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Under linear and time-harmonic conditions, a set of peddalieen’s functions is derived to combine the
interactions of an infinite number of identical, equispafledting bodies. The bodies themselves are
compliant, thin-elastic plates that can represent ice flard, unlike previous studies they are permit-
ted to vary axisymmetrically in thickness through both thgiper and lower surfaces, with a realistic
draught also admitted. Initially, the governing equatians simplified by means of an expansion of
the vertical dependence of the unknown velocity potentiahlsined with a variational principle, which
reduces calculations to the horizontal plane alone. Th@awhks of the resulting equations are written
as an integral representation in the free-surface domalraara Fourier expansion in the domain of the
ice-covered fluid, and these are matched at their commonrdaoyto complete the solution process. Our
method is validated using numerical results for exampléleras and the effects of varying the distance
between the floes, as well as the introduction of thicknesatians and submergence, are also demon-
strated.
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1. Introduction

Inrecent years a large number of mathematical models hared®ised for wave scattering by floating
elastic plates, driven in part by a desire to understand le@aiowaves couple to sea-ice in the marginal
ice zones (MIZs) that skirt the polar regions. MIZs occuthia Vicinity of open ocean activity, normally
on a seasonal basis when the surface layer of the sea freezeareate a covering of ice that is
relatively thin in comparison to its horizontal dimensionkhey are typically very energetic regions
affected by strong winds, local currents and wave-induead fhotions that cause the sea-ice to oscillate
to-and-fro and up-and-down, to flex rhythmically and pothtto break up. The small-scale flexural
perturbations in the fluid-ice interface are known as flelkgravity waves because dispersion is affected
by both the mechanical bending of the ice and fluid inertia.e Buthe dimensions of the sea-ice it
is common practice to consider flexural motion as the dontifeator controlling the flux of wave
energy through the MIZ and to model this material by meanbiofplate theory (see Timoshenko and
Woinowsky-Krieger, 1959).

With the behaviour of the sea-ice expressed via a thinielptite equation, its influence in the
mathematical model is that of a sixth-order condition atfthiel surface. The complexity presented by
this high-order boundary-condition often leads to unstiglassumptions about the ice-covering in order
to facilitate the solution process. Sea-ice is a naturatgiogeneous material, with irregular shapes, and
abundant imperfections such as pressure ridges and ceauk#hese features all provide extra sources
of scattering that affect the transfer of wave energy thhothg MIZ. In a quest to better represent the
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inhomogeneous properties of sea-ice, sophisticated mattieal methods have been sought: the recent
advances in the field are summarised in Squire (2007).

A common simplifying assumption is that ice-coverings ara aniform thickness and float unre-
alistically on the fluid surface, that is they have zero draug¢iowever, by extending the single-mode
approximation of Porter and Porter (2004), Bennetts et28l07) have presented a method for solv-
ing problems in which the ice is permitted to vary in thicke@sid possess an Archimedean draught.
This was achieved by defining a multi-mode approximation (MMormed by recasting the governing
equations as a variational principle and associating th@awn vertical motion with the single-mode
that supports propagating waves and a finite number of theemibdit support evanescent waves. The
MMA is then calculated from a set of equations that exist mtibrizontal plane only and will give the
full-linear solution to any degree of accuracy by taking #isient number of vertical modes. Using
the MMA, numerical solutions for ice of varying thicknesslaamnon-zero draught were made for two-
dimensional models (Bennetts, 2007; Bennetts et al., 20009a) and for solitary axisymmetric floes
(Bennetts, 2007; Bennetts et al., 2009b).

Particularly in the Arctic Basin and Southern Ocean, theoparts of the MIZ are composed of
aggregations of individual ice floes in addition to sheetgusi-continuous ice-cover. The individual
floes may form in-situ from the freezing of sea-water or theyyrhave broken away from the edge of
larger ice sheets, induced by the strains imposed by théngessean wave train. When a large number
of floes break-away in such a manner, they will serve as adragithe interior ice sheet from ocean
waves. Here, there is both a response of each individualdlaecbming waves, as well as a response
of the ice field as an entity in which the influence of the floesrupach another must be considered. It
is this scenario that motivates our work here, and, althaughstraight-line array is highly idealised,
we note that ‘bands’ of individual floes and ice cakes havelbeported to detach from MIZs to create
dissociated belts off the ice edge (see Bauer and MartinQ)L9Burthermore, our solution method is
designed specifically so that it leads naturally to the smhufor multiple lines of ice floes, which is the
subject of future work.

We wish to use an as up-to-date model of the floes as possitléarthis reason we incorporate
the work of Bennetts et al. (2009b), which accounts for wvagyhickness and an Archimedean draught.
However, other noteworthy three-dimensional models estr instance, Meylan and Squire (1996),
Peter et al. (2004) and Andrianov and Hermans (2005) all ghetions for circular floes of uniform
thickness and a zero draught. Meylan (2002) also treats riblelggm of a solitary floe of uniform
thickness and a zero draught but, through numerical evatuat thein vacuo(dry) modes of the plate,
gains solutions for floes of a more general shape. Future wiflallow us to extend the methods
presented in this work to remove the restraint of axisymynatid to admit non-circular floes.

Previous work also exists into interaction theory for nplé#ifloating bodies, with application to
ice floes. By using local coordinate systems and Graf’s amdformula (see Abramowitz and Stegun,
1964, chapter 9), Peter and Meylan (2004) extended Meyl@d2(2to a finite number of such bodies.
However, the computational cost of calculating the intéoas of a finite number of bodies that is large
enough to represent situations in the MIZ is unmanagealistead, it is effective to study periodic
problems that involve an infinite number of identical floemanodel of the MIZ. As such, Peter et al.
(2006) and Wang et al. (2007) both solve for a straight limayaof identical ice floes on a fluid domain
that stretches to infinity in all lateral directions. Therfar work uses Graf’s formula, as in Peter and
Meylan (2004), to calculate the floe-floe interactions, anglements the periodicity to simplify the
resulting system. Whereas, in the latter, a periodic Gesfemmiction provides a method of solution.

As in Peter et al. (2006) and Wang et al. (2007), we will carta solution method for a straight-
line array of equispaced, identical bodies, floating on dimite fluid surface. Our approach to the
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problem is markedly different to that of the previous authfvom the outset. However, we begin by
posing the problem in the alternative setting of a singlendleathat contains a single floe and has
appropriate periodicity conditions applied on its latexalls, which was the idea employed by Porter
and Porter (2001) for free-surface flows over periodic tosppgy. The MMA of Bennetts et al. (2007)
is then used to produce a new set of governing equations tieitie the horizontal plane only and
separates the free-surface and ice-covered fluid domaisgigde-mode approximation was generated
in an identical manner for this problem by Bennetts and ®g{#008). Thus, this paper extends that
work in the same way that Bennetts et al. (2007) extends Pamt&Porter (2004).

Our use of the MMA is consistent with Bennetts et al. (20094bich allows us to easily accommo-
date their solution for floes that vary in thickness (axisyetncally) and possess a non-zero draughtinto
the model. This requires the use of a Fourier expansion t@laaet of ordinary differential equations
(ODEs) that are solved numerically over the radius of the flde interaction theory in the free-surface
domain is based on a matrix of Green'’s functions, which, wé@nbined with Green’s theorem, pro-
vides an integral expression for the unknown functions. sehvo different representations are then
matched at their interface, the ice edge, to complete thaisolprocess.

The study of infinite arrays has many other applications ofrbgtlynamical problems and other phys-
ical situations, for example electromagnetic scatterifigere have therefore been many mathematical
advances in this area that have arisen from investigationmstivated primarily by scattering by sea-
ice. Recently, methods based on the solution for an infimiteyehave been used to produce solutions
for a semi-infinite array (see Linton et al., 2007; Peter argylsin, 2007) and approximations for long,
finite arrays (see Thompson et al., 2008).

As we have already alluded to, our chosen solution methothfisingle-line array will provide
the basis for a model of a typical situation in a polar or sudpMIZ in a forthcoming study. This
work makes use of the particularly simple structure of thpregsion for the scattered field from the
single-line array, which is given by our method, to extena tmultiple-line array. The results found
from such geometrical configurations will be used to draveriehces about the way in which waves
penetrate through packs of floes into the inner mass of comtisi sea-ice.

2. Boundary value problem

We wish to solve the problem of a straight-line array of idgaltaxisymmetric floes, which are permit-
ted to vary in thickness (through both their upper and lowefeges) and have a non-zero draught. The
Cartesian coordinatesandy will be used to denote horizontal position, witlbeing the vertical coor-
dinate. The plane= 0 is set to coincide with the equilibrium fluid surface andltleel (considered flat
and of finite depth) lies &= —h. Without loss of generality, we orientate our horizontadibnates so
that the centre of the floes occupy $raxis, with one floe having its centre at the origiqy) = (0,0).

If we now let the distance between the centre of adjacent fleed/,, for some positive constamt,
then the centre of the floes are located at the pgirt2ny, (n€ Z).

