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Abstract. We embed the category of complex manifolds into the simplicial category of
prestacks on the simplicial site of Stein manifolds, a prestack being a contravariant simplicial

functor from the site to the category of simplicial sets. The category of prestacks carries

model structures, one of them defined for the first time here, which allow us to develop
holomorphic homotopy theory. More specifically, we use homotopical algebra to study lifting

and extension properties of holomorphic maps, such as those given by the Oka Principle.

We prove that holomorphic maps satisfy certain versions of the Oka Principle if and only if
they are fibrations in suitable model structures. We are naturally led to a simplicial, rather

than a topological, approach, which is a novelty in analysis.

1. Introduction. This paper, like its predecessor [L], is about model structures in
complex analysis. Model structures are good for many things, but here we view them
primarily as a tool for studying lifting and extension properties of holomorphic maps,
such as those given by the Oka Principle. More precisely, model structures provide a
framework for investigating two classes of holomorphic maps such that the first has the
right lifting property with respect to the second and the second has the left lifting property
with respect to the first in the absence of topological obstructions. (It is more natural,
actually, to consider homotopy lifting properties rather than plain lifting properties.) We
seek to make the maps in the first class into fibrations and those in the second class
into cofibrations, with weak equivalences being understood in the topological sense. The
machinery of abstract homotopy theory can then be applied.

The version of the Oka Principle we focus on here involves the inclusion T → S into a
Stein manifold of a closed complex submanifold and a holomorphic fibre bundle X → Y
whose fibre is an elliptic manifold. Loosely speaking, ellipticity means receiving many
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holomorphic maps from Euclidean spaces; it is thus dual to being Stein. A deep theorem
of Gromov [G, FP] implies that for any commuting square

T //

��

X

��
S // Y

in which T → X and S → Y are otherwise arbitrary holomorphic maps, the inclusion of
the space of holomorphic liftings S → X into the space of continuous liftings is a weak
equivalence in the compact-open topology. Since T → S is a topological cofibration and
X → Y is a topological fibration, it follows by basic topology that there is a holomorphic
lifting if one of the two maps is a homotopy equivalence. This looks very much like a
holomorphic manifestation of Quillen’s first axiom for a model category [Q, Ch. I, p.
0.1], so it is natural to ask whether there is a model category containing the category
of complex manifolds in which Stein inclusions are cofibrations, weak equivalences are
defined topologically, and being a fibration is equivalent to an Oka property, such as the
one attributed to elliptic bundles by Gromov’s theorem. The main result of this paper
is that a stronger and perhaps more natural Oka property, in which we consider not a
single square but a continuous family of them, is equivalent to fibrancy in a new model
category containing the category of complex manifolds. Elliptic manifolds are fibrant in
this new sense, but it is still an open question whether all elliptic bundles are fibrations.

We equip the category of Stein manifolds in a natural way with a simplicial structure
and a compatible topology, turning it into a simplicial site, and embed the category of
complex manifolds into the simplicial category of prestacks on this site. By a prestack
we mean a contravariant simplicial functor from the site to the category of simplicial
sets. We make use of recent work of Toën and Vezzosi [TV], generalizing the homotopy
theory of simplicial presheaves on ordinary, discrete sites to prestacks on simplicial sites.
The category of prestacks carries several interesting model structures. Strengthening the
main result of [L], we show that the prestack represented by a complex manifold X is
fibrant in the so-called projective structure (so X represents a stack, in the terminology
of [TV]) if and only if X satisfies what we call the weak Oka property. This means that
for every Stein manifold S, the inclusion of the space of holomorphic maps from S to X
into the space of continuous maps is a weak equivalence in the compact-open topology.
By Gromov’s theorem, this holds if X is elliptic. We generalize the weak Oka property to
holomorphic maps (viewing manifolds as constant maps) and show that it is equivalent
to being a projective fibration.

We introduce a new simplicial model structure on the category of prestacks on the
Stein site, in a sense the smallest one in which every Stein inclusion is a cofibration.
We characterize the fibrations in this structure and show that a holomorphic map is a
fibration if and only if it satisfies a new, stronger Oka property. This Oka property is
defined explicitly in purely analytic terms, without reference to, but with guidance from,
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abstract homotopy theory. For a holomorphic map which is a homotopy equivalence,
it turns out to be simply the homotopy right lifting property with respect to all Stein
inclusions. By Gromov’s theorem, elliptic manifolds are fibrant. I conjecture that this
extends to nonconstant maps: that elliptic bundles are fibrations. So far, this is known
for covering maps but remains open for nontrivial bundles in general.

