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Abstract. Let X be a hypersurface in a compact complex manifold M with dimM ≥ 2.
We consider the neighbourhood structure of X and of coverings of X; specifically, the

existence of holomorphic neighbourhood retractions. We show that if M has no non-
trivial holomorphic vector fields and X is sufficiently ample, then no neighbourhood of X

retracts holomorphically onto X. Let U be a tubular neighbourhood of X and π : V → U

be a covering space. We show that if X is ample and linearly equivalent to some other
hypersurface in M , and bounded holomorphic functions separate points locally on the

universal covering of X, then any holomorphic retraction V → π−1(X) is a lifting of

a retraction U → X. This implies that if X is a sufficiently ample curve in a surface
M of general type with universal covering π : M̃ → M , then π−1(U) does not retract

holomorphically onto π−1(X) for any neighbourhood U of X.

1. Introduction

Let X be a hypersurface in a compact complex manifold M of dimension at least
2. In this paper we will consider the neighbourhood structure of X and of covering
spaces of X. Our first main result, theorem 2.3, states that if M has no non-trivial
holomorphic vector fields and X is sufficiently ample in a certain precise sense, then
no neighbourhood of X retracts holomorphically onto X. This is in contrast to the
well-known existence of neighbourhood retractions in the smooth category.

To explain the idea of the proof, let us assume that X is very ample. We may also
assume that X is smooth, since the image of a smooth retraction is always smooth.
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Then there is an embedding of M into some projective space P
N such that X is the

transverse intersection of M with a hyperplane H in P
N .

Suppose there is a neighbourhood U of X with a holomorphic retraction ρ onto
X. This means that ρ : U → X is holomorphic and ρ|X is the identity. Consider a
hyperplane H ′ so close to H that it intersects M transversely and X ′ = M ∩H ′ ⊂ U .
If H ′ is close enough to H, then ρ : X ′ → X is a diffeomorphism, being a small
perturbation of the identity map of X, and hence a biholomorphism. This shows
that all hyperplane sections of M sufficiently close to X are isomorphic to X. One
would expect this to be the case only in exceptional circumstances. This is, in a sense,
confirmed by theorem 2.3. The proof uses deformation theory and the Kodaira-Spencer
map.

It was previously known that if X is a smooth ample hypersurface in a compact
complex manifold M with dimM ≥ 3, then M does not retract holomorphically onto
X [14].

We might try to unravel the complicated neighbourhood structure that precludes
the existence of a holomorphic neighbourhood retraction by passing to coverings. Let
U be a tubular neighbourhood of X, V be the universal covering of U and Y be the
pullback of X to V . Then Y is the universal covering of X. Now we ask whether V
retracts holomorphically onto Y . Let us assume that X is ample and not alone in its
linear equivalency class. Suppose also thatX is locally C-hyperbolic, which means that
bounded holomorphic functions separate points locally on Y . This holds for instance
if X is a curve of genus at least 2. Then our second main result, theorem 3.2, states
that any holomorphic retraction V → Y is equivariant under the covering group, so
it descends to a holomorphic retraction U → X. Thus, in many cases, passing to
coverings does not change the problem at all.

Our results may be combined as follows.

1.1. Main Theorem. Let M be a compact complex manifold of dimension at least 2
with no non-trivial holomorphic vector fields. If X is a connected hypersurface in M ,

X is linearly equivalent to some other hypersurface in M , and

H1(M, [X]∨ ⊗ TM) = 0,

then no neighbourhood of X retracts holomorphically onto X.

If, in addition, X is ample and locally C-hyperbolic, then no covering space of a

tubular neighbourhood of X retracts holomorphically onto the preimage of X.

The following corollary may serve to clarify the theorem.

1.2. Corollary. Let M be a locally C-hyperbolic compact complex manifold of general

type with dimM ≥ 2. If X is a sufficiently ample hypersurface in M , then no covering
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space of a tubular neighbourhood of X retracts holomorphically onto the preimage of

X.

The precise meaning of the term sufficiently ample is given below.

