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Abstract. Given a domain Y in a complex manifold X, it is a difficult problem with no
general solution to determine whether Y has a schlicht envelope of holomorphy in X, and
if it does, to describe the envelope. The purpose of this paper is to tackle the problem
with the help of a smooth 1-dimensional foliation F of X with no compact leaves. We
call a domain Y in X an interval domain with respect to F if Y intersects every leaf
of F in a nonempty connected set. We show that if X is Stein and if F satisfies a new
property called quasiholomorphicity, then every interval domain in X has a schlicht envelope
of holomorphy, which is also an interval domain. This result is a generalization and a
global version of a well-known lemma from the mid-1980s. We illustrate the notion of
quasiholomorphicity with sufficient conditions, examples, and counterexamples, and present
some applications, in particular to a little-studied boundary regularity property of domains
called local schlichtness.
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1. Introduction

The roots of the subject of several complex variables go back to the discovery, a century
ago, that in contrast to the 1-dimensional case, there are domains Ω in higher dimensions
such that all holomorphic functions on Ω extend holomorphically to a larger domain. This
leads directly to the notion of the envelope of holomorphy. The envelope of holomorphy of
a complex manifold Y is a Stein manifold Z with a holomorphic embedding of Y onto a
domain in Z that induces a bijection between the sets of holomorphic functions on Y and on
Z. If it exists, the envelope is uniquely determined up to isomorphism, and the assignment
of its envelope to a manifold that has one is functorial. If Y is a domain in a complex
manifold X and there is a Stein domain Z in X containing Y to which all holomorphic
functions on Y extend holomorphically, then Z is the envelope of holomorphy of Y , and we
say that Y has a schlicht envelope of holomorphy in X.

Given a domain Y in a complex manifold X, it is a difficult problem with no general
solution to determine whether Y has a schlicht envelope of holomorphy in X, and if it does,
to describe the envelope. The purpose of this paper is to tackle the problem with the help
of a smooth 1-dimensional foliation F of X.
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The rough idea is to continue the holomorphic functions on Y along the leaves of F
(rather than along arbitrary curves in X) as far away from Y as possible, and obtain the
envelope of holomorphy of Y as the union of the maximal leaf segments through Y along
which all holomorphic functions on Y can be continued. It is natural to require the leaves
of F to be noncompact, that is, exclude embedded circles as leaves, and to insist that Y
intersect each leaf, which is then an injectively immersed real line, in a nonempty connected
set. Namely, as we continue holomorphic functions beyond Y along leaves of F , we do not
want to come back to where we have already been. And if Y does not intersect every leaf,
we might as well replace X by the saturation of Y with respect to F .

With these requirements, the rough idea works, as long as F satisfies a new property that
we call quasiholomorphicity. Continuation of holomorphic functions on Y along leaves of F
produces a locally Stein domain Z in X containing Y to which all holomorphic functions on
Y extend holomorphically. If X is Stein, so is Z, so Y has a schlicht envelope of holomorphy
in X, about which we have the additional information that it intersects every leaf of F in
a nonempty connected set.

This result, stated more precisely below as Theorem 3, can be viewed as a generalization
and a global version of a well-known lemma from the mid-1980s (Theorem 1 below) that
we shall call the schlichtness lemma. This lemma corresponds to our result with X being a
box in Cn foliated by straight line segments parallel to one of its edges.

Following the proof of our global schlichtness lemma, we illustrate the notion of quasi-
holomorphicity with sufficient conditions, examples, and counterexamples, and present some
applications, in particular to a little-studied boundary regularity property of domains called
local schlichtness.

Let us summarize the contents of the paper in more detail. We need a few new definitions.
Let F be a smooth 1-dimensional foliation of a complex manifold X with no compact leaves.
Then the leaves of F are injectively immersed lines (not necessarily embedded). A domain
Ω in X is called an interval domain with respect to F if Ω has a nonempty connected
intersection with each leaf of F .

Let Y be a domain in X with a connected, but possibly empty, intersection with each
leaf of F . Then Y is an interval domain in its saturation Y F (the union of all leaves that
intersect Y ; this is a domain in X). It is easily shown that there is a largest interval domain
Z in Y F containing Y to which all holomorphic functions on Y extend holomorphically (see
the first paragraph of the proof of Theorem 3 below). We call F a good foliation if Z is
locally Stein in Y F for all Y (meaning that every boundary point of Z in Y F has an open
neighbourhood U in Y F such that Z ∩ U is Stein).

Next, we say that F is quasiholomorphic if it satisfies the following two properties:

(1) if p, q ∈ X lie in the same leaf, then there is an open neighbourhood U of p in X
and a biholomorphism h from U onto an open neighbourhood of q, taking p to q,
such that h(x) lies in the leaf of x for all x ∈ U ; and

(2) if a ∈ U and b is a point in the leaf of a between a and h(a), then there is a
biholomorphism k from U onto an open neighbourhood of b, taking a to b, such that
k(x) lies in the leaf of x between x and h(x) for every x ∈ U .

Note that quasiholomorphicity is a semilocal property in the sense that F is quasiholomor-
phic if and only if F is quasiholomorphic on a saturated open neighbourhood of each of its
leaves.

Finally, we say that F has a holomorphic atlas if X is covered by holomorphic charts
that take F to the foliation of Cn (n = dimX) by the straight lines along which Im z1 and
z2, . . . , zn are constant. By the rectification theorem for holomorphic vector fields, F has a
holomorphic atlas if and only if F is induced by a nowhere-vanishing holomorphic vector
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field on a neighbourhood of each point of X. This is of course a local property. We do not
know whether being good is a local or semilocal property.