The interface between complex analysis and homotopical algebra will be explored
further in future work. For more motivation, see the final remarks at the end of the
paper, and for more background, the introduction in [L] and the survey [F2].
Acknowledgement. I am indebted to Rick Jardine for helpful conversations.

2. The embedding. LetM be the category of complex manifolds, second countable but
not necessarily connected, and holomorphic maps. As the first step in the development
of holomorphic homotopy theory, or more specifically a homotopy-theoretic study of the
Oka Principle, we wish to embedM in a simplicial model category.

Now M has a natural simplicial structure (enrichment over the category sSet of
simplicial sets), making it a simplicial object in the category of categories with a dis-
crete simplicial class of objects. For complex manifolds X and Y , the mapping space
Hom(X, Y ) is the singular set sO(X, Y ) of the space of holomorphic maps from X to Y
with the compact-open topology.

Let S be the full subcategory of Stein manifolds with this simplicial structure. It
is a small category, or at least equivalent to one, since a connected Stein manifold can
be embedded into Euclidean space. A prestack on S (in the terminology of [TV]) is a
contravariant simplicial functor (morphism of simplicial categories) S → sSet. Let S
denote the category of prestacks on S with its own natural simplicial structure (in a sense
that is stronger than the sense in whichM is a simplicial category; see [GJ, IX.1]).

By the simplicial Yoneda lemma [GJ, IX.1.2], if S is an object of S and F is a prestack
on S, then there is a natural isomorphism of simplicial sets

F (S) ∼= HomS(HomM(·, S), F ).

(From now on we will usually omit the subscripts.) Hence there is a simplicially full
embedding of S into S, taking an object S of S to the prestack Hom(·, S) represented
by S.

The embedding S → S clearly extends to a functor M → S, taking a complex
manifold X to the prestack Hom(·, X) on S represented by X. This functor induces
monomorphisms (injections at each level) of mapping spaces, as is easily seen by plugging
in the terminal object of S, the one-point manifold p. Hence, for complex manifolds X
and Y , we have a monomorphism of mapping spaces

Hom(X, Y )→ Hom(Hom(·, X),Hom(·, Y )),

which is an isomorphism when X is Stein, and we have a simplicial embedding ofM into
S. Whether the embedding is full remains to be investigated.
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3. Remarks. We would like to motivate the above construction and explain why it
seems to produce an appropriate setting for applying homotopical algebra in complex
analysis. Yoneda embeddings provide the canonical way of closing geometric categories
under limits and colimits. This is the first step in the homotopy theory of schemes, for
instance; I know of no alternative. In our paper [L], we embeddedM into the category of
all simplicial presheaves on S, but there is every reason to take into account the topology
on our hom-sets and restrict attention to those simplicial presheaves that respect it, now
that the homotopy theory of simplicial presheaves on ordinary, discrete sites has been
generalized to prestacks on simplicial sites by Toën and Vezzosi [TV]. Indeed, we want
a full embedding of the category of complex manifolds into a simplicial model category,
at least for Stein sources, and with plain simplicial presheaves we cannot expect this.
Homotopy theory gives information about simplicial hom-sets and maps between them;
to apply such results in complex analysis, we need to know that simplicial hom-sets
essentially equal spaces of holomorphic maps. We get this at least when the source is
Stein; this has proved sufficient so far.

