,m(r)a1,m, (A 15)

for the floe problem, and

p0,m(r) ≡ J0,m(r)b0,m and q̃1,m(r) ≡ J1,m(r)i1,m + H1,m(r)b1,m, (A 16)

for the polynya problem. It is then simple to show that the following identities hold:

H′
0,m p0,m − H0,m p′

0,m =
2i

π
i0,m, J′

1,mq̃1,m − Jp q̃ ′
1,m = 0, (A 17a)

for the former problem, and

J0,m p0,m − J0,m p′
0,m = 0, H′

1,mq̃1,m − H1,mq̃ ′
1,m =

2i

π
i1,m, (A 17b)

for the latter problem. In addition to the decoupling of the joining condition that
approximates continuity of fluid pressure, the conditions that represents continuity of
fluid velocity do likewise, so that

VT
0 p0,m = VT

1 p1,m, A0 p0,m = V0um, A1 p1,m = V1um (m = −M, . . . , M), (A 18a)

at r = 1, where the vector p1,m denotes the first N + 1 entries of q̃1,m. The free-edge
conditions (2.17a, b) also decouple, resulting in

ŵm − β̃(w′
m − m2wm) = 0, ŵ′

m − m2β̃(w′
m − wm) = 0 (m = −M, . . . , M), (A 18b)

where wm and ŵm are the (N + 2)th and (N + 3)th entries of q̃1,m, respectively. This
solution is identical to that given by Bennetts (2007, § 9), although this previous work
was restricted to equal truncations in the vertical plane N = U and used ice-covered
fluid vertical modes in place of Gegenbauer polynomials.

Taking the relevant components of identities (A 17a, b) at the boundary r = 1 along
with the conditions (A 18a, b) is visibly equivalent to the corresponding components
of the system (A 5a, b) combined with the joining condition (A 12) that is used to find
the unknowns in the previous solution method. The form of the vector amplitudes
(A 14a, b) can also be found for this new method using identities (A 17a, b). It is
therefore clear that the solution method that we have constructed in this work, which
may be applied to arbitrary boundaries, reduces to the method of simple matching
when the obstruction is circular.
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