This work was motivated by the question whether retractions could be used to
extend holomorphic or plurisubharmonic functions from preimages of ample curves in
covering spaces of projective algebraic manifolds to uniformly thick neighbourhoods.
The following corollary of the results in this paper shows that the answer is in general
negative.

1.3. Corollary. Let M be a surface of general type with universal covering space

π : M̃ → M . Choose a hermitian metric on M and pull it up to M̃ . Let X be a

sufficiently ample smooth curve in M . Then the ε-neighbourhood of π−1(X) does not

retract holomorphically onto π−1(X) for any ε > 0.

By the Lefschetz hyperplane theorem, the inclusion X ↪→ M induces an epimor-
phism of fundamental groups, so the preimage Y = π−1(X) is connected Riemann

surface embedded in M̃ .

Note that if the fundamental group of M is infinite, then Y is an open Riemann
surface and therefore Stein, so by a theorem of Siu [13], there is a neighbourhood
V of Y that retracts holomorphically onto Y . In fact, V is a holomorphic tubular
neighbourhood. By our corollary, V cannot contain the preimage of any neighbourhood
of X in M . Loosely speaking, the thickness of V must go to zero somewhere at infinity.

Let us clarify some of our terminology. By a surface we shall mean a connected
compact complex manifold of dimension 2. A hypersurface in a complex manifold is
a closed subvariety of pure codimension 1. A curve in a complex manifold is a closed
subvariety of pure dimension 1. All our manifolds will be connected. Finally, when
we say that a condition on a hypersurface X in a compact complex manifold M or its
associated line bundle L holds if X or L is sufficiently ample, we mean that there is
a constant c > 0, depending only on a given positive (1, 1)-form ω on M , such that
the condition holds if L has a hermitian metric with curvature form Θ ≥ c ω. Then L
is ample. Also, if L is ample, then a sufficiently high tensor power of L is sufficiently
ample in this sense.

Acknowledgements. I would like to thank László Lempert for helpful discussions.
I am also grateful to the referee for a suggestion that lead to an improvement of the
results of section 3.

2. Non-existence of neighbourhood retractions

Let X be a smooth connected hypersurface in a connected compact complex man-
ifold M of dimension at least 2. Let L = [X] be the line bundle defined by X. The
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zero locus of any holomorphic section of L is a hypersurface in M . Let

Z = {(x, t) ∈M × PH0(M,L) : t(x) = 0},

and let p : Z → PH0(M,L) be the projection, which is a proper holomorphic sur-
jection. Its fibres are the zero loci of sections of L. Let B be the subset of points
t ∈ PH0(M,L) such that all points in the fibre Xt = p−1(t) are smooth points of
Z and regular points of p. Then B is a Zariski-open subset of PH0(M,L). There is
o ∈ PH0(M,L) such that X = Xo. It may be verified that o ∈ B, so B is non-empty.
The restriction p : E = p−1(B) → B is a submersion. Hence p : E → B is a smooth
fibre bundle by Ehresmann’s fibration theorem [4]. We call p : E → B the family as-
sociated to X or to L. It is a regular family of connected compact complex manifolds
in the usual sense. Its fibres are precisely the smooth hypersurfaces in M which are
linearly equivalent to X.

Let us assume that B is not a point. This is equivalent to any of the following three
conditions.

(i) dimH0(M,L) ≥ 2.
(ii) X is linearly equivalent to some other hypersurface in M .
(iii) X is the zero divisor of a meromorphic function on M .

The projection of M × PH0(M,L) onto M yields a holomorphic map ξ : E → M

which restricts to the identity map of Xt onto itself for each t ∈ B.
We have a short exact sequence

0 → TX → TE ⊗OX
dp
−→ ToB ⊗OX → 0

of locally free sheaves over X [12], and an exact sequence

H0(X,TE)
dp
−→ ToB

κ
−→ H1(X,TX).

The connecting homomorphism κ is the Kodaira-Spencer map. If the family p is
locally holomorphically trivial, or equivalently, if the fibres Xt, t ∈ B, are mutually
isomorphic, then κ : TtB → H1(Xt, TXt) is trivial for every t ∈ B [8, 10]. We shall
need a condition to insure that this is not the case. A sufficient condition for κ to be
injective will do.

