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Abstract. Let τ be a parabolic exhaustion on a Stein manifold X such that τ is strictly
plurisubharmonic at its zeros. The metric defined by τ on the complement of its degeneracy

locus D is shown to be flat if τ is real-analytic or if “most” leaves of the associated Monge-

Ampère foliation F abut the zeros of τ . Then, by an analysis of the singularities of τ , we
show that the tangent bundle of X \ D extends to a flat hermitian bundle on X with a

holomorphic section s such that τ = ‖s‖2, and that F extends to a singular holomorphic

foliation of X. Also, τ is the length-squared of an analytic covering of X onto a ball if and
only if the monodromy of the τ -connection is trivial. We obtain a characterization of affine

algebraic manifolds as those X possessing τ with finite monodromy and affine leaves.

1. Introduction.

Let X be an n-dimensional Stein manifold and f : X → Bn
R be a proper holomorphic

map, i.e., a finite branched analytic covering, onto the ball of radius
√
R in Cn, R ∈

(0,+∞]. Such a map gives rise to a smooth exhaustion τ = |f |2 : X → [0, R), which is
said to be parabolic because its logarithm ρ is plurisubharmonic and satisfies the so-called
Monge-Ampère equation (∂∂̄ρ)n = 0 on X ′ = X \ τ−1(0). This means that the complex
Hessian of ρ has vanishing determinant in any local coordinates. The Monge-Ampère
equation is a natural generalization of Laplace’s equation to higher dimensions and has
found many applications in complex analysis.

Unbounded parabolic exhaustions have been used in Nevanlinna theory, in particular
for algebraic submanifolds of CN , where f can be taken to be a generic linear projection
of X onto a linear subspace of the same dimension. Cornalba, Griffiths and others have
asked if possessing a parabolic exhaustion with some special properties characterizes affine
algebraic manifolds. It would also be of interest to know when a parabolic exhaustion
arises from an analytic covering. This work is a study of parabolic exhaustions and their
singularities. In particular, the two above questions will be addressed.

A parabolic exhaustion τ gives rise to a rich geometric structure on X. The Levi
form i∂∂̄τ defines a Hermitian metric on the complement of the degeneracy locus D =
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{(∂∂̄τ)n = 0}, and there is a smooth foliation F by Riemann surfaces on the complement
in X ′ of the singularity set E = {(∂∂̄ρ)n−1 = 0} ⊂ D, such that ρ is harmonic along every
leaf. Foliations that arise in this fashion from the Monge-Ampère equation have been
studied since the late seventies by Bedford, Burns, Duchamp, Kalka, Lempert, Patrizio,
Stoll, Wong and others.

If τ is strictly plurisubharmonic everywhere, i.e., D = ∅, then Stoll has shown that
up to a biholomorphism, X = Bn

R and τ = | · |2. In general, τ must be strictly plurisub-
harmonic somewhere on X; we assume that this holds at the zeros of τ . (Note that if
τ is given by a covering f , then this can always be achieved by postcomposing f with a
generic automorphism of Bn

R.) Under this hypothesis, we prove the following structure
theorem, which is the main result of the paper. Without the hypothesis, the theorem
fails.

Main Theorem. Let τ be a parabolic exhaustion on a Stein manifold X of dimension
n such that τ is strictly plurisubharmonic at its zeros. Then the following conditions are
equivalent.

(i) The τ -metric on X \D is flat.
(ii) τ is real-analytic.
(iii) ρ is unbounded below on every leaf of F.
(iv) Locally, τ = |f |2, where f is a holomorphic map into Cn.
(v) F extends to a singular holomorphic foliation of X ′.
(vi) There exists a holomorphic section s of a flat hermitian vector bundle of rank n

over X such that τ = ‖s‖2.

Moreover, there is an analytic covering f : X → Bn
R such that τ = |f |2 if and only if

these conditions are satisfied and the monodromy of the τ -connection is trivial.

I do not know if conditions (i)–(vi) always hold for a parabolic exhaustion as in the
theorem.

As an application, we give the following solution to the problem of characterizing affine
algebraic manifolds by means of parabolic exhaustions.

Algebraicity Theorem. A Stein manifold X is affine algebraic if and only if X has a
parabolic exhaustion τ such that

(a) τ is strict at its zeros,
(b) the leaves of the Monge-Ampère foliation F of X ′ \E are affine curves, and
(c) the τ -connection has finite monodromy.

We shall see that (a) and (b) actually imply that the τ -metric is flat, so (c) makes
sense. It would be interesting to have a simple condition on τ implying (b) or merely
that the leaves have finitely generated homology.

The paper is organized as follows. In sections 2 and 3 we summarize the necessary
background material on singular holomorphic foliations and the geometry of strictly par-
abolic functions.
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In section 4 we set the stage for the proof of the main theorem.
In section 5 we give an easy and complete analysis of parabolic exhaustions on Riemann

surfaces. This should motivate and clarify our approach to the general case. We also give
two one-dimensional examples of parabolic exhaustions which do not arise from analytic
coverings.

In section 6 we show that vanishing of the curvature of the τ -metric propagates along
leaves of F. Applying Stoll’s theorem on connected components of {τ < r} with r
sufficiently small, we see that near every zero of τ the τ -metric is flat. Therefore, the
τ -metric is flat if ρ is unbounded below on “most” leaves of F.

In section 7, we assume that the τ -metric is flat on X \D. The gradient of τ in the τ -
metric is a holomorphic vector field on X \D and ‖ grad τ‖2 = τ (this is in fact equivalent
to the Monge-Ampère equation). The idea is to extend the flat bundle T (X \ D) to a
unitary local system L on all of X and obtain from grad τ a holomorphic section s of the
flat bundle L ⊗ O such that τ = ‖s‖2.

This is possible because the singularities that might interfere are not too severe.
Namely, using a theorem of Simha (essentially dating back to Hartogs) on analytic-
ity of certain singularity sets, we show that D is an analytic hypersurface (unless it is
empty) and that E is analytic of codimension at least two. Furthermore, D is seen to
be generically transverse to F. Knowing this, we can prove that the flat canonical con-
nection of the τ -metric extends to a regular meromorphic connection on all of X with no
monodromy locally at points of D.

Thus, τ = ‖s‖2 where s is a holomorphic section of a flat hermitian vector bundle of
rank n on X. In particular, τ is real-analytic. We see that τ comes from an analytic
covering of Bn

R if and only if the monodromy representation of the fundamental group
π1(X) into the unitary group U(n), given by the τ -connection, is trivial.

In section 8, we complete the proof of the main theorem. We show that the τ -metric
is flat if τ is real-analytic, because then D is pluripolar and cannot disconnect X.

We also prove that F extends to a singular holomorphic foliation on all of X ′, assuming
condition (vi) in the Main Theorem. To get an atlas for such a foliation, we observe that,
regardless of monodromy, locally τ = |f |2, where f is an analytic covering of an open
subset of Cn. We postcompose these with the projection onto Pn−1 to obtain local maps
whose fibres in X ′ \ E are just plates of the original foliation. These maps do form the
required atlas; the non-trivial part of the proof uses a theorem of Bohnhorst to show that
they are simple.

Having proved the main theorem, we show that it fails if we do not require τ to be
strict at its zeros.

Section 9 contains some further remarks on the Monge-Ampère foliation.
In section 10, we prove the Algebraicity Theorem. If the τ -metric is flat with trivial

monodromy and R = +∞, then τ = |f |2 where f : X → Cn is an analytic covering. By
the Fortsetzungssatz of Grauert and Remmert, if the critical locus of f is algebraic, then
X is affine algebraic. We prove that this holds if and only if the leaves of the foliation F

are affine curves. It actually suffices to assume that the monodromy is finite.
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Finally, in section 11, we briefly discuss what happens to our theory if we omit the
assumption that τ be proper.