Assuming the regular properties of linear motion, the motibthe fluid may be defined through a
reducedrelocity potential(f) = tf)(x, y,z), which, for time-harmonic conditions, is such that the eéipo
field is retrieved fronile{(g/iw)(dk, dy,d;) - (Pe'“')}. Hereg ~ 9.81 ms 2 denotes the acceleration
due to gravity andv is a prescribed angular frequency. When forced by a waveriderside of each
floe experiences small-amplitude oscillations. The positf the fluid-ice interface is then defined to
be

z=—d(xy) + De{W(x,y)e '},

for (x,y) within the ice-covered regions. We uge= —d to denote the equilibrium position of the
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lower surface of the floes, witth= 0 outside of the ice-covered region. The functitris the reduced
displacemenof the floes and, for consistency, we may 8éto define the free-surface outside of the
ice-covered regions (although this will not be used in pcajt We are now required to solve for the
velocity potential @, in the fluid domain and the displacemeam, within the ice-covered fluid regions.

: Q : Z=—

FiG. 1. Plan view of the geometrical configuration and crossi@eof axisymmetric floe.

The array is forced by a plane wawg, say, of wavenumbeky, which, without loss of generality,
we assume to propagate from the far-field> —co at the oblique anglé (0 < 6 < 11/2) with respect to
thex-axis (see figure 1). This induces a periodicity conditicamely that

D(X.y+2y0,2) = "N D(x,y,2), dD(XY+2y0,2) =N D(x,y,2), (2.1)

with similar expressions holding for the displacement tioxeW. The quantityuy = ko sin® is related
to the forcing wave and is considered known during the foatioh of the scattering problem.

It is therefore possible to solve for the infinite array by sidiering a single channel of widtlygin
they-direction. For simplicity, we will take this channel to be

(xy) € Q={xy: —0<x<00, —yg<y<Yo}

andz e (—h,—d). At this point we define the single floe contained within thisenel to occupy the
region(r,0) € 2 ={r, 0: r <R, 0< 6 < 2m}, whereR denotes the radius of the floe. As the floe is
circular, we will find it convenient to use the polar coordesr, 6) in place ofx andy in 2, which are
such thak =r cos@ andy = r sinf. Under the imposed axisymmetric conditionsirwe haved = d(r),
and alsoD = D(r), whereD denotes the thickness of the ice. Furthermore, we défiie = h—d(r)
to be the fluid depth beneath the floe.

Within the fluid domain the velocity potential must satisfgdlace’s equation

2O +020 =0 ((xy)eQ,ze (—h,—d)),

wherel] = (Jx,dy) or 0 = (cog6)dr — (1/r)sin(0)ds,sin(6)a; + (1/r)cog6)ds), depending on the
context, and on the be@ = —h) the no-flow conditiord,® = 0 for (x,y) € Q holds. At the fluid-ice
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interface(z= —d) we have high-order conditions that define the dynamics ofitiess oscillations and
in doing so couple the velocity potential to the displacepfignction. These conditions are given as

(1-caW+L2W—d=0 0Od-0P+8,P=0 ((xy)eZ,z=—d),

where
2= DP(BIP) — (1~ v){r(OB)?+1(3PB)d, + (9PB)93).

(see Porter and Porter, 2004). The various quantities dieedeasv = 0.3, which is Poisson’s ratio
for sea-iceg = w?/g, the frequency parameter,= a(r) = piD/py, the scaled mass of the floe, and
B = B(r) = ED3/12(1+ v)pug, the scaled flexural rigidity of the floe. Further parametexge been
introduced in these definitions and they are: the densithefitep; = 9225 kg m3; the density of
the fluid py, = 1025 kg nT3; and Young’s modulu& = 5 x 10° Pa. At the edge of the flo&, = {x, y:

X +y> =R} ={r,0:r =R 0< 6 < 21}, two further dynamic conditions must hold, which state that
the bending moment and shearing stress must vanish. Thed#icns are expressed &W = 0 and
YW = 0 respectively, where

%5[552—%(1—v)ﬁ{ar+%ag}, (2.2a)

and
7 = 0B~ T v){(AB)(G + 13) ~ BT 3R)). (2.20)

(see Bennetts et al., 2009b).
We translate the periodicity of the solution given in eqoiasi (2.1) into transition conditions on the
sides of the channel to give

D(X,Y0,2) = N D(x,—y0,2), d,D(X,Yo,2) = €N, D(x,—Yo,2). (2.3)

The problem is fully defined by prescribing the form of theusiain in the far-fieldk — +o. As indicated
earlier, there exists a single incident wagéx, y) cosh{ko(z+ h)}, whereg' (x,y) = €(Voox+t¥) which
propagates fronx — —o towards the array of floes (see figure 1). This incident wavpaidially
reflected and partially transmitted by the array and theW¥dlg radiation conditions hold

é(x7 y7 Z) ~ {ei(V0.0X+UOY) + ZgRsei(*VO,sXJrusy) } COS}"{kO(Z—F h)} (24a)
S

asx — —oo, and

D(x,Y,2) ~ { stsei<V0:SX+”Sy)}cosf'{ko(z+ h)} (2.4b)

asx — o, In the aboveus = ug + smt/yp andvgs = ,/kg— uZ (s€ S), andSis the subset of natural
numbers for which thegg s are real. The quantitly is the propagating wavenumber that will be defined
shortly. These radiation conditions express the form ofsthlation in the far-field as a finite number
of propagating waves that travel with known angles. All rénmey motions generated in the scattering
process have evanesced by the time they reach the far-field.
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3. Multi-mode approximation

Due to the complexity presented by the variable ice-thiskrand non-zero draught, the problem out-
lined in the previous section is deemed unsolvable by dmeethods. Instead we will employ the
approximation technique that was outlined in Bennetts.¢R807). In that work a variational principle
was given that is equivalent to the full-linear governingi@iipns of a system of fluid with partial ice-
covering in three-dimensions, for which the problem coased here of a periodic line array of circular
floes is a subset. This variational principle allowed Betset al. to define a hierarchy of increasingly
accurate approximations, capable of reproducing thdifidlar solution to any chosen tolerance, which
they were able to calculate for two-dimensional geomethkiés will extend this approach to the current
problem.

Following Bennetts et al. we will retrieve the full-linearation by implementing a type of Rayleigh-
Ritz approximation that restricts the vertical motion of trelocity potential®, to a finite-dimensional
space of dimensioN+ 1 (N =0,...), spanned by a set okrtical modesConsequently, the displace-
ment functionW, is also approximated but only indirectly through its riglatto the potential.

The restriction of the vertical motion in combination wittetvariational principle given in Bennetts
et al. has the effect of vertically averaging the problengpehdence on As we will see, a new set of
governing equations is then generated that are indepeatitns$ coordinate.

Our approximation can be made arbitrarily close to the lfalar solution by selecting the dimen-
sionN + 1 to be suitably large. However, we wish to balance this wittesire to minimise the com-
putational cost needed to gain solutions and we therefale teencapsulate the key features of the
vertical motion in a relatively small number of modes. Astsu® employ the following multiple-mode
expansions of the vertical dependence of the potential

N
) oY) = 3 MOYG@  ((xy) € /),
D(X,Y,2) ~ B (3.1)

N
L[l(r, 6) = ;‘Pn(ra G)Xn(r,Z) ((va) € -@)a

where the vertical modes are defined@@éz) = cosi{kn(z+ h)} and xn(r,z) = coskn(r)(z+h)}.

It has been shown in various other problems involving pbit&covering (Bennetts, 2007; Bennetts
et al., 2007) that the above choice of expansion, in which arétipn the approximation between the
ice-covered and ice-free regions, is capable of providaogieate results for relatively small dimensions.
In the free-surface fluid region the vertical modég, are defined by the quantitidég, which are the
rootsk of the free-surface dispersion relation

ktanhkh) = o, (3.2)

such thakg is real and positive and thg (n=1,...) lie on the positive imaginary axis and are ordered
in increasing magnitude, thatisiky, < —iks+1. The quantities,, that define the vertical modes in the
region of ice-covered fluid, are the roatf the ice-covered dispersion relation

(1- oa + BkHktanhkH) = o, (3.3)

and are functions of the radial coordinate due to the axisgtrioally varying mass = a(r), flexural
rigidity 8 = B(r) and fluid deptitH = H(r). Similarly to the roots of the free-surface dispersion+ela
tion, we set the primary rookp, to be positive and real, and, (n=1,...) to be roots of increasing
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magnitude that lie on the positive imaginary axis. The caxpbots of equation (3.3), which under
some circumstances may bifurcate to become purely imagiaeg omitted from the approximation as
the vertical modes that they define are linearly dependerthase we have included (for details see
Bennetts et al., 2007). We note that the expansions (3. Hugmthe vertical modes that are found when
separation solutions are sought in the respective iceaindéce-covered regions.

When our approximate form of the potential (3.1) is appliedhe variational principle given in
Bennetts et al. (2007) a new set of governing equations a&ede From these new equations we must
calculate the unknown functiorg and ¢y, (n=0,...,N), along with the corresponding approxima-
tion of the displacement function(r, 6) ~ W(x,y). The approximation that is generated through this
combination of expansion and variational principle we véhm themulti-mode approximatioMMA).

