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Under linear and time-harmonic conditions, a set of periodic Green’s functions is derived to combine the
interactions of an infinite number of identical, equispacedfloating bodies. The bodies themselves are
compliant, thin-elastic plates that can represent ice floes, and, unlike previous studies they are permit-
ted to vary axisymmetrically in thickness through both their upper and lower surfaces, with a realistic
draught also admitted. Initially, the governing equationsare simplified by means of an expansion of
the vertical dependence of the unknown velocity potential combined with a variational principle, which
reduces calculations to the horizontal plane alone. The unknowns of the resulting equations are written
as an integral representation in the free-surface domain and as a Fourier expansion in the domain of the
ice-covered fluid, and these are matched at their common boundary to complete the solution process. Our
method is validated using numerical results for example problems and the effects of varying the distance
between the floes, as well as the introduction of thickness variations and submergence, are also demon-
strated.
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1. Introduction

In recent years a large number of mathematical models have been devised for wave scattering by floating
elastic plates, driven in part by a desire to understand how ocean waves couple to sea-ice in the marginal
ice zones (MIZs) that skirt the polar regions. MIZs occur in the vicinity of open ocean activity, normally
on a seasonal basis when the surface layer of the sea freezes over to create a covering of ice that is
relatively thin in comparison to its horizontal dimensions. They are typically very energetic regions
affected by strong winds, local currents and wave-induced fluid motions that cause the sea-ice to oscillate
to-and-fro and up-and-down, to flex rhythmically and potentially to break up. The small-scale flexural
perturbations in the fluid-ice interface are known as flexural-gravity waves because dispersion is affected
by both the mechanical bending of the ice and fluid inertia. Due to the dimensions of the sea-ice it
is common practice to consider flexural motion as the dominant factor controlling the flux of wave
energy through the MIZ and to model this material by means of thin-plate theory (see Timoshenko and
Woinowsky-Krieger, 1959).

With the behaviour of the sea-ice expressed via a thin-elastic plate equation, its influence in the
mathematical model is that of a sixth-order condition at thefluid surface. The complexity presented by
this high-order boundary-conditionoften leads to unrealistic assumptions about the ice-covering in order
to facilitate the solution process. Sea-ice is a naturally heterogeneous material, with irregular shapes, and
abundant imperfections such as pressure ridges and cracks,and these features all provide extra sources
of scattering that affect the transfer of wave energy through the MIZ. In a quest to better represent the
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inhomogeneous properties of sea-ice, sophisticated mathematical methods have been sought: the recent
advances in the field are summarised in Squire (2007).

A common simplifying assumption is that ice-coverings are of a uniform thickness and float unre-
alistically on the fluid surface, that is they have zero draught. However, by extending the single-mode
approximation of Porter and Porter (2004), Bennetts et al. (2007) have presented a method for solv-
ing problems in which the ice is permitted to vary in thickness and possess an Archimedean draught.
This was achieved by defining a multi-mode approximation (MMA), formed by recasting the governing
equations as a variational principle and associating the unknown vertical motion with the single-mode
that supports propagating waves and a finite number of the modes that support evanescent waves. The
MMA is then calculated from a set of equations that exist in the horizontal plane only and will give the
full-linear solution to any degree of accuracy by taking a sufficient number of vertical modes. Using
the MMA, numerical solutions for ice of varying thickness and a non-zero draught were made for two-
dimensional models (Bennetts, 2007; Bennetts et al., 2007,2009a) and for solitary axisymmetric floes
(Bennetts, 2007; Bennetts et al., 2009b).

Particularly in the Arctic Basin and Southern Ocean, the outer parts of the MIZ are composed of
aggregations of individual ice floes in addition to sheets ofquasi-continuous ice-cover. The individual
floes may form in-situ from the freezing of sea-water or they may have broken away from the edge of
larger ice sheets, induced by the strains imposed by the passing ocean wave train. When a large number
of floes break-away in such a manner, they will serve as a barrier to the interior ice sheet from ocean
waves. Here, there is both a response of each individual floe to incoming waves, as well as a response
of the ice field as an entity in which the influence of the floes upon each another must be considered. It
is this scenario that motivates our work here, and, althoughour straight-line array is highly idealised,
we note that ‘bands’ of individual floes and ice cakes have been reported to detach from MIZs to create
dissociated belts off the ice edge (see Bauer and Martin, 1980). Furthermore, our solution method is
designed specifically so that it leads naturally to the solution for multiple lines of ice floes, which is the
subject of future work.

We wish to use an as up-to-date model of the floes as possible and for this reason we incorporate
the work of Bennetts et al. (2009b), which accounts for varying thickness and an Archimedean draught.
However, other noteworthy three-dimensional models exist. For instance, Meylan and Squire (1996),
Peter et al. (2004) and Andrianov and Hermans (2005) all givesolutions for circular floes of uniform
thickness and a zero draught. Meylan (2002) also treats the problem of a solitary floe of uniform
thickness and a zero draught but, through numerical evaluation of thein vacuo(dry) modes of the plate,
gains solutions for floes of a more general shape. Future workwill allow us to extend the methods
presented in this work to remove the restraint of axisymmetry and to admit non-circular floes.

Previous work also exists into interaction theory for multiple floating bodies, with application to
ice floes. By using local coordinate systems and Graf’s addition formula (see Abramowitz and Stegun,
1964, chapter 9), Peter and Meylan (2004) extended Meylan (2002) to a finite number of such bodies.
However, the computational cost of calculating the interactions of a finite number of bodies that is large
enough to represent situations in the MIZ is unmanageable. Instead, it is effective to study periodic
problems that involve an infinite number of identical floes asa model of the MIZ. As such, Peter et al.
(2006) and Wang et al. (2007) both solve for a straight line array of identical ice floes on a fluid domain
that stretches to infinity in all lateral directions. The former work uses Graf’s formula, as in Peter and
Meylan (2004), to calculate the floe-floe interactions, and implements the periodicity to simplify the
resulting system. Whereas, in the latter, a periodic Green’s function provides a method of solution.

As in Peter et al. (2006) and Wang et al. (2007), we will construct a solution method for a straight-
line array of equispaced, identical bodies, floating on an infinite fluid surface. Our approach to the
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problem is markedly different to that of the previous authors from the outset. However, we begin by
posing the problem in the alternative setting of a single channel that contains a single floe and has
appropriate periodicity conditions applied on its lateralwalls, which was the idea employed by Porter
and Porter (2001) for free-surface flows over periodic topography. The MMA of Bennetts et al. (2007)
is then used to produce a new set of governing equations that exist in the horizontal plane only and
separates the free-surface and ice-covered fluid domains. Asingle-mode approximation was generated
in an identical manner for this problem by Bennetts and Squire (2008). Thus, this paper extends that
work in the same way that Bennetts et al. (2007) extends Porter and Porter (2004).

Our use of the MMA is consistent with Bennetts et al. (2009b),which allows us to easily accommo-
date their solution for floes that vary in thickness (axisymmetrically) and possess a non-zero draught into
the model. This requires the use of a Fourier expansion to leave a set of ordinary differential equations
(ODEs) that are solved numerically over the radius of the floe. The interaction theory in the free-surface
domain is based on a matrix of Green’s functions, which, whencombined with Green’s theorem, pro-
vides an integral expression for the unknown functions. These two different representations are then
matched at their interface, the ice edge, to complete the solution process.

The study of infinite arrays has many other applications in hydrodynamicalproblems and other phys-
ical situations, for example electromagnetic scattering.There have therefore been many mathematical
advances in this area that have arisen from investigations not motivated primarily by scattering by sea-
ice. Recently, methods based on the solution for an infinite array have been used to produce solutions
for a semi-infinite array (see Linton et al., 2007; Peter and Meylan, 2007) and approximations for long,
finite arrays (see Thompson et al., 2008).

As we have already alluded to, our chosen solution method forthe single-line array will provide
the basis for a model of a typical situation in a polar or subpolar MIZ in a forthcoming study. This
work makes use of the particularly simple structure of the expression for the scattered field from the
single-line array, which is given by our method, to extend toa multiple-line array. The results found
from such geometrical configurations will be used to draw inferences about the way in which waves
penetrate through packs of floes into the inner mass of continuous sea-ice.

2. Boundary value problem

We wish to solve the problem of a straight-line array of identical axisymmetric floes, which are permit-
ted to vary in thickness (through both their upper and lower surfaces) and have a non-zero draught. The
Cartesian coordinatesx andy will be used to denote horizontal position, withz being the vertical coor-
dinate. The planez= 0 is set to coincide with the equilibrium fluid surface and thebed (considered flat
and of finite depth) lies atz= −h. Without loss of generality, we orientate our horizontal coordinates so
that the centre of the floes occupy they-axis, with one floe having its centre at the origin(x,y) = (0,0).
If we now let the distance between the centre of adjacent floesbe 2y0, for some positive constanty0,
then the centre of the floes are located at the pointsy = 2ny0 (n∈ Z).

Assuming the regular properties of linear motion, the motion of the fluid may be defined through a
reducedvelocity potential, Φ̂ = Φ̂(x,y,z), which, for time-harmonic conditions, is such that the velocity
field is retrieved fromℜe{(g/iω)(∂x,∂y,∂z) · (Φ̂e−iωt)}. Hereg≈ 9.81 m s−2 denotes the acceleration
due to gravity andω is a prescribed angular frequency. When forced by a wave the underside of each
floe experiences small-amplitude oscillations. The position of the fluid-ice interface is then defined to
be

z= −d(x,y)+ ℜe{W(x,y)e−iωt},

for (x,y) within the ice-covered regions. We usez = −d to denote the equilibrium position of the
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lower surface of the floes, withd = 0 outside of the ice-covered region. The functionW is the reduced
displacementof the floes and, for consistency, we may setW to define the free-surface outside of the
ice-covered regions (although this will not be used in practice). We are now required to solve for the
velocity potential,Φ̂, in the fluid domain and the displacement,W, within the ice-covered fluid regions.
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FIG. 1. Plan view of the geometrical configuration and cross-section of axisymmetric floe.