Acknowledgements. This paper is a revised version of my Ph.D. thesis, written at the
University of Chicago under the direction of Professor R. Narasimhan. I am indebted to
him for his support and encouragement during my years at Chicago. Thanks are also
due to Professor S. Webster for helpful comments.

2. Holomorphic foliations.

This section contains some necessary background material on holomorphic foliations.
The following definitions are due to Holmann [Ho1; Ho2].

A local holomorphic foliation on a complex manifold X is a simple open holomorphic
map φ : U → V , where U ⊂ X is open and V is a complex manifold. By definition, φ
is simple if there is a basis B for the topology of U such that φ|W has connected fibres
for all W ∈ B. Two local holomorphic foliations φi : Ui → Vi, i = 1, 2, are compatible if
for every x ∈ U1 ∩U2 there is a neighbourhood W ⊂ U1 ∩U2 of x and a biholomorphism
h : φ1(W ) → φ2(W ) such that h ◦ φ1|W = φ2|W . A holomorphic foliation F of X is
a maximal atlas of mutually compatible local holomorphic foliations on X. These local
holomorphic foliations are called F-charts and their fibres are sometimes called plates of
F.

Let F be a holomorphic foliation of a complex manifold X. Take as a basis for a new
topology onX the fibres of all the F-charts. The leaves of F are the connected components
ofX in this topology. Each leaf is second countable and has an induced complex structure.
They all have the same pure dimension, which is called the dimension of F.

The following useful lemma says, roughly speaking, that a holomorphic foliation looks
the same near each point of any of its leaves.

2.1. Lemma (Holmann [Ho1]). Let F be a holomorphic foliation of a complex manifold
X and p1, p2 ∈ X belong to the same leaf of F. Then there exist F-charts φi : Ui → Vi,
i = 1, 2, with pi ∈ Ui, and a biholomorphism h : V1 → V2 such that φ−1

1 (x) and φ−1
2 (h(x))

belong to the same leaf for every x ∈ V1.

As an immediate consequence we have:

2.2. Corollary. The closure of a leaf in a holomorphic foliation is saturated.

A set is saturated if it is a union of leaves. The saturation of a set is the union of all
leaves intersecting it.

Lemma 2.1 is also used to prove the following facts.

2.3. Lemma (Holmann [Ho1]). Let φ : U → V be an F-chart and say that x, y ∈ V
are equivalent if φ−1(x) and φ−1(y) belong to the same leaf of F.

(1) This defines an open equivalence relation on V . Hence, the saturation of an open
set in X is open.

(2) An equivalence class is at most countable and a closed equivalence class is discrete.
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2.4. Corollary (Holmann [Ho1]). A leaf of a holomorphic foliation of a complex
manifold X is a (locally) analytic subvariety of X if and only if it is (locally) closed in
X.

A holomorphic foliation F of a complex manifold X is smooth if all the F-charts are
submersions. Then the leaves of F are smooth. By the theorem of Frobenius, a smooth
holomorphic foliation of X is nothing but a subbundle of the holomorphic tangent bundle
TX which is involutive, i.e., closed under the bracket. This subbundle consists of all
tangent vectors to the leaves of F.

To any holomorphic foliation F of X there is associated an involutive coherent analytic
subsheaf TF of TX of tangent vectors to the leaves of F. For any F-chart φ : U → V ,
TF|U is the kernel of the tangent map φ∗ : TU → TV . Baum and Bott [BauBo; Bau]
have given an alternative definition of a holomorphic foliation of a complex manifold X
as an involutive coherent analytic subsheaf of TX. According to this definition, if F is a
holomorphic foliation of X and f : Y → X is any holomorphic map, then the pullback
f∗F is a holomorphic foliation of Y . Holmann’s definition is stronger and does not enjoy
this property without restrictions on the map f .

A third definition is due to Gómez-Mont [Gó-M]. He defines a holomorphic foliation
to be a smooth holomorphic foliation of the complement of a closed analytic subvariety
of codimension at least two.

The singularity set E of a holomorphic foliation F of a complex manifold X is the
set of critical points of the F-charts. This is a closed analytic subvariety of X, which
may also be described as the set of points at which the quotient sheaf TX/TF is not
locally free. The restriction of F to X \ E is a smooth holomorphic foliation. We shall
distinguish between leaves of F and leaves of the restriction by referring to the latter as
smooth leaves.

2.5. Proposition. Let F be a holomorphic foliation of a complex manifold X with
singularity set E. If M is a leaf of F, then E ∩M is a thin analytic subset of M . In
particular, M 6⊂ E. Also, M \ E is a union of smooth leaves, each of which is the
complement of E in an irreducible component of M .

This is is a direct consequence of the following characterization of simple open maps.

2.6. Theorem (Bohnhorst [Boh]). Let X, Y be complex manifolds and φ : X → Y
be a holomorphic map. Suppose φ is open, so all fibres of φ have pure dimension k =
dimX − dimY . Let E be the set of critical points of φ. Then φ is simple if and only if

dimE ∩ φ−1(y) < k for all y ∈ Y.

Finally, we shall prove an analogue of Corollary 2.2 for irreducible components of
leaves.
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2.7. Lemma. Let F be a holomorphic foliation of a complex manifold X. Then the
closure of an irreducible component of a leaf of F is a union of irreducible components of
leaves.

Proof. If p is a point outside the singularity set E of F, let Cp denote the irreducible
component through p of the leaf through p, and Mp denote the smooth leaf through p.

Let M be a smooth leaf contained in an irreducible component C of a leaf of F and
let p ∈ C \ C. If p /∈ E, then Mp ⊂M by Lemma 2.2, and M = C, so Cp ⊂ C. Suppose

p ∈ E. We need to show that there is q /∈ E with p ∈ Cq and q ∈ C, so Cq ⊂ C.
Let φ : U → V be an F-chart at p and denote the fibre φ−1(φ(p)) by F . There is a

sequence (yi) in V converging to φ(p) and irreducible components Ci ⊂ C of φ−1(yi),
whose union A is a closed analytic subset of U \F , such that p ∈ A. Now A is clearly not
analytic in any neighbourhood of p, so by the Remmert-Stein theorem [ReSt], A contains
an irreducible component C ′ of F with p ∈ C ′. Since E ∩F is thin in F , C ′ must contain
a point q as above. �

3. The geometry of strictly parabolic functions.

In this section we will summarize the basic results on the Monge-Ampère foliation
induced by a strictly parabolic function, as well as the various associated metrics and
their curvatures. The references [BeBu], [BeKa], [Bu1], [Bu2], [DuKa1], [DuKa2] and
[Wo] contain all the facts that we state without proof.

Let X be an n-dimensional complex manifold and ρ be a smooth plurisubharmonic
function on X satisfying the homogeneous Monge-Ampère equation

(∂∂̄ρ)n = 0

with the non-degeneracy condition

rank ∂∂̄ρ = n− 1.

Then the annihilator of ∂∂̄ρ is a smooth complex line subbundle of the holomorphic
tangent bundle TX, integrable as a subbundle of the real tangent bundle, and hence
gives rise to a smooth (but not necessarily holomorphic) foliation F of X by Riemann
surfaces. Along every leaf, ρ is harmonic and the (1,0)-derivative ∂ρ is holomorphic.
Also, if a smooth function f on X is holomorphic along the leaves, then the interior of
the zero locus of ∂̄f is saturated.

Let N = TX/TF be the normal bundle of F and NC = N ⊕N be the complexification
of the real normal bundle. Restricted to a leaf, NC is flat: we have a natural notion
of parallel translation of a normal vector along a leaf. This determines a flat partial
connection on NC, the Bott connection

∇ : NC → NC ⊗ T∨
F, ∇v(w) = projection of [v, lifting of w].
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The extent to which ∇ fails to respect the complex structure of X is measured by the
anti-holomorphic torsion tensor N → N⊗T∨F, which vanishes if and only if the foliation
F is holomorphic.