It would seem simpler and more natural to use presheaves of topological spaces on S
rather than simplicial presheaves. The homotopy theory of the former is not available in
the literature — although it could presumably be developed in a straightforward manner
for a suitable locally presentable category of topological spaces, now that one such has
been discovered: J. Smith’s category of I-spaces — but that is not why we use the
latter. The reason is that we are aiming for a model structure in which the inclusion
T ↪→ S of a closed complex submanifold T in a Stein manifold S is a cofibration (this
is the intermediate structure, defined below). It is appropriate, then, to require such an
inclusion to induce a pointwise cofibration, so in the topological setting we would need
O(X, T )→ O(X, S) to be a cofibration of topological spaces for every Stein manifold X.
There are simple examples for which this fails. For instance, let S be the complex plane
with a puncture, T be a one-point subset of S, and X be the complex plane with the
integers removed. Then O(X, T )→ O(X, S) is not a cofibration, not even in the weaker
of the two senses considered by topologists, because the point O(X, T ) in the space A =
O(X, S) does not have a neighbourhood contractible in A. Indeed, there are uncountably
many homotopy classes of holomorphic maps X → S (consider winding numbers around
each integer), so A has uncountably many connected components, and every nonempty
open subset of A contains uncountably many of these, so it is not contractible in A.
However, the induced map sO(X, T )→ sO(X, S) is a cofibration of simplicial sets, simply
because it is injective at each level. Shifting our focus from the spaces of holomorphic
maps themselves to the singular sets that catalogue continuous families of holomorphic
maps with nice parameter spaces alleviates the difficulties associated with the compact-
open topology for noncompact sources.

Thus we are, somewhat surprisingly, led to a simplicial approach, which is a novelty
in analysis. Fortunately, there is often no loss involved in applying the singular functor
to spaces of holomorphic maps, because the singular functor not only preserves but also
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reflects fibrations. For example, if A and B are spaces of holomorphic maps and A→ B
is a map such that the induced map sA → sB of mapping spaces is a Kan fibration,
as might follow from some homotopy-theoretic arguments, then A → B itself is a Serre
fibration (and conversely). Also, sA→ sB is a weak equivalence if and only if A→ B is.

4. The projective model structures. The category S carries several interesting sim-
plicial model structures. We begin by describing the most basic one, the coarse projective
structure, originally defined by Dwyer and Kan [GJ, IX.1]. (We call it coarse because it
is associated to the coarsest topology on S, that is, the trivial topology; see below.) In
this structure, which is cofibrantly generated and proper, weak equivalences and fibra-
tions are defined pointwise, so a map F → G of prestacks on S is a weak equivalence
or a fibration if the component maps F (S) → G(S) are weak equivalences or fibrations
of simplicial sets, respectively, for all objects S in S. In particular, a holomorphic map
X → Y , viewed as a map of the prestacks represented by X and Y , is a weak equivalence
or a fibration in the coarse projective structure if the induced maps O(S, X)→ O(S, Y )
are weak equivalences or Serre fibrations of topological spaces, respectively, for all Stein
manifolds S. Cofibrations are defined by a left lifting property. The prestacks represented
by Stein manifolds are both cofibrant and fibrant.

Now we move to the projective structure on S, which is obtained by a left Bousfield
localization of the coarse projective structure. There will be a larger class of weak equiv-
alences, defined using a topology on the simplicial category S, turning it into a simplicial
site. The cofibrations are the same as in the coarse projective structure, so they can be
referred to simply as projective cofibrations. The projective fibrations are determined by
a right lifting property; they form a subclass of the class of pointwise fibrations.

The category of components cS (also called, at some risk of confusion, the homotopy
category) of the simplicial category S has the same objects as S, and its hom-sets are
the sets of path components of the simplicial hom-sets of S. We can also obtain cS from
S by identifying maps in the underlying category of S that can be joined by a string of
homotopies (provided by the simplicial structure). By precomposition by the morphism
S → cS, a presheaf on cS gives a presheaf on S such that equivalent maps in S induce
the same restriction maps. Conversely, such a presheaf on S descends to cS. Prestacks
respect the simplicial structure, so they preserve homotopies, so the homotopy presheaves
of a prestack on S naturally live on cS (or, more precisely, on overcategories thereof).

A topology on S, turning it into a simplicial site (an S-site in the language of [TV]),
is a Grothendieck topology in the usual sense on the category of components cS. A
map of prestacks is a weak equivalence, or acyclic, with respect to the topology, if it
induces isomorphisms of homotopy sheaves in all degrees, that is, isomorphisms of the
sheafifications (with respect to the given topology) of homotopy presheaves in all degrees.
By a theorem of Toën and Vezzosi [TV, Thm. 3.4.1], the projective structure on S is a
cofibrantly generated, proper, simplicial model structure.

The projective structure specializes in two ways. It equals the coarse projective struc-
ture when the topology on cS is trivial. Also, when the simplicial structure on S is trivial
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(discrete), so cS = S, then S is an ordinary site and we obtain the well-known projective
structure (sometimes called local) for simplicial presheaves on S.