Main Theorem. Let F be a smooth 1-dimensional foliation of a complex manifold X with
no compact leaves. If F is quasiholomorphic, then F is good. If F has a holomorphic atlas,
then F is quasiholomorphic.

We do not know whether or to what extent the converses of these implications are
true (except in complex dimension 1, where every smooth 1-dimensional foliation with no
compact leaves is good for trivial reasons, but need not be quasiholomorphic, as shown by
examples given below). As a corollary, we obtain a generalization of the schlichtness lemma.

Global Schlichtness Lemma. Let F be a quasiholomorphic foliation on a complex man-
ifold X, and let Y be an interval domain in X with respect to F .

There is a largest interval domain Z in X with respect to F containing Y to which all
holomorphic functions on Y extend holomorphically. Moreover, Z is locally Stein in X.

Hence, if X is Stein, so is Z, so Z is the envelope of holomorphy of Y . In particular, if
X is Stein, then Y has a schlicht envelope of holomorphy in X.

In general, if X is not Stein, Z being locally Stein does not imply that Z is the envelope
of holomorphy of Y . However, there are positive results on the Levi problem for certain
non-Stein manifolds, and for such manifolds further conclusions can be drawn from Z being
locally Stein.

We call a domain Ω in a complex manifold locally schlicht at a boundary point p if p
has a basis of connected Stein neighbourhoods U such that Ω∩U has a schlicht envelope of
holomorphy in U . As shown below, it follows from the schlichtness lemma that a domain is
locally schlicht at a smooth boundary point. The original motivation for our work was to
extend this result to singular boundary points. Using the global schlichtness lemma, we are
able to prove local schlichtness at well-behaved isolated boundary singularities.

Local Schlichtness Theorem. Let ρ be a smooth real-valued function on a neighbourhood
of the origin 0 in Cn. Suppose ρ has a nondegenerate hermitian critical point at 0, which is
not a minimum. Then the open set {ρ < ρ(0)} is locally schlicht at 0.

The hermitian condition means that the linear part of the Taylor expansion of the gra-
dient of ρ at 0 is complex-linear.

2. The schlichtness lemma and local schlichtness at a boundary point

The work presented in this paper starts with a lemma from the mid-1980s that we shall call
the schlichtness lemma. The following statement is a slight modification of the result proved
by Jean-Marie Trépreau as Lemma 1.2 in his paper [8]. Trépreau says about this result:
“Le lemme suivant est, sur le fond, bien connu des spécialistes.” The schlichtness lemma
also appeared in the unpublished Ph.D. thesis of Berit Stensønes, completed in 1985, see
Theorem 2 in [6] and the proof of Theorem 2.7 in [7]. See also Lemma 1 in [2]. A related
result appeared much earlier in [10], Section 21.5. The norms used below are the maxima
over the absolute values of the relevant real coordinates.

Theorem 1 (The Schlichtness Lemma). Let Y = {(z, x) ∈ Cn−1 × R : |(z, x)| < r} and
X = Y × (−r, r), where r > 0. Let u : Y → R be a lower semicontinuous function with
|u| < r/3 and let Ω = {(z, x+ iy) ∈ X : y < u(z, x)}. Then there is a lower semicontinuous
function v : Y → R with v ≥ u such that the domain Ω̃ = {(z, x+ iy) ∈ X : y < v(z, x)} is
the envelope of holomorphy of Ω, meaning that Ω̃ is Stein and every holomorphic function
on Ω extends to a holomorphic function on Ω̃.
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In [8], u is taken to be C2, but this is not necessary. We will not recall the proof of the
schlichtness lemma. It is subsumed by Theorem 3 below. The hypothesis |u| < r/3 is used
in [8], but Theorem 3 shows that it is not necessary either.

Now let Ω be an open subset of a complex manifold X. We say (by a slight abuse of
terminology) that Ω is locally schlicht at a boundary point p of Ω in X if p has a basis of
open neighbourhoods U such that:

(1) U is connected and Stein, that is, U is a domain of holomorphy,
(2) there is a Stein open set V with Ω ∩ U ⊂ V ⊂ U , and
(3) every holomorphic function on Ω ∩ U extends to a holomorphic function on V .

Then V is the envelope of holomorphy of Ω∩U . Note that Ω∩U and V may be disconnected.
Note also that if Ω is Stein, then Ω is locally schlicht at each of its boundary points. More
generally, if Ω is pseudoconvex at a boundary point p, meaning that there is an open
neighbourhood W of p such that Ω ∩W is Stein, then Ω is locally schlicht at p.

It follows from the schlichtness lemma that if Ω is the subgraph of a lower semicontinuous
function in some holomorphic coordinates at p, and this function is continuous at p, then Ω
is locally schlicht at p. In particular, if the boundary of Ω is smooth at p, then Ω is locally
schlicht at p.

Corollary 2. Let u : Cn−1×R → R be a lower semicontinuous function. If u is continuous
at (a, s) ∈ Cn−1 × R, then the domain

Ω = {(z, x+ iy) ∈ Cn : y < u(z, x)}

is locally schlicht at the boundary point (a, s+ iu(a, s)).

Proof. We may assume that (a, s) is the origin and u(a, s) = 0. By assumption, for every
ε > 0, there is δε > 0, say δε < ε, such that if |w| < δε, then |u(w)| < ε.

Fix 0 < ε < 1. Let W = {w ∈ Cn−1 × R : |w| < δε} and

U = {(z, x+ iy) ∈ Cn : |(z, x)| < δε, |y| < 3ε} ∼= W × (−3ε, 3ε).