The normal bundle N carries a hermitian metric, called the ρ-metric, defined by the
(1, 1)-form i∂∂̄ρ, which is non-positively curved along leaves. The foliation F is holomor-
phic if and only if the curvature (or just the Ricci curvature) vanishes along every leaf,
and then the metric connection N → N ⊗ T∨X restricts to the Bott connection.

Let us now consider the case when τ = eρ is strictly plurisubharmonic and thus defines
a metric on X.

A parabolic function on an n-dimensional complex manifold X is a smooth non-
negative function τ on X whose logarithm ρ is plurisubharmonic and satisfies the ho-
mogeneous Monge-Ampère equation (∂∂̄ρ)n = 0 on X ′ = X \ τ−1(0). Then ρ and τ are
plurisubharmonic on all of X. We say that τ is strictly parabolic on X if it is strictly
plurisubharmonic at every point of X. The closed subset D of X where τ is not strictly
plurisubharmonic is called the degeneracy locus of τ .

Example. If f1, . . . , fn are holomorphic functions on X, then τ = |f1|2 + · · · + |fn|2
is a parabolic function on X. The degeneracy locus of τ is the set of points where the
Jacobian determinant det(∂fi/∂zj) vanishes, i.e., where the map (f1, . . . , fn) : X → Cn

fails to be a local biholomorphism. More generally, if s is a holomorphic section of a flat
hermitian vector bundle of rank n on X, then ‖s‖2 is a parabolic function on X.

Now let τ be a positive strictly parabolic function on X. The Monge-Ampère condition
is equivalent to the equation

(3.1) (∂∂̄τ)n = (∂∂̄eρ)n = τn(∂∂̄ρ+ ∂ρ ∧ ∂̄ρ)n = nτn∂ρ ∧ ∂̄ρ ∧ (∂∂̄ρ)n−1,

so rank ∂∂̄ρ = n − 1 and we have an associated foliation F of X with all the properties
described above.

The (1, 1)-form i∂∂̄τ defines a Kähler metric on X, called the τ -metric, with norm
‖ ·‖. The leaves of F are totally geodesic in this metric, i.e., the second fundamental form
of TF in TX vanishes along every leaf. This is the central fact relating the metric and
the foliation.

Since the following proposition is not explicitly contained in any of our references, we
shall, for completeness, give a detailed proof of it.

3.1. Proposition. The quotient metric in N induced by the τ -metric in TX is equal to
the ρ-metric multiplied by τ .

Proof. Let z1, . . . , zn be local coordinates on X such that {z2, . . . , zn = 0} is a plate M of
F with coordinate z1. With respect to the frame ∂/∂z2, . . . , ∂/∂zn for N |M , the ρ-metric
is given by the matrix Hρ = (ρi̄)

n
i,j=2. (Here, and frequently in what follows, subscripts

are used to denote partial derivatives.)
The dual bundle N∨ of N is a subbundle of the cotangent bundle T∨X, so the dual

of the τ -metric defines a metric in N∨ in the obvious way. By definition, the quotient
7



τ -metric in N is the dual of this metric, so with respect to the above frame, it is given
by the matrix

t[(τ i̄)n
i,j=2]

−1.

Here, (τ i̄)n
i,j=1 denotes the transposed inverse of the Hessian Hτ = (τi̄)

n
i,j=1 of τ . Simi-

larly, (ρi̄)n
i,j=2 will denote the transposed inverse of Hρ.

On M , we have ρ1̄ = 0 for j = 1, . . . , n, so

detHτ = det(τ(ρi̄ + ρiρ̄)) = τn

∣

∣

∣

∣

∣

∣

∣

∣

ρ1ρ1̄ ρ1ρ2̄ . . . ρ1ρn̄

ρ2ρ1̄ ρ22̄ + ρ2ρ2̄ . . . ρ2n̄ + ρ2ρn̄

...
...

. . .
...

ρnρ1̄ ρn2̄ + ρnρ2̄ . . . ρnn̄ + ρnρn̄

∣

∣

∣

∣

∣

∣

∣

∣

= τnρ1ρ1̄

∣

∣

∣

∣

∣

∣

∣

∣

1 ρ2̄ . . . ρn̄

ρ2 ρ22̄ + ρ2ρ2̄ . . . ρ2n̄ + ρ2ρn̄

...
...

. . .
...

ρn ρn2̄ + ρnρ2̄ . . . ρnn̄ + ρnρn̄

∣

∣

∣

∣

∣

∣

∣

∣

.

Subtracting the first column multiplied by ρk̄ from the k-th column for k = 2, . . . , n, we
obtain

(3.2) detHτ = τn|ρ1|2

∣

∣

∣

∣

∣

∣

∣

∣

1 0 . . . 0
ρ2 ρ22̄ . . . ρ2n̄

...
...

. . .
...

ρn ρn2̄ . . . ρnn̄

∣

∣

∣

∣

∣

∣

∣

∣

= τn|ρ1|2 detHρ.

Now let cτij be the cofactor obtained by deleting the i-th row and j-th column of Hτ

and taking the determinant with sign (−1)i+j . Let cρij be the analogous cofactor for Hρ.
Then a similar computation gives

cτij = τn−1|ρ1|2cρij ,

so

τ i̄ =
cτij

detHτ

=
1

τ

cρij
detHρ

=
1

τ
ρi̄

for i, j = 2, . . . , n. Hence,

t[(τ i̄)n
i,j=2]

−1 = t[
1

τ
(ρi̄)]−1 = τ t[tH−1

ρ ]−1 = τHρ. �

The proposition implies that the two metrics in N have the same non-positive curva-
ture along leaves. The τ -metric in TF is flat along leaves. Since the leaves are totally
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geodesic, the τ -metric in TX is non-positively curved along leaves, and the foliation F is
holomorphic if and only if the curvature vanishes along leaves.

In local coordinates, the complex gradient grad τ of τ with respect to the τ -metric is
given by the formula

grad τ =
n

∑

i,j=1

τ i̄τ̄
∂

∂zi

.

The Monge-Ampère condition is equivalent to the equation

‖ grad τ‖2 = (grad τ)(τ) =
∑

i,j

τiτ
i̄τ̄ = τ.

The gradient is tangent to the foliation F and holomorphic along every leaf. Furthermore,
F is holomorphic if and only if grad τ is holomorphic on X.

4. Parabolic exhaustions.

A parabolic exhaustion on an n-dimensional complex manifoldX is a parabolic function
τ : X → [0, R), 0 < R ≤ +∞, which is also an exhaustion. This means that the sublevel
sets {τ < c} are relatively compact in X for every c < R.

Examples. (1) Let f : X → Bn
R be a proper holomorphic map, where Bn

R = {z ∈ Cn :

|z|2 < R} is the ball of radius
√
R in Cn. Then |f |2 is a parabolic exhaustion on X.

(Here, | · | denotes the euclidean norm.)
(2) If τ is a parabolic exhaustion on X and f : Y → X is a proper holomorphic map,

then τ ◦ f is a parabolic exhaustion on Y .
(3) If τ , σ are parabolic exhaustions on X, then the product τσ is also a parabolic

exhaustion on X.
(4) If τ , σ are parabolic exhaustions on X, Y respectively, then the function (x, y) 7→

τ(x) + σ(y) is a parabolic exhaustion on the product X × Y .
In what follows, we let X be an n-dimensional Stein manifold and τ : X → [0, R) be

a parabolic exhaustion, where 0 < R ≤ +∞. These are our basic objects of interest.
We shall need the following minimum principle for the Monge-Ampère operator.