The topology we shall put on the Stein site S is the “usual” topology employed in
[L], except we now view it as a topology on the category of components cS, which is
obtained from the plain category of Stein manifolds and holomorphic maps by identifying
holomorphic maps X → Y that are homotopic in the usual sense that they can be joined
by a continuous path in O(X, Y ) with the compact-open topology. In other words,

homcS(X, Y ) = π0O(X, Y ).

A cover of a Stein manifold S is a family of holomorphic maps into S such that by suitably
deforming each map X → S inside O(X, S), we get a family of biholomorphisms onto
Stein open subsets of S which cover S. This defines a Grothendieck topology on cS.

The acyclic maps have a very simple description. First, for any map from the point
p to an open ball B, the map p → B → p is the identity and the map B → p → B
is homotopic to the identity through holomorphic maps keeping the image point of the
map p → B fixed. Hence, if F is a prestack on S, the restriction map F (p) → F (B)
is a homotopy equivalence, in fact the inclusion of a strong deformation retract. Since
every cover has a refinement by balls, this implies that a map F → G of prestacks on S
is acyclic if and only if F (p) → G(p) is acyclic. Here it is crucial that prestacks respect
the simplicial structure on S; this does not work for arbitrary simplicial presheaves. It
follows that a holomorphic map f : X → Y of complex manifolds, viewed as a map of
the prestacks represented by X and Y , is acyclic if and only if it is a topological weak
equivalence, that is, a homotopy equivalence.

5. The injective model structures. We will also need the so-called injective model
structures on S [TV, 3.6]. The coarse injective structure is a proper, simplicial model
structure on S in which weak equivalences and cofibrations are defined pointwise and
fibrations are defined by a right lifting property. In the injective structure, which is also
proper and simplicial, the cofibrations are the same, weak equivalences are acyclic with
respect to the chosen topology on S, and fibrations are defined by a right lifting property.
Injective cofibrations are and will be referred to simply as monomorphisms.

6. A Quillen equivalence. Consider the functor P : S→ S taking a prestack F to the
prestack PF = Hom(s·, F (p)) and taking a map f : F → G to the map Pf : PF → PG
induced by the map F (p) → G(p). This functor is a projection: P ◦ P = P . There is
a natural transformation η from the identity functor on S to P : if F is a prestack and
S is an object of S, the map (morphism of simplicial sets) ηF (S) : F (S) → PF (S) =
Hom(sS, F (p)) comes from the map sS = Hom(p, S)→ Hom(F (S), F (p)) given directly
by F . Here, again, it is crucial that prestacks respect the simplicial structure on S; this
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does not work for arbitrary simplicial presheaves. The square

F
f //

ηF

��

G

ηG

��
PF

Pf // PG

commutes simply because maps of prestacks commute with restrictions. Note that the
map ηPF = P (ηF ) : PF → P 2F = PF is the identity. Also, ηF : F → PF is acyclic,
since ηF (p) is the identity. The pair P , η is a key element of the structure of S and plays
an important role in our theory. It is an example of what is called a localization functor.

If A is a simplicial set, let Ã denote the constant prestack with Ã(S) = A for each S
in S and with all restriction maps equal to the identity. Define a functor R : sSet→ S

by RA = PÃ = Hom(s·, A). A map f from a prestack F to RA factors as

F
f //

ηF

��

RA

ηRA

PF
Pf // RA

so f is determined by Pf , which is induced by the map F (p)→ RA(p) = A. Hence, we
have a pair of adjoint functors

L : S→ sSet : R, LF = F (p), RA = Hom(s·, A),

with a natural bijection

homS(F,RA) ∼= homsSet(LF, A)

for every prestack F on S and every simplicial set A.
We see that a map F → RA is acyclic if and only if the corresponding map LF → A

is. Also, it is clear that L takes monomorphisms to cofibrations and preserves weak
equivalences. Hence, (L, R) is a pair of Quillen equivalences between the category of
simplicial sets and the category of prestacks on S with the projective structure or the
injective structure [H, 8.5]. Such a pair induces equivalences of homotopy categories,
so the homotopy category of S is the ordinary homotopy category of simplical sets or
topological spaces. It also follows that R takes fibrations of simplicial sets to injective
fibrations; in particular, if K is a fibrant simplicial set (a Kan complex), then the prestack
Hom(s·,K) is injectively fibrant. Hence, if X is a complex manifold, so ηX : X → PX is
a monomorphism, then ηX is an injectively cofibrant fibrant model for X.
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7. Projective fibrations. The projective structure is the left Bousfield localization
of the coarse projective structure on S with respect to the class of acyclic maps of
prestacks. The theory of the left Bousfield localization provides a useful characterization
of projective fibrations.