We have |u| < ε on W . The box U is a domain of holomorphy. As ε ranges through the
interval (0, 1), these boxes form a neighbourhood basis for the origin.

Theorem 1 (or Theorem 3, if you worry about δε and 3ε not being equal) now implies
that there is a domain of holomorphy Ω̃ with Ω ∩ U ⊂ Ω̃ ⊂ U to which every holomorphic
function on Ω extends. �

The continuity assumption in the statement of Corollary 2 cannot be omitted. Whether
it could somehow be relaxed is an open question. Namely, let Ω0 be a domain in C2, let
u(z, x) equal 2 if z ∈ Ω0 and 0 if z 6∈ Ω0, and let Ω = {(z, x + iy) ∈ C3 : y < u(z, x)}. If
p ∈ ∂Ω0, then (p, i) ∈ ∂Ω, and Ω = Ω0 × C in a neighbourhood of (p, i). Thus, if Ω0 is not
locally schlicht at p, and as pointed out below, such domains exist, then Ω is not locally
schlicht at (p, i).

We conclude this section with two examples of domains Ω that fail to be locally schlicht
at a boundary point p. In the second example, Ω is locally connected at p, in the first it is
not. Let Ω be the union of the complement of the closed unit ball in Cn or its intersection
with some open neighbourhood of p = (1, 0, . . . , 0), the open ball of radius 1

2
centred at

(1
2
, 0, . . . , 0), and, to make Ω connected, a fattened path, say, joining these two sets away

from p. Then Ω is clearly not locally schlicht at p.
The second example is a modification of a classical example due to H. Cartan (see [1];

for more details see [5], pp. 97–98). Define a domain Ω0 in C2 as Ω1 ∪ Ω2, where

Ω1 = {(x+ iy, w) ∈ C2 : −4 < x < 0, y > 1, y|w| < ex},
4



Ω2 = {(x+ iy, w) ∈ C2 : 0 ≤ x < 4, y > 1, e−1/x < y|w| < 1}.
The envelope of holomorphy of Ω0 is the domain Ω1 ∪ Ω̃2, where

Ω̃2 = {(x+ iy, w) ∈ C2 : 0 ≤ x < 4, y > 1, y|w| < 1}.
Let Ω = φ(Ω0) ⊂ C2, where φ(z, w) = (eiz, w). Note that φ : Ω0 → Ω is a biholomorphism,
the origin 0 is a boundary point of the domain Ω, and Ω is locally connected at 0. We claim
that Ω is not locally schlicht at 0. Namely, let U be an open neighbourhood of 0 and let P

be a polydisc centred at 0 of polyradius
(
ε,

1

− log ε

)
with ε > 0 so small that P ⊂ U . Then

{(z, w) ∈ Ω0 : y > − log ε} ⊂ φ−1(U ∩ Ω),

so any holomorphic function on U ∩ Ω admits an analytic continuation along any path in

φ
(
{(z, w) ∈ Ω1 ∪ Ω̃2 : y > − ln ε}

)
.

However, the holomorphic function z ◦ φ−1 on Ω (the first component of the inverse of
φ) does not extend to a single-valued holomorphic function on any Stein open set V with
Ω ∩ U ⊂ V ⊂ U . Therefore the envelope of holomorphy of U ∩ Ω is not schlicht.

3. Quasiholomorphic foliations and the global schlichtness lemma

We begin this section by defining two new notions that we need for our generalization of the
schlichtness lemma. Let F be a smooth 1-dimensional foliation of a complex manifold X.
The compact leaves of F are embedded circles and the noncompact leaves are injectively
immersed lines (not necessarily embedded). We say that F is quasiholomorphic if

(1) F has no compact leaves;
(2) if p, q ∈ X lie in the same leaf, then there is an open neighbourhood U of p in X

and a biholomorphism h from U onto an open neighbourhood of q, taking p to q,
such that h(x) lies in the leaf of x for all x ∈ U ; and

(3) if a ∈ U and b is a point in the leaf of a between a and h(a), then there is a
biholomorphism k from U onto an open neighbourhood of b, taking a to b, such that
k(x) lies in the leaf of x between x and h(x) for every x ∈ U .

Under an additional regularity condition on the foliation, the biholomorphisms h and k
above are uniquely determined as long as U is connected. Namely, letX be an n-dimensional
complex manifold with a smooth 1-dimensional foliation F with no compact leaves. Then
F has no holonomy since its leaves are simply connected, so its graph, as a set, is simply
the set G of pairs (x, y) in X ×X such that x and y lie in the same leaf. For the definition
of the graph of foliation and its basic properties, see [11]. The graph has its own topology,
possibly finer than the subspace topology induced fromX×X, and the structure of a smooth
manifold of dimension 2n+1. The inclusion ι : G ↪→ X×X is a smooth injective immersion.
Suppose that ι is also proper, that is, an embedding; in other words, that G is a smooth
submanifold of X ×X. If U is an open subset of X, and h : U → X is a holomorphic map
taking each leaf into itself, then the graph of h is an n-dimensional complex submanifold
of U × X and is a subset of G. The tangent space to G at each point has real dimension
2n + 1 and thus contains at most one complex subspace of complex dimension n. If U is
connected, h is therefore determined by its value at any one point.

LetX be a smooth manifold, A be a closed subset ofX, and F be a smooth 1-dimensional
foliation of X \A with no compact leaves. By a domain in X we mean, as usual, a nonempty,
connected, open subset of X. We call a domain Ω in X an interval domain with respect to
F , or simply an interval domain if F is understood, if Ω contains A and has a nonempty
connected intersection with each leaf of F .
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Conditions (2) and (3) in the definition of quasiholomorphicity are designed to fit natu-
rally into the proof of the following generalization of the schlichtness lemma.