4.1. The Monge-Ampère Minimum Principle [BeTa; Sa]. Let Ω be a relatively
compact open set in an n-dimensional complex manifold and u, v be smooth plurisubhar-
monic functions on Ω, continuous on Ω, such that (i∂∂̄u)n ≤ (i∂∂̄v)n on Ω. If u ≥ v on
∂Ω, then u ≥ v on Ω.

By the minimum principle, ρ = log τ must be unbounded below on X, so the zero
set τ−1(0) is not empty and τ is surjective. Also, τ must be strictly plurisubharmonic
somewhere, i.e., D 6= X.

We obtain a Monge-Ampère foliation F on the complement in X ′ = X \ τ−1(0) of the
set E = {(∂∂̄ρ)n−1 = 0}, which we call the singularity set of τ or F. By formula (3.1), E
is contained in the degeneracy locus D = {(∂∂̄τ)n = 0}.

9



If F is holomorphic on a neighbourhood of a point p ∈ X ′ \E, then by an F-chart or
F-coordinates at p we shall mean a coordinate chart (U, z1, . . . , zn) in X ′ \ E centred at
p with U = {|zk| < 1, k = 1, . . . , n}, such that the leaves of F intersect U in plates of the
form {(z2, . . . , zn) constant}. Then z1 is a coordinate on every plate. (This definition
differs slightly from that of section 2.)

The following theorem completely classifies strictly parabolic exhaustions. For a proof
see [St] or [Bu1].

4.2. Theorem (Stoll). Let X be an n-dimensional complex manifold and τ : X →
[0, R) be a strictly parabolic exhaustion, 0 < R ≤ +∞. Then there exists a biholomor-
phism f : X → Bn

R such that τ = |f |2.
In this paper we will prove a structure theorem for parabolic exhaustions which are only

assumed to be strictly plurisubharmonic at their zeros, but not necessarily everywhere.
We shall need the following simple consequence of Stoll’s theorem.

4.3. Proposition. Assume τ is strictly plurisubharmonic at its zeros. Then the zero
set of τ is finite and in suitable coordinates near each zero, the foliation F looks like a
pencil of concentric discs. Furthermore, the τ -metric is flat on a neighbourhood of the
zero set of τ .

Proof. If r > 0 is sufficiently small, then τ restricted to any connected component of the
sublevel set {τ < r} is a strictly parabolic exhaustion. Now apply Stoll’s theorem to τ
on each connected component. �

5. The case of Riemann surfaces.

In this section, we present a complete analysis of parabolic exhaustions in the one-
dimensional case. This serves to motivate and clarify our approach to the general case.

Let τ be a non-constant parabolic function on a Riemann surface X. For example,
τ could be a parabolic exhaustion of X. Then ρ is harmonic on X ′ and hence locally
of the form log |f |2 with f holomorphic. By the following lemma, the zero set τ−1(0) is
discrete.

5.1. Lemma. Let U be an open subset of C and v 6= −∞ be a subharmonic function on
U such that ev is C1. Then the polar set v−1(−∞) is a discrete subset of U .

Proof. Since 2v is subharmonic on U , by a result of Bombieri [Bom] the set where e−2v

is not locally integrable is discrete. Therefore it suffices to show that if v(p) = −∞, then
e−2v is not locally integrable at p. Since ev is C1, there is a constant c > 0 such that
ev(z) ≤ c|z − p| near p. Hence, e−2v(z) ≥ 1

c2 |z − p|−2, so e−2v is not locally integrable at
p. �

In a coordinate z centred at a zero of τ , we have

ρ(z) = c log |z|2 + log |f |2
10



with 0 ≤ c < 1 and f holomorphic where z 6= 0. Since τ is smooth, c = 0 and f extends
holomorphically across the zero.

Thus we obtain an open cover (Ui) of X and holomorphic functions fi on Ui such that
τ = |fi|2 on Ui. The quotients fi/fj give a cocycle µ in H1(X,U), where U denotes the
unit circle, which splits if and only if τ = |f |2 for some holomorphic function f on X.
The functions fi represent a holomorphic section s of the flat line bundle given by µ, and
‖s‖2 = τ in a suitable hermitian metric.

This approach clearly does not lend itself to direct generalization to higher dimensions.
Let us therefore give a different interpretation of the cocycle µ. With respect to a local
coordinate z on X the τ -metric is given by the function τzz̄, and the metric connection
by the (1, 0)-form

θ = ∂ log τzz̄ = (ρz +
ρzz

ρz

)dz.

Since ρz is holomorphic and not identically zero, θ is meromorphic and its poles are
simple with integral residues. Therefore, the τ -metric is flat and its connection extends
to a regular meromorphic connection on X with no local monodromy at points of D,
which is discrete.

We get an open cover (Ui) of X and meromorphic vector fields ei on Ui which are
unitary on Ui \ D. The quotients ei/ej give a cocycle in H1(X,U) representing the
monodromy of the flat connection. This cocycle is the inverse of the cocycle µ for the
following reason: If f is a holomorphic function on an open subset U of X and v is a
meromorphic vector field on U such that grad τ = fv, then

τ = ‖ grad τ‖2 = |f |2‖v‖2,

so τ = |f |2 if and only if v is unitary. Therefore, τ = |f |2 for some holomorphic function
f on X if and only if the τ -connection has trivial monodromy.

It is this latter approach that we shall try to extend to higher dimensions. Note
that we have proved the Main Theorem 8.1 in the one-dimensional case, actually under a
substantially weakened hypothesis. We have in fact shown that conditions (i)–(vi) always
hold. Therefore, in the following, we may assume that n = dimX ≥ 2 whenever this is
convenient.

We conclude this section by presenting two examples of parabolic exhaustions on
Riemann surfaces which do not arise from analytic coverings.

Examples. (1) On C× consider the parabolic exhaustion

τ(z) =
|z − 1|2
|z|2ε

with 0 < ε < 1. Then τ−1(0) = {1} and D = {ε/(ε − 1)}. It is not hard to check that
the monodromy of the connection is generated by exp(2πiε) ∈ U, so it is non-trivial and
not even finite unless ε is rational.
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(2) Let X = C \ {1, 2, 3, . . .}. The series

σ(z) = −
+∞
∑

n=1

2−n log |z − n|

converges locally uniformly on X and thus defines a harmonic function on X. We obtain
a parabolic exhaustion τ on X, which is strict at its only zero, by setting τ(z) = |z|2eσ(z).
However, X is not a covering of C: If f : X → C were a proper holomorphic function,
then f would extend to a holomorphic function P → P with poles at the points 1, 2, . . . ,∞
because at each of these points f approaches ∞, but this is absurd.

6. Propagation of flatness along leaves.

We consider a parabolic exhaustion τ which is strictly plurisubharmonic at its zeros
and continue to use the notation established in section 4. In this section, we show that
flatness of the τ -metric propagates along the leaves of the Monge-Ampère foliation F.
This yields criteria for the τ -metric to be flat on X \D.

6.1. Proposition. Let F be the subset of X \ D where the curvature of the τ -metric
vanishes. Then the interior F ◦ of F is saturated.

Proof. Let M be a leaf intersecting F ◦. Then M ∩F ◦ is open in M and non-empty. Since
M 6⊂ D, M ∩D is discrete, being the set of critical points of the harmonic function ρ|M ,
and M \D is connected. Hence it suffices to show that M ∩ F ◦ is closed in M \D.

Let p ∈ M \ D be a limit point of M ∩ F ◦ and (V,w) be a coordinate chart at
p with V ∩ D = ∅ in which F is smoothly trivial. By shrinking V , we may assume
that the τ -metric is flat on an open set W intersecting every plate in V . Now each
component of grad τ in terms of the frame ∂/∂w1, . . . , ∂/∂wn is holomorphic along leaves
and holomorphic on W , and hence holomorphic on V . Therefore, grad τ is holomorphic
on V , so F is holomorphic on V , and we can choose an F-chart (U, z) at p with U∩D = ∅,
such that the τ -metric is flat on an open set intersecting every plate in U .