Consider a pencil containing X, i.e., a line P
1 in PH0(M,L) containing o. Let

V = p−1(P1 ∩ B). Then ξ : V → M is injective outside the preimage of the base
locus A of the pencil, which is a proper subvariety of X. Hence, ξ|V \ ξ−1(A) is an
isomorphism onto a neighbourhood of X \A in M . The exact sequence

H0(X,TV ) → ToP
1 κ
−→ H1(X,TX)
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associated to the family p : V → P
1∩B shows that κ restricted to the pencil is injective

if H0(X,TV ) = 0. Now ξ : X → X is the identity and dξ : TV |X → TM |X is an
isomorphism outside A. Hence, if TV |X has a non-trivial holomorphic section v, then
dξ ◦ v ◦ (ξ|X)−1 is a non-trivial holomorphic section of TM |X.

This shows that κ : ToB → H1(X,TX) is injective if H0(X,TM) = 0. Say X is
the zero locus of a section s of L. We have the short exact sequence

0 → L∨ ·⊗s
−−→ OM

restriction
−−−−−−→ OM |X → 0

of sheaves over M . Here, L∨ is the dual bundle of L. After tensoring by TM , we
obtain the exact sequence

H0(M,TM) → H0(X,TM) → H1(M,L∨ ⊗ TM).

The following theorem is now clear.

2.1. Theorem. Let X be a smooth connected hypersurface in a compact complex

manifold M with dimM ≥ 2. Let p : E → B be the associated family, and say

X = p−1(o). If

(1) H0(M,TM) = 0 and

(2) H1(M, [X]∨ ⊗ TM) = 0,

then the Kodaira-Spencer map κ : ToB → H1(X,TX) is injective.

Let us consider the conditions (1) and (2) in the theorem. If M is of general type,
then the automorphism group of M is finite [1, 9]. Hence, M has no non-trivial
holomorphic vector fields. This is also true if M is a K3 surface [2], and therefore if
M is an Enriques surface. See also [6].

By the Kodaira-Nakano vanishing theorem [5, 11] and Serre duality, (2) is satisfied
if the dual of the vector bundle L∨ ⊗ TM is positive in the sense of Nakano. This is
true if L is sufficiently ample. Hence, with the same notation as above, we have the
following corollary.

2.2. Corollary. Let X be a smooth hypersurface in a compact complex manifold with

no non-trivial holomorphic vector fields, such as a manifold of general type. If X is

sufficiently ample, then the Kodaira-Spencer map κ : ToB → H1(X,TX) is injective.

We will now apply these results to show the non-existence of holomorphic neighbour-
hood retractions. We still consider a smooth connected hypersurface X in a compact
complex manifold M . Let L = [X] be the line bundle defined by X and assume that
dimH0(M,L) ≥ 2. Let p : E → B be the family associated to L and say X = p−1(o).

LetW be a neighbourhood of o in B, diffeomorphic to a ball. Then p : p−1(W ) →W

is smoothly trivial, so we have a diffeomorphism

ψ : X ×W → p−1(W ),
5



inducing smoothly varying diffeomorphisms ψt : X → X × {t} → Xt for each t ∈ W .
We may assume that ψo is the identity map on X.

Suppose there is a neighbourhood U of X in M with a holomorphic retraction
ρ : U → X. We may assume that Xt ⊂ U for each t ∈ W . Consider the smooth map
βt = ρ◦ψt : X → X. For t ∈W sufficiently close to o, βt is so close to βo = idX in the
smooth topology that the derivative of βt is nonsingular, so βt is a local diffeomorphism
and hence a covering map. Also, βt induces an automorphism of the fundamental group
of X because it is homotopic to βo = idX , so βt is a one-sheeted covering map. Hence,
βt is a diffeomorphism, so ρ : Xt → X is a diffeomorphism. Being holomorphic,
ρ : Xt → X is a biholomorphism.

