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Abstract. We study compact complex manifolds covered by a domain in n-dimensional

projective space whose complement E is non-empty with (2n − 2)-dimensional Hausdorff
measure zero. Such manifolds only exist for n ≥ 3. They do not belong to the class C, so

they are neither Kähler nor Moishezon, their Kodaira dimension is −∞, their fundamental
groups are generalized Kleinian groups, and they are rationally chain connected. We also

consider the two main classes of known 3-dimensional examples: Blanchard manifolds, for

which E is a line, and the generalized Schottky coverings constructed by Nori. We determine
their function fields and describe the surfaces they contain.

Introduction

It has been known for a long time that if a bounded domain Ω in Cn is a Galois covering
space of a compact manifold M , then Ω is a domain of holomorphy and M is projective,
meaning that M is isomorphic to a subvariety of some complex projective space PN . In
fact, the canonical bundle of M is ample. Bounded domains in Cn can be viewed as
domains in Pn with a large complement: the complement is so large that it contains a
hyperplane in its interior. In this paper, we study the other end of the spectrum, following
suggestions of Nori [Nor] and Yau [Yau] that this might lead to new and interesting com-
pact complex manifolds, outside the well-known and much-studied classes of manifolds
that are algebraic or in some sense close to being algebraic.

We will consider compact complex manifolds M covered by a domain Ω in Pn whose
complement E = Pn\Ω is non-empty and small in the sense that the (2n−2)-dimensional
Hausdorff measure Λ2n−2(E) vanishes. This condition is just strong enough to exclude
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hypersurfaces in E. Little work seems to have been done on this subject. Among the few
relevant papers in the literature are [Kat1], [Kat2], [Kat3], [Kat4], [Nor], and [Yam].

In section 1, we establish basic properties of manifolds M of this kind. These include:

(1) The Kodaira dimension of M is −∞.
(2) The covering group AutM Ω is a subgroup of the automorphism group of Pn, so

π1(M) is in fact a generalized Kleinian group.
(3) There is a lower bound on the size of E, which implies that no 2-dimensional

examples exist.
(4) M is rationally chain connected. The limit set E can be described in terms of

rational curves in M that respect the unique projective structure on M .
(5) M is not of class C. In particular, M is neither Kähler nor Moishezon.

In sections 2 and 3, we study in some detail two classes of 3-dimensional examples: the
generalized Schottky coverings constructed by Nori, and Blanchard manifolds, for which
E is a line, which is the smallest it can be. We determine their fields of meromorphic
functions, and describe the surfaces they contain. In section 4, we make some final
remarks on the general 3-dimensional case.

Let us clarify a few terms. By a curve in a complex manifold, we shall mean a (closed
analytic) subvariety of pure dimension 1. A surface is a subvariety of pure dimension 2,
and a hypersurface is a subvariety of pure codimension 1. When we speak of a manifold,
we assume that it is connected.

Acknowledgements. I would like to thank Donu Arapura and Frédéric Campana for
helpful discussions, and Sergei Ivashkovich and Masahide Kato for valuable comments on
a draft of this paper.

1. Properties of the quotient manifolds

Let M be an n-dimensional compact complex manifold, n ≥ 2, covered by a domain Ω
in complex projective space Pn such that the (2n − 2)-dimensional Hausdorff measure
Λ2n−2(E) of the complement E = Pn \ Ω is zero. Then Ω is simply connected, so it is
the universal covering space of M . Let π : Ω →M be the covering map, and Γ ∼= π1(M)
be the covering group. We assume that Ω 6= Pn, so Γ is infinite.

Let us note that if U is a domain in Pn, then U ∩Ω is connected. For this, it actually
suffices to have Λ2n−1(E) = 0. Hence, the compactification Pn of Ω is finer than the end
compactification of Ω. Indeed, the connected components of E correspond bijectively to
the ends of Ω, which in turn correspond bijectively to the ends of Γ since M is compact.
In particular, E is connected if and only if Γ has only one end.

We will make much use of the following extension theorem, due to Shiffman [Shi1,
Shi2]. See also [HP].

1.1. Theorem (Shiffman). Let E be a closed subset of an n-dimensional complex
manifold X. If Λ2n−2(E) = 0, then holomorphic, meromorphic, and plurisubharmonic
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functions extend from X \ E to X. If Λ2n−3(E) = 0, then the closure of a hypersurface
in X \E is a hypersurface in X.

The theorem implies that M inherits many properties from Pn. We see that Ω has no
non-constant holomorphic or plurisubharmonic functions, and no non-zero holomorphic
p-forms for p ≥ 1, so

Hp,0(M) = 0, p ≥ 1,

and M has a trivial Albanese. Also, no positive power of the canonical bundle of M has
any non-zero holomorphic sections, so M has Kodaira dimension −∞.

1.2. Proposition. Let ϕ : Ω → Pn be a holomorphic map.

(1) ϕ extends to a rational map Pn
99K Pn.

(2) If ϕ is an immersion, then ϕ extends to an automorphism of Pn.

In particular, every automorphism of Ω is the restriction of a unique automorphism of
Pn, so

Γ ⊂ Aut Pn = PGL(n+ 1,C).

By Selberg’s theorem [Sel], the proposition implies that Γ has a normal torsion-free
subgroup of finite index. It also implies that E ⊂ Pn is a biholomorphic invariant of M ,
modulo automorphisms of Pn.

Proof. The meromorphic function (zi/z0) ◦ ϕ on Ω extends to a meromorphic function
ψi on Pn, and ψ = [1, ψ1, . . . , ψn] is a rational map Pn

99K Pn extending ϕ.
Write ψ = [q0, . . . , qn], where q0, . . . , qn are homogeneous polynomials in z0, . . . , zn of

the same degree d, and let Ψ = (q0, . . . , qn) : Cn+1 → Cn+1. Let p : Cn+1 \ {0} → Pn be
the canonical projection. Suppose ϕ is an immersion. Then Ψ|p−1(Ω) is an immersion.
The zero set of the Jacobian determinant J = det[∂qi/∂zj] of Ψ is either empty or a
hypersurface in p−1(E) ∪ {0}. Since p−1(E) cannot contain a hypersurface, J is a non-
zero constant. Also, J is homogeneous of degree (d− 1)n+1. Hence d = 1, so q0, . . . , qn
are linear, and ψ is an automorphism of Pn. �

Part (2) of the proposition can also be deduced from [Iva1, Theorem 1].