With respect to the frame ∂/∂z1, . . . , ∂/∂zn for TU , the metric connection is given by
the n× n matrix θ = ∂h · h−1, where the matrix h = (τi̄) represents the metric, and the
curvature operator is given by the matrix Θ = ∂̄θ of (1, 1)-forms on U . The matrix Θh
is skew-hermitian.

Consider the dz1-term, say fdz1, in θαβ. Since F is holomorphic on U , Θ vanishes
along leaves, so the term f1̄dz̄1 ∧ dz1 in Θαβ must vanish. Hence, f̄1̄ = 0 for any j,
so f̄ is holomorphic along leaves. Now Θ, and hence f̄, vanishes on an open set in U
intersecting every plate, so f̄ = 0. Therefore, all terms in Θ containing dz1 vanish. The
same holds for Θh = −hΘ∗, and hence for Θ∗, so all terms in Θ containing dz̄1 vanish.
Therefore, if gdzk, k > 1, is a term in θαβ, then the term g1̄dz̄1 ∧ dzk in Θαβ vanishes.
By an argument analogous to the one above, we have g̄ = 0 for all j.

This shows that Θ = 0 on U , so p ∈M ∩ F ◦. �
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6.2. Corollary. Let U ⊂ X ′ \ E be the union of those leaves M of F for which ρ|M is
unbounded below. If U is dense in X \D, then the τ -metric is flat.

The set U is in fact open by Lemma 2.1.

Proof. By Proposition 4.3, the τ -metric is flat on a neighbourhood of τ−1(0), so by
Proposition 6.1, the τ -metric is flat on U . �

This result raises the question of when a leaf M 6⊂ D abuts the zero set of τ . A
sufficient condition, somewhat opaque, follows.

6.3. Proposition. Let M 6⊂ D be a leaf of F. Suppose every p ∈ M ∩E has coordinate
neighbourhoods U b U ′ such that V \ (V ∪D) has no limit points in ρ−1(c) ∩D, where
V = M ∩ U and c = ρ(p). Then ρ|M is unbounded below.

Proof. Suppose ρ|M is bounded below, so ρ|M has a minimum at a point p. First assume
that p ∈ E. The function λ = log det(τi̄) on U ′ is subharmonic along leaves. We shall
compare λ to the harmonic function ρ on V .

Let Y = V \ (V ∪D) 6= ∅, a = inf ρ(Y ), b = supλ(Y ). Then t(ρ− a) ≥ λ− b on Y for
all t ≥ 0, so

lim inf
x→∞ in V

t(ρ− a) − (λ− b) ≥ 0

(recall that λ = −∞ on D). Hence, t(ρ− a) ≥ λ − b on V , so ρ ≥ a on V \D and thus
on V (because M ∩D is discrete since M 6⊂ D). Therefore, a = c, and ρ(q) = c for some
q ∈ Y . By assumption, q 6∈ D.

If M ′ is the leaf through q, then M ′ ⊂ M by Corollary 2.2, so ρ|M ′ has a minimum
at q. Since ρ|M ′ is harmonic, it must be constant, so M ′ ⊂ ρ−1(c), which is absurd since
ρ−1(c) is strictly pseudoconvex off D.

Now suppose that ρ|M has no minima in E, so in particular p 6∈ E. Let M1 ⊂ M
be the leaf through p. Then ρ|M1 is constant, so M1 is relatively compact in X and
M1 ∩ E = ∅. We shall use an observation attributed to Fornæss in [BeKa] to derive
a contradiction from this. Namely, let u be a strictly plurisubharmonic function on X.
Then u has a maximum at some point q ∈ M1. Let M2 ⊂ M1 be the leaf through q.
Then u|M2 has a maximum at q, so u|M2 is constant, which is absurd. �

6.4. Corollary. If M 6⊂ D is a leaf of F such that M ∩E = ∅, then ρ|M is unbounded
below.

7. Singularities of a parabolic exhaustion with a flat metric.

We continue to consider an n-dimensional Stein manifold X with a parabolic exhaus-
tion τ : X → [0, R) which is strictly plurisubharmonic at its zeros. In this section we
shall assume that the τ -metric on X \ D is flat. This has strong consequences for the
singularities of τ . It also implies that the foliation F is holomorphic on X ′ \D.

We will need the following theorem, which was first proved in a special case by Hartogs.
For a proof see [Si]. For a somewhat weaker version of the theorem see [Na].
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7.1. Hartogs’ Singularity Theorem. Let A be a closed subset of an open set U in
Cm+1 such that

(a) U \A is pseudoconvex at every point of A and
(b) the projection Cm+1 → Cm is discrete on A.

Then A is an analytic subset of U . Furthermore, by (a), A must be a hypersurface unless
it is empty.

7.2. Proposition. Let U be an open set in Cm and v : U → [−∞,+∞) be a function
such that ev is smooth and v is pluriharmonic on U \ Z, where Z = v−1(−∞). Then Z
is an analytic hypersurface in U , unless it is empty or all of U .

Proof. Suppose Z 6= ∅, U . Now −v → +∞ at Z, so U \Z is pseudoconvex at every point
of Z. Also, v extends to a plurisubharmonic function on all of U . In particular, Z is
pluripolar, so for every p ∈ Z there is a complex line ` such that p ∈ ` 6⊂ Z. If ` 6⊂ Z is
a complex line in U , then ` ∩ Z = (v|`)−1(−∞) is discrete by Lemma 5.1, and the same
holds for parallel lines sufficiently close to `. Therefore, by Hartogs’ singularity theorem
7.1, Z is an analytic hypersurface in U . �

7.3. Proposition. The degeneracy locus D is an analytic hypersurface in X unless it
is empty.

Proof. Let p ∈ ∂D and v = log det(τi̄) with respect to local coordinates on a neighbour-
hood U of p. The Ricci curvature of the τ -metric is represented by the form −i∂∂̄v, so
by flatness v is pluriharmonic on U \D. Now Proposition 7.2 applied to v concludes the
proof. �

Since D is in particular nowhere dense, we have the following corollary.

7.4. Corollary. The foliation F is holomorphic.

7.5. Lemma. Let A be a non-discrete closed analytic subset of X ′ such that ρ restricted
to the smooth locus of A is Monge-Ampère homogeneous. Then ρ is unbounded below on
A.

Proof. Suppose ρ|A is bounded below. Since A is closed, ρ|A has a minimum at some
point x ∈ A. Also, since X is Stein and therefore has no non-discrete compact subvari-
eties, ρ|A cannot be constant. Hence, there is c ∈ ρ(A) with c > ρ(x).

If A is smooth, we can now apply the Monge-Ampère minimum principle 4.1 to ρ and
the constant c on the sublevel set Ω = {ρ < c}∩A, which is relatively compact in A. We
find that ρ ≥ c on Ω, which is absurd.

If A is not smooth, we take a resolution of singularities ψ : Y → A and do the same
for ρ ◦ ψ, which is smooth, proper and Monge-Ampère homogeneous on Y . �

7.6. Proposition. The singularity set E is an analytic subvariety of X of codimension
at least two.
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Proof. By formula (3.2), in any F-chart in X ′ \E we have

det(τi̄) = τn|ρ1|2 det(ραβ̄),

where i, j = 1, . . . , n and α, β = 2, . . . , n. The function ρ1 is holomorphic, so outside D
we have

0 = ∂∂̄ log det(τi̄) = n ∂∂̄ρ+ ∂∂̄ log det(ραβ̄).