In the free-surface region it remains to solve the Helmhglzagions

Po+KZD=0 ((xy)eQ/P), (3.4)
where the vector of solutions is
O =d(xy) = (@XY).....;nxY),

and the matriXo = diag{ko, ..., kn }. For the discZ in which the fluid is ice-covered, we now have the
system of second-order equations

%dr(rAer) +DOY + <B+ %Aag) W+oCw=0 ((r,8) € 2), (3.5a)

which is coupled to the fourth-order equation
(1-oa)w+2w—fICW =0 ((r,8) € 2). (3.5b)
In the above the vector of unknowns is
W=w(r,0) = (Yo(r,0),...,un(r,0))",

and we define théN + 1)-length vectorf = (1,...,1)" and (N + 1)-square size matri€ = C(r) =
diag{ xo(r,—h),..., xn(r,—h)}. The matrices of coefficients = A(r), B = B(r), andD = D(r) have
entries that contain the averaged values of the verticaidgnce, which are calculated from integrals
of the modeg, and their derivatives. These are

—d _ —d
{A}j+1,i+1:Lh XiXi dz,, {D}j+1,i+1:/7h X (0 xi) — xi(dr xj) } dz, (3.6a)

and

—d —d —d
(Bl [ xi(02x) dz= (@), 0 [ xi(arx) dz— [ (@xi)(ax) dz - (3.60)

fori,j =0,...,N. The explicit calculation of the quantities (3.6a—b) fallothat described by Bennetts
et al. (2007).

In (3.1) there is a partitioning of the solution between tbe-¢overed and free-surface regions,
which has the effect of creating a discontinuity in the vélopotential at the edge of the flde 6 € I').
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Jump conditions are provided by the variational princigléha discontinuity and were calculated for a
circular floe by Bennetts et al. (2009b) as

PlW=P'o, P 1{AGY¥+Qad}=P A g ((8)cl), (3.7)

whereP, = A,

—d —d —d
Ppain= [ Gxde (A= [ G4z {Qui= [ X de

fori,j=0,...,N, and we have made use of the flat bed depth away from the floe.

Although the discontinuity in the velocity potential is anphysical feature of our approximation,
the continuity of fluid pressure and velocity will be regairees the number of vertical modes is increased
and convergence to the full-linear solution is achievedthBathan having a detrimental effect on the
MMA, our choice to partition the solution in equation (3.1) fact allows for high accuracy with a
relatively low number of modes as we are able to use the ratwdes for each respective region. As
the displacement is indirectly approximated, the remaironditions applied at the ice edge are still
PwW=Sw=0(r,0ecl).

The transition boundary conditions far, given in equations (2.3), are similarly satisfied gayso
that

(X, Yo) = €%0g(x,—Yo),  dyah(X.Yo) = €Y qn(X, —Yo), (3.8)

forn=0,...,N. Similarly, the radiation conditions (2.4) are easily ne¢al in the approximation

g (Vo,oxtuoy) ESRsei(*Vo,sXJrUsy) (X — —),
s¢

®(X.y) ~ (3.9)

ZsTsei(VO,sX+USY) (X — 00),

ES

andg, ~ 0 asx — 4+ (n=1,...,N). Notice that this is a consequence of our choice of the \artic
mode(p in the free-surface region and is an important feature oafiroximation.

4. Solution Process

As it now stands, we may decompose our task into two disjaioblems. In the first, we consider
the solutiong of the free-surface problem posed by the system of Helmhmlatons (3.4) i /2,
subject to the transition conditions (3.8a—b) and radmtionditions (3.9). Scattering is caused by the
relation to the, as yet, unknown functignand its radial derivative on the bounddry For the second
problem we must obtaigy andw as the solutions to the system of differential equatiorsa2b) in the
disc 7, wherew satisfies the bending moment and shearing stress condiidhe edgé . Forcing is
provided throughp from the jump conditions (3.7) @t. Once the solutions have been obtained in their
respective regions, up to unknown factors, we will comptle¢esolution through the imposition of these
jump conditions. As the two domainf@ and 2 are fundamentally different, one being structured on
Cartesian coordinates, the other on polar coordinatestewersble obtain a solution through use of any
direct modal expansion. Instead, we will pursue a methodhichwve treat each domain independently,
and finally match the derived representations at their cominoindary ().
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4.1 The free-surface domain

Consider first the free-surface domdy 2. Let the(N + 1)-square matrix of Green’s functic@ =
G(x,y|€,n) be defined over the entire chanrelin the absence of the floe, so that it satisfies the
equations

D’ G+K*G=3(x—¢&)3(y—n)l ((xy) € Q),

wherel denotes the identity matrix of dimensidt+- 1. On the lateral boundarigs= +yp, we impose
the transition conditions

G(Xa y0|Ea r’) = e*ZiUOYOG(X’ —YO|57 n)a ayG(Xv y0|Ea r’) - e*ZiUOYanG()g —YO|57 ’7)7

which, we note, are the exact opposite of those satisfie@.bifinally, we require thaG represents
outgoing waves in the far-fields— +co.

Using an expansion in the modes'®Y (me Z), with Y =y — ), the matrix of Green’s functions
G, defined above, is easily found to be

L L iVelX ] ity
COYIEN) =z 5 Ve, (4.1)
whereX = x— &. The matrice&/m = diag{Vom, --.,Vn,m} and é/™ = diag{e"om* ... &mX} for the
scalar valuesnm = /kj — u3, which extends the earlier definition afs. The single-modeN = 0)
version ofG has been calculated and utilised previously for periodiedgbdimensional geometries with
free-surface flows (see Porter and Porter, 2001) and to farapproximation for the current problem
(see Bennetts and Squire, 2008).

In the representation (4.1) we have implicitly assumed tiatfrequency and angle of the incident
wave do not combine with the spacing of the floes to prodgge= 0 for someme Z. In such resonant
cases one or more waves travel parallel to the array itsdl§pacial attention must be made to construct
a solution method. Using Graf’s addition formula for a semiperiodic array, Linton and Thompson
(2007) recently showed that by considering certain quastis functions of the incident angle and
seeking Taylor expansions they could circumvent the sargids that usually prevent a solution under
resonant conditions. An analogous approach could be adiapi®ur method to provide solutions for
the cases in which there exists are Z such thatgm = 0, although we do not pursue the idea in our
current study and these isolated situations are disregattd remainder of this work.

We will make use of Green’s second identity in the form

/ / {U(0%) —v(02u)} dxdy — / {U(dnv) —V(3nU) )} ds, 4.2)
fol 3

whereu andv are suitably differentiable scalar functions defined oterdomainQg with the simple
boundaryd Qq. Applying equation (4.2) to the vect@? and matrixG over the domaif2 /2, in which
we have made the natural extensions of the result to arraydeduce the representations

27T
o0 =oEn-R[ {@Go)o-can)} _d. (4.32)
for (§,n) € Q/2, and
o =oEn-Rr[ {@e9-coe) d (4.30)

r=
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for (§,n) € I'. The vector equivalent ap for the incident wave is', that is
@' (x,y) = (dVooxtwy) o . 0T,

The latter of these representations provides us with thegsacy boundary data with which we may
connectp with ¢ at their common boundary, whereas the first will give us a medtalculating the
velocity potential across the free-surface region oncesiise and the value of its radial derivative have
been obtained on the ice edge.

For |€] > R the matrix of Green’s function& is smooth on the contoux,y) € I'. Due to the
resulting simplifications in the integral appearing in eegsion (4.3a), it is possible to wrigin a more
appealing fashion, which is

OEM+ T VR (€ <R,

®(&.n) = . (4.4)
S T (£ >R).
mM=—o0
The vectorRy, and T, contain the reflected and transmitted amplitudes respgtand are calculated

from

21 - . .
Rin— Ryt / [€Y{(01 ®) — (cosVin — sinBunl ) @}e ] dp, (4.5a)
4iyo 0 r=R

and
Tm=&ml1+ 7 v / [ { (0, @) +i(cosOVin+ sinbun ) @}e V| do,  (45b)

once® andg, @ are known o . Hered j =0 (i # j) and§; = 1, andl represents the first column
of the identity matrixl. Calculation of the integrals in equations (4.5a—b) willeog@lained in further
detail at a later point, as by that stage we will have a simgi@ression for the unknown functions at
the ice edge.

To find @ when|&| < Ris a more difficult task as we encounter the discontinuities éxist in the
Green'’s functions at the poimt= & that require the integrals in equation (4.3a) to be dividéd their
respective intervals. For this reason we are unable to atptre field variables from the integrals in
any logical way akin to that which produced expression (AM@ must also be wary of the singularity
presentin the Green’s functions wheqy) = (&, n), which will lead to slow convergence when the field
variables are in a vicinity of the contofir. However, ing4.3, as part of our solution procedure, we will
outline a method for writing the Green’s functions using arimer transformation, which allows for
cost-effective integration and may also be applied for tmppse of evaluating the free-surface velocity
potential in this situation.

At this point we emphasise that the method described in &uisan is applicable to an array in which
the ice floes are of a more general shape than the circularansdered here, and solutions for floes
that will conform to our approach are currently under carctton. However, we note that the circular
shape of the boundalry strongly influences the way in which we treat the integralsqoation (4.3b)
and an extension to non-circular floes would require a sleitatodification of the solution procedure.