We remark that Ω is maximal among domains in Pn on which Γ acts with a Hausdorff
quotient. Indeed, if Ω′ is a domain containing Ω on which Γ acts with a Hausdorff quotient
M ′ = Ω′/Γ, then M ⊂ M ′ is both open and compact, and hence closed, so since M ′ is
connected, M = M ′. Therefore, Ω′ ⊂ ΓΩ = Ω, so Ω′ = Ω.

We now show that there is a lower bound on the size of E.

1.3. Proposition. If n is even, then Λn(E) > 0. If n is odd, then Λn−1(E) > 0.

Proof. Suppose Λ2n−2k(E) = 0 for an integer k in [0, n]. Then Ω contains a k-dimensional
complex linear subspace S. Find a sequence γi → ∞ in Γ. Then γi(S) converge to a
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k-dimensional linear subspace in E, so Λ2k(E) > 0. Hence, 2k < 2n − 2k, so k < n/2.
This shows that if k ≥ n/2, then Λ2n−2k(E) > 0, and the proposition follows. �

Since Λ2n−2(E) = 0, the proof shows that E contains a line.

1.4. Corollary. If a domain Ω in P2 covers a compact complex manifold, then Ω = P2

or Λ2(P
2 \ Ω) > 0.

The proposition is sharp in the sense that we may have Λn+ε(E) = 0 when n is even
and Λn−1+ε(E) = 0 when n is odd for all ε > 0. To see this, let k be n/2 if n is even and
(n− 1)/2 if n is odd, and consider the automorphism ϕ given by the formula

ϕ[z0, . . . , zk, zk+1, . . . , zn] = [2z0, . . . , 2zk, zk+1, . . . , zn].

The group Γ of iterates of ϕ acts freely and properly on Ω = Pn \E, where E is the union
of the two linear subspaces {z0, . . . , zk = 0} and {zk+1, . . . , zn = 0}, and the quotient
manifold M = Ω/Γ is compact.

Next we show that M contains many rational curves.

1.5. Proposition. If L is a line in Ω, then π(L) is a rational curve in M . Hence, M
is rationally chain connected.

For a very general point p ∈ M and every v in a dense set of tangent vectors at p,
there is a smooth rational curve through p which is tangent to v.

For very general points p1, p2 in M , there is a connected curve containing p1 and p2

which is the union of two smooth rational curves.

Recall that a general point is a point outside a finite union of proper subvarieties, and
a very general point is a point outside a countable union of proper subvarieties.

For the proof, we need the following lemma.

1.6. Lemma. For an automorphism ϕ of Pn, n ≥ 3, the following are equivalent.

(1) L ∩ ϕ(L) 6= ∅ for all lines L in Pn.
(2) ϕ has a hyperplane of fixed points.

Proof. (2) ⇒ (1) is clear. For the converse, represent ϕ by a matrix A in GL(n+ 1,C).
First let n = 3. In suitable coordinates z0, z1, z2, z3 in C4, A has the Jordan form

A =







a0 0 0 0
ε1 a1 0 0
0 ε2 a2 0
0 0 ε3 a3






,

where ε1, ε2, ε3 ∈ {0, 1}. Suppose S ∩ AS 6= 0 for all 2-dimensional subspaces S in C4.
We need to show that A has a 3-dimensional eigenspace.
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Suppose first that A is diagonal. Let S = {zi0 = zi1 , zi2 = zi3} with i0, i1, i2, i3
mutually distinct. Since S ∩ AS 6= 0, we get ai0 = ai1 or ai2 = ai3 . This means that
three of the diagonal entries must be the same, so A has a 3-dimensional eigenspace.

Now suppose A is not diagonal; say ε3 = 1, so a2 = a3. Let S = {z0 = z3, z1 = 0}.
Since S ∩ AS 6= 0, there are x, y ∈ C, not both zero, such that

A







x
0
y
x






=







a0x
ε1x
a2y

y + a3x






∈ S,

so ε1x = 0 and a0x = y + a3x. This implies that ε1 = 0. Taking S = {z0 = z2, z3 = 0},
we get ε2 = 0. Taking S = {z0 = z1, z3 = 0}, we get a0 = a1. Finally, taking S = {z0 =
z2, z1 = z3}, we get a0 = a2, so A has only one eigenvalue and a 3-dimensional eigenspace
corresponding to it.

To disprove (1) in general, it suffices to find a 4-dimensional A-invariant subspace in
Cn+1 which does not contain a 3-dimensional eigenspace. By examining Jordan forms, it
is easy to see that such a subspace exists precisely when A does not have an n-dimensional
eigenspace, i.e., when (2) fails. �

Proof of proposition 1.5. Let L be a line in Ω. Then π(L) is an irreducible curve in M .
Now y ∈ L is in a fibre of π|L with more than one element if and only if y ∈ L ∩ γL for
some γ ∈ Γ, γ 6= id. Since Γ acts properly on Ω, there are at most finitely many γ ∈ Γ
with L ∩ γL 6= ∅. Also, if γL = L, then γ has a fixed point in L, so γ = id. Hence, π|L
is injective outside a finite set, so π(L) is rational.

For γ ∈ Γ, let Y (γ) be the set of y ∈ Pn such that L ∩ γL 6= ∅ for all lines L through
y. Then Y (γ) is a subvariety of Pn. We have βY (γ) = Y (βγβ−1) for β ∈ Γ. Also, for a
compact subset K of Ω, we have Y (γ)∩K 6= ∅ for only finitely many γ ∈ Γ since Γ acts
properly on Ω. This implies that X(γ) = π(Y (γ) ∩ Ω) is a subvariety of M . Now n ≥ 3
by corollary 1.4, so if γ 6= id, then X(γ) 6= M by lemma 1.6. Let X =

⋃

γ 6=id
X(γ).

Let p ∈M \X (so p is a very general point) and q ∈ π−1(p). For γ ∈ Γ, γ 6= id, let Lγ

be the set of lines L in Ω through q such that L∩ γL = ∅. Then Lγ is open and dense in
the (n− 1)-dimensional projective space of lines through q in Pn. By the Baire category
theorem, the intersection

⋂

Lγ is dense. If L is in the intersection, then π|L is injective,
so π(L) is a smooth rational curve through p.

