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A three-dimensional model of ocean-wave scattering in the marginal ice zone is
constructed using linear theory under time-harmonic conditions. Individual floes are
represented by circular elastic plates and are permitted to have a physically realistic
draught. These floes are arranged into a finite number of parallel rows, and each
row possesses an infinite number of identical floes that are evenly spaced. The floe
properties may differ between rows, and the spacing between the rows is arbitrary.

The vertical dependence of the solution is expanded in a finite number of modes, and
through the use of a variational principle, a finite set of two-dimensional equations is
generated from which the full-linear solution may be retrieved to any desired accuracy.
By dictating the periodicity in each row to be identical, the scattering properties of the
individual rows are combined using transfer matrices that take account of interactions
between both propagating and evanescent waves.

Numerical results are presented that investigate the differences between using the
three-dimensional model and using a two-dimensional model in which the rows are
replaced with strips of ice. Furthermore, Bragg resonance is identified when the rows
are identical and equi-spaced, and its reduction when the inhomogeneities, that are
accommodated by the model, are introduced is shown.

1. Introduction
The marginal ice zone (MIZ) is defined as the area of sea ice that is significantly

affected by open ocean processes. In practice this normally delineates an energetic
region that extends several tens of kilometres from the ice edge into the pack ice,
but it can sometimes reach to much greater distances when local ocean-wave activity
is severe. The morphology of the MIZ is quite unlike that of the central Arctic
Basin, where the sea-ice lamella is more continuous and is permeated by meandering
imperfections such as pressure ridges and refrozen leads. In contrast, the MIZ is
composed of many separate ice floes of different sizes and shapes that can move
independently of their neighbours. In regard to floe size distribution, it is well
documented that this mélange is created to a good degree by ocean waves travelling
into the ice cover (see, for example, Squire et al. 1995; Squire 2007), while other
natural processes act to redistribute the ice or hasten its demise through melting.
Waves cause the floes to flex rhythmically with their passing, and when the bending
is too great, the floes fracture. The ice floes tend to be smallest near the ice edge,
where they are rapidly broken up by powerful incoming waves, sometimes being
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pummelled to a slurry, and to increase in stages with distance from the edge until
the destructive nature of the waves has been reduced sufficiently by scattering and
other processes of attenuation so that the floes can reach much larger sizes and
potentially fuse into sheet ice. While there are many MIZs, e.g. in the Greenland Sea,
Barents Sea and Bering Sea in the sub-Arctic, the most sizable example occurs in the
outer loci of the seasonal sea ice of the Southern Ocean surrounding the Antarctic
continent, primarily because wave fetches to the north are so substantial. Of concern,
as the effects of global climate change become established, is an alarming forewarning
that MIZ conditions will become more prevalent (Rothrock, Yu & Maykut 1999;
Cavalieri, Parkinson & Vinnikov 2003; Serreze, Holland & Stroeve 2007). This is
because warmer temperatures and a higher frequency of storms with seas of greater
intensity stimulate positive feedback due to associated ice albedo changes brought
about by the presence of more open water and the concomitant enlarged injurious
payload of penetrating ocean waves.

It is difficult to argue against the need for physical models that represent
MIZ/ocean-wave interactions as accurately as possible, and which are capable of
being tested against the few observations that are available (e.g. Wadhams et al.
1986, 1987). On entering the MIZ, ocean waves are scattered by each ice floe they
encounter, but other processes, such as inelastic bending of the ice, hydrodynamical
turbulence and wave-induced collisions, also act to a varying degree to remove energy
from the wavetrain. Because in the MIZ the concentration and floe size distribution
are heterogeneous, so too is the relative influence of each mechanism. Overall, wave
energy appears to reduce exponentially with distance travelled, with the coefficient
of attenuation being frequency dependent and discouraging the transmission of short
waves. Directional isotropy is reached very quickly (Wadhams et al. 1986), although
experiments have only been carried out in the immediate vicinity of the ice edge and
at modest incursions and not in the ice interior in which some collation of the wave
trains could potentially occur.

Formulating and solving the three-dimensional scattering problem that defines the
evolution of waves in the MIZ is challenging, so most published studies have been
two-dimensional (e.g. Kohout et al. 2007; Kohout & Meylan 2008) or have used Graf’s
interaction theory (e.g. Peter & Meylan 2004, 2007). There is some three-dimensional
work (e.g. Chou 1998; Dixon & Squire 2001; Meylan & Masson 2006), but each
analysis has deficiencies that limit its value as a predictive tool expressing how a
three-dimensional wave field is altered by passage through the MIZ. This paper is a
further step towards minimizing the shortcomings inherent in these earlier models.

For a situation as complicated as the one described above a number of assumptions
are required in order to construct a mathematical representation. From the outset
linearized theory will be applied and time-harmonic conditions imposed. Furthermore,
in keeping with the current wisdom, the floes are modelled using thin-plate theory,
which is justified, as sea ice in the MIZ has horizontal dimensions that far exceed
its thickness. In response to fluid motion, a floe therefore bends and flexes and, in
doing so, transports energy in the form of flexural-gravity waves, which appear as
oscillations at the fluid–ice interface. Sea ice, in the guise of a thin, elastic plate, is
described in terms of a mass and a flexural rigidity as well as in terms of its spatial
dimensions, and its influence on the mathematical problem comes in the form of a
high-order surface condition.

A situation, typical in the MIZ, is envisaged in which an ocean wave penetrates
into a region occupied by an array of floes. Each floe in the array is set in motion by
this wave but is also acted upon by the waves that are diffracted by all of the other
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floes in the array. There is therefore a simultaneous dependency of the floes on one
another that is intrinsic in the scattering problem. As the incident wave travels deeper
into the ice pack it becomes increasingly attenuated due to interactions with the floes,
and in this way the MIZ can protect the landfast sea-ice abutting the coast and,
potentially, any ice shelves that they border from being destroyed, e.g. the Wilkins
on the Antarctic Peninsula. (Note that the latter is the stimulus for the Cooperative
Institute for Research in Environmental Sciences’ Innovative Research Program ‘Is
Absence of Sea Ice a Causal Factor in Recent Antarctic Ice Shelf Break-Ups?’)

The idealized array that is considered in this work is made up of a finite number
of rows, where each row contains an infinite number of identical and equally spaced
circular floes. However, the properties of the floes may differ between the rows.
Individual rows, with various permutations, have been considered previously by a
number of authors. For the current work the solution method of Bennetts & Squire
(in press) is particularly helpful, and a modified version of it will be utilized. This
relies on the implementation of an approximation method, capable of producing the
full-linear solution to any given accuracy, which is generated through the combination
of a variational principle and an expansion of the vertical motion of the problem.
Calculation of the resulting approximation here uses an identity that vastly reduces
the numerical calculations needed in comparison to the original method of Bennetts
& Squire and also allows the irregular frequencies, which could otherwise cause
numerical instability, to be captured.

Each row in the array supports a finite number of propagating waves that travel
at known angles and an infinite number of evanescent waves that decay away from
the rows, and, for a given row, the relationships between these waves are defined
via a scattering matrix that gives the reflected amplitudes in terms of those of the
incoming waves or, alternatively, by a transfer matrix that relates amplitudes on either
side of the row. By restricting the spacing within the rows so that waves supported
by the array, between each pair of adjacent rows, match the single-row problem,
the representations derived for the individual rows will be superposed using transfer
matrices to produce the solution for the entire array in an iterative manner. This
method, which has been used previously by Porter & Porter (2001) for free-surface
flows over periodic bedforms, is numerically efficient and also will allow for some
analytical insight to be gained.

Having set out the governing equations of linear motion and the approximation
method in the following section, in § 3 we outline our solution method. This is
subdivided into the reappraised solution of the single-row problem and the interaction
theory for multiple rows using transfer matrices. The special case of a homogeneous
array, comprised of identical and equally spaced rows, is treated in § 3.5, as further
simplifications arise that benefit analysis of the numerical results in § 4. Initially
though, the numerical results given compare the three-dimensional model that will
be devised in this paper to an analogous two-dimensional model and highlight their
different reflection properties. The full interaction theory is then compared to a
wide-spacing approximation (WSA) that assumes that only propagating waves exist
between rows, and it is found that very little information is lost by making such
an approximation. During § 4 a homogeneous array will be seen to support Bragg
resonance, and it is this feature with which the WSA facilitates analysis. The final set
of results investigate how each of the inhomogeneities that the model admits diminish
these unphysical occurrences.