4.2 The ice-covered domain

Next, we consider the ice-covered dom&n The method we will utilise is a modification of that of
Bennetts et al. (2009b), who considered a solitary axisyimaiee floe.
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Let the unknowns be written in terms of the Fourier exparsion

W(r,0) ~ %Mwm(r)eime, w(r,8) ~ %Mwm(r)eime, (4.6)

which, for the purposes of numerical calculation, we hauadated to a finite dimension that will
provide sufficient accuracy. Due to the assumed axisymnoétilye geometry, the governing equations
(3.5a—b) decouple into a set of ODEs in the radial coordithetemay be solved independently for each
Fourier mode. As in Bennetts et al., we choose to write theseubled equations as the (N+3)-system
of second-order equations

1 ~
~01(r/ 9 Um) + 20 Un+ B MUp=0 (m=-M,....M), 4.7)

for 0 < r < R, in which a prime denotes differentiation with respect toThese equations are to be
solved for the vector§ly, = (Wm,WE%), ,(T?)T, Wherewﬁ,}) = Wnm andwr(ﬁ) = B0%Wr,. The components of

the matrices appearing in equation (4.7) are defined by
(m) m? 7 D i
{}i= A}, AZ7}i=1{Bhi—z AL {Zhi={Dhi (,j=1...N+1),

{ Ineonr2 = { Invansa =1, {BM}in2=0ICE (i=1,...,N+1),

1
{JZ{}N+3,N+2 = —(1— V)F(arﬁ)a {%(m)}N+2,N+3 = —Bfla {%(m)}N‘f’?hj =—fTC Ij
forj=1,...,N+1, and

m2 mé
{%}mz,mz = {%}ms,ms = YR {%(m)}N+3,N+2 =(1- v)(drzﬁ)r—z +1-o0aq,

with all unspecified values equal to zero. We have used = 1,...,N + 1) to denote the vector of
lengthN + 1 with the only non-zero entry being a 1 in tiiga position. The matrices, B andD were
previously defined in equations (3.6a—c).

At the centre of the floe we require that the solution is bodnddowever, the use of the polar
coordinates introduces a singularity at this point. In otdedeal with this efficiently in our numerical
solution, we mimic Bennetts et al. by assuming the existerice disc of arbitrarily small radius
around the centre of the floe, within which the geometry ofitieeis uniform. These authors then
showed that in this region the vectddg, can be calculated explicitly as

Un(r) =€ _Zm(r)Am (m=-M,...,M), (4.8)

where _#Zm(r) = diag{In(Kor), ..., Im(KnI),Im(H1r),Im(H2r)} is @ diagonal matrix containing Bessel
functions of the first kind of orden, Jy, and wheré\, is a currently unknowiiN + 3)-length vector of
constants. The matri¥ is defined by

{Cg}n,n =1 {Cini2n= UﬁlanlsinWKn—lH)a

and
{E ansi = {010y {CInran+i =1, {CInsansi = —BUE 4,
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forn=1,...,N+1andi = 2,3. Here, the vectag = g(t) is defined by
Ag+B(K?+ u?)KS =0,

whereK = diag{Ko,...,kKn} andS= {sinh(kgH),...,sinh(kyH)}, and the valueg; (i = 1,2) are the
roots of
(Bu*+1—oa)+BFFCA (K2 + u2KS =0,

that exist in the upper-half complex plane.

By using expression (4.8) far < € we have eliminated the singularity introduced by the radial
coordinates analytically. In practice the requirementmfirmmer disc of uniform geometry does not
compromise the generality of the geometry, as we simplycseler desired ice thickness and let the
value ofe tend to zero until we achieve convergence in our results.

We are now required to join our analytic expressions for tleton within the disc of uniform
geometry to the annulus of varying geometry. Bennetts ¢2@09b) showed these conditions to be

(Wl &5 = [Adr ¥+ Q¥ =0, (4.9a)

d
" W] = (W] = [l ] = [l )] =0 caom

& E_

form=—M,...,M, where

1 v
Bro(Wi W) = wid) — (1-v)B (;ar ~ r_2) wiy, (4.10a)

and

ol k) = 00f? — 1-v) {(@p) (F0.- rﬁz) ol + ™ g, (o)} o
Conditions (4.9a) represent approximate versions of thémaity of fluid pressure and velocity, whereas
equation (4.9b) ensures the continuity of position andaiglef displacement, and the continuity of its
bending moment and shearing stress.

To derive boundary data at= ¢ for the solutiondJ, that satisfy equations (4.7) in the interval of
varying geometrye < r < Rwe insert expression (4.8) into the continuity conditioh®é&—b). These
are of most use to us if we manipulate them into the form

Im(AC) Lt 0 Um + { Im(@€)12M — (5, /m)%} Un=0 (r=c¢), (4.11)
form= —M,...,M, where the matrix2™ is defined by
{2M}i=Qji (i =1,...,N+1), {2M}nyin=1,(=23),
and{ 2™}y 3ni2 = (1—V)(dB)(m/r)?, and is evaluated at= ¢, . The advantage of reformulating

our boundary data to be (4.11) is that the unknown amplitédgare not present. Once the solutions
Um have been found these amplitudes are recovered #ofmmA = Un, (r = €).
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Boundary data must also be obtainedfer R. To do this we use the joining conditions (3.7) and
the vanishing of the bending moment and shearing stress. altsimple matter to show that the two
dynamical conditions decouple to give

T WE) = Br(wit W) =0 (m=—M,...,M)

atr = R, where ., and %, are defined in equations (4.10a—b). In order to decoupledimng
conditions we need to make an equivalent Fourier expangitheelocity potentialpb at the ice edge,
and we write

M , M .
®(Rcos6,Rsin6) ~ 5 ®né™, Jd(Rcosh,Rsing)~ 5 ape™.

m=—M m=-M
The modes now separate straightforwardly, and we have thditcans
PlWn=Pldn, P 1{AW+QWH} =P 'A @, (r=R), (4.12)

form=—-M,...,M.

At this juncture it is only possible to solve for the solutsowithin the ice-covered domain up to
a set of unknown constants involving the velocity potentiathe free-surface domain and its radial
derivative, both evaluated at the ice edge, and we choosat® w

Un(r) = [Umo(1),...,Unn(N)]@L(R) (e <r <R), (4.13)

form=—M,...,M. The vectordJmn = [W{n,wﬁ%,wﬁ%ﬂ (m=—-M,...,M,n=0,...,N) are numeri-

cally calculated solutions of the appropriate differelrgisstem (4.7) with boundary conditions (4.11) at
r=¢and

P AW+ QWinn} = PYA Inia,  Fin(With, Whth) = Zm(With,Widh) =0 (r =R).

The values of®/,(R) will be recovered in the following section when we bring ttge the solutions in
the ice-covered and ice-free fluid domains. Finally we nogesymmetriet)n=U_n (m=1,...,M),
which means that only the vectdds, for m=0,...,M need to be found.

4.3 Matching at the ice edge

We now have at our disposal the expression (4.13) for eachidfaunode of the unknown functions
within the ice-covered domaitdy, (m= —M,...,M), containing the as yet unknown quantiti®4(R)
that are the amplitudes of the equivalent Fourier mode ofrdldéal derivative of® at the ice edge.
Similarly, in the free-surface region we have the integoatfs (4.3a—b) for the vectap that depend on
its value and the value of its radial derivative at the icesedg order to complete the solution throughout
the channel it is therefore necessary to calculaeandd; @ arr = R, and this is achieved by seeking
their Fourier expansions and by matching the representatibthe velocity potentials at their common
boundaryr”.

In the previous section we found that the axisymmetric geonté the ice floes caused the Fourier
modes of the unknown functions to decouple in that regiorwéi@r, the array breaks the axisymmetry
of the geometry and, during the matching process, thesadfauodes will become coupled. There-
fore, it is pertinent to begin by amalgamating our repressions for the Fourier modes of the velocity
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potential’ given in equation (4.13), into the single expression

W,M(I’)
: = M(r)fy,
Ha(r)
where the matriM (r) equals
L»U,M,o(r) W,M,N(I’) 0 0
0 0 Yomro(r) oo Wompan() 0 o 0
0o 0 Waolr) - Yhan(r)

which is of size(2M + 1)(N + 1)-square, and the vectér = (¢’ ,,)7,...,(®{,)")T. Lettingr — R
in the above equation and using the first of the jump condti@hl2) to eliminate the vectots,
(m=—M,...,M), gives

fo= A1, (4.14)

wherefg = ((®_w)T,...,(®&u)")T. The matrix.# is calculated as# = PM(R) where
P =diag(P-TP!,...,P- TP},

is a block diagonal matrix of siz€M + 1)(N + 1)-square. Thus, we have(aM + 1)(N + 1)-system
of equations in (4.14) that relates tf2M + 1)(N + 1) unknown Fourier modes of the velocity potential
in the free-surface regio®n, evaluated beneath the ice edge, to(@ + 1)(N + 1) unknown Fourier
modes of its radial derivativep/,.

The remaining2M + 1)(N + 1) equations required to solve for the(i = 0,1) are provided by our
integral representation @ on the ice edge given in equation (4.3b). If we use our Foexpansions of
@ andd; @ and take the ® + 1 inner-products with respect to'8” (m= —M,...,M) overr € (0,27),
we may then interpret equation (4.3b) as (Bl + 1)(N 4 1)-matrix system

1 -
~fo=fi —R(%fo—11). (4.15)
In equation (4.15) the vectdy contains the inner-products of the incident wave, which are
1

fi=—
' o

2 .
/0 (@' &7, _g dr

2 ',
/0 [d)l eflMT]r:R dr

Itis possible to rewrite the incident wave in terms of thegp@oordinates (see Abramowitz and Stegun,
1964, chapter 9) and we may therefore calculate the noiatintegrals appearing ify explicitly to be

1

2T . . .
on /0 (Yoot uoY eI, _pdr = ™00 (KoR) (M= —M,...,M),
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whered is the angle such that tdla o = Vo o/Up existing in the interval < 99 < 11/2. Similarly, we
may now also simplify our expressions for the reflection aadsmission coefficients given in equations
(4.5a—b) to give

nR Mo
Rp=5 Vo' Y €™ {In(KR)®h — K(dkedn(KR) P}, (4.163)
Yo m=—Mm
and
R Mo
széo,p|1+2i—yovgl zMeflm@p{Jm(KR)dJr’n—K(aKer(KR))CDm}, (4.16b)
me

whereK = diag{ko, ...,k } andJm(Kr) = diag{Jn(kor),. .., dn(knr)}. The matrix &» = diag{e™or,
...,MNp} in which the valuesdnm extenddyo and are defined as t&@im = Vnm/Um, Where 0<
Inm < mforme Sanddnm € iR form¢ S,

The matrix¥ in equation (4.15) is

2mp2m . 2mp2m )
/0 /0 (GEMOHMD_ Cdgdr ... /0 /0 (GEMO+MD] - dgdr
1 . .