Theorem 3 (Global Schlichtness Lemma). Let F be a quasiholomorphic foliation on an
open subset of a complex manifold X, and let Y be an interval domain in X with respect to
F .

There is a largest interval domain Z in X with respect to F containing Y to which all
holomorphic functions on Y extend holomorphically. Moreover, Z is locally Stein in X.

Hence, if X is Stein, so is Z, so Z is the envelope of holomorphy of Y . In particular, if
X is Stein, then Y has a schlicht envelope of holomorphy in X.

To say that Z is locally Stein in X means that X has a cover by open subsets U such that
Z ∩ U is Stein. Equivalently, every boundary point of Z in X has an open neighbourhood
V in X such that Z ∩ V is Stein.

This result subsumes the schlichtness lemma. Namely, Theorem 1 follows from Theorem
3 if we take X to be a product of squares (so X is biholomorphic to a polydisc) and F to
be the foliation by line segments parallel to a side of one of the squares.

Proof. Let E be the set of all interval domains containing Y to which all holomorphic
functions on Y extend. Note that if U, V ∈ E , then U ∩ V is connected. Let Z =

⋃
E .

Then Z is an interval domain. Let f ∈ O(Y ). For each U ∈ E , there is fU ∈ O(U) with
fU |Y = f . For U, V ∈ E , fU and fV agree on Y , so they agree on the connected set U ∩ V .
Hence the functions fU , U ∈ E , define a holomorphic extension of f to Z. This shows that
Z is the largest element of E .

It remains to prove that Z is locally Stein. Assume to the contrary that Z has a boundary
point p such that Z ∩ U is not Stein for any open neighbourhood U of p. In other words,
there is a basis of open Stein neighbourhoods U of p with a domain V ⊂ U , V 6⊂ Z, and a
domain W in Z ∩ V 6= ∅ such that every holomorphic function on Z ∩U agrees on W with
a holomorphic function on V .

Find q ∈ Z in the leaf of p. Let U be an open neighbourhood of p with a biholomorphism
h onto an open neighbourhood of q as in the definition of quasiholomorphicity. By shrinking
U if necessary, we may assume that h(U) ⊂ Z. By assumption, there is a domain V ⊂ U ,
V 6⊂ Z, and a domain W in Z ∩ V 6= ∅ such that every holomorphic function on Z ∩ U
agrees on W with a holomorphic function on V . Since V is connected, W has a boundary
point a in V . We may assume that W is a connected component of Z ∩ V . Then a is a
boundary point of Z.

Let L be the leaf of a. Since a /∈ Z and h(a) ∈ Z, the interval Z ∩L in L has a boundary
point b between a and h(a). Then b is a boundary point of Z. Note that Z is locally
connected at b. Let k be a biholomorphism from U onto an open neighbourhood of b as in
the definition of quasiholomorphicity. If x ∈ Z ∩U , then k(x) lies between x and h(x) ∈ Z,
so since Z is an interval domain, k(x) ∈ Z. Thus, k(Z ∩ U) ⊂ Z ∩ k(U).

Every holomorphic function on Z ∩ U agrees on W with a holomorphic function on
V . Hence every holomorphic function on Z ∩ k(U) ⊃ k(Z ∩ U) agrees on k(W ) with a
holomorphic function on k(V ). Find an open neighbourhood T ⊂ k(V ) of b such that Z ∩T
is connected. Then every holomorphic function f on Z agrees on the nonempty open set
k(W ) ∩ T ⊂ Z ∩ T with a holomorphic function on T , so f extends holomorphically to
Z ∪T . Since Z ∪T contains an interval domain strictly larger than Z itself, this contradicts
the definition of Z. �

Theorem 3 may be extended in various ways. There are positive results on the Levi
problem for manifolds that are not Stein. For instance, if Ω is a locally Stein domain in
a complex projective space or, more generally, in a Grassmannian G, then Ω is Stein or
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Ω = G [9]. Let Y be a domain in G and suppose Y is an interval domain with respect to
a quasiholomorphic foliation on an open subset of G. Then, by Theorem 3, either Y has
a Stein domain in G as its envelope of holomorphy, or all holomorphic functions on Y are
constant.

Also, Theorem 3 generalizes, with essentially the same proof, from the trivial line bundle
O to any other natural holomorphic vector bundle E on X, such as a holomorphic tensor
bundle or a jet bundle. We simply make the neighbourhood U in the proof small enough
that E is trivial on U . Then E is also trivial on k(U) by naturality. We conclude that there
is a largest interval domain Z in X containing Y to which all holomorphic sections of E
over Y extend holomorphically, and that Z is locally Stein.

The principal example of a quasiholomorphic foliation is the foliation induced by a
holomorphic vector field with no compact orbits. The biholomorphisms h and k in the
definition of quasiholomorphicity are then given by time-maps of the flow of the vector field.
Our next result gives a more general sufficient condition for quasiholomorphicity. We do
not know whether this condition is also necessary.

Let F be a smooth 1-dimensional foliation of an n-dimensional complex manifold X.
A chart for F is a diffeomorphism from an open subset U of X onto an open subset V
of Cn that takes F|U to the foliation of V by the straight lines along which Im z1 and
z2, . . . , zn are constant. An atlas for F is a set of charts whose domains cover X. An atlas
is called holomorphic if all the charts in it are holomorphic. By the rectification theorem
for holomorphic vector fields, F has a holomorphic atlas if and only if each point of X has
a neighbourhood on which F is induced by a nowhere-vanishing holomorphic vector field.
(If F has a holomorphic atlas, then F is a refinement of a holomorphic foliation of X of
complex dimension 1 with another refinement orthogonal to F . We have not found a role
for this additional structure here.)