The array is forced by a plane wave,φ I say, of wavenumberk0, which, without loss of generality,
we assume to propagate from the far-fieldx→−∞ at the oblique anglêθ (0 6 θ̂ < π/2) with respect to
thex-axis (see figure 1). This induces a periodicity condition, namely that

Φ̂(x,y+2y0,z) = e2iu0y0Φ̂(x,y,z), ∂yΦ̂(x,y+2y0,z) = e2iu0y0∂yΦ̂(x,y,z), (2.1)

with similar expressions holding for the displacement function W. The quantityu0 = k0sinθ̂ is related
to the forcing wave and is considered known during the formulation of the scattering problem.

It is therefore possible to solve for the infinite array by considering a single channel of width 2y0 in
they-direction. For simplicity, we will take this channel to be

(x,y) ∈ Ω = {x, y : −∞ < x < ∞, −y0 < y < y0}

andz∈ (−h,−d). At this point we define the single floe contained within this channel to occupy the
region(r,θ ) ∈ D = {r, θ : r < R, 0 6 θ < 2π}, whereR denotes the radius of the floe. As the floe is
circular, we will find it convenient to use the polar coordinates(r,θ ) in place ofx andy in D , which are
such thatx= r cosθ andy= r sinθ . Under the imposed axisymmetric conditions inD we haved = d(r),
and alsoD = D(r), whereD denotes the thickness of the ice. Furthermore, we defineH(r) = h−d(r)
to be the fluid depth beneath the floe.

Within the fluid domain the velocity potential must satisfy Laplace’s equation

∇2Φ̂ + ∂ 2
z Φ̂ = 0 ((x,y) ∈ Ω , z∈ (−h,−d)),

where∇ = (∂x,∂y) or ∇ = (cos(θ )∂r − (1/r)sin(θ )∂θ ,sin(θ )∂r +(1/r)cos(θ )∂θ ), depending on the
context, and on the bed(z= −h) the no-flow condition∂zΦ̂ = 0 for (x,y) ∈ Ω holds. At the fluid-ice
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interface(z= −d) we have high-order conditions that define the dynamics of thefloe’s oscillations and
in doing so couple the velocity potential to the displacement function. These conditions are given as

(1−σα)W+LW− Φ̂ = 0 ∇d ·∇Φ̂ + ∂zΦ̂ = 0 ((x,y) ∈ D , z= −d),

where

L ≡ ∇2(β ∇2)−
1
r2 (1−ν){r(∂rβ )∂ 2

r + r(∂ 2
r β )∂r +(∂ 2

r β )∂ 2
θ },

(see Porter and Porter, 2004). The various quantities are defined asν = 0.3, which is Poisson’s ratio
for sea-ice,σ = ω2/g, the frequency parameter,α = α(r) = ρiD/ρw, the scaled mass of the floe, and
β = β (r) = ED3/12(1+ ν)ρwg, the scaled flexural rigidity of the floe. Further parametershave been
introduced in these definitions and they are: the density of the iceρi = 922.5 kg m−3; the density of
the fluidρw = 1025 kg m−3; and Young’s modulusE = 5×109 Pa. At the edge of the floe,Γ = {x, y :
x2 +y2 = R} ≡ {r, θ : r = R, 0 6 θ < 2π}, two further dynamic conditions must hold, which state that
the bending moment and shearing stress must vanish. These conditions are expressed asBW = 0 and
SW = 0 respectively, where

B ≡ β ∇2−
1
r
(1−ν)β{∂r +

1
r

∂ 2
θ }, (2.2a)

and

S ≡ ∂r(β ∇2)−
1
r
(1−ν){(∂rβ )(∂r +

1
r

∂ 2
θ )−β ∂r(

1
r

∂ 2
θ )}, (2.2b)

(see Bennetts et al., 2009b).
We translate the periodicity of the solution given in equations (2.1) into transition conditions on the

sides of the channel to give

Φ̂(x,y0,z) = e2iu0y0Φ̂(x,−y0,z), ∂yΦ̂(x,y0,z) = e2iu0y0∂yΦ̂(x,−y0,z). (2.3)

The problem is fully defined by prescribing the form of the solution in the far-fieldx→±∞. As indicated
earlier, there exists a single incident waveφ I (x,y)cosh{k0(z+h)}, whereφ I (x,y) = ei(v0,0x+u0y), which
propagates fromx → −∞ towards the array of floes (see figure 1). This incident wave ispartially
reflected and partially transmitted by the array and the following radiation conditions hold

Φ̂(x,y,z) ∼
{

ei(v0,0x+u0y) + ∑
s∈S

Rsei(−v0,sx+usy)
}

cosh{k0(z+h)} (2.4a)

asx→−∞, and

Φ̂(x,y,z) ∼
{

∑
s∈S

Tse
i(v0,sx+usy)

}
cosh{k0(z+h)} (2.4b)

asx → ∞. In the aboveus = u0 + sπ/y0 andv0,s =
√

k2
0−u2

s (s∈ S), andS is the subset of natural
numbers for which thev0,s are real. The quantityk0 is the propagating wavenumber that will be defined
shortly. These radiation conditions express the form of thesolution in the far-field as a finite number
of propagating waves that travel with known angles. All remaining motions generated in the scattering
process have evanesced by the time they reach the far-field.
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3. Multi-mode approximation

Due to the complexity presented by the variable ice-thickness and non-zero draught, the problem out-
lined in the previous section is deemed unsolvable by directmethods. Instead we will employ the
approximation technique that was outlined in Bennetts et al. (2007). In that work a variational principle
was given that is equivalent to the full-linear governing equations of a system of fluid with partial ice-
covering in three-dimensions, for which the problem considered here of a periodic line array of circular
floes is a subset. This variational principle allowed Bennetts et al. to define a hierarchy of increasingly
accurate approximations, capable of reproducing the full-linear solution to any chosen tolerance, which
they were able to calculate for two-dimensional geometries. We will extend this approach to the current
problem.

Following Bennetts et al. we will retrieve the full-linear solution by implementing a type of Rayleigh-
Ritz approximation that restricts the vertical motion of the velocity potential,Φ̂ , to a finite-dimensional
space of dimensionN+1 (N = 0, . . . ), spanned by a set ofvertical modes. Consequently, the displace-
ment function,W, is also approximated but only indirectly through its relation to the potential.

The restriction of the vertical motion in combination with the variational principle given in Bennetts
et al. has the effect of vertically averaging the problem’s dependence onz. As we will see, a new set of
governing equations is then generated that are independentof this coordinate.

Our approximation can be made arbitrarily close to the full-linear solution by selecting the dimen-
sion N + 1 to be suitably large. However, we wish to balance this with adesire to minimise the com-
putational cost needed to gain solutions and we therefore seek to encapsulate the key features of the
vertical motion in a relatively small number of modes. As such we employ the following multiple-mode
expansions of the vertical dependence of the potential

Φ̂(x,y,z) ≈





φ(x,y) =
N

∑
n=0

φn(x,y)ζn(z) ((x,y) ∈ Ω/D),

ψ(r,θ ) =
N

∑
n=0

ψn(r,θ )χn(r,z) ((x,y) ∈ D),

(3.1)

where the vertical modes are defined asζn(z) = cosh{kn(z+ h)} and χn(r,z) = cosh{κn(r)(z+ h)}.
It has been shown in various other problems involving partial ice-covering (Bennetts, 2007; Bennetts
et al., 2007) that the above choice of expansion, in which we partition the approximation between the
ice-covered and ice-free regions, is capable of providing accurate results for relatively small dimensions.
In the free-surface fluid region the vertical modes,ζn, are defined by the quantitieskn, which are the
rootsk of the free-surface dispersion relation

ktanh(kh) = σ , (3.2)

such thatk0 is real and positive and thekn (n = 1, . . . ) lie on the positive imaginary axis and are ordered
in increasing magnitude, that is−ikn < −ikn+1. The quantitiesκn, that define the vertical modes in the
region of ice-covered fluid, are the rootsκ of the ice-covered dispersion relation

(1−σα + β κ4)κ tanh(κH) = σ , (3.3)

and are functions of the radial coordinate due to the axisymmetrically varying massα = α(r), flexural
rigidity β = β (r) and fluid depthH = H(r). Similarly to the roots of the free-surface dispersion rela-
tion, we set the primary root,κ0, to be positive and real, andκn (n = 1, . . . ) to be roots of increasing
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magnitude that lie on the positive imaginary axis. The complex roots of equation (3.3), which under
some circumstances may bifurcate to become purely imaginary, are omitted from the approximation as
the vertical modes that they define are linearly dependent onthose we have included (for details see
Bennetts et al., 2007). We note that the expansions (3.1) produce the vertical modes that are found when
separation solutions are sought in the respective ice-freeand ice-covered regions.

When our approximate form of the potential (3.1) is applied to the variational principle given in
Bennetts et al. (2007) a new set of governing equations is created. From these new equations we must
calculate the unknown functionsφn andψn (n = 0, . . . ,N), along with the corresponding approxima-
tion of the displacement functionw(r,θ ) ≈ W(x,y). The approximation that is generated through this
combination of expansion and variational principle we willterm themulti-mode approximation(MMA).

In the free-surface region it remains to solve the Helmholz equations

∇2Φ +K2
0Φ = 0 ((x,y) ∈ Ω/D), (3.4)

where the vector of solutions is

Φ = Φ(x,y) = (φ0(x,y), . . . ,φN(x,y))T ,

and the matrixK0 = diag{k0, . . . ,kN}. For the discD in which the fluid is ice-covered, we now have the
system of second-order equations

1
r

∂r(rA∂rΨ)+ D̃∂rΨ +

(
B+

1
r2 A∂ 2

θ

)
Ψ + σCfw = 0 ((r,θ ) ∈ D), (3.5a)

which is coupled to the fourth-order equation

(1−σα)w+L w− fTCΨ = 0 ((r,θ ) ∈ D). (3.5b)

In the above the vector of unknowns is

Ψ = Ψ(r,θ ) = (ψ0(r,θ ), . . . ,ψN(r,θ ))T ,

and we define the(N + 1)-length vectorf = (1, . . . ,1)T and (N + 1)-square size matrixC = C(r) =
diag{χ0(r,−h), . . . ,χN(r,−h)}. The matrices of coefficientsA = A(r), B = B(r), andD̃ = D̃(r) have
entries that contain the averaged values of the vertical dependence, which are calculated from integrals
of the modesχn and their derivatives. These are

{A} j+1,i+1 =

∫ −d

−h
χ j χi dz, , {D̃} j+1,i+1 =

∫ −d

−h
{χ j(∂r χi)− χi(∂r χ j)} dz, (3.6a)

and

{B} j+1,i+1 =

∫ −d

−h
χ j(∂ 2

z χi) dz− [χ j(∂zχi)]
−d
z=−h + ∂r

∫ −d

−h
χ j(∂r χi) dz−

∫ −d

−h
(∂r χ j)(∂r χi) dz (3.6b)

for i, j = 0, . . . ,N. The explicit calculation of the quantities (3.6a–b) follows that described by Bennetts
et al. (2007).