While the model we present in this paper is not a perfect replica of scattering in
the MIZ, essentially because of the periodicities that are intrinsic to the formulation,
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we do allow each row of floes to be different from the next and we do incorporate
draught properly. These are major complications that bring us closer to having a
model that can faithfully represent the MIZ when acted upon by ocean waves and
eventually be incorporated into global climate models.

2. Preliminaries and multi-mode expansion
Consider a fluid domain of infinite horizontal extent, which is bounded below by

a flat and finite bed. The geometry is described in terms of the Cartesian coordinates
x ≡ (x, y) ∈ �2 in the horizontal plane and z in the vertical plane, which points
upwards. In the absence of ice cover the fluid domain occupies the interval z ∈ (−h, 0),
where z = −h is the position of the seabed. By fixing this surface to be flat our model
ignores the varying seabed as an additional source of scattering, but this is justified, as
the situations that we are interested in will occur in deep water, and thus undulations
on the ocean floor will be negligible in comparison to the presence of ice.

On the otherwise free fluid surface floats an array of ice floes composed of a finite
number, say M , of straight rows, each containing an infinite number of floes, which,
without loss of generality, we assume to be orientated so that they lie parallel to the
y-axis. The rows are then defined as finite intervals of x that are non-overlapping. We
count the rows in ascending order with respect to the x-axis and denote am− < x < am+

as the interval occupied by row m.
For solution purposes, we apply a periodicity condition that fixes the distance

between the floes and requires the floes in a particular row to be identical, although the
floes may differ between the rows. In the present work we will assume that the floes are
circular and of constant thickness and finite draught, although the interaction theory
that we outline in this work is valid for more general floe geometries. In row m the
radius of the floes is denoted am, with their thickness, which is considered known, given
by D = Dm and their equilibrium submergence then being d = dm = (ρi/ρw)Dm = 0.9Dm

in order to satisfy the Archimedean principle, where ρi = 922.5 kg m−3 is the density
of the ice and ρw =1025 kgm−3 is the density of the fluid.

Let the distance between the ‘centre’ of each adjacent floe in the same row be
2y0, where y0 is a chosen constant. The problem is therefore identical for any given
channel in which the domain is restricted in the y-direction to the finite length 2y0.
Of course it would also be straightforward to consider rows in which the spacing is
an integer multiple of 2y0, but we will be content to restrict ourselves to the case of
equal spacing in this work.

Finally, we set the centre of one of the floes in the mth row to coincide with
the point x = xm ≡ (xm, ym), where, clearly, it is possible to restrict ym to the interval
−y0 < ym <y0. We therefore note that am± = xm ± am. The geometrical configuration
that has just been described is depicted in figures 1 and 2.

Under the regular assumptions of linear motions and time-harmonic conditions,
we seek the properties of the fluid from the reduced velocity potential P =P (x, y, z),
where (∂x, ∂y, ∂z)Re{(g/iω)(P e−iωt )} defines the velocity field. Here ω is a prescribed
angular frequency and g ≈ 9.81 m s−2 is the acceleration due to gravity. For all points
x in the horizontal plane, P must satisfy Laplace’s equation

∇2P + ∂2
z P = 0 (x ∈ �2, −h<z < − d), (2.1)

in the fluid domain, where ∇ ≡ (∂x, ∂y), and for convenience, we have extended the
definition of the function d to d =0 when ice cover is absent. On the impermeable
bed the no-flow condition ∂zP = 0 (z = −h) is imposed. For those regions in which
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Figure 1. Schematic showing the geometry in the horizontal plane.
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Figure 2. Schematic showing a cross-section that includes a single floe from row m.

the fluid surface is not occupied by ice, the free-surface condition ∂zP = σP (z = 0)
holds, where σ = ω2/g is a frequency parameter.

A plane wave P (I ) propagates from the far field x → −∞ towards the array at the
oblique angle ϑ with respect to the x-axis, so that it may be written

P (I ) = P (I )(x, z) = ei(v0,0(x−x1)+u0y) cosh{k0(z + h)},
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where u0 = k0 sinϑ , v0,0 = k0 cos ϑ and the quantity k0 is the propagating wavenumber
that will be defined shortly. In response to this forcing, the array scatters a finite
number of propagating waves, and the far field takes the form

P (x, z) ∼
{

ei(v0,0(x−x1)+u0y) +
∑
q∈Q

Rqe
i(−v0,q (x−x1)+uqy)

}
cosh{k0(z + h)} (2.2a)

as x → −∞ and

P (x, z) ∼
{∑

q∈Q

Tqe
i(v0,q (x−xM )+uqy)

}
cosh{k0(z + h)} (2.2b)

as x → ∞. Here the quantities uq = u0 + pq , where p = π/y0 and v0,q =
√

{k2
0 − u2

q}.
We use Q to denote the subset of integers for which the v0,q are real. In the above
expressions Rq and Tq define the amplitudes of the reflected and transmitted waves
respectively and must be obtained as part of the solution process.

When forced by the incident wave, the ice cover itself experiences small-scale
oscillations. We define the resulting position of the underside of the ice cover to be

z = −d + Re{We−iωt} (x ∈ D),

where the displacement function W =W (x) must be found as part of the solution
process and D defines the subset of the horizontal plane in which the fluid is ice
covered. The fluid motion is coupled with the ice displacement through the equations

(1 − σd)W + F∇4W − P = 0 (x ∈ D, z = −d) (2.3a)

and

∇d · ∇P + ∂zP = 0 (x ∈ D, z = −d). (2.3b)

In the former of the above equations the quantity F = YD3/12(1 − ν2)ρwg denotes
the scaled flexural rigidity of the ice. Further parameters have been introduced in this
definition; they are Poisson’s ratio ν = 0.3 and Young’s modulus for ice Y = 5×109 Pa.

Due to the complexity that is presented by the geometry in this problem, we
choose to apply the multi-mode approximation (MMA) derived by Bennetts et al.
(2007). In order to form this approximation the unknown functions are defined
through a variational principle that is equivalent to Laplace’s equation (2.1), the
free-surface and bed conditions and the plate equations (2.3a ,b). This is combined
with an expansion of the vertical dependence of the velocity potential, P , in a finite
number of vertical modes, which then allows the variational principle to average
vertically and, in doing so, generate a new set of governing equations from which we
obtain the MMA. Although it has no vertical dependence, the displacement function is
indirectly approximated in the MMA through its relation to the potential, and we write
w ≈ W .

By taking a sufficient number of vertical modes to represent the vertical motion, the
full-linear solution may be found to any chosen degree of accuracy. However, it has
been shown previously that only a relatively small number of modes are needed to
produce accurate results (see Bennetts et al. 2009b, for example) so that the solution
will be obtained at a low numerical cost.
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To invoke the MMA we therefore write

P (x, z) ≈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
φ(x, z) =

N∑
n=0

φn(x)ζn(z) (x ∈ �2/D),

ψ(x, z) =

N∑
n=0

ψn(x)χn(z) (x ∈ D).

(2.4)

The above approximation has caused a partitioning of the solution into the separate
free-surface and ice-covered fluid domains, through the respective expansions in the
vertical modes ζn(z) = cosh{kn(z+h)} and χn(z) = cosh{κn(z+h)}. Here, the quantities
kn are the roots k of the free-surface dispersion relation

k tanh(kh) = σ,

with k0 real and positive and kn (n= 1, . . . , N) purely imaginary and ordered such
that 0 < − ikn < − ikn+1. The quantities κn are the roots κ of the ice-covered dispersion
relation

(1 − σd + Fκ4)κ tanh(κH ) = σ,

where H =h − d denotes the fluid depth beneath the ice. As with the roots of the
free-surface dispersion relation, we set κ0 to be the unique real, positive root and κn

(n= 1, . . . , N) to be the roots that lie on the positive imaginary axis and order them
in increasing magnitude. The complex roots of the ice-covered dispersion relation can
be ignored when creating approximation (2.4) (see Bennetts et al. 2007 for details).
Changing the thickness of the ice causes the values of d , F and H to change, and
thus the roots κn (n= 0, . . . , N) may vary between the rows.