This shows that the Kodaira-Spencer map κ : ToB → H1(X,TX) is trivial. If
X is sufficiently ample and H0(M,TM) = 0, this contradicts theorem 2.1. We have
established the following result.

2.3. Theorem. Let X be a connected hypersurface in a compact complex manifold

M of dimension at least 2. If

(1) H0(M,TM) = 0,
(2) dimH0(M, [X]) ≥ 2, and

(3) H1(M, [X]∨ ⊗ TM) = 0,

then no neighbourhood of X retracts holomorphically onto X.

There is no need to assume that X is smooth in the statement of the theorem. If
M is a smooth manifold and f : M →M is a smooth map with f ◦ f = f , then f(M)
is a smooth closed submanifold of M [4].

2.4. Corollary. If X is a sufficiently ample hypersurface in a compact complex

manifold of general type, then no neighbourhood of X retracts holomorphically onto

X.

If X is a smooth, connected curve of genus at least 2 in a complex manifold, U is
a neighbourhood of X and ρ : U → X is a holomorphic map such that ρ|X is merely
non-constant, then ρ : X → X is an isomorphism by the Riemann-Hurwitz formula.
Hence, ρ : U → X is actually a retraction modulo an automorphism of X, so we have
the following corollary.

2.5. Corollary. Let X be a sufficiently ample smooth curve in a surface with no

non-trivial holomorphic vector fields. If U is a neighbourhood of X and ρ : U → X is

a holomorphic map, then ρ|X is constant.

3. Retractions of covering neighbourhoods

Let us state a few definitions. A complex manifold is said to be ultra-Liouville if
it has no non-constant bounded continuous plurisubharmonic functions. A complex
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manifold is said to be Carathéodory hyperbolic or C-hyperbolic if it has a covering
space on which bounded holomorphic functions separate points. We will say that a
complex manifold M is locally C-hyperbolic if every point in the universal covering
space M̃ of M has a neighbourhood U such that bounded holomorphic functions on
M̃ separate points on U . Clearly, C-hyperbolicity implies local C-hyperbolicity.

SupposeM is compact. Choose a hermitian metric onM and pull it up to M̃ . Define
an equivalence relation on M̃ by declaring points x and y equivalent if f(x) = f(y) for

all bounded holomorphic functions f on M̃ . The equivalence classes are subvarieties
of M̃ . We see that M is locally C-hyperbolic if and only if there is a constant δ > 0
such that the distance between two distinct equivalent points in M̃ is at least δ.

The following lemma is a variant of the Borel-Narasimhan theorem [3].

3.1. Lemma. Let M be an ultra-Liouville manifold and π : X → M be a covering

space. Let Y be a complex manifold on which bounded holomorphic functions separate

points locally. If f, g : X → Y are holomorphic maps and f = g on π−1(p) for some

p ∈M , then f = g.

Proof. Let h be a bounded holomorphic function on Y . Define a function u on M by
the formula

u(m) = sup
π(x)=m

|h(f(x)) − h(g(x))|.

Then u is a bounded continuous plurisubharmonic function on M , and u(p) = 0, so
u = 0. Hence, h ◦ f = h ◦ g.

If x ∈ X and f(x) = g(x) = y, then there is a neighbourhood U of y on which
bounded holomorphic functions on Y separate points, so f = g on the neighbourhood
f−1(U) ∩ g−1(U) of x. This shows that the closed subset {x ∈ X : f(x) = g(x)} of X
is open. By assumption, it is non-empty, so we conclude that f = g. �

Now let X be a smooth ample hypersurface in a connected compact complex man-
ifold M of dimension at least 2. Then M is projective algebraic, and by the Lefschetz
hyperplane theorem, X is connected. Let L = [X] be the line bundle defined by X and
assume that dimH0(M,L) ≥ 2. Let p : E → B be the associated family as described
in the previous section and say X = p−1(o).

Recall that a neighbourhood U of X in M is called tubular if there is a diffeomor-
phism from the normal bundle of X in M onto U which restricts to the identity on X.
By the tubular neighbourhood theorem [4, 7], X has a neighbourhood basis of tubular
neighbourhoods.