In (3.1) there is a partitioning of the solution between the ice-covered and free-surface regions,
which has the effect of creating a discontinuity in the velocity potential at the edge of the floe(r,θ ∈Γ ).
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Jump conditions are provided by the variational principle at the discontinuity and were calculated for a
circular floe by Bennetts et al. (2009b) as

PT
+Ψ = PT

−Φ, P−1
+ {A∂rΨ +QΦ} = P−1

− A−∂rΦ ((r,θ ) ∈ Γ ), (3.7)

whereP+ = A,

{P−} j+1,i+1 =

∫ −d

−h
ζ j χi dz, {A−} j+1,i+1 =

∫ −d

−h
ζ jζi dz, {Q} j+1,i+1 =

∫ −d

−h
χ j∂r χi dz

for i, j = 0, . . . ,N, and we have made use of the flat bed depth away from the floe.
Although the discontinuity in the velocity potential is an unphysical feature of our approximation,

the continuity of fluid pressure and velocity will be regained as the number of vertical modes is increased
and convergence to the full-linear solution is achieved. Rather than having a detrimental effect on the
MMA, our choice to partition the solution in equation (3.1) in fact allows for high accuracy with a
relatively low number of modes as we are able to use the natural modes for each respective region. As
the displacement is indirectly approximated, the remaining conditions applied at the ice edge are still
Bw = S w = 0 (r,θ ∈ Γ ).

The transition boundary conditions for̂Φ , given in equations (2.3), are similarly satisfied byφ , so
that

φn(x,y0) = e2iu0y0φn(x,−y0), ∂yφn(x,y0) = e2iu0y0∂yφn(x,−y0), (3.8)

for n = 0, . . . ,N. Similarly, the radiation conditions (2.4) are easily retained in the approximation

φ0(x,y) ∼





ei(v0,0x+u0y) + ∑
s∈S

Rsei(−v0,sx+usy) (x→−∞),

∑
s∈S

Tsei(v0,sx+usy) (x→ ∞),
(3.9)

andφn ∼ 0 asx → ±∞ (n = 1, . . . ,N). Notice that this is a consequence of our choice of the vertical
modeζ0 in the free-surface region and is an important feature of theapproximation.

4. Solution Process

As it now stands, we may decompose our task into two disjoint problems. In the first, we consider
the solutionφ of the free-surface problem posed by the system of Helmholz equations (3.4) inΩ/D ,
subject to the transition conditions (3.8a–b) and radiation conditions (3.9). Scattering is caused by the
relation to the, as yet, unknown functionψ and its radial derivative on the boundaryΓ . For the second
problem we must obtainψ andw as the solutions to the system of differential equations (3.5a–b) in the
discD , wherew satisfies the bending moment and shearing stress conditionsat the edgeΓ . Forcing is
provided throughψ from the jump conditions (3.7) atΓ . Once the solutions have been obtained in their
respective regions, up to unknown factors, we will completethe solution through the imposition of these
jump conditions. As the two domainsΩ andD are fundamentally different, one being structured on
Cartesian coordinates, the other on polar coordinates, we are unable obtain a solution through use of any
direct modal expansion. Instead, we will pursue a method in which we treat each domain independently,
and finally match the derived representations at their common boundary (Γ ).
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4.1 The free-surface domain

Consider first the free-surface domainΩ/D . Let the(N + 1)-square matrix of Green’s functionG =
G(x,y|ξ ,η) be defined over the entire channelΩ in the absence of the floe, so that it satisfies the
equations

∇2G+K2G = δ (x− ξ )δ (y−η)I ((x,y) ∈ Ω),

whereI denotes the identity matrix of dimensionN+1. On the lateral boundariesy = ±y0, we impose
the transition conditions

G(x,y0|ξ ,η) = e−2iu0y0G(x,−y0|ξ ,η), ∂yG(x,y0|ξ ,η) = e−2iu0y0∂yG(x,−y0|ξ ,η),

which, we note, are the exact opposite of those satisfied byφ . Finally, we require thatG represents
outgoing waves in the far-fieldsx→±∞.

Using an expansion in the modes e−iumY (m∈ Z), with Y = y−η , the matrix of Green’s functions
G, defined above, is easily found to be

G(x,y|ξ ,η) =
1

4iy0

∞

∑
m=−∞

V−1
m eiVm|X|e−iumY, (4.1)

whereX = x− ξ . The matricesVm = diag{v0,m, . . . ,vN,m} and eiVmx = diag{eiv0,mx, . . . ,eivN,mx} for the
scalar valuesvn,m =

√
k2

n−u2
m, which extends the earlier definition ofv0,s. The single-mode (N = 0)

version ofG has been calculated and utilised previously for periodic three-dimensional geometries with
free-surface flows (see Porter and Porter, 2001) and to form an approximation for the current problem
(see Bennetts and Squire, 2008).

In the representation (4.1) we have implicitly assumed thatthe frequency and angle of the incident
wave do not combine with the spacing of the floes to producev0,m = 0 for somem∈ Z. In such resonant
cases one or more waves travel parallel to the array itself and special attention must be made to construct
a solution method. Using Graf’s addition formula for a similar periodic array, Linton and Thompson
(2007) recently showed that by considering certain quantities as functions of the incident angle and
seeking Taylor expansions they could circumvent the singularities that usually prevent a solution under
resonant conditions. An analogous approach could be adopted in our method to provide solutions for
the cases in which there exists anm∈ Z such thatv0,m = 0, although we do not pursue the idea in our
current study and these isolated situations are disregard for the remainder of this work.

We will make use of Green’s second identity in the form
∫∫

Ω0

{u(∇2v)−v(∇2u)} dxdy =

∫

δΩ0

{u(∂nv)−v(∂nu)} ds, (4.2)

whereu andv are suitably differentiable scalar functions defined over the domainΩ0 with the simple
boundaryδΩ0. Applying equation (4.2) to the vectorΦ and matrixG over the domainΩ/D , in which
we have made the natural extensions of the result to arrays, we deduce the representations

Φ(ξ ,η) = Φ I (ξ ,η)−R
∫ 2π

0

{
(∂rG)Φ −G(∂rΦ)

}

r=R
dθ , (4.3a)

for (ξ ,η) ∈ Ω/D , and

1
2

Φ(ξ ,η) = Φ I (ξ ,η)−R
∫ 2π

0

{
(∂rG)Φ −G(∂rΦ)

}
r=R

dθ , (4.3b)
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for (ξ ,η) ∈ Γ . The vector equivalent ofΦ for the incident wave isΦ I , that is

Φ I (x,y) = (ei(v0,0x+u0y),0, . . . ,0)T .

The latter of these representations provides us with the necessary boundary data with which we may
connectφ with ψ at their common boundary, whereas the first will give us a means of calculating the
velocity potential across the free-surface region once itsvalue and the value of its radial derivative have
been obtained on the ice edge.

For |ξ | > R the matrix of Green’s functionsG is smooth on the contour(x,y) ∈ Γ . Due to the
resulting simplifications in the integral appearing in expression (4.3a), it is possible to writeΦ in a more
appealing fashion, which is

Φ(ξ ,η) =






Φ I (ξ ,η)+
∞

∑
m=−∞

e−iVmξ Rmeiumη (ξ 6 R),

∞

∑
m=−∞

eiVmξ Tmeiumη (ξ > R).

(4.4)

The vectorsRm andTm contain the reflected and transmitted amplitudes respectively and are calculated
from

Rm =
R

4iy0
V−1

m

∫ 2π

0

[
eiVmx{(∂r Φ)− i(cosθVm−sinθumI)Φ}e−iumy

]
r=R

dθ , (4.5a)

and

Tm = δ0,mI1 +
R

4iy0
V−1

m

∫ 2π

0

[
e−iVmx{(∂rΦ)+ i(cosθVm+sinθumI)Φ}e−iumy

]
r=R

dθ , (4.5b)

onceΦ and∂rΦ are known onΓ . Hereδi, j = 0 (i 6= j) andδi,i = 1, andI1 represents the first column
of the identity matrixI . Calculation of the integrals in equations (4.5a–b) will beexplained in further
detail at a later point, as by that stage we will have a simplerexpression for the unknown functions at
the ice edge.

To find Φ when|ξ | < R is a more difficult task as we encounter the discontinuities that exist in the
Green’s functions at the pointx = ξ that require the integrals in equation (4.3a) to be divided into their
respective intervals. For this reason we are unable to separate the field variables from the integrals in
any logical way akin to that which produced expression (4.4). We must also be wary of the singularity
present in the Green’s functions when(x,y) = (ξ ,η), which will lead to slow convergence when the field
variables are in a vicinity of the contourΓ . However, in§4.3, as part of our solution procedure, we will
outline a method for writing the Green’s functions using a Kummer transformation, which allows for
cost-effective integration and may also be applied for the purpose of evaluating the free-surface velocity
potential in this situation.

At this point we emphasise that the method described in this section is applicable to an array in which
the ice floes are of a more general shape than the circular one considered here, and solutions for floes
that will conform to our approach are currently under construction. However, we note that the circular
shape of the boundaryΓ strongly influences the way in which we treat the integrals inequation (4.3b)
and an extension to non-circular floes would require a suitable modification of the solution procedure.