As the primary mode in the free-surface fluid domain, ζ0, is that which supports
propagating waves, we are able to represent the incident wave exactly in our
approximation, and this allows the radiation conditions to be defined as

φ0(x) ∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ei(v0,0(x−x1)+u0y) +

∑
q∈Q

Rqe
i(−v0,q (x−x1)+uqy) (x → −∞),

∑
q∈Q

Tqe
i(v0,q (x−xM )+uqy) (x → ∞),

(2.5)

and φn ∼ 0 as x → ±∞ (n= 1, . . . , N). Therefore, the only inaccuracies inherent in
the far-field form of the MMA come through the approximate values that will be
found for the reflection and transmission coefficients, Rq and Tq .

In the free-surface region, it remains to solve the Helmholtz equations

∇2Φ + K2
−Φ = 0 (x ∈ �2/D),

where the vector of solutions Φ = Φ(x) = (φ0(x), . . . , φN (x))T and the matrix K− =
diag{k0, . . . , kN}. For the domain D, in which the fluid is ice covered, we now have
the system of second-order equations

C0∇2Ψ + C1Ψ + σC f w = 0 (x ∈ D),

which is coupled with a fourth-order equation

(1 − σd)w + F∇4w − f T CΨ = 0 (x ∈ D).

Here, the vector of unknowns is Ψ = Ψ (x) = (ψ0(x), . . . , ψN (x))T , and we define the
(N+1)-length vector f =(1, . . . , 1)T and matrix C =diag{cosh(κ0H ), . . . , cosh(κNH )}.
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The matrices of coefficients Cj (j = 0, 1) contain averaged values of the vertical
dependence, and their entries are given by

{C0}j+1,i+1 =

∫ −d

−h

χjχi dz, {C1}j+1,i+1 =

∫ −d

−h

χj

d2χi

dz2
dz −

[
χj

dχi

dz

]−d

z=−h

for i, j = 0, . . . , N .
On the boundary of D, say Γ , which divides the region of ice-covered fluid from the

region of free-surface fluid, the continuity of fluid pressure and velocity beneath the
edges of the floes cannot be exactly retained in the MMA. Instead jump conditions,
which are provided by the variational principle, must be applied. These are

CT
+Ψ = CT

−Φ, C−1
+ C0∂nΨ = C−1

− C2∂nΦ (x ∈ Γ ), (2.7)

where

{C+}j+1,i+1 =

∫ −d

−h

χj cosh{κi(z + h)} dz, {C−}j+1,i+1 =

∫ −d

−h

ζj cosh{κi(z + h)} dz

and

{C2}j+1,i+1 =

∫ 0

−h

ζj ζi dz,

for i, j = 0, . . . , N .
The approximate displacement w must satisfy dynamical conditions at the ice edges

to ensure that the bending moment and shearing stress vanish at these points, and
these are expressed as Bw =0 and Sw = 0 respectively, where

Bw ≡ ∇2w − (1 − ν)

(
∂2

s w +
dΘ

ds
(∂nw)

)
(2.8a)

and

Sw ≡ ∂n∇2w + (1 − ν)∂s

(
(∂s∂nw) − dΘ

ds
(∂sw)

)
. (2.8b)

In the above equations ∂s = s · ∇ and ∂n = n · ∇, with s a unit vector tangential to
the edge and n a normal vector that points away from the particular floe and has
direction cosines (cos Θ, sinΘ) (Θ =Θ(s)) with respect to the horizontal Cartesian
frame.

It is now necessary to calculate the vectors of unknowns Φ and Ψ and the function
w from (2.5)–(2.8) in order to define our approximation of the velocity potential (2.4)
and of the displacement function. A method for achieving this will be outlined in the
following section.

3. Formulation
3.1. A single row

Let us begin with the case of a single row (M = 1). The interaction of multiple rows
will then be calculated through a composition of these single-row solutions. For a
single row there is no need to use subscripts to identify quantities as belonging to a
particular row, and we therefore abandon them until extra rows are added.

Without loss of generality, at this stage we may suppose that one of the floes is
centred on the origin x = 0. Using the inherent periodicities of the solution, namely
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that

Φ(x, y + y0) = e2iu0y0Φ(x, y − y0), ∂yΦ(x, y + y0) = e2iu0y0∂yΦ(x, y − y0),

we recast the problem in the channel Ω0 = {x : x ∈ �, −y0 < y < y0} that contains
only one floe, which is located in the disk D0 = {x : |x| <a} and with suitable phase-
change conditions applied on the finite boundaries y = ±y0. It is then a simple matter
to extend to any point outside of this channel by using the periodicity of the solution.

The unknown functions will be expressed in terms of their values on the circular
boundary Γ0 = {x : |x| = a} at which the free-surface fluid meets the ice-covered fluid
within the channel. On this interface the solutions are calculated in the form of the
following Fourier expansions:

[Φ]Γ0
≈

m0∑
m=−m0

Φmeimθ , [Ψ ]Γ0
≈

m0∑
m=−m0

Ψ meimθ ,

where θ ∈ [0, 2π) is the regular azimuthal coordinate. The expansions are truncated
at the finite value m0, which is chosen to gain sufficient accuracy.

Within the circular domain of ice-covered fluid it is natural to use polar coordinates,
and seeking a separation solution gives

Ψ (x) ≈
m0∑

m=−m0

{
Ĵm(r) +

∑
i=1,2

vi cT
m,iJm(μir)

}
Ameimθ (x ∈ D0), (3.1)

where r is the radial coordinate r =
√

(x2 + y2) and the vectors Am are of length
N + 1 and contain, as yet, unknown constants. In expression (3.1) the function Jm

denotes the Bessel function of the first kind of order m, which is also contained in the

the diagonal matrix Ĵm(r) = diag{Jm(κ0r), . . . , Jm(κNr)}. We calculate the quantities
μi (i = 1, 2) as the roots μ of the fourth-order equation

(Fμ4 + 1 − σd) + F f T CC−1
0 (K2

+ + μ2I )K+S+ f = 0,

where K+ = diag{κ0, . . . , κN} and S+ =diag{sinh(κ0H ), . . . , sinh(κNH )}, which lie in
the upper-half complex plane, and the corresponding vectors of length N +1, vi , from

C0vi + F
(
K2

+ + μ2
i I
)
K+S+ f = 0 (i = 1, 2).

The role of the motion associated to μi and vi is in approximating the oscillatory–
evanescent waves that are supported by ice-covered fluid (see Bennetts et al. 2007).
There are a further set of vectors of length N + 1 involved in the definition of Ψ ,
namely cm,i (i = 1, 2), and these are chosen so that the corresponding representation
of the displacement function

w(x) ≈
m0∑

m=−m0

{
σ −1 f T K+S+Ĵm(r) +

∑
i=1,2

cT
m,iJm(μir)

}
Ameimθ ,

satisfies the dynamic conditions (2.8a ,b) on Γ0.
In the free-surface domain the vector of unknowns, Φ , is written in the form of an

integral representation,

Φ(x) ≈ Φ (I )(x) − a

m0∑
m=−m0

∫ 2π

0

Geimτ dτ{J′
m(a)(Jm(a))−1Φm − Φ ′

m}, (3.2)
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for x ∈ Ω0/D0, where Φ (I ) is the forcing vector (left unspecified for the present), Φ ′
m

are the coefficients of the Fourier expansion of [∂rΦ]Γ0
and G= G(x|τ ) is a matrix of

Green’s functions. The above representation incorporates a further diagonal matrix
of Bessel functions, namely Jm(r) = diag{Jm(k0r), . . . , Jm(kNr)}, and a prime on these
matrices indicates differentiation with respect to the radial coordinate.

It is now possible to calculate the unknown quantities Φm and Ψ m (m =
−m0, . . . , m0) by evaluating expressions (3.1) and (3.2) on Γ0 and using the jump
conditions (2.7). Once these have been calculated, it is possible to retrieve the solution
at all points.