Let U be a tubular neighbourhood of X and let π : V → U be the universal
covering space with covering group Γ. The long exact homotopy sequence associated
to the normal bundle of X shows that the inclusion X ↪→ U induces an isomorphism
of fundamental groups. Hence, Y = π−1(X) is the universal covering space of X.
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Let W be a neighbourhood of o in B, diffeomorphic to a ball, such that Xt ⊂ U for
each t ∈W . Now p : p−1(W ) →W is smoothly trivial, so we have a diffeomorphism

ψ : X ×W → p−1(W )

inducing smoothly varying diffeomorphisms ψt : X → X×{t} → Xt = p−1(t) for each
t ∈W . We may assume that ψo is the identity map on X.

For t ∈W , let it be the inclusion Xt ↪→ U . The map it ◦ψt is homotopic to io, so it
also induces an isomorphism π1(Xt) → π1(U). Hence, Yt = π−1(Xt) is the universal
covering space of Xt.

Suppose now that there is a holomorphic retraction ρ : V → Y . Then ρ : Yt → Y is
the identity on Y ∩ Yt, which is non-empty, as we will now explain. Since L is ample,
it has a hermitian metric of positive curvature with norm ‖ · ‖. Let s be a holomorphic
section of L such that X = {s = 0}, and consider the function u = − log ‖s‖ on M \X.
The Levi form i∂∂̄u is the curvature form of the metric on L (up to multiplication by
a positive constant), so u is strictly plurisubharmonic. Hence M \X has no compact
subvarieties, so Xt must intersect X, and Yt intersects Y . (In fact, u is also an
exhaustion, so M \X is a Stein manifold.)

Now fix γ ∈ Γ and t ∈W . Consider the holomorphic maps γ ◦ρ and ρ◦γ from Yt to
Y . They agree on Y ∩Yt, which contains a Γ-orbit. If bounded holomorphic functions
separate points locally on Y , then lemma 3.1 shows that γ ◦ ρ = ρ ◦ γ on Yt. Hence,
ρ is Γ-equivariant on

⋃
{Yt : t ∈ W}, which is a non-empty open subset of V , so ρ is

Γ-equivariant on all of V and descends to a holomorphic retraction U → X.
Note that a retraction of any covering space of U onto the preimage of X lifts to a

retraction of V onto Y . Hence, we have proved the following theorem.

3.2. Theorem. Let X be a locally C-hyperbolic ample hypersuface in a compact

complex manifold M of dimension at least 2, such that X is linearly equivalent to

some other hypersurface in M . Let π : V → U be a covering space of a tubular

neighbourhood U of X. Then any holomorphic retraction V → π−1(X) is a lifting of

a retraction U → X.

For curves in surfaces, the theorem reads as follows.

3.3. Corollary. Let X be an ample curve of genus at least 2 in a surface M such that

X is linearly equivalent to some other curve in M . Let π : V → U be a covering space

of a tubular neighbourhood U of X. Then any holomorphic retraction V → π−1(X) is

a lifting of a retraction U → X.

The genus formula states that a curve X in a surface M has genus

g = 1
2 (X2 +X ·K) + 1,
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where K is the canonical bundle of M . If M is not ruled and X is ample, then g ≥ 2.
Hence, the hypotheses of the corollary are satisfied if X is a very ample curve in a
non-ruled surface M .

Theorems 2.3 and 3.2 yield the following result.

3.4. Theorem. Let M be a compact complex manifold of dimension at least 2 with

no non-trivial holomorphic vector fields. Let X be a locally C-hyperbolic ample hy-

persurface in M such that X is linearly equivalent to some other hypersurface in M ,

and

H1(M, [X]∨ ⊗ TM) = 0.

If π : V → U is a covering space of a tubular neighbourhood U of X, then V does not

retract holomorphically onto π−1(X).

Finally, for curves, we obtain the following corollary.

3.5. Corollary. Let X be a curve in a surface of general type and let π : V → U be

a covering space of a tubular neighbourhood U of X. If X is sufficiently ample, then

V does not retract holomorphically onto π−1(X).
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