Let f : F → G be a pointwise fibration of prestacks such that F (p) and G(p) are
fibrant, so PF and PG are injectively and hence projectively fibrant. Then the square

F
f //

ηF

��

G

ηG

��
PF

Pf // PG

is a localization of f [H, 3.2.16]. The map f is a projective fibration if and only if
this square is a homotopy pullback in the coarse projective structure [H, 3.4.8]. This
means that the natural map from F to the homotopy pullback of G → PG ← PF is
pointwise acyclic. Since F (p) → G(p) is a fibration, Pf is a pointwise fibration, so
the homotopy pullback is naturally pointwise weakly equivalent to the ordinary pullback
(taken pointwise).

In summary, a map F → G of prestacks fibrant at p is a projective fibration if and only
if it is a pointwise fibration and the induced map F → G ×PG PF is pointwise acyclic.
In particular, a prestack F is projectively fibrant if and only if it is pointwise fibrant and
ηF is pointwise acyclic.

8. Stacks on the Stein site and the weak Oka property. A pointwise fibrant
prestack on the simplicial site S is called, in the language of [TV], a stack on S (with
respect to the chosen topology) if it is projectively fibrant. Loosely speaking, this is
a “homotopy sheaf condition”, with the limits in the usual sheaf condition replaced by
homotopy limits. The sheaf condition is not really relevant here; indeed, the prestacks
and the topology live on different categories (S and cS, respectively), so we will not be
talking about a prestack being a sheaf in the usual sense.

We say that a complex manifold X satisfies the weak Oka property, or that X is
weakly Oka, if the inclusion map O(S, X) ↪→ C(S, X) is a weak equivalence for all Stein
manifolds S, where the spaces of holomorphic and continuous maps from S to X carry
the compact-open topology. The main result of [L] characterizes the weak Oka property
(there called the Oka-Grauert property) in terms of excision; the following theorem, using
a better model structure, is more to the point.

9. Theorem. A complex manifold is weakly Oka if and only if it represents a stack on
the Stein site.

Proof. A prestack F is projectively fibrant if and only if it is pointwise fibrant and
the map ηF : F → PF is pointwise acyclic. If F is represented by a complex mani-
fold X, so it is pointwise fibrant, this means that the map from F (S) = sO(S, X) to

8



PF (S) = Hom(sS, sX) = sC(|sS|, X) is acyclic for every Stein manifold S. Since PF (S)
is homotopy equivalent to sC(S, X), this is nothing but the weak Oka property. �

It is an interesting open question whether the inclusions O(S, X) ↪→ C(S, X) have
functorial homotopy inverses when X is weakly Oka. Since the spaces in question are not
known to be cofibrant, even the existence of pointwise homotopy inverses is not clear [L,
Thm. 2.2], but it is in the simplicial setting, so we ask whether the pointwise homotopy
equivalence ηX : X → PX is in fact a simplicial homotopy equivalence of prestacks. This
would follow if ηX was not only a monomorphism but actually a projective cofibration
[H, 9.6.5], that is, if PX was a cofibrant fibrant model for X not only in the injective
structure but also in the projective structure.

10. The weak Oka property for maps. Let us generalize the above discussion from
objects to arrows. We say that a holomorphic map f : X → Y satisfies the weak Oka
property, or that f is weakly Oka, if

(1) the induced map O(S, X)→ O(S, Y ) is a Serre fibration and
(2) the inclusion O(S, X) ↪→ {h ∈ C(S, X) : f ◦ h ∈ O(S, Y )} is acyclic

for every Stein manifold S.
In particular, if f : X → Y is weakly Oka, then every continuous map h from a Stein

manifold to X such that f ◦h is holomorphic can be continuously deformed through such
maps to a holomorphic map. Clearly, a complex manifold X is weakly Oka if and only if
the constant map X → p is weakly Oka.