Now let z1, . . . , zn be local coordinates on an open set U in X ′. Let Hz = (∂2ρ/∂zi∂z̄j)
be the complex Hessian of ρ with respect to these coordinates. For a matrix A, let Aj,k

denote the minor obtained by removing the j-th row and k-th column of A. It is a fact
of linear algebra that if H is a singular hermitian matrix with detHk,k = 0 for all k, then
detHi,j = 0 for all i, j, so corank H ≥ 2. Hence, E ∩ U is the subset of U where the
determinants of Hk,k

z , k = 1, . . . , n, all vanish.

Let w1, . . . , wn be F-coordinates near a point x ∈ U \D. Then

Hz = JHwJ
∗,

where J = (∂wi/∂zj) is the Jacobian of the change of coordinates near x. Since the first
line and first column of Hw are identically zero, we have

Hj,k
z = J j,1H1,1

w (J∗)1,k,

so

∂∂̄ log detHk,k
z = ∂∂̄ log detH1,1

w + ∂∂̄ log | detJk,1|2 = −n ∂∂̄ρ

on the set where all the determinants are non-zero. Let

uk = log detHk,k
z + nρ, k = 1, . . . , n.

Then uk is pluriharmonic on U \ u−1
k (−∞), so by Proposition 7.2, u−1

k (−∞) is analytic
in U . Hence

E ∩ U =

n
⋂

k=1

u−1
k (−∞)

is analytic.

Finally, if codimE = 1, then by the definition of E, ρ is Monge-Ampère homogeneous
on the smooth locus of E. By Lemma 7.5, ρ|E must be unbounded below, which is
impossible since τ is strict at its zeros. �
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7.7. Lemma. The degeneracy locus D is transverse to the foliation F outside a thin
analytic subset of D.

Proof. Otherwise there is an irreducible component A of D which fails to be transverse to
F at every point. We will show that A is saturated; then ρ is Monge-Ampère homogeneous
on the smooth locus of A, which by Lemma 7.5 contradicts strictness of τ at its zeros.

Let (U, z) be an F-chart at p ∈ A\E. Say A = {g = 0}, where g ∈ O(U) is square-free
in Op, so g divides any germ h ∈ Op with h|A = 0. For x ∈ A∩U we have ∂g/∂z1(x) 6= 0
if and only if the leaf through x is transverse to A at x.

By assumption, ∂g/∂z1 = 0 on A ∩ U . Hence g divides ∂g/∂z1, so g divides ∂ig/∂zi
1

for all i. Therefore all z1-derivatives of g vanish at p, so g is locally constant on the leaf
M through p at p and M ⊂ A. �

7.8. Theorem. The τ -connection ∇ in T (X \ D) extends to a regular meromorphic
connection in TX. Moreover, ∇ has no monodromy locally at points of D.

Proof. By Proposition 7.6 and Lemma 7.7, it suffices to prove this at a point p ∈ D \ E
where D is transverse to F.

Let (U, z) be an F-chart at p such that D = {z1 = 0} and let M be a plate in U . Since
M is totally geodesic, the maps in the canonical short exact sequence

0 → TF → TX → N → 0 over M

preserve the canonical connections of the τ -metrics in these bundles. This means that
the restriction of ∇ to TM is the canonical connection of the τ -metric on M , so the
analysis of section 5 can be applied to ∇|TM . Likewise, the restriction of ∇ to N is
the canonical connection of the quotient τ -metric in N , which, by Proposition 3.1, is the
ρ-metric multiplied by τ , so ∇|N is smooth on all of U .

Since ∇ is regular on TM by section 5 and smooth on N , it is regular on TX|M .
Therefore, ∇ is regular on TX.

The fundamental group of U \ D is generated by a loop γ about p based at a point
x in the plate M through p. We need to show that the monodromy operator µ on TxX
given by γ is the identity. Since M is totally geodesic, the monodromy operators µ1 on
TxM ⊂ TxX and µ2 on Nx = TxX/TxM are induced by µ. By section 5 there is no
monodromy in TM , and since ∇|N is smooth on all of U there is no monodromy in N
either, so both µ1 and µ2 are the identity. Since µ is unitary, this implies that µ is the
identity. �

Roughly speaking, a holomorphic connection with singularities is said to be regular if it
is meromorphic with simple poles. This means that horizontal sections grow polynomially
near the singular set. For the theory of regular connections, we refer to [Del].

In fact, we stated the regularity result not because we need it, but simply because it
required no additional effort. What is important for us is vanishing of the monodromy of
∇ at D. This implies that the monodromy factors through π1(X), so the unitary local
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system ker∇ on X \D extends to a unitary local system L on X. This local system is
induced by a flat hermitian metric in the holomorphic vector bundle L = L ⊗ O on X,
which is unique up to a choice of a unitary frame at any single point.

In explicit terms, there is an open cover (Ui) of all ofX and holomorphic unitary frames
ei for T (Ui \ D). The cocycle (aij) of constant unitary transition matrices satisfying
ei = aijej determines ker∇ as well as its extension L. A section s of L is represented
by a family of holomorphic maps fi : Ui → Cn such that fj = fiaij . A flat metric in L
compatible with L is defined by setting ‖s‖2 = fif

∗

i = |fi|2 on Ui.

7.9. Theorem. The flat bundle L has a holomorphic section s such that τ = ‖s‖2.

Proof. On Ui, write grad τ = fiei with fi : Ui \ D → C
n holomorphic. Then τ =

‖ grad τ‖2 = |fi|2. In particular, fi extends holomorphically to Ui. Since fjej = fiei =
fiaijej , we have fj = fiaij , so the maps fi represent a holomorphic section s of L such
that ‖s‖2 = |fi|2 = τ . �

Note that τ is in particular real-analytic.

7.10. Corollary. There is an analytic covering f : X → Bn
R such that τ = |f |2 if and

only if the monodromy of ∇ is trivial.

Proof. If the monodromy is trivial, then L has a global unitary frame {e1, . . . , en}. Write
s =

∑

fiei, where the fi are holomorphic functions on X. Then the map f = (f1, . . . , fn)
satisfies |f |2 = ‖s‖2 = τ , so f : X → Bn

R is proper and hence an analytic covering.
Conversely, if τ = |f |2, then the pullbacks f∗(∂/∂zi), i = 1, . . . , n, form a global

holomorphic unitary frame for T (X \D). �

7.11. Corollary. Locally, τ = |f |2, where f is an analytic covering of an open set in
C

n.

Proof. By the proof of Theorem 7.9, locally, τ = |f |2 where f is a holomorphic map into
C

n. Fibres of f lie in the level sets of τ , which are compact real-analytic subvarieties of
X, so f is discrete by the following lemma and thus locally an analytic covering. �

7.12. Lemma (Diederich-Fornæss [DiFo]). A compact real-analytic subvariety of a
Stein manifold does not contain any non-trivial germs of complex-analytic varieties.

Proof. Diederich and Fornæss prove this for Cm. By the embedding theorem for Stein
manifolds the generalization is obvious. �

8. The structure theorem for parabolic exhaustions.

We are now ready to prove our main result.

8.1. Main Theorem. Let X be an n-dimensional Stein manifold and τ : X → [0, R),
0 < R ≤ +∞, be a parabolic exhaustion which is strictly plurisubharmonic at its zeros.
Then the following conditions are equivalent.

(i) The τ -metric on X \D is flat.
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(ii) τ is real-analytic.
(iii) ρ is unbounded below on every leaf of the Monge-Ampère foliation F of X ′ \E.
(iv) Locally, τ = |f |2, where f is a holomorphic map into Cn.
(v) F extends to a holomorphic foliation of X ′.
(vi) There exists a holomorphic section s of a flat hermitian vector bundle of rank n

over X such that τ = ‖s‖2.