Theorem 4. Let F be a smooth 1-dimensional foliation of a complex manifold X with no
compact leaves. If F has a holomorphic atlas, then F is quasiholomorphic.

Proof. We need to verify conditions (2) and (3) in the definition of quasiholomorphicity.
Suppose p and q lie in the same leaf L of F . Cover the compact segment between p and q
in L by open sets V1, . . . , Vm such that the following hold.

(a) V1 is a neighbourhood of p, and Vm is a neighbourhood of q.
(b) F|Vj is induced by a nowhere-vanishing holomorphic vector field Fj for j = 1, . . . ,m.
(c) The intersection Vj ∩ Vj+1 is connected for j = 1, . . . ,m − 1. To see that this is

possible, take V1, . . . , Vm to be “slices” of a tubular neighbourhood of a relatively
compact open segment I in L containing p and q, viewing I as a locally closed
submanifold of X. Thus we may assume that Fj and Fj+1 are positive multiples of
each other at each point of Vj ∩ Vj+1.

(d) There is an open neighbourhood U of p in V1 such that the flow φ1
t of F1 is defined

on U for t ∈ [0, t1], and U1 = φ1
t1
(U) ⊂ V1 ∩ V2.

(e) For j = 2, . . . ,m − 1, the flow φj
t of Fj is defined on Uj−1 for t ∈ [0, tj], and

Uj = φj
tj(Uj−1) ⊂ Vj ∩ Vj+1.

(f) The flow φm
t of Fm is defined on Um−1 for t ∈ [0, tm], and Um = φm

tm(Um−1) is a
neighbourhood of q in Vm.

(g) φm
tm ◦ · · · ◦ φ

1
t1
(p) = q.

For j = 1, . . . ,m and t ∈ [t1 + · · ·+ tj−1, t1 + · · ·+ tj], we have a biholomorphism

ψt = φj
t−t1−···−tj−1

◦ φj−1
tj−1

◦ · · · ◦ φ1
t1
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defined on U . Let τ = t1 + · · · + tm. For each a ∈ U , the path t 7→ ψt(a), t ∈ [0, τ ], in the
leaf of a is continuous and, by (c) above, injective.

Now h = ψτ : U → Um is a biholomorphism with h(p) = q such that h(x) lies in the leaf
of x for all x ∈ U , so condition (2) is verified. As for condition (3), say a ∈ U and b is in
the leaf of a between a and h(a). There is s ∈ [0, τ ] such that b = ψs(a). Then k = ψs is a
biholomorphism from U onto an open neighbourhood of b, taking a to b, such that k(x) lies
in the leaf of x between x and h(x) for every x ∈ U . �

We end this section by stating a global schlichtness lemma for vector fields. Let X
be a complex manifold, A be a closed subset of X, and F be a smooth vector field on
X \ A with no compact orbits, so in particular, F has no critical points. Let us call F
quasiholomorphic if the foliation induced by F on X\A is quasiholomorphic. By Theorem 4,
F is quasiholomorphic if locally, F is the product of a positive smooth function and a
holomorphic vector field. We call a domain Y in X an interval domain with respect to F , or
simply an interval domain if F is understood, if Y contains A and has a nonempty connected
intersection with each orbit of F .

If F is a quasiholomorphic vector field on an open subset of a complex manifold X and
Y is an interval domain in X with respect to F , it follows immediately from Theorem 3
that there is a largest interval domain Z in X with respect to F containing Y to which all
holomorphic functions on Y extend holomorphically, and Z is locally Stein.

4. Corollaries, examples, and counterexamples

Let A be a nonsingular complex n × n matrix. Applying Theorem 3 to the holomorphic
vector field F : z 7→ Az on Cn yields the following generalization of the well-known fact that
the envelope of holomorphy of a star-shaped domain in Cn is a star-shaped domain in Cn.

Corollary 5. Let A ∈ GL(n,C) and let Ω be a domain in Cn such that the open set
{t ∈ R : etAz ∈ Ω} is a nonempty interval for every z ∈ Cn. Then the envelope of
holomorphy of Ω is a Stein domain in Cn of the same kind.

The assumption that {t ∈ R : etAz ∈ Ω} is a nonempty interval for every z ∈ Cn implies
that Ω contains all the compact orbits of F . It is a little exercise in linear algebra to show
that the union of these orbits is closed.

Next we look at a variant of Theorem 3 for the special case of a backwards complete
holomorphic vector field. In this case we are able to describe envelopes with respect to
certain subfamilies of the set of all holomorphic functions. Let F be a smooth vector field
on a smooth manifold X. A domain Ω in X is called a half-space with respect to F if Ω
intersects every orbit of F in a backwards semiorbit. It follows that Ω contains the cycles
and equilibria of F . We say that F is backwards complete if its flow is defined on all of X for
all negative time. In other words, the maximal integral curves of F are defined on intervals
that are unbounded below. A straightforward modification of the proof of Theorem 3 gives
the following result.

Theorem 6. Let F be a backwards complete holomorphic vector field on a complex manifold
X and let Y be a half-space in X with respect to F . Let H ⊂ O(Y ) be nonempty and closed
under precomposition by the backwards time-maps of F .