Now let p1, p2 ∈ M \X and qk ∈ π−1(pk), k = 1, 2. For γ ∈ Γ, γ 6= id, and k = 1, 2,
let S(γ, k) be the union of lines L in Ω through qk such that L ∩ γL = ∅. Then S(γ, k)
is open and dense in Ω \ {qk}, so the intersection

⋂

γ,k S(γ, k) is dense in Ω. Hence there
are intersecting lines L1, L2 in Ω through q1, q2 respectively, such that π is injective on
both L1 and L2. Then π(L1)∪π(L2) is a connected union of two smooth rational curves
in M containing both p1 and p2. �
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The proposition implies that if n = 3 and the algebraic dimension a of M is 0 or
1 (examples of which will be given in sections 2 and 3), then there is no holomorphic
surjection f from M onto a 2-dimensional complex manifold. Namely, if a = 0, then
there are only finitely many surfaces in M . If a = 1, then there is a complex manifold
X, a compact Riemann surface Y (the algebraic reduction of M), a proper modification
g : X →M , and a holomorphic surjection h : X → Y , such that with only finitely many
exceptions, an irreducible surface in M is an irreducible component of g(h−1(y)) for some
y ∈ Y . See [FF]. In either case, by the proposition, there is a smooth rational curve C
in M which is not contained in any surface in M . But C is contained in the surface
f−1(f(C)), which is absurd.

Let us recall that an atlas of holomorphic charts on M is called projective if the charts
map to open sets of Pn and the coordinate changes are restrictions of automorphisms of
Pn. A projective atlas on M defines an element of H1(M,PGL(n+ 1,C)), called a pro-
jective structure on M . Equivalently, a projective structure on M is given by a conjugacy
class of group homomorphisms π1(M) → PGL(n + 1,C). Clearly, M has a projective
structure. For more information and references, see [Sim]. A projective structure on M
yields a developing map, which is a holomorphic immersion from the universal covering
space Ω of M to Pn. By proposition 1.2, any such map is an automorphism of Pn, so the
projective structure on M is unique.

The projective structure on M defines a germ Fp of a holomorphic foliation at each
point p in M , obtained by pulling back a pencil of lines by a projective chart. If p ∈ M
and q ∈ π−1(p), then the leaf space Dp of Fp is naturally identified with the space Pn−1 of
lines through q, so we have a linear projection of Pn \{q} onto Dp. Since E is Γ-invariant,
its image in Dp is well defined, regardless of the choice of q.

We say that a curve in M respects the projective structure on M if it appears as a
union of straight lines in each projective chart, i.e., if its germ at every point p (or merely
at some point in each of its irreducible components) is a union of germs in Dp. Note that
the rational curves constructed in the proof of proposition 1.5 are of this kind.

Our next result relates E to rational curves in M that respect the projective structure.

1.7. Proposition. A germ in Dp extends to a rational curve in M if and only if it does
not lie in the image of E in Dp.

A germ in the image of E in Dp may or may not extend to a curve in M . This can
be verified by explicit computations for the example of a Blanchard manifold of type A
given in [Kat2] (see section 3). There, some germs extend to a torus in M , and others
do not extend to a curve at all.

Proof. Let L be the line through q corresponding to a germ in Dp outside the image of
E, so L ⊂ Ω. Then the curve π(L) in M is rational by proposition 1.5.

Conversely, suppose L is a line through q that intersects E, and that the corresponding
germ in Dp extends to a rational curve C in M . Then there is a non-constant map
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P1 → C ⊂M , which lifts by π to a map P1 → Ω, whose image lies in π−1(C) ⊂ Γ(L\E).
Hence, the image lies in a connected component of γ(L \ E) for some γ ∈ Γ, but such a
component is isomorphic a domain in C, which is absurd. �

It remains to be seen if new information about E can be obtained from this result.
It does, however, say something about rational curves in M through a given point that
respect the projective structure.

1.8. Corollary. The set of germs in Dp that do not extend to a rational curve in M is
closed, nowhere dense, non-empty, and, when n = 3, connected.

Proof. Only the last statement needs to be proved. Let L be a line in Ω. Let e be an end
of Γ and (γn) be a sequence in Γ converging to e. Then the lines γn(L) converge to the
connected component E0 of E corresponding to e, so E0 contains a line. This shows that
if E0 is a connected component of E, then the image of E0 in Dp

∼= Pn−1 contains a line.
If n = 3, then two such lines must intersect, so the image of E in Dp is connected. �

We conclude this section by showing that M is far from being projective.

1.9. Proposition. M does not carry a Kähler metric.

It is easy to see that a domain in Pn that contains a complex line does not admit
a Shafarevich map (also known as a Γ̃-reduction). Since universal covering spaces of
compact Kähler manifolds have Shafarevich maps [Cam2], this implies proposition 1.9.
Also, a domain in a complex manifold is locally Stein if it covers a compact Kähler
manifold [Iva2]. Since Ω is not locally Stein, proposition 1.9 follows. We will give a
detailed proof using much simpler means.

The Fubini-Study metric on Pn is Kähler and invariant under unitary transformations,
so the following corollary is immediate.

1.10. Corollary. Γ 6⊂ PU(n+ 1).

The following lemma is well known. We supply a proof for the convenience of the
reader.

1.11. Lemma. If M is a compact Kähler manifold and H2,0(M) = 0, then M is
projective.

Proof. Let ω be a Kähler form on M . We can find α ∈ H2(M,Q) so close to [ω] ∈
H2(M,R) that α is positive (but a priori not necessarily of type (1, 1) any more). For
some integer k > 0 we have kα ∈ H2(M,Z). Since H2,0(M) = 0, the long exact sequence
obtained from the exponential sequence 0 → Z → O → O× → 0 shows that kα is the
Chern class of a line bundle L on M . Then L is positive, so M is projective. �

Proof of proposition 1.9. Suppose M is Kähler. By the lemma, M is projective, and
hence Moishezon, but this contradicts the following proposition. �
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1.12. Proposition. M is not Moishezon.

Proof. By the extension theorem 1.1, the field M(M) of meromorphic functions on M
can be identified with the field of Γ-invariant meromorphic functions on Pn. Suppose M is
Moishezon, so M(M) has transcendence degree n over C. Now M(Pn) = C(X1, . . . , Xn)
also has transcendence degree n over C, so M(Pn) is algebraic over M(M).

Let f ∈ M(Pn). Then there are g1, . . . , gk ∈ M(M) such that

fk + g1f
k−1 + · · ·+ gk = 0.