11. Theorem. A holomorphic map is weakly Oka if and only if it is a projective fibra-
tion.

Proof. A holomorphic map f : X → Y is a projective fibration if and only if it is
a pointwise fibration, meaning that the induced map O(S, X) → O(S, Y ) is a Serre
fibration for every Stein manifold S, and the induced map X → Y ×PY PX is pointwise
acyclic, which is equivalent to the map

O(S, X)→ O(S, Y )×C(S,Y ) C(S, X)

being acyclic for every Stein manifold S. Finally, the space on the right is the space of
continuous maps h : S → X such that f ◦ h is holomorphic. �

12. The intermediate model structure. We now introduce a new simplicial model
structure on S, in between the projective and injective structures in the sense that it
has fewer fibrations than the projective structure and more fibrations than the injective
structure; for cofibrations it is the other way around. The weak equivalences are the
same: the maps that are acyclic with respect to the chosen topology on S.

By a Stein inclusion we mean the inclusion T ↪→ S of a closed complex submanifold T in
a Stein manifold S (then T is also Stein). Let the set C consist of all the monomorphisms

S × ∂∆n ∪T×∂∆n T ×∆n → S ×∆n,
9



in S, where T ↪→ S is a Stein inclusion and n ≥ 0. Among these maps are the Stein
inclusions T ↪→ S themselves (with n = 0), as well as the standard generating cofibrations
S × ∂∆n → S ×∆n for the projective structure (with T = ∅).

To avert confusion, we should make clear that by the prestack ∅ (as above when
T = ∅, for instance) we mean the empty prestack ∅S (the initial object in S) but not the
prestack represented by the empty manifold ∅S (the initial object in S): these prestacks
differ over ∅S . If F is a prestack, we will sometimes write F (∅) for Hom(∅S, F ), which
is the terminal simplicial set, rather than for Hom(∅S , F ), which is the simplicial set of
sections of F over ∅S (these are of course the same if F is represented by a manifold).

Let C be the saturation of C, that is, the smallest class of maps in S which contains C
and is closed under pushouts, retracts, and transfinite compositions. The maps in C are
called intermediate cofibrations; they are retracts of transfinite compositions of pushouts
of maps in C. An intermediate fibration is defined to be a map with the right lifting
property with respect to all acyclic intermediate cofibrations.

The idea of an intermediate structure in which Stein inclusions would be cofibrations
came up in a discussion with Rick Jardine, who subsequently showed me how to obtain
such a structure and later wrote up a proof in [J], which we follow below. The argument
for a simplicial site is the same as for the special case of a discrete site, treated in [J].
Later, I learned that one can show that the intermediate structure exists and, moreover,
is cofibrantly generated, using a very general argument due to T. Beke and J. Smith [B,
Thm. 1.7], based solely on S being locally presentable and the class of weak equivalences
being accessible. (Cofibrant generation is also contained in a second version of [J].)
Unfortunately, the generating set of acyclic cofibrations produced by this method is too
large to be of much practical use.

13. Theorem. There is a proper, simplicial model structure on S, called the interme-
diate structure, with cofibrations, fibrations, and weak equivalences defined as above.

Proof. Consider factorization first. Since S is locally presentable, a standard small object
argument shows that a map X → Y of prestacks can be factored as X

j−→ Z
p−→ Y , where

j is in C and p has the right lifting property with respect to every map in C, so p is an
acyclic intermediate fibration (note that we do not know the converse of this yet).

For the other factorization, we make use of the injective structure to factor X → Y as
X

i−→ W
q−→ Y , where i is an acyclic injective cofibration and q is an injective fibration

and hence an intermediate fibration. Then factor i as above as X
j−→ Z

p−→W , where j is
an intermediate cofibration and p is an acyclic intermediate fibration. Then j is acyclic
too and qp is an intermediate fibration.

Consider now the lifting axiom. One half of it is immediate from the definition of a
fibration. For the other half, say X

p−→ Y is an acyclic intermediate fibration. Factor p as
X

j−→ Z
q−→ Y , where j is in C and q has the right lifting property with respect to every

map in C. Then, as before, q is an acyclic intermediate fibration, so j is acyclic, and by
10



the definition of an intermediate fibration, we have a lifting in the square

X

j

��

X

p

��
Z

q //

>>}
}

}
}

Y

Hence, p is a retract of q, so p also has the right lifting property with respect to every
map in C.