There is a largest half-space Z in X with respect to F containing Y to which all holo-

morphic functions in H extend holomorphically. Let H̃ ⊂ O(Z) be the set of the extensions
to Z of the functions in H. There is no domain U in X with U 6⊂ Z and a domain V in

Z ∩ U 6= ∅ such that every function in H̃ agrees on V with a holomorphic function on U .
Hence, Y has a schlicht H-envelope in X, and the H-envelope is a half-space with respect

to F .
8



The hypothesis that H be closed under precomposition by the backwards time-maps of
F cannot be omitted. As a simple example, let X = C, F = −∂/∂x, Y = C \ (−∞, 0],
and H = {f}, where f is the branch of the square root on Y that maps the positive real
axis to itself. Then Y itself is the largest half-space in X with respect to F containing Y
to which f extends holomorphically, but Y is not its own H-envelope: this is the domain
C \ {0} → C, z 7→ z2, over C. On the other hand, Y is its own envelope with respect to the
set {f(· + t) : t ≥ 0}, which is the smallest subset of O(Y ) that contains f and is closed
under precomposition by the backwards time-maps of F .

A counterexample to a more general schlichtness lemma. We now present an
example showing that our global schlichtness lemma does not hold for real-analytic vector
fields, or even for polynomial vector fields on Cn, if the assumption of quasiholomorphicity
is omitted.

Consider the vector field F0 =
∂

∂x1

+ (3x2
1 − 1)

∂

∂x2

on R2. The integral curve γ of F0

with γ(0) = (0, c), c ∈ R, is γ(t) = (t, t3 − t+ c). Let α = 1/
√

3 and

Y0 = {(x1, x2) ∈ R2 : x2 <
2

3
α and if − α < x1 < 2α, then x2 < x3

1 − x1}.

Then Y0 is an interval domain with respect to F0, but its convex hull Z0 is not.

Figure 1. The shaded domain in the plane R2 is Y0.

Let F be the extension of F0 to C2 = R2 + iR2 that is independent of the imaginary
coordinates. Then the tube domain Y = Y0 + iR2 is an interval domain with respect to F ,
but its envelope of holomorphy Z0 + iR2 is not. In fact, the largest interval domain with
respect to F containing Y to which all holomorphic functions on Y extend is just Y itself.
It follows that F is not quasiholomorphic. It also follows that Y is not an interval domain
with respect to the holomorphic extension

∂

∂x1

+ (3x2
1 − 3y2

1 − 1)
∂

∂x2

+ 6x1y1
∂

∂y2

of F0 to C2.

The following two propositions shed light on the notion of quasiholomorphicity in the
1-dimensional case. An antiholomorphic vector field on a domain Ω in C is a vector field of

the form F = ḡ
∂

∂z
, where g is a holomorphic function on Ω. Such a field is not holomorphic,

of course, unless g is constant. It is easily seen that the antiholomorphic vector fields are
precisely the fields that are locally of the form F = ∇u, where u is harmonic. Then u is
strictly increasing along the nontrivial orbits of F . If Ω is simply connected, then F has a
potential u defined on all of Ω, so F has no cycles.
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Proposition 7. An antiholomorphic vector field on a domain Ω in C is quasiholomorphic
if and only if all its orbits are noncompact. This holds for example if Ω is simply connected.

Note that all the orbits of the antiholomorphic field ∇ arg =
1

x2 + y2
(−y, x) on C \ {0}

are compact.

Proof. The vector field ḡ
∂

∂z
, where g is a holomorphic function on Ω with no zeros, is the

product of the positive smooth function |g|2 and the holomorphic vector field
1

g

∂

∂z
. �

The next result shows that quasiholomorphicity of vector fields is not preserved by
addition.

Proposition 8. Let a, b 6= 0 be real numbers. The vector field F = ax
∂

∂x
+ by

∂

∂y
, that is,

the real-linear vector field given by the diagonal matrix

[
a 0
0 b

]
, is quasiholomorphic on

C \ {0} if and only if F is holomorphic or antiholomorphic, that is, a = ±b.

Proof. We start by proving a general fact for an arbitrary smooth vector field F on a domain
Ω in C. Suppose there is a holomorphic map h : U → V between open subsets of Ω such
that h(x) lies in the F -orbit of x for all x ∈ U . Let α : U ∪ V → R be a smooth function
with no critical points which is constant on the intersection of each F -orbit with U ∪ V .
Then α ◦ h = α on U . Differentiating this equation with respect to z gives (αz ◦ h)h′ = αz,
so

0 = (h′)z̄ =

(
αz

αz ◦ h

)
z̄

=
αzz̄(αz ◦ h)− αz(αzz̄ ◦ h)h′

(αz ◦ h)2
.

Substituting h′ =
αz̄

αz̄ ◦ h
yields

αzz̄

|αz|2
◦ h =

αzz̄

|αz|2
on U . In summary, the existence of a local holomorphic map h taking each F -orbit into
itself implies that if α is a conserved quantity for F , then so is ∆α/|∇α|2.

All orbits of F = ax
∂

∂x
+ by

∂

∂y
(except the equilibrium at 0) are noncompact: they

are the images of the integral curves t 7→ (eatx, ebty) for (x, y) ∈ R2 \ {0}. We can take
α(x, y) = −b log x+ a log y as a conserved quantity for F , in the first quadrant, say. Then

∆α

|∇α|2
=

by2 − ax2

b2y2 + a2x2
.

We leave it as an exercise for the reader to show that this quantity is not constant on the
orbits of F unless a = ±b. This shows that F is not quasiholomorphic unless a = ±b. �

We are grateful to the referee for suggesting how to continue the above calculation so as
to prove the converse of Theorem 4 in a special case.

Proposition 9. Let F be a smooth 1-dimensional foliation of a Riemann surface X satis-
fying the following two conditions.