Say p ∈ Ω and g1, . . . , gk are all finite at p. Then f(γp), γ ∈ Γ, are roots of the same
polynomial, so the set f(Γp) is finite. Taking f = zi/z0, i = 1, . . . , n, we see that Γ has
a finite orbit in Ω, which is absurd. �

When n = 3, by a result of Kato [Kat1, page 53], if the algebraic dimension ofM is non-
zero, then there is a plane P in P3 which is invariant under a subgroup Γ0 of finite index
in Γ. Then we have an embedding of Γ0 into AutP ∼= PGL(3,C) by γ 7→ γ|P . One might
say, therefore, that the “truly” 3-dimensional examples have algebraic dimension zero. In
the following sections, we will see 3-dimensional examples with algebraic dimensions 0,
1, and 2.

Let us recall that a compact reduced complex space X belongs to the class C (as
defined by Fujiki) if there is a compact Kähler manifold Y and a holomorphic surjection
Y → X. Equivalently, X is bimeromorphically equivalent to a compact Kähler manifold.
All reduced Moishezon spaces are contained in C. For more information, see [CP] and
the references therein.

We need the following property of the class C.

1.13. Theorem (Campana [Cam1]). Let X be an irreducible compact complex space
of class C. Then a very general point in X is contained in a largest irreducible Moishezon
subvariety.

The following result combines and strengthens propositions 1.9 and 1.12.

1.14. Theorem. M is not of class C.

Proof. Let p be a point in M . If there is a largest irreducible Moishezon subvariety Y
through p, then Y must be M itself by proposition 1.5. But M is not Moishezon by
proposition 1.12, so M is not of class C by Campana’s theorem. �

2. Schottky coverings

Nori [Nor] has constructed higher-dimensional analogues of the classical Schottky cover-
ings in the following way. Let n = 2k+ 1, k ≥ 1, and g ≥ 1. Choose 2g mutually disjoint
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linear subspaces L1, . . . , L2g of dimension k in Pn. Fix an integer i with 1 ≤ i ≤ g and
choose a basis so that

Li = {z0, . . . , zk = 0}, Lg+i = {zk+1, . . . , zn = 0}.

Define ϕi : Pn → R by the formula

ϕi[z0, . . . , zn] =
|z0|

2 + · · ·+ |zk|
2

|z0|2 + · · ·+ |zn|2
,

and define open neighbourhoods

Vi = {x ∈ Pn : ϕi(x) < α}, Vg+i = {x ∈ Pn : ϕi(x) > 1 − α},

of Li, Lg+i respectively, where 0 < α < 1

2
. Define an automorphism γi of Pn by the

formula
γi[z0, . . . , zn] = [λz0, . . . , λzk, zk+1, . . . , zn],

where λ ∈ C and |λ| = 1

α
− 1. Then γi(Vi) = Pn \ V g+i. Let Γ be the subgroup of

PGL(n+ 1,C) generated by γ1, . . . , γg. Let A be the complement of V1 ∪ · · · ∪ V2g, and
let Ω =

⋃

γ∈Γ
γA.

Suppose α is so small that the closures of the sets V1, . . . , V2g are mutually disjoint.

Any positive power of γi maps Pn \ V i into Vg+i, and any negative power of γi maps

Pn \ V g+i into Vi. Hence, any non-trivial word in γ1, . . . , γg maps the interior of A
into its complement, so it is not the identity, and Γ is free on the generators γ1, . . . , γg.
Also, Ω is a domain on which Γ acts freely and properly with compact quotient M . Let
π : Ω →M be the covering map. The compact manifold M is precisely the quotient space
of A obtained by identifying the disjoint subsets ∂Vi and ∂Vg+i of A by the transformation
γi for i = 1, . . . , g.

The complement E of Ω in Pn is the closure of the Γ-orbit of L1 ∪ · · · ∪ L2g. Its
connected components are k-dimensional linear subspaces. When g ≥ 2, E is a “Cantor
set of k-dimensional linear subspaces”. Given ε > 0, E has (2k+ε)-dimensional Hausdorff
measure zero if α is small enough. Suppose α is so small that Λ2n−2(E) = 0. Then Ω is
simply connected, so π1(M) = Γ is free on g generators.

In this section, M will denote a manifold constructed as above. We will call M a
Schottky manifold.

Note that if g = 1, then the functions

z1
z0
, . . . ,

zk

z0
,
zk+2

zk+1

, . . . ,
zn

zk+1

descend to algebraically independent meromorphic functions on M , so the algebraic di-
mension a(M) of M is at least n − 1. Also, E = L1 ∪ L2, so Λ2n−2(E) = 0, and
a(M) = n− 1 by proposition 1.12.
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Now let M be a 3-dimensional Schottky manifold with g ≥ 2. The remainder of
this section will be concerned with determining the function field of M and the surfaces
contained in M for small values of α.

Let Y be an irreducible surface in P3 which is invariant under a subgroup of finite index
in Γ. Let 1 ≤ i ≤ g. Choose a basis so that Li and Lg+i are given as above. Now Y is
invariant under γm

i for some natural number m ≥ 1, so if [z0, z1, z2, z3] ∈ Y \ (Li ∪Lg+i),
then [λmjz0, λ

mjz1, z2, z3] ∈ Y for all j ∈ Z. Hence, Y has infinitely many points in
common with the line L through the points [0, 0, z2, z3] ∈ Li and [z0, z1, 0, 0] ∈ Lg+i,
so L ⊂ Y . This shows that Y is a union of lines intersecting both Li and Lg+i, along
with either Li or Lg+i. If Y contains only one of the lines Li, Lg+i, then Y is a plane
containing that line. The same will hold for other values of i, but that is absurd, since
two lines in a plane intersect. Hence, Y contains all the lines L1, . . . , L2g, and for each i
with 1 ≤ i ≤ g, Y is a union of lines intersecting both Li and Lg+i.

If Z is another irreducible surface in P3 which is invariant under a subgroup of finite
index in Γ, then both Y and Z are invariant under the same subgroup Γ′ of finite index
in Γ. Then Y ∩ Z contains the Γ′-orbit of L1 ∪ · · · ∪ L2g, which is a union of an infinite
number of mutually disjoint lines, so Y = Z. This shows that there is at most one surface
in P3 invariant under a subgroup of finite index in Γ.