4.2 The ice-covered domain

Next, we consider the ice-covered domainD . The method we will utilise is a modification of that of
Bennetts et al. (2009b), who considered a solitary axisymmetric ice floe.
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Let the unknowns be written in terms of the Fourier expansions

Ψ(r,θ ) ≈
M

∑
m=−M

Ψm(r)eimθ , w(r,θ ) ≈
M

∑
m=−M

wm(r)eimθ , (4.6)

which, for the purposes of numerical calculation, we have truncated to a finite dimension that will
provide sufficient accuracy. Due to the assumed axisymmetryof the geometry, the governing equations
(3.5a–b) decouple into a set of ODEs in the radial coordinatethat may be solved independently for each
Fourier mode. As in Bennetts et al., we choose to write these decoupled equations as the (N+3)-system
of second-order equations

1
r

∂r(rA ∂rUm)+ D̃∂rUm+B(m)Um = 0 (m= −M, . . . ,M), (4.7)

for 0 < r < R, in which a prime denotes differentiation with respect tor. These equations are to be

solved for the vectorsUm = (Ψm,w(1)
m ,w(2)

m )T , wherew(1)
m ≡ wm andw(2)

m ≡ β ∇2wm. The components of
the matrices appearing in equation (4.7) are defined by

{A } j ,i = {A} j ,i, {B(m)} j ,i = {B} j ,i −
m2

r2 {A} j ,i, {D̃} j ,i = {D̃} j ,i (i, j = 1, . . . ,N+1),

{A }N+2,N+2 = {A }N+3,N+3 = 1, {B(m)}i,N+2 = σ IT
i Cf (i = 1, . . . ,N+1),

{A }N+3,N+2 = −(1−ν)
1
r
(∂rβ ), {B(m)}N+2,N+3 = −β−1, {B(m)}N+3, j = −fTC I j

for j = 1, . . . ,N+1, and

{B}
(m)
N+2,N+2 = {B}

(m)
N+3,N+3 = −

m2

r2 , {B(m)}N+3,N+2 = (1−ν)(∂ 2
r β )

m2

r2 +1−σα,

with all unspecified values equal to zero. We have usedI j ( j = 1, . . . ,N + 1) to denote the vector of
lengthN +1 with the only non-zero entry being a 1 in thejth position. The matricesA, B andD̃ were
previously defined in equations (3.6a–c).

At the centre of the floe we require that the solution is bounded. However, the use of the polar
coordinates introduces a singularity at this point. In order to deal with this efficiently in our numerical
solution, we mimic Bennetts et al. by assuming the existenceof a disc of arbitrarily small radiusε
around the centre of the floe, within which the geometry of theice is uniform. These authors then
showed that in this region the vectorsUm can be calculated explicitly as

Um(r) = CJm(r)Am (m= −M, . . . ,M), (4.8)

whereJm(r) = diag{Jm(κ0r), . . . ,Jm(κNr),Jm(µ1r),Jm(µ2r)} is a diagonal matrix containing Bessel
functions of the first kind of orderm, Jm, and whereAm is a currently unknown(N+3)-length vector of
constants. The matrixC is defined by

{C }n,n = 1, {C }N+2,n = σ−1κn−1sinh(κn−1H),

and
{C }n,N+i = {g(µi−1)}n, {C }N+2,N+i = 1, {C }N+3,N+i = −β µ2

i−1,
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for n = 1, . . . ,N+1 andi = 2,3. Here, the vectorg = g(µ) is defined by

Ag+ β (K2+ µ2I)KSf = 0,

whereK = diag{κ0, . . . ,κN} andS= {sinh(κ0H), . . . ,sinh(κNH)}, and the valuesµi (i = 1,2) are the
roots of

(β µ4 +1−σα)+ β fTCA−1(K2 + µ2I)KSf = 0,

that exist in the upper-half complex plane.
By using expression (4.8) forr < ε we have eliminated the singularity introduced by the radial

coordinates analytically. In practice the requirement of an inner disc of uniform geometry does not
compromise the generality of the geometry, as we simply select our desired ice thickness and let the
value ofε tend to zero until we achieve convergence in our results.

We are now required to join our analytic expressions for the solution within the disc of uniform
geometry to the annulus of varying geometry. Bennetts et al.(2009b) showed these conditions to be

[Ψm]ε+
ε− = [A∂rΨm+QΨm]ε+

ε− = 0, (4.9a)

and [
w(1)

m

]ε+

ε−
=
[
w(2)

m

]ε+

ε−
=
[
Bm(w(1)

m ,w(2)
m )
]ε+

ε−
=
[
Sm(w(1)

m ,w(2)
m )
]ε+

ε−
= 0 (4.9b)

for m= −M, . . . ,M, where

Bm(w(1)
m ,w(2)

m ) ≡ w(2)
m − (1−ν)β

(
1
r

∂r −
m2

r2

)
w(1)

m , (4.10a)

and

Sm(w(1)
m ,w(2)

m ) ≡ ∂rw
(2)
m − (1−ν)

{
(∂rβ )

(
1
r

∂r −
m2

r2

)
w(1)

m +
m2

r
β ∂r

(
1
r

w(1)
m

)}
. (4.10b)

Conditions (4.9a) represent approximate versions of the continuity of fluid pressure and velocity, whereas
equation (4.9b) ensures the continuity of position and velocity of displacement, and the continuity of its
bending moment and shearing stress.

To derive boundary data atr = ε for the solutionsUm that satisfy equations (4.7) in the interval of
varying geometryε < r < R we insert expression (4.8) into the continuity conditions (4.9a–b). These
are of most use to us if we manipulate them into the form

Jm(A C )−1A ∂rUm+
{
Jm(A C )−1Q(m) − (∂rJm)C

}
Um = 0 (r = ε), (4.11)

for m= −M, . . . ,M, where the matrixQ(m) is defined by

{Q(m)} j ,i = Q j ,i , (i, j = 1, . . . ,N+1), {Q(m)}N+i,N+i = 1, (i = 2,3),

and{Q(m)}N+3,N+2 = (1−ν)(∂r β )(m/r)2, and is evaluated atr = ε+. The advantage of reformulating
our boundary data to be (4.11) is that the unknown amplitudesAm are not present. Once the solutions
Um have been found these amplitudes are recovered fromCJmA = Um (r = ε).
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Boundary data must also be obtained forr = R. To do this we use the joining conditions (3.7) and
the vanishing of the bending moment and shearing stress. It is a simple matter to show that the two
dynamical conditions decouple to give

Sm(w(1)
m ,w(2)

m ) = Bm(w(1)
m ,w(2)

m ) = 0 (m= −M, . . . ,M)

at r = R, whereSm and Bm are defined in equations (4.10a–b). In order to decouple the joining
conditions we need to make an equivalent Fourier expansion of the velocity potentialΦ at the ice edge,
and we write

Φ(Rcosθ ,Rsinθ ) ≈
M

∑
m=−M

Φmeimθ , ∂rΦ(Rcosθ ,Rsinθ ) ≈
M

∑
m=−M

Φ ′
meimθ .

The modes now separate straightforwardly, and we have the conditions

PT
+Ψm = PT

−Φm, P−1
+

{
AΨ ′

m+QΨm
}

= P−1
− A−Φ ′

m (r = R), (4.12)

for m= −M, . . . ,M.
At this juncture it is only possible to solve for the solutions within the ice-covered domain up to

a set of unknown constants involving the velocity potentialin the free-surface domain and its radial
derivative, both evaluated at the ice edge, and we choose to write

Um(r) = [Um,0(r), . . . ,Um,N(r)]Φ ′
m(R) (ε < r < R), (4.13)

for m= −M, . . . ,M. The vectorsUm,n ≡ [Ψ T
m,n,w

(1)
m,n,w

(2)
m,n]

T (m= −M, . . . ,M, n = 0, . . . ,N) are numeri-
cally calculated solutions of the appropriate differential system (4.7) with boundary conditions (4.11) at
r = ε and

P−1
+

{
AΨ ′

m,n +QΨm,n
}

= P−1
− A−In+1, Sm(w(1)

m,n,w
(2)
m,n) = Bm(w(1)

m,n,w
(2)
m,n) = 0 (r = R).

The values ofΦ ′
m(R) will be recovered in the following section when we bring together the solutions in

the ice-covered and ice-free fluid domains. Finally we note the symmetriesUm = U−m (m= 1, . . . ,M),
which means that only the vectorsUm for m= 0, . . . ,M need to be found.

4.3 Matching at the ice edge

We now have at our disposal the expression (4.13) for each Fourier mode of the unknown functions
within the ice-covered domain,Um (m= −M, . . . ,M), containing the as yet unknown quantitiesΦ ′

m(R)
that are the amplitudes of the equivalent Fourier mode of theradial derivative ofΦ at the ice edge.
Similarly, in the free-surface region we have the integral forms (4.3a–b) for the vectorΦ that depend on
its value and the value of its radial derivative at the ice edge. In order to complete the solution throughout
the channelΩ it is therefore necessary to calculateΦ and∂rΦ ar r = R, and this is achieved by seeking
their Fourier expansions and by matching the representations of the velocity potentials at their common
boundaryΓ .

In the previous section we found that the axisymmetric geometry of the ice floes caused the Fourier
modes of the unknown functions to decouple in that region. However, the array breaks the axisymmetry
of the geometry and, during the matching process, these Fourier modes will become coupled. There-
fore, it is pertinent to begin by amalgamating our representations for the Fourier modes of the velocity
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potentialΨ given in equation (4.13), into the single expression




Ψ−M(r)
...

ΨM(r)


= M̃(r)f1,

where the matrixM̃(r) equals




Ψ−M,0(r) · · · Ψ−M,N(r) 0 · · · 0
0 · · · 0 Ψ−M+1,0(r) · · · Ψ−M+1,N(r) 0 · · · 0
...

. . .
...

0 · · · 0 ΨM,0(r) · · · ΨM,N(r)


 ,

which is of size(2M + 1)(N + 1)-square, and the vectorf1 = ((Φ ′
−M)T , . . . ,(Φ ′

M)T)T . Letting r → R
in the above equation and using the first of the jump conditions (4.12) to eliminate the vectorsΨm

(m= −M, . . . ,M), gives
f0 = M f1, (4.14)

wheref0 = ((Φ−M)T , . . . ,(ΦM)T)T . The matrixM is calculated asM = PM̃(R) where

P = diag{P−T
− PT

+ , . . . ,P−T
− PT

+},

is a block diagonal matrix of size(2M + 1)(N + 1)-square. Thus, we have a(2M + 1)(N + 1)-system
of equations in (4.14) that relates the(2M +1)(N+1) unknown Fourier modes of the velocity potential
in the free-surface region,Φm, evaluated beneath the ice edge, to the(2M +1)(N+1) unknown Fourier
modes of its radial derivative,Φ ′

m.
The remaining(2M +1)(N+1) equations required to solve for thef i (i = 0,1) are provided by our

integral representation ofΦ on the ice edge given in equation (4.3b). If we use our Fourierexpansions of
Φ and∂r Φ and take the 2N+1 inner-products with respect to e−imτ (m=−M, . . . ,M) overτ ∈ (0,2π),
we may then interpret equation (4.3b) as the(2M +1)(N+1)-matrix system

1
2

f0 = fI −R
(
G̃ f0−G f1

)
. (4.15)

In equation (4.15) the vectorfI contains the inner-products of the incident wave, which are

fI =
1

2π




∫ 2π

0
[Φ I eiMτ ]r=R dτ

...∫ 2π

0
[Φ I e−iMτ ]r=R dτ




.