By using an integral representation for the solution in the free-surface region, as
in (3.2), Bennetts & Squire (in press) constructed a solution method for a single
row of identical ice floes that vary axisymmetrically in thickness, and the details of
the matrix of Green’s functions, G, and the calculation of the integrals in which it
appears may be found therein. However, unlike this previous work, in which it was
also necessary to calculate integrals involving the radial derivative of the matrix of
Green’s functions, the derivation of (3.2) makes use of the identity

Jm(a)

∫ 2π

0

[∂rG]r=ae
imτ dτ − J′

m(a)

∫ 2π

0

[G]r=ae
imτ dτ =

1

2a
Jm(a)eimθ

to eliminate such integrals, and this constitutes a substantial numerical saving. A
similar identity can be shown to hold for the analogous matrix of Green’s functions
for an unbounded domain, defined as

G0(x|X) =
1

4i
diag{H0(k0|x − X |), . . . , H0(kN |x − X |)},

where H0 is the Hankel function of the first-kind order zero, and the above result for
the matrix of quasi-periodic Green’s functions, G, then follows by expressing it as a
sum of images of G0 (see Linton 1998 for example), so that

G(x|τ ) =

∞∑
m=−∞

G0(x|Xm)e−2imu0y0,

where Xm = (a cos τ, 2my0 + a sin τ ).
Our new expression also exposes the irregular frequencies of the integral

representation, evaluated on the boundary Γ0, as occurring when Jm(k0a) = 0 for
some m. At these points a solution could be obtained by instead using the radial
derivative of (3.2), although we will be content to simply skip them in the current
work.

We also note that there exist resonant frequencies when the periodicity is such that
v0,q = 0 for some q . Such a value indicates that there is a wave that travels parallel to
the array. A means of solving for these isolated frequencies is described in Linton &
Thompson (2007), and although we do not pursue such an idea here, their method
could be adapted to our solution procedure.

3.2. Scattering and transfer matrices

Interactions between adjacent rows consist of both propagating and evanescent waves,
and in order to implement the solution method for a single row, outlined in the
previous section, we must allow for a forcing vector Φ (I ) that accommodates these
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waves. Therefore, we write

Φ (I )(x) =

J∑
j=−J

{
eiVj x A(−)

j + e−iVj x A(+)
j

}
eiuj y,

where the vectors A(±)
j denote the incident amplitudes and J is a finite number

that will be chosen large enough to accurately represent the interactions between
adjacent rows. The diagonal matrix e±iVj x = diag{e±iv0,j x, . . . , e±ivN,j x}, in which the

values vn,j =
√

{k2
n − u2

j } (n= 0, . . . , N; j = −J, . . . , J ) extend the definition of v0,q

(q ∈ Q) given earlier. For q ∈ Q the values v0,q are real and the corresponding
functions e±iv0,q x represent propagating waves that travel at different angles. All other
values of vn,j are purely imaginary and define evanescent waves.

The solution Φ is then similarly decomposed as

Φ(x) =

J∑
j=−J

{[
Φ

(−)
0,j (x) . . .Φ

(−)
N,j (x)

]
A(−)

j +
[
Φ

(+)
0,j (x) . . .Φ

(+)
N,j (x)

]
A(+)

j

}
, (3.3)

where each of the (N + 1)-length vectors Φ
(±)
n,j is a solution of the single-row problem

for the incident wave Φ
(I±)
n,j =e±iVj x Ine

iuj y , in which In represents the (n+1)th column
of the (N + 1)-dimensional identity matrix.

For |x| >a the solutions Φ (±)
n,p may be written in the form

Φ (−)
n,p(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
eiVpx Ine

iupy +

J∑
j=−J

e−iVj x R(−)
n,p,je

iuj y (x � −a),

J∑
j=−J

eiVj x T (−)
n,p,je

iuj y (x � a)

(3.4a)

and

Φ (+)
n,p(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

J∑
j=−J

e−iVj x T (+)
n,p,je

iuj y (x � −a),

e−iVpx Ine
iupy +

J∑
j=−J

eiVj x R(+)
n,p,je

iuj y (x � a).

(3.4b)

The values of the (N + 1)-length vectors of reflection coefficients R(±)
n,p,j and

transmission coefficients T (±)
n,p,j (n= 0, . . . , N; p, j = −J, . . . , J ) are calculated

through integral (3.2) as described in Bennetts & Squire. Similarly, the full solution
may be expanded as

Φ(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

J∑
j=−J

{eiVj x A(−)
j + e−iVj x B(−)

j }eiuj y (x � −a),

J∑
j=−J

{eiVj x A(+)
j + e−iVj x B(+)

j }eiuj y (x � a),

(3.5)

in which the (N + 1)-length vectors B(±)
j (j = −J, . . . , J ) contain the scattered

amplitudes.
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By comparing (3.3) and (3.4a,b) to (3.5) it is easily seen that the relationship between
the incident amplitudes and scattered amplitudes for a single row may be represented
through a scattering matrix S, which is defined by(

B(−)

B(+)

)
= S

(
A(−)

A(+)

)
, S =

(
R (−) T (−)

T (+) R (+)

)
. (3.6)

Here, the (2J + 1)(N + 1)-length vectors

A(±) =

⎛⎜⎜⎝
A(±)

−J

...

A(±)
J

⎞⎟⎟⎠ , B(±) =

⎛⎜⎜⎝
B(±)

−J

...

B(±)
J

⎞⎟⎟⎠
amalgamate the incident and scattered amplitudes respectively, and the (2J +1)(N+1)-
dimensional square matrices R (±) and T (±) contain the reflection and transmission
coefficients, with

R(±) =

⎛⎜⎜⎜⎝
R̂

(±)

−J,−J . . . R̂
(±)

−J,J

...
...

R̂
(±)

J,−J . . . R̂
(±)

J,J

⎞⎟⎟⎟⎠ , R̂
(±)

p,q =
(

R(±)
0,p,q . . . R(±)

N,p,q

)

and

T (±) =

⎛⎜⎜⎜⎝
T̂

(±)

−J,−J . . . T̂
(±)

−J,J

...
...

T̂
(±)

J,−J . . . T̂
(±)

J,J

⎞⎟⎟⎟⎠ , T̂
(±)

p,q =
(

T (±)
0,p,q . . . T (±)

N,p,q

)
.

Due to the symmetry of the circular floes we note that the simplifications R(−) = R(+)

and T (−) = T (+) hold.
Equivalently, we may calculate a transfer matrix P that relates the amplitudes for

x � a to those for x � −a, with(
A(+)

B(+)

)
= P

(
B(−)

A(−)

)
.

The transfer matrix may be obtained from the scattering matrix S and vice versa by
using the second component of (3.6) and

P =

(
T (−) − R(+)inv(T (+))R(−) R(+)inv(T (+))

−inv(T (+))R(−) inv(T (+))

)
. (3.7)

By extending the results on the scattering matrix for a single row that were given
in Bennetts & Squire to include evanescent waves, it may be deduced that due to
the symmetry of the circular floes, the eigenvalues of the transfer matrix P arise in
reciprocal pairs and also in complex-conjugate pairs. This result will be of use at a
later stage.

3.3. Multiple rows

Now consider the case in which there is more than one row in the array (M > 1). For
the mth row we may expand the solution as in (3.5) between the edges of the row
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and the nearest edge of each of the corresponding adjacent rows and write

Φ(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

J∑
j=−J

{
eiVj (x−xm)r (m−)

j + e−iVj (x−xm)l (m−)
j

}
eiuj y (am−1+ � x � am−),

J∑
j=−J

{
eiVj (x−xm)r (m+)

j + e−iVj (x−xm)l (m+)
j

}
eiuj y (am+ � x � am+1−).

(3.8)

For the first or last rows (m = 1, M) the relevant limit is removed, so that
a0+ � x � a1− becomes simply x � a1− for example. The vectors r (m±)

j and l (m±)
j

(m = 1, . . . , M; j = −J, . . . , J ) denote the amplitudes of the rightward- and leftward-
travelling waves to the left-hand side (−) and right-hand side (+) of row m (with
respect to the x-axis). Currently these amplitudes are unknown.

It is straightforward to translate the mth row so that one of its constituent floes is
centred at the origin by using the coordinates x̃ = x − xm, which allows the problem
posed by this row alone to be solved (up to the as yet unknown incident amplitudes)
using the method described in § 3.1. For each row then, the scattering and transfer

matrices, Sm = YmS̃mY−1
m and Pm = Ym P̃mY−1

m respectively may be calculated, for which(
l (m−)

r (m+)

)
= Sm

(
r (m−)

l (m+)

)
,

(
r (m+)

l (m+)

)
= Pm

(
r (m−)

l (m−)

)
, (3.9)

for m =1, . . . , M , where the amplitudes of (3.8) are amalgamated in the vectors r (m±)

and l (m±), with

r (m±) =

⎛⎜⎜⎝
r (m±)

−J

...

r (m±)
J

⎞⎟⎟⎠ , l (m±) =

⎛⎜⎜⎝
l (m±)

−J

...

l (m±)
J

⎞⎟⎟⎠ (m = 1, . . . , M).