If f is a meromorphic function on M and Λ4(E) = 0, then f ◦ π extends to a mero-
morphic function h on P3. Applying the above to the level sets of h gives the following
result.

2.1. Proposition. Let M be a 3-dimensional Schottky manifold with g ≥ 2. If Λ4(E) =
0, which is the case if α is small enough, then M has no non-constant meromorphic
functions.

In the remainder of the section, we assume that Λ3(E) = 0.
Let S be a smooth surface in M . The closure Y of π−1(S) is a Γ-invariant surface in

P3. If Y is not smooth with singular locus Z, then Z ⊂ E and Z is Γ-invariant. Since
a group with infinitely many ends acts on its space of ends with dense orbits [Kul], this
contradicts Z having only a finite number of connected components. Hence, Y is smooth
and irreducible. Since Y is covered by rational curves, its degree is 1, 2, or 3. Since
Y contains disjoint lines, it cannot be a plane. Since Y contains more than 27 lines, it
cannot be a cubic. Hence, Y is a quadric. In suitable projective coordinates, Y is the
image of P1 × P1 under the Segre embedding, and Y has two rulings by lines, which
are the only lines in Y . Two disjoint lines in Y must belong to one of the rulings. In
particular, the lines L1, . . . , L2g lie in a quadric.

Conversely, suppose L1, . . . , L2g lie in a smooth quadric Q in P3. A line in P3 is Γ-
invariant if and only if it intersects all the lines L1, . . . , L2g. Since Q is ruled by such lines,
it is Γ-invariant. Also, E is a union of lines in one of the rulings. This ruling consists
of the fibres of a projection p : Q ∼= P1 × P1 → P1. There is an induced action of Γ on
P1 \p(E), and the quotient map P1 \p(E) → C is a 1-dimensional Schottky covering onto
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a compact Riemann surface of genus g. The image of Q \ E in M is a smooth surface,
ruled over C.

We have proved the following result.

2.2. Proposition. Let M be a 3-dimensional Schottky manifold with g ≥ 2. Suppose
Λ3(E) = 0, which is the case if α is small enough. Then M contains at most one surface.
Also, M contains a smooth surface S if and only if the lines L1, . . . , L2g lie in a smooth
quadric. Then S is a ruled surface of genus g.

It is easy to see that four lines in P3 in general position do not lie in a quadric.
Finally, suppose S is a non-smooth surface in M . Then the singular locus Z of Y is

Γ-invariant and not contained in E. For each point x ∈ Z \E and each i with 1 ≤ i ≤ g,
there is a line in Z through x intersecting both Li and Lg+i. The singular locus of Z is
finite, but also Γ-invariant, so it is empty and Z is smooth. Hence, through every point
in Z \E there is a line in Z intersecting all the lines L1, . . . , L2g, and Z is a disjoint union
of a finite number of such lines.

We see that if M contains a surface, then there is a Γ-invariant line in P3. If g ≥ 3
and L1, . . . , L2g are in general position, then no such line exists.

3. Blanchard manifolds

As before, we let M be a compact complex manifold whose universal covering space is a
domain Ω in Pn, such that the complement E = Pn \Ω is non-empty with Λ2n−2(E) = 0.
The covering map is π : Ω → M , and the covering group Γ ∼= π1(M) can be considered
as a subgroup of PGL(n+ 1,C).

3.1. Proposition. Suppose E is a subvariety of Pn. If there is a Γ-invariant curve
X in Pn, not contained in E, then Γ is a finite extension of Z or Z2. Moreover, the
normalization of each irreducible component of π(X \E) is a torus.

Proof. Now X \ E is Γ-invariant and has finitely many irreducible components. The
elements of Γ that leave each component invariant form a normal subgroup Γ′ of finite
index. Let C be an irreducible component of the curve π(X \E) in M , and let Y be an
irreducible component of π−1(C). Then Y is an irreducible component of X \ E. Also,
Y is a non-compact covering space over C whose covering group Γ′′ contains Γ′.

Let Z be the irreducible component of X containing Y . Then Z \ Y is finite and

non-empty. The normalization Ŷ of Y is naturally identified with the complement of
a non-empty finite set in the normalization of Z. Each element of Γ′′ lifts to a unique
automorphism of Ŷ . These are the deck transformations of the induced covering map
Ŷ → Ĉ. Since Ŷ is a compact Riemann surface with a finite non-zero number of points
removed, and Ŷ has an infinite automorphism group, Ŷ is either the complex plane or
the punctured plane. In the first case, Γ′′ = Z2, and in the second case, Γ′′ = Z. In both
cases, Ĉ is a torus. �
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3.2. Corollary. Suppose E is a curve (so n = 3). If M contains two distinct irreducible
surfaces S1 and S2 which intersect, then Γ is a finite extension of Z or Z2. The inter-
section S1 ∩ S2 is a curve, and the normalization of each of its irreducible components is
a torus.

Proof. The closure Yk of π−1(Sk) is a surface in P3, and Y1 ∩ Y2 6⊂ E is a Γ-invariant
curve. �

Now we restrict ourselves to the lowest dimensional case, so we let n = 3. We have
seen that the smallest E can be is a line. If E is a line, then M is called a Blanchard
manifold. The first example of such a manifold was given in [Bla]; see also [Kat1]. Kato
[Kat2] has shown that if M is a Blanchard manifold, then Γ is torsion-free and contains
a subgroup Γ0 of finite index which is isomorphic to Z4. Furthermore, in a suitable
system of homogeneous coordinates z0, z1, z2, z3, which we will henceforth adopt, we
have E = {z2, z3 = 0}, and either Γ0 = Γ ∩G or Γ0 = Γ ∩H, where

G = {







1 a b c
0 1 a b
0 0 1 a
0 0 0 1






: a, b, c ∈ C}

and

H = {







1 0 a b
0 1 c d
0 0 1 0
0 0 0 1






: a, b, c, d ∈ C},

considered as subgroups of PGL(4,C). Note that the groups G and H are abelian. A
Blanchard manifold M is said to be of type A if π1(M) contains an abelian subgroup
of finite index which is conjugate to a subgroup of G, but π1(M) does not contain an
abelian subgroup of finite index which is conjugate to a subgroup of H. If M is not
of type A, then M is said to be of type B. Blanchard manifolds of different types are
non-isomorphic. There are examples of both types [Kat2].