(a) If p, q ∈ X lie in the same leaf, then there is an open neighbourhood U of p in X and
a biholomorphism h from U onto an open neighbourhood of q, taking p to q, such
that h(x) lies in the leaf of x for all x ∈ U . (This is part (2) of our definition of
quasiholomorphicity.)
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(b) There is a cover of X by open subsets U with submersions α : U → R, such that the
nonempty intersections with U of the leaves of F are precisely the fibres of α.

Then F has a holomorphic atlas.

Proof. Let U be an open subset of X with a surjective submersion α : U → R as in (b).
We may assume that U is a coordinate neighbourhood with a coordinate z. Using (a) as
in the proof of Proposition 8, we can show that the function αzz̄/|αz|2 on U is constant on
the leaves of F , that is, on the fibres of α. Hence, there is a smooth function u : R → R
with αzz̄/|αz|2 = u ◦α. Let v be an antiderivative for u, and w be an antiderivative for e−v.
Then w′′ = −uw′, so

(w ◦ α)zz̄ = (w′ ◦ α)αzz̄ + (w′′ ◦ α)|αz|2 = |αz|2(w′′ ◦ α+ (u ◦ α)(w′ ◦ α)) = 0,

and w ◦ α is harmonic. Also, w′ = e−v is nowhere zero, so w is injective and (w ◦ α)z =
(w′ ◦ α)αz is nowhere zero. Thus, w ◦ α is a harmonic submersion whose nonempty fibres
are the same as those of α. Locally, w ◦ α is the imaginary part of a holomorphic function
f , and the nowhere-vanishing holomorphic vector field ∂/∂ Ref induces F . �

We have been unable to generalize this result to higher dimensions.

5. Local schlichtness at a nondegenerate boundary singularity

By the schlichtness lemma, a domain is locally schlicht at a smooth boundary point. We
are now able to prove local schlichtness at a well-behaved isolated boundary singularity.

A real quadratic form σ on Cn is of the form

σ(z) = z̄tHz + Re(ztSz),

where S and H are complex n × n matrices, S is symmetric and H is hermitian. We call
z̄tHz the hermitian part of σ, and Re(ztSz) the harmonic part of σ. We call σ hermitian if
its harmonic part vanishes, and harmonic if its hermitian part vanishes. The gradient ∇σ
of σ is a real-linear vector field on Cn. The complex-linear part of ∇σ is the gradient of the
hermitian part of σ, and the conjugate-linear part of ∇σ is the gradient of the harmonic
part of σ.

Let ρ be a smooth real-valued function on a neighbourhood of the origin 0 in Cn

with a nondegenerate critical point at 0. Then the Taylor series of ρ at 0 is ρ(0) + σ +
higher-order terms, where σ is a nondegenerate real quadratic form. We say that the criti-
cal point 0 of ρ is hermitian if σ is hermitian.

Theorem 10. Let ρ be a smooth real-valued function on a neighbourhood of the origin 0 in
Cn. Suppose ρ has a nondegenerate hermitian critical point at 0, which is not a minimum.
Then the open set {ρ < ρ(0)} is locally schlicht at 0.

Before proceeding to the proof, we observe that this result has no overlap with Corollary
2. By Morse’s lemma (see [4], Lemma 2.2), there are smooth coordinates x1, . . . , x2n at 0
such that

ρ = ρ(0)− x2
1 − · · · − x2

j + x2
j+1 + · · ·+ x2

2n

near 0. Here, j is the index of ρ at 0, and 1 ≤ j ≤ 2n. It is then easily seen that the local
homotopy type of {ρ < ρ(0)} at 0 is the sphere of dimension j − 1. On the other hand, the
domain Ω in Corollary 2 is locally contractible at the boundary point in question.

Proof. The result is trivially true if ρ has a maximum at 0, so we assume that this is not the
case and that n ≥ 2. We may also assume that ρ(0) = 0. Let σ be the quadratic part of ρ at
0. Write σ(z) = z̄tHz, where H is an n×n nonsingular hermitian matrix. By precomposing
ρ by a suitable complex-linear map, we can make H diagonal with positive eigenvalues
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a1, . . . , ak and negative eigenvalues ak+1, . . . , an, where 1 ≤ k ≤ n− 1, so σ(z) =
n∑

j=1

aj|zj|2.

The gradient of σ is the holomorphic vector field ∇σ = 2
n∑

j=1

ajzj
∂

∂zj

with integral curves

γ(t) = (z1e
a1t, . . . , zne

ant). We have

d

dt
ρ(γ(t)) = ∇ρ(γ(t)) · γ′(t) = ∇ρ(γ(t)) · ∇σ(γ(t)).

Now ∇ρ · ∇σ is the sum of ‖∇σ‖2 and terms of higher order, and is therefore positive on a
punctured neighbourhood of 0, so ρ is strictly increasing along the nontrivial orbits of ∇σ
near 0. Let E = Ck × {0} be the subspace of Cn corresponding to the positive eigenvalues.
It is saturated with respect to the flow of ∇σ. Also, ρ ≥ 0 on E near 0.