The remaining three axioms for a model structure are clear. Right properness fol-
lows from right properness of the injective structure, and left properness follows from
left properness of the projective structure. Finally, Axiom SM7, relating the simplicial
structure and the model structure, may be verified using [GJ, II.3.12]. �

Without a useful generating set of acyclic intermediate cofibrations it is not easy to
describe the intermediate fibrations, but for acyclic intermediate fibrations the following
characterization is immediate.

14. Proposition. An acyclic map F → G of prestacks is an intermediate fibration if
and only if it has the homotopy right lifting property with respect to all Stein inclusions.

Proof. By definition of the intermediate structure, an acyclic map F → G is an interme-
diate fibration if and only if there is a lifting in every square

S × ∂∆n ∪T×∂∆n T ×∆n //

��

F

��
S ×∆n // G

where T ↪→ S is a Stein inclusion and n ≥ 0, that is, by adjunction, in every square

∂∆n //

��

F (S)

��
∆n // G(S)×G(T ) F (T )

This means precisely that the map F (S) → G(S) ×G(T ) F (T ) is an acyclic fibration for
every Stein inclusion T ↪→ S. �

15. The three structures are different. Two simple examples show that the projec-
tive, intermediate, and injective model structures on S are all different. First consider
the unit disc D (or rather the prestack on S it represents). Since D is holomorphically
contractible, it is projectively fibrant by Theorem 9. On the other hand, by Liouville’s
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Theorem, the inclusion {0, 1
2} ↪→ D does not factor through the inclusion {0, 1

2} ↪→ C,
which is an intermediate cofibration, so D is not intermediately fibrant.

The complex plane C is projectively fibrant for the same reason that D is. Since C is
elliptic, it is intermediately fibrant (see below). However, C is not injectively fibrant; in
fact, no nondiscrete complex manifold X is. The inclusion of D into the disc of radius
2 is a pointwise acyclic monomorphism, but there are many holomorphic maps D → X
that do not factor through it, so X is not even coarsely injectively fibrant.

16. The Oka property for manifolds and maps. We say that a holomorphic map
f : X → Y is Oka if it satisfies one of the following equivalent conditions for every Stein
inclusion j : T ↪→ S.

(i) The map f is a topological fibration and satisfies the Parametric Oka Principle
with Interpolation, meaning that for every finite polyhedron P with subpolyhedron Q
and every diagram

Q //

��

O(S, X) //

��

C(S, X)

��
P //

22eeeeeeeeeeeeeeeeeeeee

66nnnnnnnn O(S, Y )×O(T,Y ) O(T,X) // C(S, Y )×C(T,Y ) C(T,X)

of continuous maps, every lifting P → C(S, X) in the big square can be deformed through
liftings in the big square to a lifting that factors through O(S, X) and is thus a lifting
in the left-hand square. (We recall that a Serre fibration between smooth manifolds is a
Hurewicz fibration [C], so we will simply call such a map a topological fibration.)

(ii) A stronger version of condition (i), in which Q → P is any cofibration between
cofibrant topological spaces and the conclusion is that the inclusion of the space of liftings
P → O(S, X) in the left-hand square into the space of liftings P → C(S, X) in the big
square is acyclic. (Here, and everywhere else in the paper, the notion of cofibrancy for
topological spaces and continuous maps is the stronger one that goes with Serre fibrations
rather than Hurewicz fibrations.)

(iii) The induced map

O(S, X)
(f∗,j∗)−−−−→ O(S, Y )×O(T,Y ) O(T,X)

is a Serre fibration, and the inclusion

O(S, X) ↪→ Cf,T (S, X) := {h ∈ C(S, X) : f ◦ h and h|T are holomorphic}

is acyclic. Note that Cf,T (S, X) is the pullback of the right-hand square in condition
(i), so when f is a topological fibration, this inclusion being acyclic is equivalent to that
square being a homotopy pullback.

12



(iv) The induced map

O(S, X)
(f∗,j∗)−−−−→ O(S, Y )×O(T,Y ) O(T,X)

is a Serre fibration, and in any square of holomorphic maps

T //

��

X

��
S //

>>~
~

~
~

Y

the inclusion of the space of holomorphic liftings S → X into the space of continuous
liftings is acyclic (where these spaces are, as usual, given the compact-open topology).