The Blanchard manifold M constructed in [Bla] is of type B. It is diffeomorphic to
the product of the 2-sphere and the real 4-torus [Kat1]. Hence, the underlying smooth
manifold of M carries a projective algebraic complex structure, in addition to the complex
structure being considered here, which by theorem 1.14 is not of class C. In particular,
M does not fail to be Kähler due to any topological obstruction. Note that there are
no 2-dimensional examples of this kind, due to the fact that a compact complex surface
carries a Kähler metric if and only if its first Betti number is even.

From now on, we let M be a Blanchard manifold.
Consider the planes in P3 containing the line E. They foliate Ω, and the leaf space

is P1. The covering group Γ permutes these planes, so there is an induced holomorphic
foliation F of M . Its leaves are the images of the planes. The leaves are smooth, but not
necessarily closed in M .
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3.3. Proposition. A plane P in P3 containing E is invariant under a subgroup of finite
index in Γ if and only if T = π(P \ E) is closed in M . Then T is a smooth connected
surface in M , and T is either a torus or a hyperelliptic surface. If Γ0 = Γ, then T is a
torus.

Proof. First of all, T is closed in M if and only if Γ(P \ E) = π−1(T ) is closed in Ω if
and only if the Γ-orbit of P consists of finitely many planes if and only if P is invariant
under a subgroup of finite index in Γ.

Suppose the subgroup Γ′ = {γ ∈ Γ : γP = P} is of finite index in Γ. If p ∈ T and
x, y ∈ π−1(p), then y = γx for some γ ∈ Γ, so γP ∩P ∩Ω 6= ∅, and γP = P . This shows
that P \E ∼= C2 is a Galois covering space of T with covering group Γ′.

Now P is given by an equation of the form sz2 + tz3 = 0 with s, t ∈ C. Simple
computations show that the zero-free holomorphic 2-form dz0 ∧ dz1 on P \ E is Γ0-
invariant, so it descends to T0 = (P \E)/(Γ′ ∩ Γ0). Hence, the canonical bundle of T0 is
trivial, and the Kodaira dimension of T0 is zero. Also, Γ′∩Γ0 is of finite index in Γ0, which
is isomorphic to Z4, so the first Betti number of T0 is 4. Hence, by the Enriques-Kodaira
classification [BPV], T0 is a torus.

This shows that T has a torus as a finite unbranched covering. Hence, T is Kähler,
the Kodaira dimension of T is zero, and the fundamental group of T is infinite. By the
Enriques-Kodaira classification, T is either a torus or a hyperelliptic surface. �

We recall that every hyperelliptic surface X is the quotient of a torus (in fact, a
product of two smooth elliptic curves) by a finite group acting freely. In particular, X is
projective, so any torus covering X must be an abelian variety. Furthermore, a torus is
never homeomorphic to a hyperelliptic surface, e.g. since they have different first Betti
numbers (4 and 2 respectively).

If M is of type B, then all the planes containing E are invariant under Γ0, so by
the proposition, M is foliated by smooth surfaces, and each leaf is either a torus or a
hyperelliptic surface. On the other hand, if M is of type A, then only the plane {z3 = 0}
is invariant under a subgroup of finite index in Γ, so by the proposition, F has only one
closed leaf, and this leaf is a torus or a hyperelliptic surface.

Now let T = π(P \E), where P = {z3 = 0}. We know that T is a smooth connected
surface in M . Suppose S 6= T is a surface in M . The closure X of π−1(S) is a Γ-invariant
surface in P3 which intersects P in a curve. By proposition 3.1 (applied with Γ replaced
by Γ0), the intersection must be E. Also by proposition 3.1, X \ E is smooth, so S is
smooth. Choose an irreducible component Y of X. It is the zero locus of an irreducible
homogeneous polynomial g. Since Y ∩ P = E, we may take g = zm

2 + z3h, where m ≥ 1
is the degree of g, and h is a polynomial. Now Y is invariant under a subgroup of finite
index in Γ, so for every γ in a subgroup of finite index in Γ0 there is a constant c 6= 0
such that

cg = γ∗g = (z2 + az3)
m + z3γ

∗h = zm
2 + z3k,
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where a ∈ C and k is a polynomial, so c = 1 and g is γ-invariant. Hence, the non-
constant meromorphic function f = g/zm

3 on P3 is invariant under a normal subgroup
Γ1 of finite index in Γ. The indeterminacy locus of f is E. The restriction f |Ω : Ω → P1

is a Γ1-invariant holomorphic map with smooth fibres, and it descends to a holomorphic
map f1 : M1 = Ω/Γ1 → P1. Let f2 : M1 → C1 be the Stein factorization of f1. The
1-dimensional complex space C1 is normal, and hence smooth, so it is a compact Riemann
surface. The fibres of f2 are the connected components of the fibres of f1.

The finite group Γ/Γ1 acts on M1 with quotient M . By corollary 3.2, the fibres of f2

are the only irreducible surfaces in M1, so they are permuted by Γ/Γ1. Hence, there is an
induced action of Γ/Γ1 on C1 that makes f2 equivariant. Passing to quotients, we obtain
a non-constant holomorphic map ψ : M → C, where C is a normal complex space, and
hence a compact Riemann surface. The fibres of ψ are smooth, and they are the images
of the fibres of f2, so they are connected. The map ψ lifts to a non-constant holomorphic
map from Ω to the universal covering C̃ of C, but Ω carries no non-constant holomorphic
functions, so C̃ must be P1, and C = P1.

So far we have proved the following.

3.4. Theorem. If M is a Blanchard manifold, then one of the following holds.

(1) M contains only one surface, which is a torus or a hyperelliptic surface. Hence,
M has no non-constant meromorphic functions.

(2) There is a holomorphic map ψ : M → P1 with smooth connected fibres, which are
the only irreducible surfaces in M . Hence, M(M) = M(P1)◦ψ, and the algebraic
dimension of M is 1.

If M is of type B, then (2) holds, and the fibres of ψ are the leaves of F .

We now wish to understand the dichotomy in the theorem when M is of type A. First
we consider the automorphism group of M . Let NΓ be the normalizer of Γ in PGL(4,C).
If ν ∈ NΓ, then ΓνE = νΓE = νE, so the line νE is Γ-invariant. Now νE 6⊂ Ω, so
νE must intersect E in the unique Γ-fixed point [1, 0, 0, 0] of E. Computations show
that E is the only Γ-invariant line through [1, 0, 0, 0], so νE = E. This shows that Ω
is NΓ-invariant. Therefore, every ν ∈ NΓ induces an automorphism of M , which is the
identity if and only if ν ∈ Γ. Conversely, every automorphism of M lifts to an element
of NΓ, so

AutM = NΓ/Γ.