Moreover, there is an analytic covering f : X → Bn
R such that τ = |f |2 if and only

if these conditions are satisfied and the canonical connection of the τ -metric has trivial
monodromy.

Proof. (ii) ⇒ (i): Let U be a connected component of X \D containing a zero of τ . By
Proposition 4.3 and real-analyticity, the τ -metric is flat on U . Let p ∈ ∂U ⊂ D and B be a
coordinate ball about p. The fact that the function λ = log det(τi̄) on B is pluriharmonic
on U ∩B translates into a differential equation for eλ, which by real-analyticity holds on
all of B. Hence, λ is pluriharmonic on B \ D and plurisubharmonic on B. Therefore,
D∩B is a pluripolar set and thus does not disconnect B, so B \D ⊂ U . This shows that
U = X \D.

(iii) ⇒ (i): This is Corollary 6.2.
(i) ⇒ (vi): This is Theorem 7.9.
(vi) ⇒ (v): As shown in section 7, we have an open cover (Ui) of X ′ and analytic

coverings fi : Ui → Vi with Vi ⊂ C
n \ {0} open, such that |fi|2 = τ and fi = aij ◦ fj on

Ui ∩ Uj with aij ∈ U(n). Let π : Cn \ {0} → Pn−1 be the projection and φi = π ◦ fi :
Ui → P

n−1.
Note that the critical locus of φi is E∩Ui and that φi is open since π and fi are. Also,

ρ is harmonic along the fibres of φi|Ui \ E. So to prove that the maps φi form an atlas
for the desired foliation, we need only show that they are simple.

Suppose φi is not simple for some i. Then by Theorem 2.6, E contains an irreducible
component of some fibre of φi. Let C be the set of all such components for any i. By
assumption, C 6= ∅. If C ∈ C, then ρ|C is non-constant and harmonic on the smooth
locus of C, so ρ(C) is open in (−∞, sup ρ). Hence, ρ(

⋃

C) is open.
Let us show that ρ(

⋃

C) is also closed in (−∞, sup ρ). Let (xk) be a sequence in
⋃

C such that ρ(xk) → a < sup ρ. Since ρ is an exhaustion, we may assume that (xk)
converges to a limit p. Say p ∈ Ui. We may also assume that xk ∈ Ui and xk 6= p for all
k. For each k, xk ∈ C ∈ C, where C is a component of f−1

j (`) for a radial line ` in Cn

(with j depending on k). Then fi(C) = aij(fj(C)) ⊂ aij(`), so `k = aij(`) is a radial line

such that a component Ck of f−1
i (`k) containing xk intersects C ⊂ E in a non-discrete

set. Hence, Ck ⊂ E. After passing to a subsequence, we obtain a locally analytic subset
A =

⋃

Ck of Ui, which is closed in Ui \ F , where F = φ−1
i (φi(p)), such that p ∈ A. Now

A is clearly not analytic in any neighbourhood of p, so by the Remmert-Stein theorem
[ReSt], A contains an irreducible component C of F with p ∈ C. Since A ⊂ E and E is
closed, C ⊂ A ⊂ E, so C ∈ C. Hence, a = ρ(p) ∈ ρ(

⋃

C).
This shows that ρ is unbounded below on

⋃

C ⊂ E, which contradicts strictness of τ
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at its zeros.
(v) ⇒ (iii): Suppose that ρ is bounded below on a smooth leaf M contained in an

irreducible component C of a leaf of the extended foliation. Then C = M and ρ|C has
a minimum at some point p ∈ C. By Lemma 2.7, C contains an irreducible component
C ′ of the leaf through p and ρ|C ′ has a minimum at p. Since ρ|C ′ is harmonic on the
smooth locus of C ′, it is constant. In particular, C ′ is relatively compact in X.

Let u be a strictly plurisubharmonic function on X. Then u has a maximum at some
point q ∈ C ′ and C ′ contains an irreducible component C ′′ of the leaf through q. Then
u|C ′′ has a maximum at q, so u|C ′′ is constant, which is absurd.

(vi) ⇒ (iv) and (iv) ⇒ (ii) are obvious.
Now Corollary 7.10 concludes the proof. �

The assumption that τ be strict at its zeros is essential to our method of proof. It is
used to prove the implications (ii) ⇒ (i), (iii) ⇒ (i), (i) ⇒ (vi) and (vi) ⇒ (v). In fact,
without it, the theorem is no longer true.

Let τ on X be any parabolic exhaustion as in the theorem, satisfying conditions (i)–
(vi), for instance τ(z, w) = |z|2 + |w|2 on C2. Then τ2 is also a parabolic exhaustion on
X and

1
2
∂∂̄τ2 = ∂τ ∧ ∂̄τ + τ∂∂̄τ,

so τ2 is not strict at its zeros. By formula (3.2), in any F-chart in X ′ \E we have

det((τ2)i̄) = τ2n|2ρ1|2 det(2ραβ̄) = 2n+1τ2n|ρ1|2 det(ραβ̄) = 2n+1τn det(τi̄),

where i, j = 1, . . . , n and α, β = 2, . . . , n. In particular, the degeneracy locus of τ 2 is
D ∪ τ−1(0). Since the τ -metric is flat, the τ 2-metric has Ricci curvature

−i∂∂̄ log det((τ2)i̄) = −ni∂∂̄ρ,

which is non-zero, so condition (i) fails for τ 2. Hence conditions (iv) and (vi) fail as well.
On the other hand, τ2 satisfies conditions (ii), (iii) and (v) because τ does.

Burns [Bu1] has proved a structure theorem for parabolic exhaustions which are strictly
plurisubharmonic on the complements of their zero sets. It could be used to investigate
exhaustions such as τ2.

9. The Monge-Ampère foliation.

In this section we make some additional remarks about the Monge-Ampère foliation
F associated to a parabolic exhaustion τ as in the Main Theorem 8.1.

First observe that F cannot be extended smoothly to any neighbourhood of any point
p in E. Otherwise, we could define a function u = nρ+log det(ραβ̄) in terms of an F-chart

at p and show that E = u−1(−∞) is a hypersurface as in the proof of Proposition 7.6.
Indeed, E is the set of critical points of the F-charts obtained in the proof of the Main
Theorem 8.1, so E is the singularity set of F in the sense of section 2.
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It is clearly not possible to extend F across the zeros of τ to a holomorphic foliation
on all of X. However, it does extend according to the alternative definitions of Baum-
Bott and Gómez-Mont (see section 2). The extension of TF to X is simply the coherent
analytic subsheaf of TX generated over the structure sheaf O by the holomorphic vector
field grad τ at the zeros of τ .

By Lemma 2.3, a leaf M of F is closed, and hence an analytic subvariety of X ′, if and
only if M has only finitely many plates at every zero (in the picture of F as a pencil of
pointed discs).

We can consider the projective monodromy group G at a zero p, i.e., the image of the
representation π1(X, p) → PU(n) obtained by parallel-translating radial lines in TpX
along loops at p. These radial lines can in fact be identified with plates of leaves at p.
By total geodesy, if a radial line is tangent to a leaf M at one point, then it is tangent
to M everywhere. Thus two plates of the same leaf at p lie in the same G-orbit. Hence
F has closed leaves if G is finite.

Suppose now that the projective monodromy vanishes (so the monodromy itself is
scalar-valued). Then every leaf is parallel to a unique radial line in TpX, so we obtain
a holomorphic map ψ : X ′ → Pn−1, which is a submersion on X ′ \ E. In fact, letting
ωo = i∂∂̄ log |Z|2 be the Kähler form of the Fubini-Study metric on P

n−1, we have
ψ∗(ωo) = i∂∂̄ρ near p by the local picture of F at p. These forms are invariant under
parallel translation along leaves, so they are equal on the union of leaves abutting p. On
the union of leaves abutting another zero q, we have ψ = α ◦ ψ, where α : Pn−1 → Pn−1

is given by parallel translation of the pencil at q to the pencil at p. This map is an
automorphism of Pn−1 and preserves the τ -metric, so α∗(ωo) = ωo. Therefore, ψ∗(ωo) =
i∂∂̄ρ.