It is possible to rewrite the incident wave in terms of the polar coordinates (see Abramowitz and Stegun,
1964, chapter 9) and we may therefore calculate the non-trivial integrals appearing infI explicitly to be

1
2π

∫ 2π

0
[ei(v0,0x+u0y)e−imτ ]r=Rdτ = eimϑ0,0Jm(k0R) (m= −M, . . . ,M),
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whereϑ is the angle such that tanϑ0,0 = v0,0/u0 existing in the interval 0< ϑ0 6 π/2. Similarly, we
may now also simplify our expressions for the reflection and transmission coefficients given in equations
(4.5a–b) to give

Rp =
πR
2iy0

V−1
p

M

∑
m=−M

eimΘp{Jm(KR)Φ ′
m−K(∂KrJm(KR))Φm}, (4.16a)

and

Tp = δ0,pI1 +
πR
2iy0

V−1
p

M

∑
m=−M

e−imΘp{Jm(KR)Φ ′
m−K(∂KrJm(KR))Φm}, (4.16b)

whereK = diag{k0, . . . ,kn} andJm(Kr) = diag{Jm(k0r), . . . ,Jm(kNr)}. The matrix eimΘp = diag{eimϑ0,p,
. . . ,eimϑN,p}, in which the valuesϑn,m extendϑ0,0 and are defined as tanϑn,m = vn,m/um, where 0<
ϑn,m < π for m∈ Sandϑn,m ∈ iR for m /∈ S.

The matrixG in equation (4.15) is

G =
1

2π




∫ 2π

0

∫ 2π

0
[Gei(−Mθ+Mτ)]r=ρ=R dθ dτ . . .

∫ 2π

0

∫ 2π

0
[Gei(Mθ+Mτ)]r=ρ=R dθ dτ

...
. . .

...∫ 2π

0

∫ 2π

0
[Gei(−Mθ−Mτ)]r=ρ=R dθ dτ . . .

∫ 2π

0

∫ 2π

0
[Gei(Mθ−Mτ)]r=ρ=R dθ dτ




,

and G̃ is identically defined but with the radial derivative∂rG replacingG. By using Graf’s addition
theorem for Bessel functions it is possible to calculate explicit expressions for these matrix entries in a
similar fashion to that used for the entries of the vectorfI . However, it turns out that these expressions
are numerically impracticable and we instead employ numerical techniques to evaluate the integrals
appearing inG andG̃ .

Calculation of these integrals proves to be the most numerically intensive facet of the solution pro-
cess. It is therefore important to understand the difficultyin performing this task so that we may curtail
the cost. A term-by-term numerical integration of the Green’s functions in the series form given in equa-
tion (4.1) would incur numerical expense due to the slow convergence that ensues from the logarithmic
singularity inG at the point(x,y) = (ξ ,η) (see below).

In order to minimise the number of numerical integrations that must be performed, we employ
a method in which we subtract the singular part of the Green’sfunction in the form of a simplified
series, and add it back again as the closed form of this series. This technique is known as a Kummer
transformation (see Nicorovici et al., 1994; Linton, 1998)and we proceed as follows. Let the matrix of
Green’s functionsG of equation (4.1) be given by

G =
∞

∑
m=−∞

Sm, Sm =
1

4iy0
V−1

m eiVm|X|e−iumY,

and note that the series diverges logarithmically at the point (x,y) = (ξ ,η). We define the terms

tm,± =
1

4mπ
e−(±u0+pm)|X|−i(u0±pm)Y, p = π/y0

for m= 1, . . . , so thatS±m∼ tm,±I asm→ ∞, and at(x,y) = (ξ ,η) it is easily shown thatS±m− tm,±I ∼
O(m−2). By summing the series∑∞

m=1{tm,− + tm,+}, we are able to rewriteG as

G = S0 +
∞

∑
m=1

{S±m− tm,±I}+
e−iu0Y

4π
{cosh{u0|X|} ln(q−q+)+sinh{u0|X|} ln(q−/q+)}I , (4.17)
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where the functionsq± = q±(X,Y) are defined byq± = 1−e−p(|X|±iY) . The latter representation ofG
given in equation (4.17) comprises the sum of a series that isconvergent at all points and a function in
closed form. We can now explicitly locate the logarithmic singularity in the term ln(q−q+) and perform
the integration of the singularity contained within this function analytically. The value of this integral is
given in Bennetts and Squire (2008).

A similar expression to our revised form of the matrix of Green’s functions given above must also
be found for its radial derivative. This is achieved by simply taking the derivative ofG with respect tor
from equation (4.17), and upon suitable rearrangement results in

∂rG = S̃0+
∞

∑
m=1

{S̃±m− t̃m,±I}+sgn(X)
e−iu0Y

2y0q−q+
{q0cosh(u0|X|)+ iq1sinh(u0|X|)}e−p|X|. (4.18)

In the above, the matrix terms̃Sm are defined as

S̃m =
1

4y0
(sgn(X)cos(θ )I −umsin(θ )V−1

m )eiVm|X|e−iumY (m= 1, . . .),

and the scalar terms̃tm,± are

t̃m,± = sgn(X)
1

4y0
e∓sgn(X)iθ e−(±u0+pm)|X|−i(u0±pm)Y (m= 1, . . .).

It can be shown that̃S±m− t̃m,± ∼ O(m−2) at (x,y) = (ξ ,η), which means that the series in equation
(4.18) converges at all points. The termsq0 andq1 are given by

q0 = cos(pY−sgn(X)θ )−e−p|X|cos(θ ), q1 = sin(pY−sgn(X)θ )+sgn(X)e−p|X| sin(θ ).

Using a result that was proved in Bennetts and Squire (2008) it can be shown that as(x,y) → (ξ ,η)
alongΓ (that is asθ → τ andr = ρ = R)

q0cosh(u0|X|)+ iq1sinh(u0|X|)

q−q+
→

1
2Rp

(sgn(X)−Rpcos(θ ))− i
u0

p
sin(θ ),

which is bounded. Hence, the function∂rG has no singular points as it traverses the edge of the floe.
The series incorporated in the expressions (4.17) and (4.18) may then be evaluated at all points for

the purpose of numerical integration, and all bounded closed functions are also numerically integrated.
However, the series may still be slowly convergent around the point(x,y) = (ξ ,η), especially for larger
values ofu0 andkn. Therefore, we make use of higher-order Kummer transformations in a neighbour-
hood of this point in which the above series are replaced, forthe purposes of numerical integration, by
more rapidly convergent series and bounded polylogarithmic functions. Detailed explanations of how
this is achieved may be found in Nicorovici et al. (1994) and Linton (1998).

Finally, in our evaluation of the integrals involved in the matricesG andG̃ , we note the symmetries

∫ 2π

0

∫ 2π

0
[Gei(nθ−mτ)]r=ρ=R dθ dτ =

∫ 2π

0

∫ 2π

0
[Gei(mθ−nτ)]r=ρ=R dθ dτ,

∫ 2π

0

∫ 2π

0
[Gei(nθ−mτ)]r=ρ=R dθ dτ = (−1)n+m

∫ 2π

0

∫ 2π

0
[Gei(−nθ+mτ)]r=ρ=R dθ dτ,
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and
∫ 2π

0

∫ 2π

0
[(∂rG)ei(nθ−mτ)]r=ρ=R dθ dτ = (−1)n+m

∫ 2π

0

∫ 2π

0
[(∂rG)ei(−nθ+mτ)]r=ρ=R dθ dτ.

These relations extend to matrices the scalar versions given in Bennetts and Squire (2008).
Note that, unlike equation (4.14), the matrix system (4.15)is not diagonal and therefore couples the

Fourier modes. Having calculated the entries of the vector of integrals of the incident wave,fI , and the
matrices of integrals of the Green’s functions and its radial derivative,G andG̃ , it is now possible to
solve for the vectors of unknownsf0 andf1. To do this we use (4.15) to expressf1 in terms offI andf0,
with

f1 = G −1
( 1

2R
I + G̃

)
f0−

1
R

G −1fI . (4.19)

Using (4.19) to eliminatef1 from (4.14) leaves the system of(2M +1)(N+1) equations

( 1
2R

MG −1 +MG−1G̃ − I
)

f0 =
1
R

MG −1fI , (4.20)

in the(2M +1)(N+1) unknowns contained in the vectorf0, with the known forcing vectorfI .
Using equation (4.20) we may calculate the vectorf0 by means of an inversion of the(2M +1)(N+

1)-dimensional matrix on the left-hand side. We then obtainf1 directly via equation (4.19), which
provides us with the information needed to define the solution in the ice-covered region fully using the
expressions given in equation (4.13).

As we described at the end of§4.1, we split our calculation of the free-surface velocity potential into
the two régimes, defined by|ξ |< Rand|ξ |> R. For the latter we have the representation (4.4), which is
in terms of reflection and transmission coefficients that maynow be explicitly calculated using equation
(4.16a–b). When|ξ | < R we must use our calculated Fourier series representations of Φ and∂r Φ in
the integral representation (4.3a), and all integrations are performed numerically using the Kummer
transformations described in this section.

4.4 The Scattering Matrix

Quantities of particular interest are the amplitudes of thepropagating waves scattered by the array.
Recall that the number of propagating waves that exist in each particular problem depends on the number
of realv0,s, for which we have defined the setS= {s: v0,s∈R}≡ {a, . . . ,b}. The size of this set depends
on the free-surface wavenumberk0, the width of the channel, 2y0, and the chosen valueu0 ∈ (−k0,k0)
that defines the incident angle. Subsequently, the valuesus (s ∈ S) define the angles at which the
waves propagate towards/away from the floe with respect to thex-axis. Therefore, for each geometrical
configuration, there are a finite number of scattered waves that travel at well-defined angles with respect
to the Cartesian frame, and these are the waves that persist in the far-field.