Let P = {z3 = 0} be the unique plane in P3 containing E, which is invariant under
a subgroup of finite index in Γ. Since P is Γ0-invariant, νP is invariant under the
group νΓ0ν

−1, which is of finite index in Γ, so νP = P . This shows that the surface
T = (P \E)/Γ in M is AutM -invariant.

Assume now that Γ ⊂ G. This amounts to replacing M by the finite unbranched
covering space M0 = Ω/Γ0. Clearly, (1) in theorem 3.4 holds for M if and only if it holds
for M0.
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Since G is abelian, G ⊂ NΓ. This shows that the dimension of the complex Lie group
AutM is at least 3. It is easy to see that G acts transitively on Ω \ P (with trivial
stabilizers) and on P \ E, so G acts transitively on M \ T and on T . Hence, AutM has
precisely two orbits, namely M \ T and T . In particular, M is almost homogeneous.

Let

N =







0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0






.

The commuting matrices N , N2, and N3 form a basis for the Lie algebra g of G, and the
exponential map exp : g → G,

rN + sN2 + tN3 7→ I + rN + ( 1

2
r2 + s)N2 + (t+ 1

6
r3 + rs)N3,

is an algebraic group isomorphism with inverse log : G→ g,

I + aN + bN2 + cN3 7→ aN + (b− 1

2
a2)N2 + (c− ab+ 1

3
a3)N3.

Suppose now that T is not the only surface in M . By theorem 3.4, there is a holo-
morphic map ψ : M → P1 with smooth connected fibres, which are the only irreducible
surfaces in M . Say T = ψ−1(∞). Then G permutes the fibres of ψ, and we get an
induced action of G on P1 which is transitive on C and fixes ∞. The stabilizer of 0 ∈ C

is a proper algebraic subgroup H of G, and Γ ⊂ H. In particular, Γ is not Zariski-dense
in G. We have H = exp h, where h is a 2-dimensional subspace of g. If h is defined by an
equation of the form ar + bs = 0 with a, b ∈ C, then the polynomial function

f [z, w, 1, 0] = bz − 1

2
bw2 + aw

on P \ E is H-invariant, and hence Γ-invariant, so f descends to a non-constant holo-
morphic function on T , but this is absurd since T is compact. Hence, h is defined by an
equation of the form t = ar + bs with a, b ∈ C.

For r ∈ C, let wr be a solution of the quadratic equation

w2 + (r + b)w + 1

3
r2 + 1

2
br − a = 0,

and let
sr = −r( 1

2
r + wr).

Then
hr = exp(rN + srN

2 + (ar + bsr)N
3) ∈ H

maps pr = [0, 0, wr, 1] to [0, 0, wr + r, 1]. Since wr → ∞ and wr + r → ∞ as r → ∞,
both pr and hrpr converge to the point [0, 0, 1, 0] in Ω. This shows that H does not act
properly on Ω.
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Now Γ = exp Λ, where Λ is a lattice in h. There is a constant c0 > 0 such that for
every v ∈ h there is u ∈ Λ with |u− v| < c0. Hence, there is a constant c > 0 such that
for every h ∈ H there is γ ∈ Γ such that all the off-diagonal entries of γh−1 have absolute
value less than c. Let γr ∈ Γ be associated to hr in this way. Then γr → ∞ as r → ∞.
Let U be the neighbourhood of the point [0, 0, 1, 0] defined by the inequality

|z0| + |z1| + |z3| < |z2|.

Then U is relatively compact in Ω. There is ρ > 0, depending only on c, such that if
g ∈ G and all the off-diagonal entries of g have absolute value less than c, then gU lies
in the compact subset K of Ω defined by the inequality

|z0| + |z1| ≤ ρ(|z2| + |z3|).

For r ∈ C sufficiently large, we have hrpr ∈ U , so γrpr = (γrh
−1
r )hrpr ∈ K. This shows

that Γ does not act properly on Ω, contrary to hypothesis.

We have proved the following.

3.5. Theorem. If M is a Blanchard manifold of type A, then M contains only one
surface, and Γ is Zariski-dense in G.

This shows that the classification of Blanchard manifolds by type is the same as their
classification by algebraic dimension.

Note that Γ is Zariski-dense in G if and only if log(Γ∩G) spans g as a C-vector space.

It would be interesting to have a characterization of those discrete Zariski-dense sub-
groups Γ of G of rank 4 that act freely and properly on Ω with compact quotient, so that
Ω/Γ is a Blanchard manifold of type A.

Proposition 3.3 and theorems 3.4 and 3.5 imply the following.

3.6. Corollary. An irreducible surface in a Blanchard manifold is a torus or a hyperel-
liptic surface. If Γ0 = Γ, then it is a torus.

If M is of type B, then the map ψ : M → P1 in theorem 3.4 is a proper submersion, and
hence a smooth fibre bundle by Ehresmann’s fibration theorem [BJ], over the complement
of its finite set of critical values. Hence, all but finitely many of the surfaces in M are
mutually diffeomorphic, so either all but finitely many surfaces in M are tori, or all but
finitely many surfaces in M are hyperelliptic.

3.7. Example. We will now show that hyperelliptic surfaces can occur in Blanchard
manifolds of type A.

In [Kat2], Kato constructs a Blanchard manifold M0 = Ω/Γ0 of type A, such that Γ0

is the subgroup of G generated by I +N , I + iN , I +N 2, and I + iN2.
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Let

ϕ =







1 1 i/2 0
0 −1 −1 −i/2
0 0 1 1
0 0 0 −1






∈ PGL(4,C).