The appearance of the 2(N + 1)(2J + 1)-square matrix Ym in the above is due to the
shift of the array in the y-direction and is defined by

Ym = diag{eiu−J ym f T , . . . , eiuJ ym f T , eiu−J ym f T , . . . , eiuJ ym f T }.

Equation (3.9) yields a set of relations that will be used to find the unknown
amplitudes.

At present we do not have enough information, in (3.9) alone, to calculate the
vectors r (m±) and l (m±) (m = 1, . . . , M) that will fully define our solution. However,
note that in (3.8) we have two expressions for each of the intervals between adjacent
floes. Equating these gives the relations

r (m+1−) = eiVlm r (m+), l (m+1−) = e−iVlm l (m+), (3.10)

for m =1, . . . , M − 1, where the (N + 1)(2J + 1)-square matrix

eiVlm = diag{eiV−J lm , . . . , eiVJ lm}

and the scalar values lm = xm+1−xm denote the distances between rows. The amplitudes
in expression (3.8) that do not belong to waves that exist between rows may be equated
to either the incident amplitudes

r (1−) = I0, l (M+) = 0
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or the amplitudes of the waves scattered away from the array, for which we write
l (1−) = R for the reflected waves and r (M+) = T for the transmitted waves. Note that
these vectors contain the amplitudes of the evanescent waves as well as those of
the propagating ones. There are now a sufficient number of equations to match the
unknown amplitudes.

3.4. Solution through iteration

Transfer matrices give us a convenient way to combine the interaction of the rows in
an iterative manner, so that the solution for m + 1 rows can be deduced from that
of m rows. This method reduces the numerical expense by both avoiding inversion
of increasingly large matrices when rows are appended to the array and allowing
previous solutions to be reused when studying the effects of additional rows.

Henceforth, let the transfer matrix that operates over the rows p to q (p <q) be
defined as Pp,q , that is (

r (q+)

l (q+)

)
= Pp,q

(
r (p−)

l (p−)

)
,

and let the matrices

Xm =

(
eiVlm 0

0 e−iVlm

)
(m = 1, . . . , M − 1),

define the phase changes (3.10) that occur between the rows. If an extra row is
appended to the right-hand side of this array then the corresponding transfer matrix,
Pp,q+1, may be deduced by operating the transfer matrix for the (q + 1)th row alone,
Pq+1, and the phase change matrix between the qth and (q + 1)th rows, Xq , on Pp,q ,
so that

Pp,q+1 = Pq+1XqPp,q . (3.11)

For each of these transfer matrices there is an associated scattering matrix, and we
denote the scattering matrix that operates over the rows p to q as Sp,q , for which(

l (p−)

r (q+)

)
= Sp,q

(
r (p−)

l (q+)

)
, Sp,q =

(
R(−)

p,q T (−)
p,q

T (+)
p,q R(+)

p,q

)
.

As previously stated, the scattering matrix may be obtained from the transfer matrix
through (3.6) and (3.7), and using this approach with the form for Pp,q+1 given above,
we find that the entries of the scattering matrix Sp,q+1 are

R(−)
p,q+1 = R(−)

p,q + T (+)
p,q eiVlq

(
I − R(−)

q+1e
iVlq R(+)

p,qe
iVlq
)−1

R(−)
q+1e

iVlq T (−)
p,q , (3.12a)

T (−)
p,q+1 = T (+)

p,q eiVlq
(
I − R(−)

q+1e
iVlq R(+)

p,qe
iVlq
)−1

T (+)
q+1, (3.12b)

R(+)
p,q+1 = R(+)

q+1 + T (−)
q+1e

iVlq
(
I − R(+)

p,qe
iVlq R(−)

q+1e
iVlq
)−1

R(+)
p,qe

iVlq T (+)
q+1 (3.12c)

and

T (+)
p,q+1 = T (−)

q+1e
iVlq
(
I − R(+)

p,qe
iVlq R(−)

q+1e
iVlq
)−1

T (−)
p,q , (3.12d)

where the matrices R(±)
j and T (±)

j contain the reflected and transmitted coefficients
for the j th row. The above relationships mirror those derived for flows over
two-dimensional ripple beds by Chamberlain & Porter (1995) and electromagnetic
scattering by periodic arrays of cylinders by McPhedran et al. (1999).

The transfer and scattering matrices for the entire M rows, P1,M and S1,M

respectively, may now be iteratively calculated using the above relations, moving
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from left to right and beginning at row 1, noting that P1,1 ≡ P1 and S1,1 ≡ S1. At this
point we are able to use S1,M to calculate the scattered amplitudes R and T , which
defines the scattering characteristics of the full array.

Alternatively, we could calculate P1,M and S1,M by working from right to left and
beginning at row M , for which PM,M ≡ PM and SM,M ≡ SM , using relations similar
to (3.12a–d ) that are based on Pp−1,q = Pp,qXp−1Pp−1. These alternative left-to-right
and right-to-left methods may then be combined to produce the amplitudes within
the array in terms of the incident amplitudes alone. Using the transfer matrix that
operates from row 1 to row m with that which operates from row m to row M we
find that

r (m−) =
(
I − R (+)

1,meiVlmR (−)
m+1,MeiVlm

)−1{
T (−)

1,mr (1−) + R (+)
1,meiVlmT (+)

m+1,M l (M+)
}

and

l (m+1+) =
(
I − R (−)

m+1,MeiVlmR(+)
1,meiVlm

)−1{
R (−)

m+1,MeiVlmT (−)
1,mr (1−) + T (+)

m+1,M l (M+)
}
,

for m =1, . . . , M−1, with the corresponding amplitudes r (m+) and l (m−) then calculated
through simple phase changes.

3.5. The homogeneous problem

If the rows that we are considering are aligned and contain identical floes, so that
Pi = Pj ≡ P (i, j = 1, . . . , M), and are equally spaced, so that li = lj ≡ l and Xi = Xj ≡ X
(i, j = 1, . . . , M − 1), then we can simplify the expression for the transfer matrix P1,M .
With these restrictions in place, (3.11) gives

P1,M = X−1/2P̂
M

X−1/2, P̂ = X1/2PX1/2.

By using the properties of the eigenvalues of the transfer matrix for a single row
stated earlier, which are consequences of the symmetry of the geometry, we may
adopt the diagonalization

P̂ = H

(
� 0

0 �−1

)
H−1,

in which the matrix H contains the eigenvectors of P̂ and � its eigenvalues that lie
either within the unit circle or on the upper half of the unit circle. Therefore, the
above expression for the transfer matrix simplifies further still to

P1,M = X−1/2H

(
�M 0

0 �−M

)
H−1X−1/2.

The scattering matrix may then be calculated from P1,M as

S1,M = −X̂

(
H1 −�MH2

�MH2 −H1

)−1(
H2 −�MH1

�MH1 −H2

)
X̂, (3.14)

where

X̂ =

(
e−iVl/2 0

0 e−iVl/2

)
, H−1 =

(
H1 H2

H2 H1

)
.

This strategy (devised by Porter & Porter 2001) is numerically stable, as it avoids
use of the growing terms that are present in �−M . The above forms for the transfer
and scattering matrices will be of use in the following section to help analyse the
resonances found during numerical simulations.
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4. Numerical results
The results presented in this section are all non-dimensionalized with respect to the

periodicity length scale 2y0. It is therefore only necessary to quote the non-dimensional
incident wavenumber k̃0 = 2y0k0, floe radii ãm = am/2y0, ice thicknesses D̃m = Dm/2y0,
fluid depth h̃ =h/2y0 and row centres x̃m = xm/2y0 (m =1, . . . , M) in order to define a
problem. Note also that the Young’s modulus must be scaled as Y/2y0. For clarity, the
tilde notation that has just been introduced to define the non-dimensional parameters
will be dropped. The non-dimensional fluid depth, which is of subordinate importance
in our upcoming investigation, is set as h = 0.4.