For the purposes of this section we will consider a more general incident wave-field that is comprised
of waves propagating at all of the available angles for the particular problem and from bothx→±∞, so
that

Φ I (x,y) = ∑
s∈S

{Is+Φ̃ I
s+(x,y)+ Is−Φ̃ I

s−(x,y)}, Φ̃ I
s±(x,y) = (ei(±v0,sx+usy),0, . . . ,0)T ,

whereIs± are the incident amplitudes and we have added the tilde to thefunctions to avoid confusion
between the expansion into Fourier modes made in the previous section. The solution in the free-surface
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fluid region may then similarly be decoupled into its response to each of the individual incident waves,
and we write

Φ(x,y) = ∑
s∈S

{Is+Φ̃s+(x,y)+ Is−Φ̃s−(x,y)}. (4.21)

The far-field response of each̃Φ j± = (φ̃0, j±, . . . , φ̃N, j±)T ( j ∈ S) is defined as

φ̃0, j+(x,y) ∼





{ei(v0, j x+u j y) + ∑
s∈S

R(+)
j ,s ei(−v0,sx+usy)} (x→−∞),

∑
s∈S

T(+)
j ,s ei(v0,sx+usy) (x→ ∞),

φ̃0, j−(x,y) ∼





∑
s∈S

T(−)
j ,s ei(−v0,sx+usy) (x→−∞),

ei(−v0, j x+u j y) + ∑
s∈S

R(−)
j ,s ei(v0,sx+usy) (x→ ∞),

andφ̃n, j± ∼ 0 asx→±∞ (n = 1, . . . ,N). The reflection coefficientsR(±)
j ,s and transmission coefficients

T(±)
j ,s may be calculated using equations (4.16a–b).

We can describe the relationship between the incident amplitudes and the scattered amplitudes
through the scattering matrixS, which is defined by

B = SI0, S =

(
R+ T−

T+ R−

)
,

{R±} j−a+1,i−a+1 = R(±)
j ,i ,

{T±} j−a+1,i−a+1 = T(±)
j ,i ,



(i, j ∈ S)

where I0 = (Ia+, . . . , Ib+, Ia−, . . . , Ib−)T is the vector of incident amplitudes andB = (Ba+, . . . ,Bb+,
Ba−, . . . ,Bb−)T is the vector of scattered amplitudes.

Certain properties of the scattering matrix may be deduced as follows. Consider the inner-products
∫∫

Ω/D
{Φ̃T

i A−∇2Φ̃ j − (∇2Φ̃i)
TA−Φ̃ j} dxdy,

for i, j = a±,b±. It is clear from the definitions (4.21) that each of the functions Φ̃m± satisfies the
differential system (3.4) and transition conditions (3.8). Applying Green’s identity (4.2) to these inner-
products and noting thatA− is a real, diagonal matrix we deduce that

∑
s∈S

v0,s{R(±)
i,s R

(±)
j ,s +T(±)

i,s T
(±)
j ,s } = v0, jδi, j + Ii±, j±

∑
s∈S

v0,s{R(±)
i,s R

(∓)
j ,s +T(±)

i,s T
(∓)
j ,s } = Ii±, j∓





(i, j ∈ S), (4.22)

and

Ii, j = R
∫ 2π

0
{Φ̃T

i A−(∂r Φ̃ j)− (A−∂r Φ̃i)
TΦ̃ j}r=R dθ (i, j = a±, . . . ,b±).

As they stand, the identities (4.22) tell us nothing due to the presence of the termsIi, j . However, for
each solution in the free-surface domain,Φ̃s± (s∈ S), there is an associated velocity potential vector
Ψ̃s± in the ice-covered domain defined analogously to (4.21), where the vectorsΦ̃s± andΨ̃s± are linked
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through the jump conditions (4.12). We may therefore rewrite Ii, j in terms of the solutions in the ice-
covered domain, so that

Ii, j = R
∫ 2π

0

{
Ψ̃T

i A∂rΨ̃ j − (∂rΨ̃i)
TAΨ̃ j +Ψ̃T

i D̃Ψ̃ j

}

r=R
dθ ,

in which we have used the symmetry ofA and the propertyQ−QT = D̃. Now, consider the inner-
products of the functions̃Ψi andΨ̃j (i, j ∈ S)

∫∫

D
{Ψ̃T

i A∇2Ψ̃ j − (A∇2Ψ̃i)
TΨ̃ j} dxdy (4.23a)

and of their respective displacements ˜w(p)
i andw̃(p)

j (p = 1,2),
∫∫

D
{(w̃(1)

i ∇2w̃(2)
j − w̃(1)

j ∇2w̃(2)
i )+ (w̃(2)

i ∇2w̃(1)
j − w̃(2)

j ∇2w̃(1)
i )} dxdy. (4.23b)

Manipulations of equations (4.23a–b) involving the relationships{D̃} j ,i = −{D̃}i, j and ∂r{D̃} j ,i =
{B} j ,i −{B}i, j , and Green’s identity (4.2), followed by integration by parts, and imposition of the bend-
ing moment and shearing stress conditions (2.2a–b) on the resulting boundary integrals may be used to
show thatIi, j = 0 in the case of axisymmetric geometry.

The simplified versions of identities (4.22) are analogous to those given by Porter and Porter (2001)
for free-surface flows over three-dimensional periodic topography. As such we see that the relationship
that these authors derived for the scattering matrix in their problem also holds for the scattering matrix
S here, namely

Ŝ
∗
Ŝ = ŜŜ

∗ = I , Ŝ = V 1/2
SV −1/2, V = diag{v0,a, . . . ,v0,b,v0,a, . . . ,v0,b}, (4.24)

whereS
∗ = S

T
denotes the Hermitian transpose of the scattering matrix. Consequently, we also have

that |det(S)| = 1.
Inherent in the first of the relations (4.22) is the conservation of energy condition identity

∑
s∈S

v0,s{|R
±
s, j |

2 + |T±
s, j |

2} = v0, j ( j ∈ S). (4.25)

(cf. Achenbach et al., 1988). As noted in Porter and Porter (2001) this implies that energy conservation
is an intrinsic property of the MMA and therefore only an indication that our calculated approximation
is valid rather than a gauge of its accuracy.

Other observations made by Porter and Porter for the scattering matrix in their free-surface problem
may be reinterpreted for the current case. Firstly, by noting the symmetry of the geometry in they-axis
we find the equality of the reflection and transmission coefficientsR− = R+ andT− = T+. Similarly,
by noting the symmetry of the geometry in thex-axis and using the result (4.24) we can show that
S

T = V SV −1, whence diag{v0,a, . . . ,v0,b}RT
± = diag{v0,a, . . . ,v0,b}R± and diag{v0,a, . . . ,v0,b}TT

± =

diag{v0,a, . . . ,v0,b}T∓. One further result, which is thatS±S± = I , may be gleaned from Porter and
Porter and uses the symmetry of the geometry in thex-axis.

5. Numerical Results

The results that are presented in this section will use truncations that ensure the solutions are converged
and therefore represent the full-linear solution. That is,a sufficient number of vertical modesN (see



20 of 31 L.G. Bennetts & V.A. Squire

equation (3.1)), Fourier modesM (see equation (4.6)), and terms in the Green’s functions (see equation
(4.1)) have been used to perform calculations. We note that the dimensions of truncations required to
gain a converged solution are problem specific. Specific mention of the values used will only be given
when we feel that it is of benefit to the reader.

5.1 Comparison with alternative interaction theory

We have already noted that the problem of a periodic line array of floating elastic bodies has been solved
by previous authors, namely Peter et al. (2006) and Wang et al. (2007). However, these authors used
floes of different geometries to those that we deal with in this work. In particular, it was assumed that
the thickness of the floes is constant and there is no submergence, so the method reported here is more
general and physically accurate in this respect.

Authors Wang et al. combined the bodies in the array by means of a periodic Green’s function, in a
similar fashion to the method that is employed in this work. This contrasts with Peter et al. in which the
interactions are calculated using Graf’s formula, where the bodies may be taken to be of circular shape,
with their individual response found using Peter et al. (2004) or Meylan (2002), for example. This
method is markedly different from our own and its existence provides a stringent test of the accuracy of
our results. Although we are restricted to floes of constant thickness and zero draught in this comparison
due to the solution method of Peter et al., it is the calculation of their interaction through a matrix of
Green’s functions that is the predominant new feature of thepresent work, and its validity may be tested
without the need for more complicated ice floe geometries.

In this section we display a selected set of results that compares the displacement of the floe in the
central channel, as calculated using our own method, to thatfound using a combination of Peter et al.
(2006, 2004). Specifically, figure 2 presents comparisons inthe form of contour plots for three problems.
The problems share the floe radiusR= 50m, constant ice thicknessD = 1m, floe separationy1 = 5m
and frequencyω = 1rad/s. These values have been chosen so that sufficient scattering is occurring to
make this a valid test case and the results that we present here are indicative of a wide range of situations
investigated. The angle at which the incident wave propagates towards the array (with respect to thex-
axis) changes between the subfigures, with the chosen valuesbeingθ̂ = 0, π/6 andπ/3. As the angle
of incidence increases more terms in the Green’s functions are required to maintain accuracy.

The similarity between the results calculated using our method and those of Peter et al., both quali-
tatively and quantitatively, is excellent and it is clear that we are generating the same solutions. This is
true even in the case of incident angleπ/3, where the interaction of the floes is particularly strong.The
small discrepancies that are visible are mainly confined to the vicinity of the edge of the floe, which is
predictable, as at these points the flexure is greatest. For two such fundamentally different approaches
to the calculation of the interaction of floating bodies in aninfinite array, the agreement that we find
here is extremely encouraging.