Then
ϕN = −Nϕ,

so ϕ commutes with I +N2 and I + iN2. Also,

ϕ(I +N)ϕ−1 = I −N and ϕ(I + iN)ϕ−1 = I − iN

are in Γ0, since their logarithms lie in the Z-span of the logarithms of the given generators
of Γ0. Hence, Γ0 is a normal subgroup of the subgroup Γ of PGL(4,C) spanned by Γ0

and ϕ. Moreover, ϕ2 = I + (i− 1)N2 ∈ Γ0, so Γ0 is of index 2 in Γ.
This shows that ϕ induces a holomorphic involution of M0. It has a fixed point in M0

if and only if there are γ ∈ Γ0 and x ∈ Ω such that ϕx = γx. Then

ϕ2x = ϕγx = (ϕγϕ−1)(ϕx) = ϕγϕ−1γx,

so ϕ2 = ϕγϕ−1γ since Γ0 acts freely on Ω. Hence, ϕγ−1 ∈ Γ is of order 2. We will show
that this cannot happen.

For γ = I + aN + bN2 + cN3 ∈ Γ0, we have

(ϕγ)2 =







1 0 2b− a2 − 1 + i ∗
0 1 0 ∗
0 0 1 ∗
0 0 0 1






,

so if (ϕγ)2 = id, then a2+1 = 2b+i. Now log γ is a Z-linear combination of the logarithms
of the given generators of Γ0, so

a = n1 + in2, b = 1

2
(n1 + in2)

2 + 1

2
(n2 − n1) + n3 + in4,

where n1, . . . , n4 ∈ Z. Hence, the imaginary part of a2 +1 is an even integer, whereas the
imaginary part of 2b+ i is an odd integer. This shows that Γ has no elements of order 2,
so ϕ has no fixed points in M0, and M = M0/ϕ = Ω/Γ is a Blanchard manifold of type
A with fundamental group Γ.

The unique surface T = (P \E)/Γ in M has the torus (P \E)/Γ0 in M0 as a 2-sheeted
unbranched covering space, and its fundamental group is Γ. Let α : Γ → Γ′ = Γ/[Γ,Γ]
be the abelianization map. Then α(Γ0) has finite index (1 or 2) in Γ′. Also, Γ0 contains
non-trivial commutators, such as ϕ(I −N)ϕ−1(I −N)−1, so the rank of Γ′, i.e., the first
Betti number of T , is less than 4. Hence, T is hyperelliptic.

It has been pointed out that certain Blanchard manifolds of type B are twistor spaces,
as are certain 3-dimensional Schottky manifolds with g = 1. See [Bes, Chapter 13.D,E]
and [Hit]. On the other hand, we have the following result.
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3.8. Proposition. A Blanchard manifold of type A is not a twistor space.

Proof. Suppose a Blanchard manifold of type A is a twistor space. The twistor structure
pulls up to the universal covering Ω, so Ω is smoothly fibred by smooth rational curves,
and Ω has a Γ-equivariant fixed-point-free anti-holomorphic involution τ preserving the
fibres, which extends to a Γ-equivariant anti-holomorphic involution of P3. The normal
bundle N of a fibre C is H1 ⊕H1, where Hk denotes the hyperplane bundle on Pk.

By the short exact sequence

0 → TC → TP3|C → N → 0

on C, we have

4c1(H3|C) = c1(TP3|C) = c1(TC) + c1(N) = 2c1(H1) + 2c1(H1)

in H2(C,Z) = Z, so degC = deg(H3|C) = 1, and C is a line.
Let P = {z3 = 0} be the unique Γ0-invariant plane in P3 containing E. Now τ(z) =

ϕ(z̄) for some ϕ ∈ Aut P3, so τP is a plane in P3 containing τE = E, invariant under
τΓ0τ

−1 = Γ0, so τP = P .
Let C be a fibre in Ω. Clearly, C 6⊂ P , so C intersects P in a single point x. Since C

and P are τ -invariant, τx = x, which is absurd. �

4. The 3-dimensional case

In conclusion, we will make some remarks on the general 3-dimensional case. Let us
make the following definition, motivated by [Kat2]. A 3-dimensional compact complex
manifold M is called a Kato manifold if

(1) the universal covering space of M is a domain Ω in P3 such that every connected
component of the complement P3 \ Ω is a line,

(2) the fundamental group of M has a torsion-free subgroup of finite index, and
(3) M contains a domain which is biholomorphic to a neighbourhood of a line in P3.

The following main result of [Kat2] classifies Kato manifolds and describes their fun-
damental groups. For terms left undefined here, we refer the reader to [Kat2].

4.1. Theorem (Kato). Let M be a Kato manifold and let Γ0 be a torsion-free subgroup
of finite index in π1(M). Then Γ0 is isomorphic to the free product

Γ1 ∗ · · · ∗ Γr ∗ Γr+1 ∗ · · · ∗ Γs,

where 0 ≤ r ≤ s, Γ1, . . . ,Γr are infinite cyclic, and Γr+1, . . . ,Γs contain Z4 as a subgroup
of finite index. Also, the finite covering of M with fundamental group Γ0 is a Klein
combination of r primary L-Hopf manifolds and s− r Blanchard manifolds.
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Now we let M be a compact complex manifold whose universal covering space is a
domain Ω in P3, such that the complement E = P3 \ Ω is non-empty with Λ4(E) = 0.
The covering map is π : Ω →M .

By proposition 1.2 and Selberg’s theorem, M satisfies (2). As for (3), by the proof of
proposition 1.5, there is a line L in Ω such that π|L is injective. If π is not injective on
any neighbourhood of L, then there are pn → p ∈ L and qn → q ∈ L with pn 6= qn such
that π(pn) = π(qn), so π(p) = π(q) and p = q, but this is absurd because π is locally
injective. Hence, M satisfies (3).

This shows that M is a Kato manifold if and only if all the connected components of E
are lines. Recall that in the proof of corollary 1.8, we observed that every connected com-
ponent of E contains a line, so roughly speaking, M is a Kato manifold if the connected
components of E are as small as they can possibly be.

If M is Blanchard or Schottky, then M is Kato. However, M need not be Kato.
Kato [Kat3] has constructed examples where E is a smooth submanifold of P3 of real
dimension 3 (in fact, E is a circle of projective lines), and Γ is the fundamental group of
a hyperbolic compact Riemann surface. These examples are twistor spaces of algebraic
dimension zero.

All the examples of compact manifolds covered by “large” domains in projective space
that I know of have been mentioned in this paper. There are clearly very few of them,
especially in dimensions greater than 3, and they do not seem to give any clues to a pos-
sible classification. In particular, we have seen that although the class of these manifolds
intersects the classes of twistor spaces and Kato manifolds, it is not contained in either of
them. The work that has been done to date gives a glimpse of a rich and varied theory,
but it is only a beginning.
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