2n r r
2mp2m . 2mp2m )
/ / (G(MO-MD]_ Cdgdr ... / / [GEMO-MD]_ - dgdr
0 JO 0 JO

and is identically defined but with the radial derivatigeG replacingG. By using Graf’s addition
theorem for Bessel functions it is possible to calculatdieitgxpressions for these matrix entries in a
similar fashion to that used for the entries of the veftoHowever, it turns out that these expressions
are numerically impracticable and we instead employ nuraétechniques to evaluate the integrals
appearing ir¢ and<.

Calculation of these integrals proves to be the most numigrimtensive facet of the solution pro-
cess. Itis therefore important to understand the difficultgerforming this task so that we may curtalil
the cost. A term-by-term numerical integration of the Gig&mnctions in the series form given in equa-
tion (4.1) would incur numerical expense due to the slow eogence that ensues from the logarithmic
singularity inG at the point(x,y) = (&, n) (see below).

In order to minimise the number of numerical integrationat thust be performed, we employ
a method in which we subtract the singular part of the Grefmistion in the form of a simplified
series, and add it back again as the closed form of this seTigis technique is known as a Kummer
transformation (see Nicorovici et al., 1994, Linton, 1988} we proceed as follows. Let the matrix of
Green'’s functionss of equation (4.1) be given by

%:

3

o 1 . .
G — Sn’ STI — ._V—lelvm\X\efmmY’
mzm 4iyo "

and note that the series diverges logarithmically at thatgajy) = (£,n). We define the terms

1 .
e L o ChuopmX-iuot pmY
™ Amn ’

form=1,..., sothatSim ~tm+| asm— o, and at(x,y) = (&, n) itis easily shown thab,m —tm +1 ~
O(m~2). By summing the serie$p_; {tm— +tm }, we are able to rewrit€ as

pP=T1/Yo

e i upY
4

C=%+ f {Sem—tmal} + {cosHuo[X[}In(q-q) +sink{uo|X|}In(q-/a)},  (4.17)
m=1
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where the functiong.. = g (X,Y) are defined by, = 1— e PIXIFY)  The latter representation &f
given in equation (4.17) comprises the sum of a series thatrigergent at all points and a function in
closed form. We can now explicitly locate the logarithmieggilarity in the term 16q_q..) and perform
the integration of the singularity contained within thisifition analytically. The value of this integral is
given in Bennetts and Squire (2008).

A similar expression to our revised form of the matrix of Grsdunctions given above must also
be found for its radial derivative. This is achieved by siynalking the derivative o6 with respect ta
from equation (4.17), and upon suitable rearrangemenitsasu

. [ - _ efiUOY . .
3G =%+ Y {Sim—Tml} +s9nX) {docost{ug|X|) +igisinh(uoX|)}e Xl (4.18)

In the above, the matrix ternﬁn are defined as
Sn= 4—; (sgn(X) cog B)l — Uysin(B)Vy,1)eVmXlgmiimY m—1 ),

and the scalar ternig, .. are

~ 1 ) )
tm,i — Sgr(x)4_e$Sgr(X)|eef(iUOerm)‘x‘*'(uinm)Y (m — 1’ . )

Yo

It can be shown thab.m — tm+ ~ O(m2) at (x,y) = (£,n), which means that the series in equation
(4.18) converges at all points. The terqsandq; are given by

0o = cog pY —sgnX)8) —e PXlcogB), g = sin(pY —sgnX)8) +sgr(X)e PXIsin(@).

Using a result that was proved in Bennetts and Squire (2Q@&)n be shown that ax,y) — (&,n)
alongl” (thatisas9 — tandr=p=R)

Qo cosHup|X|) 4 iga sinh(ug|X]) 1 Up .

— —— (sgnX) —Rpcog0)) —i—sin(0),

o 5Rp (S9TX) — Rpeog 6)) —i-7sin(6)

which is bounded. Hence, the functigyG has no singular points as it traverses the edge of the floe.

The series incorporated in the expressions (4.17) and)(#a§ then be evaluated at all points for
the purpose of numerical integration, and all bounded ddsections are also numerically integrated.
However, the series may still be slowly convergent arouedthint(x,y) = (&,n), especially for larger
values ofup andk,. Therefore, we make use of higher-order Kummer transfaomsin a neighbour-
hood of this point in which the above series are replacedh®ipurposes of numerical integration, by
more rapidly convergent series and bounded polylogaritHomictions. Detailed explanations of how
this is achieved may be found in Nicorovici et al. (1994) aitan (1998).

Finally, in our evaluation of the integrals involved in thatrices? and¥, we note the symmetries

27T 21T X 21T 21T .
/ / (G- o dodr = / / (GM-"] o dadr,
JO JO JO JO

27T 21T . 21T 21T .
| [ e rdodr = (-1 [*[Tee ), g dar,
0 JO 0 Jo
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and

2mp2m . 2121 .
/ / [(arG)el(nefmT)]r:p:R dodr = (_1)n+m/ / [(ar G)é(*nQerT)]r:p:R dodr.
0 Jo 0 Jo
These relations extend to matrices the scalar versiona giM@ennetts and Squire (2008).

Note that, unlike equation (4.14), the matrix system (4i& Bpt diagonal and therefore couples the
Fourier modes. Having calculated the entries of the vedtortegrals of the incident wavé,, and the
matrices of integrals of the Green'’s functions and its Hadigivative,%4 and¥, it is now possible to
solve for the vectors of unknowrig andf;. To do this we use (4.15) to expredgsn terms off; andfy,
with 1 1

Y SR A Y P |
fr—% (2R| +5¢)f0 = (4.19)

Using (4.19) to eliminaté; from (4.14) leaves the system (&M + 1)(N + 1) equations
(i///g*%r///gfls? - |)f0 Ly, (4.20)
2R R ’

in the (2M + 1)(N + 1) unknowns contained in the vectiy; with the known forcing vectofi.

Using equation (4.20) we may calculate the vefgdry means of an inversion of tHeM + 1) (N +
1)-dimensional matrix on the left-hand side. We then obfaidirectly via equation (4.19), which
provides us with the information needed to define the satutidhe ice-covered region fully using the
expressions given in equation (4.13).

As we described at the end ¢£.1, we split our calculation of the free-surface velocibggntial into
the two régimes, defined B§| < Rand|&| > R. For the latter we have the representation (4.4), which is
in terms of reflection and transmission coefficients that may be explicitly calculated using equation
(4.16a—b). Whené| < R we must use our calculated Fourier series representatfofsandd; @ in
the integral representation (4.3a), and all integraticespeerformed numerically using the Kummer
transformations described in this section.

4.4 The Scattering Matrix

Quantities of particular interest are the amplitudes of gh@pagating waves scattered by the array.
Recall that the number of propagating waves that exist ih padicular problem depends on the number
of realvgp s, for which we have defined the S8 {s: vps € R} ={a,...,b}. The size of this set depends
on the free-surface wavenumbeyr the width of the channel,y3, and the chosen valug € (—ko, ko)
that defines the incident angle. Subsequently, the valyds € S) define the angles at which the
waves propagate towards/away from the floe with respecetg-#xis. Therefore, for each geometrical
configuration, there are a finite number of scattered waasrawvel at well-defined angles with respect
to the Cartesian frame, and these are the waves that pertist far-field.

For the purposes of this section we will consider a more geimaident wave-field that is comprised
of waves propagating at all of the available angles for thiqdar problem and from both— +, so
that

@' (x.y) = ;{l%d’é(xa Y)+ls- @ (xy)},  BL(xy) = (€F05 0,0,
se

wherelg. are the incident amplitudes and we have added the tilde ttutieions to avoid confusion
between the expansion into Fourier modes made in the presixtion. The solution in the free-surface
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fluid region may then similarly be decoupled into its resgotuseach of the individual incident waves,
and we write

(D(va) = ZS{ISFF(%SWL(va)"_|57d‘757(xay)}' (421)

se

The far-field response of ea@y+ = (@ j«, ..., @,j+)" (j € 9 is defined as

{e| (Vo x+u;y) 4 ESR Vosx+uSy)} (X — —00),

L (XY) ~
(R),H( y) EST_(+)e|(vo>sx+usy) (x — 00)
is ’
sc
25 —Vo,sX+-Usy) (X — —00),
o (XY) ~
N R L R S
and(fh j+ ~0asx— £ (n=1,...,N). The reflection coeﬁicientﬁ%? and transmission coefficients

TJ( ) may be calculated using equatlons (4.16a-b).
We can describe the relationship between the incident &amdgls and the scattered amplitudes
through the scattering matr&, which is defined by

R R(i>
R—,L r_ j—atlji—a+l=— Ry,
B—6|07 6— ( )a { i}J : e I }('7]68)

+
T R {T:i:}jfaJrl,ifaJrl:Tj(,i ),
wherelg = (lay,...,lps,la,...,lp_)" is the vector of incident amplitudes aml= (Bay,...,Bp.,
Ba_,...,By_)T is the vector of scattered amplitudes.