During this section we will often refer to the full approximation. This indicates
that we have used a sufficient number of evanescent waves in the interaction theory
to ensure that our approximation has converged to the full-linear solution to a
desired accuracy. The number of evanescent waves that must be considered will vary
according to a number of parameters, in particular the wave frequency. Here, the
maximum number of vertical modes that we consider is N = 16, and the maximum
truncation on the waves supported by each vertical mode is J =2. Of course, the
dimension of the vertical space we implement also controls the accuracy of the
solution for the individual rows.

Previous studies of the propagation of waves through the MIZ (see Kohout
et al. 2007, for example) have been based on two-dimensional models, thus assuming
no variation of the ice cover in one spatial dimension. The geometry is therefore
composed of strips of ice, and it is of interest to observe how these models compare
with the one considered in this work, in which the MIZ is idealized as an array of
individual floes.

Using the solution method of Bennetts et al. (2007) for a single two-dimensional
floe, it is possible to replace the periodic arrays of rows in the current problem with
strips of ice. The interaction theory is then, in fact, merely a degenerate case of the
multiple-row problem, as in the two-dimensional model, waves may propagate only
in a single direction.

In figure 3 we compare results for identical and equi-spaced rows of floes to those
of the analogous problem in which the intervals am− <x <am+ (m =1, . . . , M) contain
strips of ice. Six cases are displayed. In each there are six rows (or strips) and the ice is
of non-dimensional thickness D ≡ Dm = 0.02 (m = 1, . . .M), with the rows (or strips)
separated so that l ≡ lm = 0.2 (m = 1, . . .M − 1). We investigate the non-dimensional
values of radius a ≡ am = 0.15, 0.3 and 0.45 (m = 1, . . . M) and the incident angles
ϑ =0 and 60◦.

The quantity E that is displayed in figure 3 is the normalized energy reflected in
the direction of the primary reflected wave, defined by E = (1/v0,0)

∑
q∈Q v0,q |Rq |2,

and is plotted as a continuous function of the scaled (non-dimensional) wavenumber
K = k0/π. It is clear in all cases that the strips of ice generally reflect a larger
proportion of the incident wave than the rows of floes. As would be expected, this
feature is strongest for the smaller values of the non-dimensional radius, for which
the floes are smaller and there is a wider spacing of the floes within the rows.

For the normally incident waves, the qualitative nature of the reflection produced
by the rows is similar to that of the strips, with the respective maxima often closely
matching in position and proportion. It can be noted however that for K > 2 when
a =0.45, while the strips attain total reflection, E ≈ 1, there is still a fine structure
present in the energy reflected by the rows, possibly due to the many length scales
that exist in this model. On the contrary, for the obliquely incident wave, we see vastly
different results given by the rows and the strips. This is largely due to the rapid
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Figure 3. Comparison of the energy E reflected by six identical rows (solid lines) against
analogous strips of ice (dashed lines), over a range of the scaled wavenumber K = k0/π. The
ice is of non-dimensional thickness D = 0.02, and the rows and strips are l = 0.2 apart. The
non-dimensional radius is (a, d ) a =0.15, (b, e) a = 0.3 and (c, f ) a = 0.45, with the incident
wave angle set as (a–c) ϑ = 0 and (d–f ) ϑ = 60◦.

attainment of grazing incidence, at K ≈ 1.4, by the geometry containing strips of ice,
for which no propagating wave is induced in the ice and consequently all energy is
reflected, a phenomenon that is not present in the multiple-row model. It appears
from these results that in all but the a = 0.15 case for which the normally incident
wave causes stronger reflection, the angle of incidence has little effect on the overall
amount of energy reflected in the chosen range of wavenumbers. However, the chosen
angle does vary the number and position of the maxima produced by the arrays.

To construct the scattering caused by multiple rows, in this work we have considered
interactions of both the propagating waves and a finite number of the evanescent
waves, so that we produce the full-linear solution to an arbitrary degree of accuracy.
However, as evanescent waves decay rapidly away from the rows, it is expected that for
sufficiently spaced rows, the only non-trivial interactions will involve the propagating
waves. It is a simple matter to investigate this by restricting the scattering matrix S
to contain only entries pertinent to the propagating waves and basing our interaction
theory of the approximate transfer matrix that ensues. This method is often known as
a WSA and is standard in scattering by multiple ice floes (see Bennetts et al. 2009a,
for instance), as its use allows for a reduction in the numerical cost of calculating
interactions and it is also possible for some analytical insight to be gained.

Figure 4 compares the value of the reflected energy produced by the WSA against
that of the full approximation. Figure 4(a) plots E as a function of scaled wavenumber
K , using an incident wave that travels at the angle ϑ = 60◦ with respect to the x-axis
and for geometry consisting of identical rows of non-dimensional radius a = 0.45 and
thickness D =0.02 and equi-spaced such that l =0.2. Results are shown for M = 2, 4
and 6 rows. The performance of the WSA here is excellent, with its results virtually
overlapping those of the full approximation over the range of chosen wavenumbers.
Slight deviations are seen only for the larger wavenumbers (K > 2), and there is no
evidence of accumulation of errors as the number of rows is increased.
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Figure 4. Comparison of the reflected energy, E, produced by the WSA (crosses) against
that of the full approximation (solid curves). In (a) the geometry consists of M = 2, 4 and 6
identical rows of floes of non-dimensional radius a = 0.45 and thickness D =0.02, that are
equi-spaced with l = 0.2, and E is given as a function of scaled wavenumber K = k0/π. In
(b) M = 2 of these rows is used and E, as a function of their non-dimensional separation
0 < l < 1, is plotted for K = 2.5. The incident angle is ϑ = 60◦ throughout.

In figure 4(b) the energy is plotted for the largest wavenumber in our chosen range
(K = 2.5) using the two-row geometry considered in figure 4(a) but with the non-
dimensional distance between the rows now varied over the interval 0 < l < 1. Even
for this relatively large wavenumber, the accuracy of WSA is generally exceptional.
With the spacing as small as l = 0.05 the deviation between the WSA and the
full approximation is minimal. As the rows move away from one another accuracy
improves, so that by l ≈ 0.65 the two are indistinguishable. Although, conversely, the
accuracy of the WSA diminishes as the rows become very close, the error is still only
marginal, except for within a small interval of distances centred around the point
l =0.0264. Here the full approximation displays a spike that is not reproduced by the
WSA. This implies that for closely spaced rows and a sufficiently large wavenumber,
it is possible for the interactions of the evanescent waves to produce a near resonance
that affects the magnitude of the energy reflected by the rows, which in order to
capture in our solution method requires the use of the full transfer matrices.

Note that in the previous figures that plot energy against the scaled wavenumber,
K , relatively large responses over certain intervals are prominent. This is particularly
evident in figure 4(a), in which we see the build-up of reflected energy as the number of
rows is increased around the points K ≈ 1.4 and K ≈ 2.5. Within a periodic structure,
the phenomenon of growth of reflected energy when the number of constituent
periods increases is known as Bragg resonance. Bragg resonance is well established
in a number of research areas and has recently been shown to occur strongly in
scattering by two-dimensional periodic variations embedded in a continuous ice sheet
(see Bennetts et al. 2009a).

In figure 5 we further investigate the occurrence of Bragg resonance in our multiple-
row model by utilizing the WSA. Figure 5(a) shows the energy carried by the individual
reflected waves, |Rq |2 (q ∈ Q), using both the WSA and the full approximation.
The geometry is periodic and consists of M = 4 rows of floes with radius a =0.45,
thickness D = 0.02 and the rows spaced so that l = 0.2. This is forced by an incident
wave that propagates parallel to the x-axis (ϑ = 0), which for K > 2 induces two extra
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Figure 5. An investigation of the Bragg resonance produced by identical and equi-spaced
rows of floes. In (a) the energy of the reflected waves, |Rq |2 (q ∈ Q), produced by M = 4
rows using the WSA (crosses) and the full approximation (solid line) as a function of scaled
wavenumber K = k0/π, is plotted. The floes are of non-dimensional thickness D = 0.02 and
radius a = 0.45, and the rows have the non-dimensional separation l = 0.2. The corresponding
moduli of the diagonal entries of the matrix � used in the WSA are displayed in (b).

propagating waves with amplitudes R±1. Due to the symmetry of the problem these
waves are merely reflections of one another in the x-axis, implying that R1 = R−1.