Let ε = 1
2
min{a1, . . . , ak} > 0 and let cj =

aj

aj − ε
> 0 for j = 1, . . . , n. For r > 0, let

Ur be the open ellipsoid centred at 0, convex and hence Stein, defined by the inequality

λ(z) =
n∑

j=1

cj|zj|2 < r2. Let Yr = {z ∈ Ur : ρ(z) < 0}. We claim that for r > 0 small enough,

Yr has a schlicht envelope of holomorphy in Ur. This proves the theorem.
To prove our claim, it suffices to show that for r > 0 small enough, Yr is an interval

domain in Ur \E with respect to ∇σ. Namely, by Theorem 3, there is then a largest interval
domain Zr in Ur \ E with respect to ∇σ containing Yr to which all holomorphic functions
on Yr extend holomorphically, and Zr is locally Stein in Ur \E. If k = dimE = n− 1, then
Ur \ E is Stein, so Zr is Stein. Then Zr is the envelope of holomorphy of Yr, and the claim
is proved.

If E has codimension n− k ≥ 2, we complete Zr to a domain Wr in Ur by adding to Zr

all those points in E that have a neighbourhood V with V \E ⊂ Zr. In other words, Wr is
the largest domain in Ur containing Zr. Every holomorphic function on Zr extends to Wr.
We know that Wr is locally Stein at its boundary points outside E. In the sense of Grauert
and Remmert [3], the accessible boundary points of Wr over E are nonremovable and form
a thin closed set in the accessible boundary of Wr. Hence, by Satz 4 in [3], Wr is Stein, so
Wr is the envelope of holomorphy of Yr, and the claim is proved.

It remains to show that for r > 0 small enough, Yr is an interval domain in Ur \E with
respect to ∇σ. First note that each orbit of ∇σ intersects Ur in an interval (possibly empty)
because

(λ ◦ γ)′′(t) =
d2

dt2

n∑
j=1

cj|zj|2e2ajt = 4
n∑

j=1

a2
jcj|zj|2e2ajt

is always nonnegative. Since, as observed earlier, ρ is strictly increasing along the nontrivial
orbits of ∇σ near 0, it follows that for r > 0 small enough, each orbit of ∇σ intersects Yr

in an interval (possibly empty).
Finally, we must show that for r > 0 small enough, each orbit of ∇σ that intersects

Ur \ E also intersects Yr. An orbit that intersects Ur \ E enters Ur at a point z where ∇σ
points into Ur, that is,

∇σ · ∇λ = 4
n∑

j=1

ajcj|zj|2 < 0,

so

σ(z) + εr2 = σ(z) + ελ(z) =
n∑

j=1

(aj + εcj)|zj|2 =
n∑

j=1

ajcj|zj|2 < 0.
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Thus, for r > 0 small enough,

ρ(z) = σ(z) +O(‖z‖3) < −εr2 +O(r3) < 0,

so the orbit intersects Yr. �

The referee has suggested an alternative proof in case k ≤ n − 2. First, in the model
case ρ = σ, the Kugelsatz applied with fixed z1, . . . , zk provides holomorphic extensions to
neighbourhoods of 0. Second, it may be argued that this extension property is stable under
perturbation of σ by higher-order terms.

We do not know whether the assumption that the singularity is hermitian can be omitted,
but the following result suggests that our methods cannot take Theorem 10 beyond the
hermitian case.

Theorem 11. Let σ be a nondegenerate real quadratic form on Cn. There is a positive
smooth function u on a domain Ω in Cn such that u∇σ is holomorphic on Ω (so ∇σ is
quasiholomorphic on Ω) if and only if

(1) σ is hermitian, that is, ∇σ is complex-linear, or
(2) n = 1 and σ is harmonic, so σ(z) = Re(az2) for some a ∈ C, a 6= 0.

Proof. Write σ(z) = z̄tHz + Re(ztSz), where S and H are complex n × n matrices, S is
symmetric and H is hermitian. Suppose there is a positive smooth function u on a domain
Ω in Cn such that u∇σ is holomorphic on Ω. Denote the standard coordinates on Cn as
zk = xk + iyk, k = 1, . . . , n. Holomorphicity of u∇σ means that

u

(
∂σ

∂xk

+ i
∂σ

∂yk

)
= u

∂σ

∂z̄k

is holomorphic, that is,

0 =
∂

∂zj

(
u
∂σ

∂zk

)
=
∂u

∂zj

∂σ

∂zk

+ u
∂2σ

∂zj∂zk

for j, k = 1, . . . , n. Thus, the Hessian matrix

[
∂2σ

∂zj∂zk

]
, which is simply S, has rank 0 or 1.

If S = 0, then (1) holds. Suppose S has rank 1. We need to show that n = 1 and H = 0.
After a complex-linear change of coordinates, Sjk = 0 except for j = k = 1. Hence,

0 =
∂σ

∂zk

=
n∑

j=1

Hjkz̄j

for k ≥ 2, so Hjk = 0 for j ≥ 1 and k ≥ 2. Since H is hermitian, it follows that Hjk = 0
except for j = k = 1. This implies that σ is degenerate if n ≥ 2, so we conclude that n = 1.

Write σ(z) = a|z|2 + Re(bz2) with a ∈ R and b ∈ C. We have uzσz = −uσzz. Since u is
real,

(log u)zz̄ =

(
uz

u

)
z̄

= −
(
σzz

σz

)
z̄

= −
(

b

az̄ + bz

)
z̄

=
ab

(az̄ + bz)2

is real for all z ∈ Ω. Thus, a = 0 or b = 0, which is what we want to prove, or (az̄ + bz)2/b

is real, that is,
√
bz + az̄/

√
b is real or imaginary for all z ∈ Ω. By a brief calculation, it

follows that a = ±|b|, which means precisely that σ is degenerate. �
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d’analyse P. Lelong-P. Dolbeault-H. Skoda, années 1983/1984, 206–213, Lecture Notes in Math., 1198,
Springer Verlag, 1986.

[7] Stensønes, B. Runge approximation. Math. Ann. 279 (1988) 423–434.
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