5.2 The effects of floe spacing

Let us now examine how the space between the floes in the array affects the displacement they experi-
ence. To begin with in this section we will continue to use floes of radiusR= 50m and zero draught,
and will vary their (constant) thickness, the frequency andthe angle of incidence, in addition to the floe
spacing. Results for the corresponding solitary floe, whichare calculated using the method outlined in
Bennetts et al. (2009b), are also given. For all of the parameter values that were tested it was found that
the results of the single-line array tend to those of the solitary floe as the spacing is increased and this
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FIG. 2. Comparison to the Graf’s formula interaction theory of Peter et al.. Each subfigure is a contour plot that displays the
displacement of the floe for a particular problem. The valuesof the displacement are overlain on each subfigure (in metres). In
all problems the floes are of radiusR= 50m, constant thicknessD = 1m, zero draughtd = 0, and have ay1 = 5m separation
from the adjacent floe in the array. The incident wave propagates at an angle: part (a) 0, (b)π/6, and (c)π/3, with respect to the
x−axis. Results using the theory outlined in this work are shown with solid lines, with corresponding results calculated by Peter
et al. shown with dotted lines. The perimeter of the floe is displayed by the grey circle.

provides further evidence that our interaction theory is accurate.
Figures 3–6 show the displacement of the floe that lies in the channelΩ along the contoury= 0 at the

instantt = 0, that isℜe(η). In each figure the same floe thickness and wave frequency are maintained,
with the angle of incidence, as in the previous section, changing from θ̂ = 0, to θ̂ = π/6, to θ̂ = π/3
between the subfigures. We show results for the two ice thicknessesD = 0.5m and 1 m, and the two
frequenciesω = 1rad/s and 1.25rads/s. As the frequency and/or ice thickness increase it is necessary
to use more vertical modes to achieve the same level of convergence, which is expected and consistent
with previous studies (see Bennetts et al., 2007, for example). Each subfigure compares displacements
for four different floe spacings, with the corresponding results for the solitary floe superimposed. We
note that a wider channel allows for a more complicated structure in they-direction and hence more
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FIG. 3. A cross-section of the displacement of the floe that lies on thex-axis at an instant in time. The floes in the array are
of radiusR= 50m, constant thicknessD = 0.5m and zero draughtd = 0. In each subfigure results are given for the spacings
y1 = 5m (dotted curves), 20 m (dot-dash), 100 m (dashed) and 400 m (solid), with the results for the solitary floe superimposed
(solid curves with dots overlaid). The incident wave is of frequencyω = 1rad/s and propagates at an angle: part (a) 0, (b)π/6,
(c) π/3 with respect to thex-axis.

terms need to be used in the Green’s functions.
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FIG. 4. As in fig. 3 but for floes of thicknessD = 1m.

In all cases we can again observe that, as the spacing increases and the interactions of the floes
die out, the displacements tend to that of the correspondingsolitary floe. However, the rate at which
this occurs is dependent on the properties of the incident wave, and those of the array and the floes
that constitute it. For instance, we see that in some cases the interactions of the floes persist for larger
separations with the thicker floes, which may be attributed to the ice edge providing a stronger barrier
to the incident wave and hence generating more significant waves between the floes (see the results for
ω = 1rad/s, figures 3–4). Conversely, for the same reason the thicker floes tend to experience less
displacement and may appear to be less responsive to changesin floe separations (see the results for
ω = 1.25rads/s, figures 5–6).

At the higher frequency,ω = 1rad/s, we find that interactions remain evident for the larger spacings.
This is unsurprising as shorter waves are reflected more strongly by the floes, and also cause greater
activation of the evanescent waves. Furthermore, there is more scope for the appearance of waves
propagating away from the array at angles other than that of the incident wave at higher frequencies.
They therefore lead to more complicated and more sustained floe couplings.

The dominant factor that determines the amount of interaction between the floes in these figures is
the angle at which the incident wave propagates towards the array. For a normally incident wave almost
no interaction occurs beyondy1 = 20m, with the results fory1 = 5m, although distinguishable, similar
both quantitatively and qualitatively to those of the solitary floe. By changing to the oblique incidence of
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FIG. 5. As in fig. 3 but for a frequencyω = 1.25rads/s.

π/6, we do little to change this behaviour, with only the displacement for the 5 m separation, frequency
ω = 1rad/s and ice thickness 1 m displaying noticeably different properties to its counterparts.
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FIG. 6. As in fig. 4 but for a frequencyω = 1.25rads/s.

When the angle is increased toπ/3 the effects of the array become apparent. In all cases the presence
of the periodic geometry now clearly distinguishes the displacement shown by the floes in the array from
that of the solitary floe, even for the 400 m spacing. For this incident angle the flexural response of the
floes in the closely spaced arrays can bear quite different characteristics to the solitary floe. This is
particularly visible for theD = 1m, ω = 1rad/s case with the floe separationsy1 = 5m and 20 m. We
therefore conclude that, for these typical geometries, a significant angle of incidence is necessary for the
interaction of the floes in the array to be evident in the flexure of the floes.

We now turn our attention to the influence of the floe spacing onthe far-field structure of the solution.
As such, in figure 7 we plot the reflection coefficients of the propagating waves over the interval 5–15 s
of wave periods (2π/ω) for floes of thicknessD = 0.25m, radiusR = 10m and zero draught. The
subfigures then move between the floe spacingsy1 = 1m, 5 m, 10 m and 20 m. We note that for these
smaller floes, as compared to the radiusR = 50m used previously, a significantly smaller number of
Fourier modes are required to gain sufficient convergence ofthe solution.

Recall that, due to the periodic geometry being studied, it is possible for more than one propagating
wave to be reflected by the array, with wavenumbers (and henceoblique angles) determined by the
quantitiesv0,s andus (s∈ S). For the geometry used in figure 7, the chosen angle of incidenceθ̂ = π/3
and the chosen interval of frequencies, only one extra propagating wave is generated other than the
primary reflected wave. This is the wave related to the reflection coefficientR0,−1, and only exists for
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FIG. 7. The modulus of the reflection coefficients,|R0| (solid lines) and|R−1| (broken lines or crosses), as continuous functions
of wave period, for an incident angle ofπ/3. The floes are of radiusR= 10m, constant thicknessD = 0.25m and zero draught.
The floe spacing changes between the subfigures, with: part (a) y1 = 1m, (b)y1 = 5m, (c)y1 = 10m, and (d)y1 = 20m.

periods small enough to ensure that

k0 >
π

y0(sin π
3 +1)

. (5.1)

At the period at which this wave ‘cuts-in’,v0,−1 = 0 andu−1 = k0, which describes a resonant wave that
propagates parallel to the array and no solution is available using our method. As we draw near to such a
period we find that results become more expensive to calculate due to larger truncations being required
to achieve convergence. Despite this we are able to produce accurate results for points extremely close
to the resonant frequency and thus determine the nature of the solution in its vicinity. As the period
decreases further the secondary wave reflects away from the array at an increasing angle that approaches
the direction of the primary reflected wave asymptotically as the period tends to zero.

The primary reflected wave is related to the reflection coefficientR0,0 and is present for all periods.
It is clear from the inequality (5.1) that, as the floe separation is increased, the secondary propagating
wave will continue to exist for larger periods, and this feature is evident in the plots. In fact, as the
secondary wave only exists for such a small interval of the wave periods shown on this figure, we found
it necessary to use crosses so that it may be detected. For simplicity, from now on in our figures and
discussion, we relabel the coefficients of the propagating waves asRj ≡ R0, j ( j ∈ S).

The curves that denote the reflected coefficient of the primary wave are smooth and monotonic
over virtually the entire spectrum of periods in the problems considered here. However, at the periods
at which a supplementary propagating wave cuts-in, they do appear to experience ‘spiky’ behaviour.
This is consistent with other studies involving periodic arrays, for example Linton and Evans (1993),
and these authors used an argument based on the energy conservation (4.25) and numerical results to



An array of axisymmetric ice floes 25 of 31

provide strong evidence that the scattered amplitudes are in fact continuous as they pass through these
resonant points. We therefore infer that the|R0|-curves are just non-smooth rather than discontinuous
when|R−1| cuts-in.

Results for the reflection coefficient of the secondary wave are less predictable. For the spacings
y1 = 5m and 10 m, there is a local minimum present in this quantity,with |R−1| ≈ 0 in the case of 10 m
spacing. Although the amplitude of the secondary wave is generally less than that of the primary wave,
as we approach the ‘cut-off’ point for the secondary wave, its amplitude rises rapidly, far exceeding that
of the primary wave, and to a degree depending here on the spacing used. Growth of this quantity is
unsurprising as we are approaching a resonant frequency. Also, it may be inferred that a reflected wave
travelling nearly parallel to the array produces strong effects, particularly for the closely spacedy1 = 1m
array in which the amplitude of|R−1| is greatest.

5.3 Thickness variations and submergence

Up to this point we have only looked at results for arrays in which the constituent floes are of constant
thickness and zero draught. However, our solution procedure allows for the inclusion of axisymmetric
thickness variations and a physically realistic Archimedean draught. Thorough investigations of the
incorporation of these new features into the model of a solitary floe, through the use of the MMA, have
been made previously by Bennetts (2007) and Bennetts et al. (2009b). For this reason it is not necessary
to conduct an extensive study of the effects of thickness variations and submergence, but it is still of
interest to observe what influence their introduction has inthe setting of the current geometry.
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FIG. 8. A cross-section of the displacement of the floe along withthe surrounding free-surface displacement (reflectedx < −R,
transmittedx > R) taken along thex-axis. The incident wave is of frequencyω = 1rad/s and oblique angleπ/6, and the floes are
of radius: part (a)R= 50m, (b)R= 100m, and ay1 = 5m separation. In each subfigure three separate results are shown for floes
of differing thickness. The solid curves display the results for floes of constant thicknessD = 1 m and zero draught. The broken
curves show results for floes that vary quadratically in thickness in the form of equation (5.2), withD0 = 0.5m, l = 0.4m and
u = 0.1m (dashed curves), andD0 = 0.1m, l = 0.7m andu = 0.2m (dot-dash).

Figures 8–9 use four example problems to display the effectsof introducing quadratic thickness
variations of the form

D(r) = D0 +
u+ l

R
(R− r)2; d(r) =

l
R

(R− r)2, (5.2)

whereD0 is the edge thickness,u is the amplitude of the upper surface andl is the amplitude of the
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lower surface. The figures show the displacement of the floes along thex-axis along with the scattered
free-surface profile in a vicinity of the floe, which is calculated using the expression (4.4).