As we have seen previously, the accuracy of the WSA is excellent for all K in the
chosen interval, although here it does slightly overestimate the peak centred around
K ≈ 1.94. Even for this small number of rows, appreciable Bragg resonance over large
intervals of K are manifest in the peak just beneath K = 1, with the above-mentioned
peak just beneath K =2 and for K > 2.35. These resonances are associated to the
so-called Bragg values v0,0 = π/l̂, v0,0 = 2π/l̂ and v0,0 + v0,1 = 4π/l̂ respectively (see

Porter & Porter 2001), where l̂ =2a + l = 1.1 is the periodicity in the x-direction.
In this problem, these Bragg values occur for the scaled wavenumbers K = 0.9091,
K = 1.8182 and K = 2.37 respectively. The resonance caused by v0,0 + v0,1 = 2π/l̂,
which occurs just after the additional waves cut-in at K =2, would appear to be
overridden by that of v0,0 = 2π/l̂. It is common in problems in which significant
scattering occurs, such as this one, that resonances are centred close to Bragg values,
rather than at Bragg values themselves. Here we see a tendency for the resonance to
be centred at longer wave periods than the Bragg value would indicate.

We can examine the production of Bragg resonance by studying the eigenvalues of
the transfer matrix used to produce the WSA. Drawing inferences from this restricted
matrix is a far more appealing proposition than analysing its counterpart for the full
approximation. Figure 5(b) displays the magnitude of the eigenvalues that make up
the diagonal entries of the matrix �, that is the eigenvalues that lie within the unit
circle or on the unit circle and above the real axis. As the size of the transfer matrix
corresponds to the number of propagating waves, � is a scalar for K < 2, whereas �

contains three eigenvalue entries for K > 2.
It is clear that the resonances seen in figure 5(a) correspond to intervals in which

all of the eigenvalues lie within the unit circle. In such cases �M ≈ 0 for large enough
M , and therefore, with reference to the form of the scattering matrix given in (3.14),
we can deduce that the transmitted amplitudes T ≈ 0. When only a solitary wave is
transmitted by the rows T ≡ T0, and we can easily deduce through energy conservation
that the magnitude of the corresponding reflected wave will be |R0| ≈ 1 for a sufficient
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Figure 6. The reflected energy, E, for M =2 identical rows of floes with a shift introduced in
the y-direction. The non-dimensional thickness D = 0.02, radius a = 0.45 and row separation
l = 0.2 are used. The reflected energy is plotted as a function of the shift y1 for the three
incident angles ϑ = 0 (solid line), ϑ = 30◦ (dashed line) and ϑ = 60◦ (dotted line), with the
scaled wavenumber fixed as K = 1.25 in (a) and K = 2.5 in (b).

value of M . Therefore, it can be inferred that the two Bragg resonances in figure 5(a)
beneath K = 2 will grow still further if the number of rows used is increased, with
clearly fewer additional rows needed for the second resonance than the first.

If more than one propagating wave is reflected, the energy is distributed amongst
these waves, and although we will find that E ≈ 1 when T ≈ 0, it does not follow that
|Rq | =1 (q ∈ Q). Instead, their values can be sought via expression (3.14), and in
doing so, we find that in contrast to the two other resonances, the resonance above
K =2 has already converged to this bound. It thus appears that for multiple rows,
Bragg resonance is greater for larger values of wavenumber. This is contrary to many
previous studies in which the primary Bragg resonance is usually the strongest. What
is seen here can be attributed to the increasing reflection that occurs at an ice edge
as the wavenumber gets larger.

Thus far, the geometrical configurations for which we have presented results have
been restricted to only those that involve identical rows. However, our model has been
constructed so that more general geometries can be considered. In particular, rows
may differ through the thickness and radius of their constituent floes. Furthermore, the
spacing of the rows may be varied and their alignment altered by introducing shifts in
the y-direction. It is of interest to observe how the addition of such inhomogeneities
affects the scattering process, especially in respect to the production of resonances.

We begin by investigating the effects of a shift in the y-direction on the energy
reflected by multiple rows. Figure 6 plots the energy reflected by two identical rows,
as a function of the alignment parameter y1, for the three incident wave angles ϑ =0,
30◦ and 60◦. The non-dimensional thickness of the floes used here is D = 0.02, with
their non-dimensional radius a = 0.45 and the row spacing such that l = 0.2.

In figure 6(a) results are shown for the scaled wavenumber K = 1.25. It is striking
that only the energy of the ϑ = 60◦ incident wave varies when the alignment of the
rows changes. Such behaviour is to be expected though, as incident waves of angles
ϑ =0 and 30◦ do not generate any additional angles between the rows for which waves
may propagate, other than that of the incident wave. Thus, the interactions between
rows are dominated by propagating waves travelling in a single plane, meaning
that the nature of the problem is essentially two-dimensional and any shift in the
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Figure 7. Comparison of the reflected energy, E, as a function of K = k0/π produced by (a, d )
a homogeneous array with averaged values of (b, e) unaligned and (c, f ) irregularly spaced
rows. The rows are identical with non-dimensional thickness D = 0.02 and radius a = 0.45.
When the rows are equi-spaced, their separation is l = 0.2, and when they are irregularly
spaced the average separation remains consistent. The case of M = 10 rows is shown in (a–c)
and that of M =20 rows in (d–f ). The incident wave angle is ϑ = 30◦.

y-direction will be trivial. This contrasts with the ϑ =60◦ incident wave that produces
two propagating wave angles between the rows, and consequently interactions will
depend on their alignment.

The problems considered in figure 6(b) are similar to those of figure 6(a) but
for a larger value of the scaled wavenumber, K = 2.5. For all three incident waves,
multiple propagating wave angles are generated between the pair of rows, and it can
be seen that changes in alignment can cause large variations in the energy that they
reflect. One additional angle arises for the ϑ = 30◦ incident wave, and the shape of the
corresponding curve appears sinusoidal, which is similar to the ϑ = 60◦ curve of figure
6(a) that shares the same number of propagating wave angles, whereas the normally
incident wave and the incident wave of angle ϑ =60◦ each produce two additional
wave angles, and this results in complicated behaviour of the energy reflected by the
rows as the alignment changes, with both displaying regions of high variation and of
negligible change.

By incorporating inhomogeneities, such as non-alignments, in the properties of
the array, it is expected that resonant effects will be moderated, and we will thus
find a better representation of how waves are scattered in the MIZ. Following our
investigation of introducing a shift in the y-direction between two rows, in figure 7
we look at the effects of changing the position of rows, in respect to their alignment
and separation, in a larger array. Over a range of the scaled wavenumber K ,
figure 7(a–c) and figure 7(d–f ) both compare the energy of a ϑ =30◦ incident wave
reflected by a homogeneous array composed of identical, equi-spaced and aligned rows
with two similar arrays, one containing variations in its alignment, the other in its row
separation. The results given for these inhomogeneous arrays use the average of 100
random simulations. All of the arrays use the non-dimensional ice thickness D = 0.02
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Figure 8. Comparison of the reflected energy, E, as a function of K = k0/π produced by a
homogeneous array with averaged values of similar arrays but containing non-identical rows.
Panels (a–c) show M =10 rows of non-dimensional radius a = 0.45, equi-spaced with l = 0.2,
(a) for identical rows D1 = . . . = D10 = 0.02, and averages at which the thickness ranges (b)
from D = 0.011 to D = 0.029 and (c) from D = 0.002 to D =0.038. Panels (d–f ) show M = 10
rows of non-dimensional thickness D = 0.02, equi-spaced with l = 0.2, (d ) for identical rows
of radius a1 = . . . = a9 = 0.3, and averages at which the radius ranges (e) from a = 0.225 to
a = 0.375 and (f ) from a = 0.15 to a = 0.45. The incident wave angle is ϑ = 30◦.

and radius a = 0.45. The equally spaced arrays use the separation l = 0.2, and the
unequally spaced arrays are restricted so that their average spacing is also 0.2.