Certain properties of the scattering matrix may be deduséddiepws. Consider the inner-products
// (BTA 028, — (02H)TA_B;) dxdy,
Ja/2

fori,j = at,b+. Itis clear from the definitions (4.21) that each of the fimus @, satisfies the
differential system (3.4) and transition conditions (3&pplying Green’s identity (4.2) to these inner-
products and noting tha@t  is a real, diagonal matrix we deduce that

ngo,s{a(?ﬁgﬁ TS = v0 0 + i
Sc ..
(i,j€9), (4.22)
+)5 +)5=

zSVO,S{Ri(,s)RE? +Ti,(s )TE?} = lit j+

ES

and
.27-[ jod - jod - . .
I = R/ (BTA (0:8)— (A )T B }rdd (i,j =at,...,b).
As they stand, the identities (4.22) tell us nothing due &optesence of the ternks. However, for

each solution in the free-surface domadhy. (s e S), there is an associated | velocity potential vector
. in the ice-covered domain defined analogously to (4.21)revties vectorsbs, and¥., are linked



An array of axisymmetric ice floes 19 0of 31

through the jump conditions (4.12). We may therefore remlit in terms of the solutions in the ice-
covered domain, so that
2 . — ~ - ~ o~
iy = R[{GT00F, - @@ A+ HTOP ) a6,
: 0 r:

in which we have used the symmetry Afand the propertyQ — Q" = D. Now, consider the inner-
products of the function${ and¥; (i,j € S)

// (T AD2F; — (AD26)TF, ) dxdy (4.23a)
JJD

and of their respective displacemem»(‘_?> ~andvvﬂ-p> (p=1,2),

/ /@{(Wfl) 02w — W 02w?) + (w202 — w2 02w )} axay. (4.23b)
Manipulations of equations (4.23a—b) involving the relaships{D};; = —{D}i; and 4 {D}j,; =
{B}i—{B}i,j, and Green’s identity (4.2), followed by integration bytsaand imposition of the bend-
ing moment and shearing stress conditions (2.2a—b) on tudtireg boundary integrals may be used to
show thatl; ; = 0 in the case of axisymmetric geometry.

The simplified versions of identities (4.22) are analogousbse given by Porter and Porter (2001)
for free-surface flows over three-dimensional periodi@gmaphy. As such we see that the relationship
that these authors derived for the scattering matrix irr fhreblem also holds for the scattering matrix
& here, namely

6'6=66"=1, 6=7Y2sy"Y2 v =dagVoa,...,Vob Voa---;Vob}, (4.24)

where&* = &' denotes the Hermitian transpose of the scattering matiixs€quently, we also have
that|det(&)| = 1.
Inherent in the first of the relations (4.22) is the conséovedf energy condition identity

ESVo,s{lRéjl% TP =w; (j€9. (4.25)
s

(cf. Achenbach et al., 1988). As noted in Porter and Por@d12this implies that energy conservation
is an intrinsic property of the MMA and therefore only an ication that our calculated approximation
is valid rather than a gauge of its accuracy.

Other observations made by Porter and Porter for the safteratrix in their free-surface problem
may be reinterpreted for the current case. Firstly, by mptiire symmetry of the geometry in tlgeaxis
we find the equality of the reflection and transmission caefisR_ = R, andT_ = T.. Similarly,
by noting the symmetry of the geometry in tkexis and using the result (4.24) we can show that
6T = 7&7 1, whence diagvoa, - .-, Vop R = diag{Voa,---,Vop}Rs and diagvoa,...,Vop} TS =
diag{Voa,...,Vop} T+. One further result, which is th&. &4 = |, may be gleaned from Porter and
Porter and uses the symmetry of the geometry irxthgis.

5. Numerical Results

The results that are presented in this section will use #tioigs that ensure the solutions are converged
and therefore represent the full-linear solution. Thatisufficient number of vertical modés (see
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equation (3.1)), Fourier mod&é (see equation (4.6)), and terms in the Green'’s functioresdgeaation
(4.1)) have been used to perform calculations. We note ligatlimensions of truncations required to
gain a converged solution are problem specific. Specific imeof the values used will only be given
when we feel that it is of benefit to the reader.

5.1 Comparison with alternative interaction theory

We have already noted that the problem of a periodic linegyaféloating elastic bodies has been solved
by previous authors, namely Peter et al. (2006) and Wang é2@07). However, these authors used
floes of different geometries to those that we deal with is thork. In particular, it was assumed that
the thickness of the floes is constant and there is no submeggso the method reported here is more
general and physically accurate in this respect.

Authors Wang et al. combined the bodies in the array by mebaperiodic Green’s function, in a
similar fashion to the method that is employed in this workisTcontrasts with Peter et al. in which the
interactions are calculated using Graf’s formula, wheegltbdies may be taken to be of circular shape,
with their individual response found using Peter et al. @0&r Meylan (2002), for example. This
method is markedly different from our own and its existena@/aes a stringent test of the accuracy of
our results. Although we are restricted to floes of constaokhess and zero draught in this comparison
due to the solution method of Peter et al., it is the calcohatf their interaction through a matrix of
Green'’s functions that is the predominant new feature opthsent work, and its validity may be tested
without the need for more complicated ice floe geometries.

In this section we display a selected set of results that evegthe displacement of the floe in the
central channel, as calculated using our own method, tofdliaid using a combination of Peter et al.
(2006, 2004). Specifically, figure 2 presents comparisotisiform of contour plots for three problems.
The problems share the floe radiRs= 50m, constant ice thickne§s= 1 m, floe separatiogy = 5m
and frequencyw = 1rad/s. These values have been chosen so that sufficient scafi®oacurring to
make this a valid test case and the results that we presendhesindicative of a wide range of situations
investigated. The angle at which the incident wave propggatvards the array (with respect to the
axis) changes between the subfigures, with the chosen Jadireg6 = 0, 7/6 andr/3. As the angle
of incidence increases more terms in the Green'’s functiomsaguired to maintain accuracy.

The similarity between the results calculated using ouhimeand those of Peter et al., both quali-
tatively and quantitatively, is excellent and it is cleaattive are generating the same solutions. This is
true even in the case of incident angi¢3, where the interaction of the floes is particularly strofige
small discrepancies that are visible are mainly confineti¢ovtcinity of the edge of the floe, which is
predictable, as at these points the flexure is greatestweostich fundamentally different approaches
to the calculation of the interaction of floating bodies iniafinite array, the agreement that we find
here is extremely encouraging.

5.2 The effects of floe spacing

Let us now examine how the space between the floes in the dfeysathe displacement they experi-
ence. To begin with in this section we will continue to use$loé radiusR = 50m and zero draught,
and will vary their (constant) thickness, the frequency tinedangle of incidence, in addition to the floe
spacing. Results for the corresponding solitary floe, whighcalculated using the method outlined in
Bennetts et al. (2009b), are also given. For all of the patamvalues that were tested it was found that
the results of the single-line array tend to those of thaaglifloe as the spacing is increased and this
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FiG. 2. Comparison to the Graf’s formula interaction theory efd? et al.. Each subfigure is a contour plot that displays the
displacement of the floe for a particular problem. The vabfethe displacement are overlain on each subfigure (in methes

all problems the floes are of radis= 50m, constant thicknedd = 1 m, zero draughtl = 0, and have §; = 5m separation
from the adjacent floe in the array. The incident wave profesgat an angle: part (a) 0, ()6, and (c)m/3, with respect to the
x—axis. Results using the theory outlined in this work are shaith solid lines, with corresponding results calculatgdPeter

et al. shown with dotted lines. The perimeter of the floe ipldiged by the grey circle.

provides further evidence that our interaction theory uaate.

Figures 3—6 show the displacement of the floe that lies intharelQ along the contouy =0 at the
instantt = 0, that isCle(n). In each figure the same floe thickness and wave frequencyairgaimed,
with the angle of incidence, as in the previous section, ghlmanfromé = 0, to 8 = 11/6, to 8 = 1/3
between the subfigures. We show results for the two ice thissedD = 0.5m and 1 m, and the two
frequenciesv = 1rad/s and 125radgs. As the frequency and/or ice thickness increase it is sacgs
to use more vertical modes to achieve the same level of cgemee, which is expected and consistent
with previous studies (see Bennetts et al., 2007, for examfdach subfigure compares displacements
for four different floe spacings, with the correspondingutessfor the solitary floe superimposed. We
note that a wider channel allows for a more complicated &iredn they-direction and hence more
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FiG. 3. A cross-section of the displacement of the floe that lieshe x-axis at an instant in time. The floes in the array are
of radiusR = 50m, constant thickned3 = 0.5m and zero draught = 0. In each subfigure results are given for the spacings
y1 = 5m (dotted curves), 20 m (dot-dash), 100 m (dashed) and 4@0l), with the results for the solitary floe superimposed
(solid curves with dots overlaid). The incident wave is @fuencyw = 1rad/s and propagates at an angle: part (a) 07(k$,
(c) /3 with respect to the-axis.

terms need to be used in the Green'’s functions.

ot (b)
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X X X
FiG. 4. As in fig. 3 but for floes of thickned3 = 1m.
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In all cases we can again observe that, as the spacing iesraasl the interactions of the floes
die out, the displacements tend to that of the corresporsbiitary floe. However, the rate at which
this occurs is dependent on the properties of the incidemewand those of the array and the floes
that constitute it. For instance, we see that in some casdstiractions of the floes persist for larger
separations with the thicker floes, which may be attributethé ice edge providing a stronger barrier
to the incident wave and hence generating more significanésvBetween the floes (see the results for
w = 1rad/s, figures 3—4). Conversely, for the same reason the thiakes iend to experience less
displacement and may appear to be less responsive to chianfi@s separations (see the results for
w = 1.25radds, figures 5-6).