Each subfigure gives results for three different geometries, with one a constant floe of thickness
D = 1 m (solid curves), and two involving floes that increase in thickness quadratically from the edge
of the floe to the centre (broken curves). Both of these floes have a thickness of 1 m at their centre
(r = 0), with one having an edge thickness of 0.5 m (dotted curves)and the other 0.1 m (dot-dash). The
variations are set so that the lower surface of the floe variesmore rapidly than the upper surface. Results
are shown for an oblique anglêθ = π/6, the two frequenciesω = 1 rad/s andω = 1.25rads/s, a floe
separation ofy1 = 5m and the two floe radiiR= 50m and 100 m.
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FIG. 9. As in fig.8 but for frequencyω = 1.25rads/s.

In all cases we see that the inclusion of thickness variations clearly distinguish the profile of the
solution, especially in the more extremeD0 = 0.1m case. However, the behaviour shown in these plots
is complicated and it is difficult to ascertain exact implications of such changes to the floe geometry. We
do note that there is a tendency for greater flexure of the floe at its edge when its thickness is thinner
at this boundary. The same floes then damp the travelling wavemore rapidly towards their centre.
Conversely the displacement of the uniform floes is more evenly distributed.

As the flexure of larger floes is more complicated, it is unsurprising to see that the shape of the
displacement varies to a larger degree in theR = 100m cases. It is also unsurprising to note that the
magnitude of the displacement varies to a greater degree forthe higher frequencyω = 1.25rads/s, as
we expect the reflection caused by the different edge thicknesses to be exacerbated in this case.

Likewise, we note similar differences in the surrounding free-surface profile of the scattered waves.
There is a tendency towards a larger amplitude transmitted wave when the floe is uniform, and corre-
spondingly, a greater reflected amplitude when thickness variations are present. This would imply that
in these cases, the impediment provided by the protruding portion of the floe is responsible for greater
scattering than the thicker ice edge. The qualitative, as well as quantitative, differences of the waves
alter with the changing floe shape for the frequencyω = 1.25 rads/s, and this is particularly evident in
the reflected wave when the radius is 50m.

For the remainder of the results we will look at how the introduction of a realistic floe submergence
affects the induced displacement by the incoming wave and the scattering produced in the free-surface
domain. Here we will consider floes of a uniformD = 1m thickness, for which the Archimedean condi-
tion requires ad = 0.9m draught. It has previously been shown for a solitary floe (see Bennetts, 2007;
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Bennetts et al., 2009b) that the introduction of edge submergence generally causes greater reflection
and hence a smaller floe displacement at relatively short wavelengths but that this behaviour may be
overridden by the fine structure found in the solutions, particularly for three-dimensional models. Here,
we are concerned with how a physically correct draught affects the results within the context of our
periodic structure, especially with respect to changes in the floe spacing and angle at which the incident
wave propagates towards the array.
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FIG. 10. Comparison of results for floes of zero draught (solid curves) against floes with Archimedean draught included (broken).
Plots show cross-sections of the floe displacement along with the surrounding (scattered) free-surface displacement taken along
the y-axis. The incident wave is of frequencyω = 1rad/s and is normally incident. Floes are of radiusR = 50 m, constant
thicknessD = 1m, and separations: part(a)y1 = 40m, (b)y1 = 100m.

Figures 10–11 contain plots of the displacement of the floe inΩ along they-axis together with the
surrounding scattered free-surface profile for zero submergence (solid curves) and Archimedean draught
(broken curves), for four different problems. In all of the problems the floes are of radiusR= 50m and
the frequency isω = 1rad/s. The distance of separation changes fromy1 = 40m to 100 m between the
subfigures, and the different figures show the cases in which the angle of incidence is normal (θ̂ = 0)
andθ̂ = π/6. These choices are made in order that the surrounding free-surface takes up a non-trivial
proportion of they-axis but also, so that the interaction of the floes is worth investigating. Unlike the
previous figures, here it is necessary to use the integral expression (4.3a) to calculate the surrounding
free-surface profile asξ = 0 < R.

In figure 10 the incoming wave is normally incident and we notethat the displacement of the floes
changes only marginally when the separation is varied, which is consistent with our earlier findings.
As predicted, here the floes resist the incident wave, more sowhen they possess a submergence. Ac-
cordingly these floes are a greater source of scattering and we see that the amplitude of the surrounding
waves increases when draught is included. It is unsurprising to note that the profiles of the scattered
waves differ significantly when the distance between the floes changes, but also that there is a qualita-
tive as well as quantitative difference between the waves scattered by the zero draught and Archimedean
draught floes for the largery1 = 100m separation.

The incoming wave takes an angle ofπ/6 in figure 11. Although this leads to greater floe-floe
interaction, which is evident in the change in the displacement of the floe when the separation distance
is varied, the effects of the introduction of an Archimedeandraught are now minimal in regard to both
the floe displacement and the scattered wave profiles. This is, perhaps, surprising, and we will discuss
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FIG. 11. As in fig.10 but for an incident angle ofπ/6.

this phenomenon further shortly. We also note that a greaterproportion of the incident wave is scattered
on the side from which it approaches the floe but that, as the distance between the floes increases and
less floe interaction occurs, this feature diminishes.
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FIG. 12. The modulus of the reflection coefficients,|Rj | ≡ |R0,s| (s∈ S), of the propagating waves as continuous functions of
the wave period, for floes of radiusR= 50 m and constant thicknessD = 1m, comparing results for floes of zero draughtd = 0
(solid curves) and an Archimedean draughtd = 0.9m (broken). The floe spacing isy1 = 40m and the incoming wave is: part (a)
normally incident, and (b)π/6 obliquely incident.

Figure 12 displays the modulus of the reflection coefficientsover the period interval 5–15 s, as in
figure 7, but for a single separation distance and comparing results for zero draught floes and floes
that include an Archimedean submergence. The geometry usedis as in parts (a) of figures 10–11, and
the incident angles correspond to these two figures respectively. Due to the larger floe radius and floe
separation used here in relation to those of figure 7, a greater number of propagating waves are present
in these plots. Also, as the floes are larger (with respect to the incident wavelengths) local extrema are
apparent in these results. Thus the structure of the reflected amplitudes is more complicated in this case
as opposed to the previous such figure.

We note that the overall number of propagating waves generated from both of the incident angles is
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the same here. However, for clarity we have omitted|R−4| and|R−5| from part (b), which only appear
for periods/ 6s. It is not necessary to omit any curves for the case of normal incidence due to the
symmetryRj = R− j . Irrespective of the extrema mentioned in the previous paragraph, the modulus
of the reflection coefficients can appear quite rough over thesmaller periods. This effect is due to the
number of resonant frequencies, at which supplementary propagating waves cut-in/off, that are present
for the geometry and incident waves considered here. As we noted in our discussion of figure 7, the
reflection coefficients are not smooth around these points. However, unlike figure 7, here we do not
fully resolve the spiky behaviour as it would be somewhat obstructive to the study of the introduction of
submergence.

At most points in the spectrum of wave periods considered in this figure, the introduction of Arch-
imedean draught clearly distinguishes its reflection coefficient from its zero-draught counterpart. The
complicated structure of these quantities makes it difficult to draw implications about the changes that
this additional feature causes. However, it is clear that the qualitative nature of the corresponding curves
are similar, with extrema appearing for approximately the same period, although it is at these points at
which the quantitative differences are most pronounced.

For the incident wave period whenω = 1rad/s, namely 2π s, we can relate the values of the reflec-
tion coefficients in figure 12 to the corresponding profiles shown in figures 10–11 parts (a). At this point
the values of the corresponding Archimedean draught/zero draught reflection coefficients are distinct in
the case of normal incidence. This contrasts to the case of oblique incidence for which the respective
reflection coefficients are close, and is consistent with ourfindings for the profiles made earlier. We note
though that this is just an isolated frequency/period, and that at other times the reflection coefficients
for the obliquely incident wave may be further apart and those for the normally incident wave are closer
together. Therefore, the similarity of the results shown infigure 11 cannot be taken as a generic prop-
erty of obliquely incident waves, nor can the changes causedby the introduction of submergence for a
normally incident wave shown in figure 10.

6. Conclusions

A solution method has been outlined for a geometrical configuration that consists of an infinite straight-
line array of equally-spaced, identical ice floes in a fluid domain with a flat bed, which is forced by an
obliquely incident wave. By use of a variational principle and an expansion of the vertical dependence of
the unknown velocity potential, we defined a multi-mode approximation that is capable of reproducing
the full-linear solution to an arbitrarily specified degreeof accuracy. Using this method reduces our
calculations to the horizontal plane only, and we are left tosolve for vectors of unknown functions in
the domains of the free-surface fluid and ice-covered fluid independently, with given jump conditions
that relate these two solutions at their common boundary.

By implementing the periodicity of the solution, we were able to express the velocity potential in
the free-surface domain, and thus capture the interactionsof the floes, in terms of an integral around the
edge of a single floe. The floes themselves were taken to be axisymmetric and we included thickness
variations and a non-zero draught. This allowed us to reuse the solution procedure of Bennetts et al.
(2009b), which we adjusted to account for a more general forcing wave that encompasses the evanescent
waves scattered by the other floes in the array. Matching our representations of the velocity potential
in the ice-covered and free-surface fluid domains at their common boundary enabled us to retrieve the
remaining unknowns and hence complete the solution process.

After validating our method through comparison to the alternative interaction theory of Peter et al.
(2006) in test problems, we used a selection of numerical results to investigate the way in which the
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response and scattering properties of the straight-line array change as certain quantities are varied. It was
found that the angle of incidence of the incoming wave is a primary factor in producing floe interactions,
so that the effects of the array will only be visible for closefloe separations with a normally incident
wave but will persist at large separations when there is a significant angle of incidence. The introduction
of thickness variations and realistic submergence were shown to be capable of altering the response of
the array to the incoming wave. However, overall behavioural changes caused by these new features
were difficult to ascertain, particularly because of the complicated form of the scattering in this periodic
system, in which multiple reflected waves may propagate awayfrom the array. These waves, which
exist only in certain régimes, were seen to be generated with large amplitudes when the floe spacing
was tight and the wave travels in a direction nearly parallelto the array itself.

There is a natural extension to this work in which the geometry consists of a finite number of the
infinite single-line arrays that we have considered herein.This would simply involve matching the
solutions for adjacent single-line arrays at a common interface, where the solution for the single-line
array would need to be extended to a more general incident wave in a similar manner to the way in
which we modified the solution for the solitary floe for use in single-line array earlier. In this multiple-
line array there would be no need for the arrays to be identical, only that they obey the same periodicity
condition. This work is the topic of a separate paper.
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