In figure 7(a–c) M = 10 rows are used, and in figure 7(d–f ) the array is made
up of M = 20 rows. As predicted by figure 6(a), for values of wavenumber small
enough that only one propagating wave angle is generated, here approximately
K < 1.3, the reflection caused by the arrays containing shifts in the y-direction is
identical to that of the homogeneous array. In comparison, the arrays with non-
uniform row separations display different properties than that of the homogeneous
array, with, most notably, the primary resonance, around K = 1.05, absent. For larger
wavenumbers both the unaligned and the unequally spaced arrays predict entirely
different reflection characteristics than those of the homogeneous array. Whereas the
latter is dominated by the two resonances, for the inhomogeneous array the energy
distribution is more evenly spread over the range of wavenumbers in a series of peaks.
Presumably the noise present in these averaged results is a product of the length scales
that remain in the arrays and could be eradicated by sampling from a more diverse
set. An estimate of the reflection caused by the MIZ as a function of wavenumber
could then be extracted, and this idea will provide the basis for a forthcoming work.

Further inhomogeneities are studied in figure 8, which here take the form of
differences in the properties of the floes. In figure 8(a–c) we consider the effects
on the reflected energy of a changing floe thickness in the different rows. One
curve shows the reflection of a ϑ = 30◦ incident wave, produced by a homogeneous
array comprising M = 10 identical rows, with non-dimensional ice thickness D = 0.02
and radius a = 0.45, equi-spaced by the non-dimensional length l = 0.2. For the
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two additional curves the problem is identical, except that the thickness of the
floes in each row is different. The non-dimensional thicknesses are chosen from
either the set Dm ∈ {0.011, 0.013 . . . , 0.029} or the set Dm ∈ {0.002, 0.006, . . . , 0.038}
(m = 1, . . . , 10), so that their mean thickness, D = 0.02, matches the thickness of the
floes in the homogeneous array.

The curves displaying the reflection by the geometry with varying thickness take
the average of 100 random samples of the order of the rows. It is apparent that
the redistribution of the ice thickness amongst the rows does not alter the amount
of energy reflected by the array to a great extent, with the reflection from the
array in which thicknesses are chosen from the least perturbed set being virtually
indistinguishable from that of the identical rows. In particular, the position of the two
Bragg resonances, which appear beneath K = 1.5 and K =2.5 respectively, remain for
the arrays with varying thickness. This is perhaps unsurprising, as the same length
scale l̂ exists in all three problems. We do however note that the resonances are
damped in the case of the larger variations.

Figure 8(d–f ) compares M = 9 identical rows of floes with non-dimensional
thickness D = 0.02 and radius a = 0.3, against similar geometries but ones for
which the radius is varied. Here, the radii are selected from either the set
am ∈ {0.225, 0.3, 0.375} or the set am ∈ {0.15, 0.3, 0.45} (m = 1, . . . , 9), restricted
so that their average is fixed at a = 0.3, as in the identical-row geometry, and again
the curves presented use an average of 100 randomly generated instances. As in figure
8(a–c), in all geometries the rows are equi-spaced with l =0.2 and the incident wave
propagates at the angle ϑ = 30◦ with respect to the x-axis.

We again see that the resonance that exists for the homogeneous array persists in
the arrays containing rows of different properties. However, the changes to the radius
here produce more significant effects than changes to the thickness seen in figure
8(a–c), and the resonance becomes increasingly damped in amplitude and spreads
over a larger interval of wavenumbers as the rows become more varied, which is due
to changes in the length scale l̂. A trend for increasing reflection also develops at
the right-hand end of the range of wavenumbers and is far more prominent when
the variation in the radii is larger. By including an increasing amount of variation in
the radius of the floes, the quantity of energy reflected by the array appears to be
tending towards a relatively steady growth as the wavenumber gets larger.

Changes to the properties of the floes can and will be considered along with the
non-uniform spacings explored in figure 7 when designing models of MIZs. As we
have just demonstrated, the introduction of variations in the radius of the floes
used diminishes the effects of resonance that is produced in a homogeneous array.
However, it appears that changes in the thickness of the floes around an average
value are only of minimal importance.

5. Conclusions
In this work we have constructed a model of the scattering of ocean waves in the

MIZ in the form of multiple rows of ice floes. Each row contains an infinite number
of identical and equally spaced floes, and although the properties of the floes are
permitted to vary between the rows, a common periodicity length scale was required.
For the purposes of this study, the floes themselves were supposed to be circular and
of uniform thickness, and an accurate Archimedean draught was incorporated.

To begin the solution procedure, the vertical coordinate was removed by applying
an expansion in a finite set of modes within a variational principle. This left a finite
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set of equations to be solved in the horizontal plane only, separated into the respective
ice-covered and ice-free fluid domains. The solution to the multiple-row problem was
then built up from that of the individual problems posed by its constituent rows, by re-
cognizing that the waves incident on each row are those scattered by its adjacent rows.

For a single row, periodicity was applied, and this allowed the problem to be
recast in a channel containing only a solitary floe. An analytical expression was then
deduced for the unknowns within the disk of ice-covered fluid along with an integral
expression for the unknowns in the free-surface portion of the channel. This integral
expression was a simplification of that given in a previous work, which applied new
identities for the matrix of Green’s functions used to derive it, and led to vastly
reduced numerics. The expressions in the two respective domains were then matched
at their common boundary in order to complete the solution process.

By generalizing the forcing for each individual row to allow for evanescent waves,
as well as all possible propagating waves, we constructed transfer matrices that give
the amplitudes of the waves on one side of the row in terms of the amplitudes of the
waves on the other side. These transfer matrices provided a simple iterative means
of combining the rows to form the solution for the full array. Further simplifications
were seen to be possible if the rows were identical and equally spaced.

Our numerical results were concentrated on the energy reflected by multiple
rows over a range of wavenumbers. A preliminary investigation was made into
the differences between the multiple-row model and an analogous two-dimensional
model, in which waves are scattered by strips of ice. It was found that for a normally
incident wave the scattering properties of the two geometries were similar, although
the strips generally reflect more energy and this tendency was exacerbated for smaller
floes with a larger floe spacing within the rows, whereas for an obliquely incident
wave, unlike the strips, the rows possess no limit in which propagating waves cannot
be transmitted, and consequently their reflection properties differ greatly.

We also compared our interaction theory, which synthesizes the interactions of
both the propagating waves and a finite number of the evanescent waves, producing
the full-linear solution to any given tolerance, with a WSA that considers only the
interaction of the propagating waves. The WSA was shown to be highly accurate, even
for closely spaced rows. However, it could not reproduce certain features attributed
to the interactions of evanescent waves for large wavenumbers and proximate rows.

Using the WSA, we investigated the production of Bragg resonance by
homogeneous arrays of identical and equally spaced rows. These resonances, that
are prominent for relatively few rows and occur over large intervals of wavenumbers,
were seen to be related to the departure of all of the eigenvalues of the transfer
matrix used in the WSA from the unit circle. It was also found that the resonances
tended to occur for longer waves than theory predicts, and unlike the findings of
other investigations of which we are aware, here the strength of the resonance became
greater with increasing wavenumber.

In the final set of results we were concerned with comparing the reflection
produced by homogeneous and inhomogeneous arrays. Changes in the row alignment,
row spacing, floe thickness and floe radius were all considered independently,
using averages of randomly sampled sets. With the exception of variations to the
floe thickness, the introduction of all of these non-uniformities caused significant
alterations in the behaviour of the reflected energy as a function of wavenumber and,
in particular, minimized the effects of Bragg resonance.

The solution method outlined herein is now available for constructing simulations
of a real MIZ. As we have seen, the current model would predict very different
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attenuation rates from that of the two-dimensional models used to date, especially for
large wavenumbers and obliquely incident waves. The MIZ exists over hundreds of
kilometres, containing a vast number of individual floes, and a realistic model would
involve a large number of rows with differing properties. It has been demonstrated
here that averaging over a number of similar geometrical configurations, particularly
in respect to the spacing and size of the floes and alignment of the rows, helps to
eliminate the occurrences of Bragg resonance that can otherwise pollute data when
recreating a natural phenomenon such as the MIZ. It would also be pertinent to
use a WSA, which was shown in this work to provide excellent accuracy, in order to
reduce the numerical cost. Work on this project is already underway.

The authors wish to acknowledge helpful conversations with Malte Peter (University
of Augsburg) and Michael Meylan (University of Auckland). This study was supported
by the Marsden Fund Council, through government funding administered by the
Royal Society of New Zealand, and by the University of Otago.
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