At the higher frequency = 1rad/s, we find that interactions remain evident for the largecsyss.
This is unsurprising as shorter waves are reflected moragiirdoy the floes, and also cause greater
activation of the evanescent waves. Furthermore, thereoi® recope for the appearance of waves
propagating away from the array at angles other than thdieofricident wave at higher frequencies.
They therefore lead to more complicated and more sustaine@duplings.

The dominant factor that determines the amount of intevadietween the floes in these figures is
the angle at which the incident wave propagates towardsthg. &or a normally incident wave almost
no interaction occurs beyonyd = 20m, with the results foy; = 5m, although distinguishable, similar
both quantitatively and qualitatively to those of the soljtfloe. By changing to the oblique incidence of
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FiG. 5. Asiin fig. 3 but for a frequencg = 1.25radg’s.

11/6, we do little to change this behaviour, with only the disglment for the 5 m separation, frequency
w = lrad/s and ice thickness 1 m displaying noticeably different prtips to its counterparts.

() ERa0) G

o 0 50 o ) 50 o 0 50

FIG. 6. Asin fig. 4 but for a frequencg = 1.25radg’s.

When the angle is increasedng3 the effects of the array become apparent. In all cases ésepce
of the periodic geometry now clearly distinguishes the ldispment shown by the floes in the array from
that of the solitary floe, even for the 400 m spacing. For thisdent angle the flexural response of the
floes in the closely spaced arrays can bear quite differemtackeristics to the solitary floe. This is
particularly visible for theD = 1 m, o = 1rad/s case with the floe separatiopns= 5m and 20 m. We
therefore conclude that, for these typical geometriegmfitant angle of incidence is necessary for the
interaction of the floes in the array to be evident in the flexafrthe floes.

We now turn our attention to the influence of the floe spacintherfar-field structure of the solution.
As such, in figure 7 we plot the reflection coefficients of thegagating waves over the interval 5-15s
of wave periods (2/w) for floes of thicknes® = 0.25m, radiusR = 10m and zero draught. The
subfigures then move between the floe spacings 1m, 5m, 10m and 20 m. We note that for these
smaller floes, as compared to the radRis 50m used previously, a significantly smaller number of
Fourier modes are required to gain sufficient convergentieso$olution.

Recall that, due to the periodic geometry being studied,pissible for more than one propagating
wave to be reflected by the array, with wavenumbers (and hebligue angles) determined by the
quantitiesvg s andus (s € S). For the geometry used in figure 7, the chosen angle of inciEl@n- /3
and the chosen interval of frequencies, only one extra majrag wave is generated other than the
primary reflected wave. This is the wave related to the réfleaoefficientRy _1, and only exists for
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FIG. 7. The modulus of the reflection coefficientRg| (solid lines) andR_1| (broken lines or crosses), as continuous functions
of wave period, for an incident angle of 3. The floes are of radiu® = 10m, constant thickned3 = 0.25m and zero draught.
The floe spacing changes between the subfigures, with: part a1 m, (b)y; =5m, (c)y1 = 10m, and (dy; = 20m.

periods small enough to ensure that
i

Yo(sinf+1)
At the period at which this wave ‘cuts-ing _1 = 0 andu_ = kg, which describes a resonant wave that
propagates parallel to the array and no solution is avalakihg our method. As we draw near to such a
period we find that results become more expensive to cakdlat to larger truncations being required
to achieve convergence. Despite this we are able to prodweeate results for points extremely close
to the resonant frequency and thus determine the natureecfatution in its vicinity. As the period
decreases further the secondary wave reflects away fromrdnea an increasing angle that approaches
the direction of the primary reflected wave asymptoticadlytze period tends to zero.

The primary reflected wave is related to the reflection cdefiidRy o and is present for all periods.

It is clear from the inequality (5.1) that, as the floe sepanais increased, the secondary propagating
wave will continue to exist for larger periods, and this teatis evident in the plots. In fact, as the
secondary wave only exists for such a small interval of theewseriods shown on this figure, we found
it necessary to use crosses so that it may be detected. Folicsiyp from now on in our figures and
discussion, we relabel the coefficients of the propagatianps aftj = Ryj (j € 9).

The curves that denote the reflected coefficient of the psimave are smooth and monotonic
over virtually the entire spectrum of periods in the probdetonsidered here. However, at the periods
at which a supplementary propagating wave cuts-in, theyppear to experience ‘spiky’ behaviour.
This is consistent with other studies involving periodicags, for example Linton and Evans (1993),
and these authors used an argument based on the energyatiosef4.25) and numerical results to

ko > (5.1)
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provide strong evidence that the scattered amplitudesdeet continuous as they pass through these
resonant points. We therefore infer that {Rg|-curves are just non-smooth rather than discontinuous
when|R_;| cuts-in.

Results for the reflection coefficient of the secondary waeel@ss predictable. For the spacings
y1 =5m and 10 m, there is a local minimum present in this quamtityy |R_1| ~ 0 in the case of 10 m
spacing. Although the amplitude of the secondary wave ieggly less than that of the primary wave,
as we approach the ‘cut-off’ point for the secondary wageaihplitude rises rapidly, far exceeding that
of the primary wave, and to a degree depending here on théngpased. Growth of this quantity is
unsurprising as we are approaching a resonant frequensy, himay be inferred that a reflected wave
travelling nearly parallel to the array produces strong@#, particularly for the closely spacgd=1m
array in which the amplitude dR_1| is greatest.

5.3 Thickness variations and submergence

Up to this point we have only looked at results for arrays incllihe constituent floes are of constant
thickness and zero draught. However, our solution proeedllows for the inclusion of axisymmetric
thickness variations and a physically realistic Archimamdéraught. Thorough investigations of the
incorporation of these new features into the model of aaylifloe, through the use of the MMA, have
been made previously by Bennetts (2007) and Bennetts &0419p). For this reason it is not necessary
to conduct an extensive study of the effects of thicknesmtians and submergence, but it is still of
interest to observe what influence their introduction hakénsetting of the current geometry.

1
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oo 50 0 50 100 o “100

X X
FIG. 8. A cross-section of the displacement of the floe along thiéhsurrounding free-surface displacement (reflegted—R,
transmittedx > R) taken along the-axis. The incident wave is of frequenay= 1rad/s and oblique angle/6, and the floes are
of radius: part (@R=50m, (b)R=100m, and §; = 5m separation. In each subfigure three separate resultsawa $or floes
of differing thickness. The solid curves display the restdir floes of constant thickne§&s= 1 m and zero draught. The broken
curves show results for floes that vary quadratically inkhéss in the form of equation (5.2), wibp = 0.5m,| = 0.4m and
u=0.1m (dashed curves), ai2h = 0.1m,| = 0.7m andu = 0.2m (dot-dash).

Figures 8-9 use four example problems to display the effeicistroducing quadratic thickness

variations of the form | |
D(r) = Do+ “2-(R-1)%  d(r) = o(R—1)2 (5.2)

whereDy is the edge thickness, is the amplitude of the upper surface dnid the amplitude of the
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lower surface. The figures show the displacement of the fllmegydhex-axis along with the scattered
free-surface profile in a vicinity of the floe, which is calatdd using the expression (4.4).

Each subfigure gives results for three different geometrigth one a constant floe of thickness
D = 1m (solid curves), and two involving floes that increase inkhess quadratically from the edge
of the floe to the centre (broken curves). Both of these floes hathickness of 1 m at their centre
(r = 0), with one having an edge thickness of 0.5 m (dotted curaed)he other 0.1 m (dot-dash). The
variations are set so that the lower surface of the floe var@® rapidly than the upper surface. Results
are shown for an oblique angie= 17/6, the two frequencies) = 1rad/s andv = 1.25radgSs, a floe
separation of; = 5m and the two floe radik = 50m and 100 m.
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FiG. 9. As in fig.8 but for frequencyw = 1.25radg’s.

In all cases we see that the inclusion of thickness variat@early distinguish the profile of the
solution, especially in the more extrerdg = 0.1 m case. However, the behaviour shown in these plots
is complicated and it is difficult to ascertain exact impfioas of such changes to the floe geometry. We
do note that there is a tendency for greater flexure of the flits adge when its thickness is thinner
at this boundary. The same floes then damp the travelling wame rapidly towards their centre.
Conversely the displacement of the uniform floes is more Ig\vdistributed.

As the flexure of larger floes is more complicated, it is unsgipg to see that the shape of the
displacement varies to a larger degree inffhe 100m cases. It is also unsurprising to note that the
magnitude of the displacement varies to a greater degrabdduigher frequencw = 1.25radg's, as
we expect the reflection caused by the different edge thadeweto be exacerbated in this case.