Claim: The map ψ lifts by the natural projection π : Cn\{0} → Pn−1 to a holomorphic
map f : X → Cn.

The map ψ lifts if and only if the pullback by ψ of the fibre bundle π has a section
over X ′. Now π is actually obtained from the universal bundle J → Pn−1 by removing
the zero section, so ψ lifts if and only if ψ∗J has a zero-free section, i.e., is trivial.

The Chern class of J is represented by the form −ωo, so the Chern class of ψ∗J is
represented by ψ∗(−ωo) = −i∂∂̄ρ, and thus is trivial. It is easy to see that ψ∗J extends
across the zeros of τ to a holomorphic line bundle on X. Now H2(X ′) ∼= H2(X), so the
extension also has vanishing Chern class. Since X is Stein, this shows that ψ∗J is trivial.

Finally note that ρ and log |f |2 differ by a pluriharmonic function u on X, and the
image of u in H1(X,U) is, not surprisingly, the cocycle representing the monodromy.

10. Affine algebraic manifolds.

In their paper [GrKi] on Nevanlinna theory for algebraic varieties, Griffiths and King
showed that any affine algebraic manifold possesses a parabolic exhaustion with finitely
many critical values (and some further properties). In [CoGr], Cornalba and Griffiths
asked whether this characterizes affine algebraic manifolds, observing that it does in
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dimension one. This problem apparently has not been solved. Similar questions are
posed in [Bu1], [Bu2] and [Dem]. See also [Fo]. We would like to present a result in this
vein.

10.1. Theorem. A Stein manifold X is affine algebraic if and only if X has a parabolic
exhaustion τ such that

(a) τ is strict at its zeros,
(b) the leaves of the Monge-Ampère foliation F of X ′ \E are affine curves, and
(c) the canonical connection of the τ -metric has finite monodromy.

An affine curve is obtained from a compact curve by removing a finite set. Thus, if M
is a smooth leaf, and M 6⊂ D so ρ|M is not constant, then condition (b) implies that ρ|M
is unbounded above and below. Hence, by Corollary 6.2, conditions (a) and (b) imply
that the τ -metric is flat, so condition (c) makes sense.

Proof. ⇒: Embed X as an algebraic submanifold of Cm for some m. The generic linear
projection f : X → Cn, where n = dimX, yields a parabolic exhaustion τ = |f |2
satisfying (a), (b) and (c); the monodromy is in fact trivial.

⇐: Let us first assume that the monodromy is trivial. By Corollary 7.10, there is an
analytic covering f : X → C

n such that τ = |f |2. By the Fortsetzungssatz of Grauert-
Remmert [GrRe], if the critical locus A = f(D) of f is algebraic in Cn, then f extends
to an analytic covering of P

n, so X is in particular affine algebraic.
Let M be a smooth leaf and consider a puncture of M , which we identify with the

punctured unit disc ∆×. There is a holomorphic function h on ∆× and c ∈ R such that

ρ = c log |z|2 + 2 Reh

on ∆×, so ρz = c/z + h′. At the puncture, ρ has a limit in [−∞,+∞], so h must have a
removable singularity at 0. Hence the critical set of ρ|∆×, which is just ∆× ∩D, is finite.
Therefore, M ∩D is finite.

If ` is a radial line in C
n, then f−1(`) has only a finite number of irreducible components

(in fact no more than the degree of f), so f−1(`) is a finite union of leaves, and each leaf is
the union of a finite set and a finite number of smooth leaves. Hence, A∩` = f(D∩f−1(`))
is finite. By the following lemma, this implies that A is algebraic.

In general, there is a finite unbranched covering π : Y → X such that the parabolic
exhaustion τ ◦ π of Y satisfies conditions (a) and (b) and has trivial monodromy. Then
Y is affine algebraic and a holomorphic function on Y is rational if and only if it has
polynomial growth with respect to τ ◦ π. The deck transformations of Y preserve τ ◦ π,
so they are algebraic. Hence, by a result of Chevalley [Bor; No], X is affine algebraic. �

10.2. Lemma. Let A be a closed analytic hypersurface in Cn such that A ∩ ` is finite
for every line ` through the origin in Cn. Then A is algebraic.

Proof. For k ∈ N let Ek be the set of lines ` ∈ Pn−1 such that |z| ≤ k for every z ∈ A∩ `.
Then Ek is closed in Pn−1 because the projection A \ {0} → Pn−1 is discrete and hence
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open. Also, P
n−1 =

⋃

Ek, so E◦

m 6= ∅ for some m by the Baire Category Theorem.
Therefore, the closure of A in Pn does not contain the hyperplane at infinity, which
implies that A is algebraic [Ch]. �

11. Parabolic functions which are not exhaustions.

Let X be an n-dimensional complex manifold and f : X → Cn be a holomorphic map.
We have observed that τ = |f |2 is a parabolic function on X, that f is proper if and only
if τ is an exhaustion, and that f is an immersion if and only if τ is strictly parabolic.

It is of interest to ask which parabolic functions arise in this manner. It turns out to
be more natural to ask for which parabolic functions τ there exists a flat hermitian vector
bundle of rank n over X with a holomorphic section s such that τ = ‖s‖2. To pass from
s to an actual map f then becomes a separate problem about vanishing of monodromy.
Of course, these questions are the same when X is simply connected.

We have already discussed the case when τ is an exhaustion. Let us now see how
far we can go without this assumption. So let τ be a parabolic function on X. To get
started, I must assume that τ is strictly plurisubharmonic at some point p ∈ τ−1(0). (In
particular, the zero set must not be empty.) By [St], in suitable coordinates z centred at
p we have

τ(z) = |z|2 + O(|z|3).

Hence, τ : U → τ(U) is proper for some neighbourhood U of p. By Stoll’s Theorem 4.2,
τ(w) = |w|2 near p in some (possibly different) coordinates w; in particular, the τ -metric
is flat near p.

Suppose now that the τ -metric is flat on all of X \D, e.g. either by condition (ii) or
(iii) in the Main Theorem 8.1 (the proofs that these imply flatness did not depend on τ
being an exhaustion). For condition (iii), we actually need τ to be strict at every point
of τ−1(0). Then the proofs of Propositions 7.3 and 7.6 show that D and E are analytic,
but we cannot show that codimE ≥ 2 or that ker∇ extends to a unitary local system on
X.

We can make two general statements though. By a theorem of Deligne [Del], T (X \D)
with ∇ has a unique meromorphic extension to an OX [D]-coherent sheaf on X with a
regular meromorphic connection. Also, if ker∇ happens to be trivial, then we get a
holomorphic map f : X \D → Cn with τ = |f |2, which extends to a holomorphic map
on X.

So we see that if we omit the condition that τ be proper, the singularities become
difficult to handle. If we assume on the other hand that τ is strictly parabolic, then all
singularities disappear and we can prove results such as the following.

11.1. Proposition. Let τ be a strictly parabolic real-analytic function on a simply
connected complex manifold X of dimension n such that τ−1(0) 6= ∅. Then there exists
an immersion f : X → Cn such that τ = |f |2.
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[Del] Deligne, P., Équations différentielles à points singuliers réguliers, Lecture Notes in Mathemat-

ics vol. 163, Springer-Verlag, Berlin-New York, 1970.

[Dem] Demailly, J-P., Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriq-
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no. 2, 185–204.

[Ho2] , On the stability of holomorphic foliations with all leaves compact, Variètès Analytiques
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