Likewise, we note similar differences in the surroundiregfsurface profile of the scattered waves.
There is a tendency towards a larger amplitude transmiteaeéwhen the floe is uniform, and corre-
spondingly, a greater reflected amplitude when thicknesati@ns are present. This would imply that
in these cases, the impediment provided by the protrudintpmoof the floe is responsible for greater
scattering than the thicker ice edge. The qualitative, dsasequantitative, differences of the waves
alter with the changing floe shape for the frequeacy: 1.25rads/s, and this is particularly evident in
the reflected wave when the radius is 50m.

For the remainder of the results we will look at how the introtibn of a realistic floe submergence
affects the induced displacement by the incoming wave amddhttering produced in the free-surface
domain. Here we will consider floes of a unifon= 1 m thickness, for which the Archimedean condi-
tion requires a = 0.9m draught. It has previously been shown for a solitary flee @ennetts, 2007;
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Bennetts et al., 2009b) that the introduction of edge suberare generally causes greater reflection
and hence a smaller floe displacement at relatively shorelwagths but that this behaviour may be
overridden by the fine structure found in the solutions,ipalarly for three-dimensional models. Here,
we are concerned with how a physically correct draught &fféwe results within the context of our
periodic structure, especially with respect to changelerflbe spacing and angle at which the incident
wave propagates towards the array.

06 ; ; ; ; ; ; ; 06

0.5¢ 0.5r

0.4r
0.4

0.3r
0.3f
0.21
0.2
0.1r

0.1y

or —01f / N
-/ N

-0.1
-80

-0.2 1 I .
80 -100 -50 0 50 100

y

FiG. 10. Comparison of results for floes of zero draught (solides) against floes with Archimedean draught included @npk
Plots show cross-sections of the floe displacement alorfy thit surrounding (scattered) free-surface displacena&entalong
the y-axis. The incident wave is of frequeney = 1rad/s and is normally incident. Floes are of radiRs= 50 m, constant
thicknessD = 1 m, and separations: part@@)= 40m, (b)y; = 100m.

Figures 10-11 contain plots of the displacement of the fla@ i@mlong they-axis together with the
surrounding scattered free-surface profile for zero superere (solid curves) and Archimedean draught
(broken curves), for four different problems. In all of theplems the floes are of radit&= 50m and
the frequency isv = 1rad/s. The distance of separation changes fsgrs 40m to 100 m between the
subfigures, and the different figures show the cases in whielangle of incidence is norma & 0)
and 6 = /6. These choices are made in order that the surroundingstnéaee takes up a non-trivial
proportion of they-axis but also, so that the interaction of the floes is wortlegtigating. Unlike the
previous figures, here it is necessary to use the integraksgjon (4.3a) to calculate the surrounding
free-surface profile a8 =0 < R.

In figure 10 the incoming wave is normally incident and we rtbt the displacement of the floes
changes only marginally when the separation is varied, kvlEaconsistent with our earlier findings.
As predicted, here the floes resist the incident wave, morelem they possess a submergence. Ac-
cordingly these floes are a greater source of scattering argbw/that the amplitude of the surrounding
waves increases when draught is included. It is unsurgrigimote that the profiles of the scattered
waves differ significantly when the distance between thesftd®nges, but also that there is a qualita-
tive as well as quantitative difference between the wavatered by the zero draught and Archimedean
draught floes for the larggr = 100 m separation.

The incoming wave takes an angle mf6 in figure 11. Although this leads to greater floe-floe
interaction, which is evident in the change in the displagenof the floe when the separation distance
is varied, the effects of the introduction of an Archimeddaaught are now minimal in regard to both
the floe displacement and the scattered wave profiles. Thiersaps, surprising, and we will discuss
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FiG. 11. As in fig.10 but for an incident angle of 6.

this phenomenon further shortly. We also note that a greatgrortion of the incident wave is scattered
on the side from which it approaches the floe but that, as ttartie between the floes increases and
less floe interaction occurs, this feature diminishes.
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FiG. 12. The modulus of the reflection coefficieni;| = |[Ros| (s€ S), of the propagating waves as continuous functions of

the wave period, for floes of radii®= 50 m and constant thickne§s= 1 m, comparing results for floes of zero draught 0
(solid curves) and an Archimedean draught 0.9m (broken). The floe spacingys = 40m and the incoming wave is: part (a)
normally incident, and (bjr/6 obliquely incident.

Figure 12 displays the modulus of the reflection coeffici@visr the period interval 5-15s, as in
figure 7, but for a single separation distance and compasgsglts for zero draught floes and floes
that include an Archimedean submergence. The geometryisisedn parts (a) of figures 10-11, and
the incident angles correspond to these two figures respéctiDue to the larger floe radius and floe
separation used here in relation to those of figure 7, a greataber of propagating waves are present
in these plots. Also, as the floes are larger (with respedtaartcident wavelengths) local extrema are
apparentin these results. Thus the structure of the reflectglitudes is more complicated in this case
as opposed to the previous such figure.

We note that the overall number of propagating waves ges@fedm both of the incident angles is
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the same here. However, for clarity we have omitfeds| and|R_s| from part (b), which only appear
for periodsS 6s. It is not necessary to omit any curves for the case of rlomo@lence due to the
symmetryR; = R_;j. Irrespective of the extrema mentioned in the previousgragh, the modulus
of the reflection coefficients can appear quite rough ovesthaller periods. This effect is due to the
number of resonant frequencies, at which supplementapagating waves cut-in/off, that are present
for the geometry and incident waves considered here. As wedrio our discussion of figure 7, the
reflection coefficients are not smooth around these pointswveder, unlike figure 7, here we do not
fully resolve the spiky behaviour as it would be somewhatmizsive to the study of the introduction of
submergence.

At most points in the spectrum of wave periods consideretisfigure, the introduction of Arch-
imedean draught clearly distinguishes its reflection coieffit from its zero-draught counterpart. The
complicated structure of these quantities makes it diffimutiraw implications about the changes that
this additional feature causes. However, it is clear thatytialitative nature of the corresponding curves
are similar, with extrema appearing for approximately tams period, although it is at these points at
which the quantitative differences are most pronounced.

For the incident wave period when= 1rad/s, namely 2rs, we can relate the values of the reflec-
tion coefficients in figure 12 to the corresponding profilesmiin figures 10-11 parts (a). At this point
the values of the corresponding Archimedean draught/zenagiht reflection coefficients are distinct in
the case of normal incidence. This contrasts to the caseligfugbincidence for which the respective
reflection coefficients are close, and is consistent witHfiodings for the profiles made earlier. We note
though that this is just an isolated frequency/period, &ad &t other times the reflection coefficients
for the obliquely incident wave may be further apart and ¢hfes the normally incident wave are closer
together. Therefore, the similarity of the results showfigare 11 cannot be taken as a generic prop-
erty of obliquely incident waves, nor can the changes cabgdte introduction of submergence for a
normally incident wave shown in figure 10.

6. Conclusions

A solution method has been outlined for a geometrical condiion that consists of an infinite straight-
line array of equally-spaced, identical ice floes in a fluidndin with a flat bed, which is forced by an
obliquely incident wave. By use of a variational principfelan expansion of the vertical dependence of
the unknown velocity potential, we defined a multi-mode appnation that is capable of reproducing
the full-linear solution to an arbitrarily specified degmfeaccuracy. Using this method reduces our
calculations to the horizontal plane only, and we are lefidtve for vectors of unknown functions in
the domains of the free-surface fluid and ice-covered fluittpendently, with given jump conditions
that relate these two solutions at their common boundary.

By implementing the periodicity of the solution, we wereeabd express the velocity potential in
the free-surface domain, and thus capture the interaabitine floes, in terms of an integral around the
edge of a single floe. The floes themselves were taken to bgnaxistric and we included thickness
variations and a non-zero draught. This allowed us to reusealution procedure of Bennetts et al.
(2009b), which we adjusted to account for a more generaifgreave that encompasses the evanescent
waves scattered by the other floes in the array. Matchingepnesentations of the velocity potential
in the ice-covered and free-surface fluid domains at theimrnon boundary enabled us to retrieve the
remaining unknowns and hence complete the solution process

After validating our method through comparison to the aléive interaction theory of Peter et al.
(2006) in test problems, we used a selection of numericaltet investigate the way in which the



30 0f 31 L.G. Bennetts & V.A. Squire

response and scattering properties of the straight-li@gy@hange as certain quantities are varied. It was
found that the angle of incidence of the incoming wave is mpry factor in producing floe interactions,
so that the effects of the array will only be visible for cldkee separations with a normally incident
wave but will persist at large separations when there israfgignt angle of incidence. The introduction
of thickness variations and realistic submergence werensho be capable of altering the response of
the array to the incoming wave. However, overall behavibecihanges caused by these new features
were difficult to ascertain, particularly because of the ptioated form of the scattering in this periodic
system, in which multiple reflected waves may propagate dvway the array. These waves, which
exist only in certain régimes, were seen to be generatdd laige amplitudes when the floe spacing
was tight and the wave travels in a direction nearly paréti¢ghe array itself.

There is a natural extension to this work in which the geoynebnsists of a finite number of the
infinite single-line arrays that we have considered herdihis would simply involve matching the
solutions for adjacent single-line arrays at a common fater, where the solution for the single-line
array would need to be extended to a more general inciderg wiag similar manner to the way in
which we modified the solution for the solitary floe for useiimgde-line array earlier. In this multiple-
line array there would be no need for the arrays to be iddntiody that they obey the same periodicity
condition. This work is the topic of a separate paper.
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