Before proving the equivalence of these conditions, we will make a few remarks.
Observe that the target of (f∗, j∗) is the space of commuting squares of holomorphic

maps in which the map on the left is j and the map on the right is f . The fibre over such
a square is its set of liftings. Taking T = ∅ in each of the conditions gives the weak Oka
property, which we know is equivalent to f being a projective fibration.

Using the Stein inclusion ∅ ↪→ p, we see that an Oka map is a topological fibration, so
its image is a union of connected components of the target. An Oka map has the right
lifting property with respect to the inclusion of a point into a ball, so it is a submersion.
In fact, if a holomorphic map f : X → Y is Oka, q is a point in a contractible Stein open
subset V of Y , and p ∈ f−1(q), then condition (iv) implies that f has a holomorphic
section (a right inverse) V → X taking q to p.

A complex manifold X is said to be Oka if the constant map X → p is Oka. This is
equivalent to X being weakly Oka and the restriction map O(S, X) → O(T,X) being a
Serre fibration for every Stein inclusion T ↪→ S. Namely, if X is weakly Oka, the pullback
{h ∈ C(S, X) : h|T ∈ O(T,X)} ↪→ C(S, X) of the acyclic map O(T,X) ↪→ C(T,X) by
the Serre fibration C(S, X) ↪→ C(T,X) is acyclic, and since O(S, X) ↪→ C(S, X) is also
acyclic, condition (iii) follows.

Let us now prove the equivalence of the four conditions defining the Oka property.
(i) ⇒ (iii): Since f is a topological fibration and T ↪→ S is a topological cofibration,

the map C(S, X) → C(S, Y ) ×C(T,Y ) C(T,X) is a Serre fibration, so every diagram of
continuous maps as below has a lifting as indicated.

[0, 1]n //

��

O(S, X) //

��

C(S, X)

��
[0, 1]n+1 //

22ddddddddddddddddddddd O(S, Y )×O(T,Y ) O(T,X) // C(S, Y )×C(T,Y ) C(T,X)

The Parametric Oka Principle with Interpolation now gives a lifting [0, 1]n+1 → O(S, X),
showing that O(S, X)→ O(S, Y )×O(T,Y ) O(T,X) is a Serre fibration.

13



To prove that O(S, X) ↪→ Cf,T (S, X) is acyclic, apply the Parametric Oka Principle
with Interpolation to diagrams of the form

Q //

��

O(S, X) //

��

Cf,T (S, X)

uukkkkkkkkkkkkkk

P //

22fffffffffffffffff O(S, Y )×O(T,Y ) O(T,X)

taking Q→ P to be either the inclusion of a point in the n-sphere, n ≥ 1, or the inclusion
of the n-sphere in the closed (n + 1)-ball, n ≥ −1.

(iii) ⇔ (iv): Consider the diagram

{holomorphic liftings} //

��

{continuous liftings}

��
O(S, X)

��

// Cf,T (S, X)

ttiiiiiiiiiiiiiiiii

O(S, Y )×O(T,Y ) O(T,X)

The common first part of conditions (iii) and (iv) implies that the lower downward maps
are Serre fibrations, so each horizontal map is acyclic if and only if the other one is.

(iii) ⇒ (ii): Assume now that Q→ P is any cofibration between cofibrant topological
spaces and consider a diagram as in condition (i), or equivalently, a diagram

Q //

��

O(S, X) //

��

Cf,T (S, X)

��
P // O(S, Y )×O(T,Y ) O(T,X) O(S, Y )×O(T,Y ) O(T,X)

of continuous maps. Let us write A = O(S, X), B = O(S, Y ) ×O(T,Y ) O(T,X), C =
Cf,T (S, X), LA for the space of liftings P → A in the left-hand square, and LC for the
space of liftings P → C in the big square. Then we have a diagram

LA

��

// C(P,A) //

��

C(P,B)×C(Q,B) C(Q,A)

��
LC

// C(P,C) // C(P,B)×C(Q,B) C(Q,C)
14



The right-hand horizontal maps are Serre fibrations by Axiom SM7, because Q → P is
a cofibration and A → B and C → B are Serre fibrations. The middle vertical map is
acyclic because P is cofibrant and A→ C is acyclic. To see that the right-hand vertical
map is acyclic, consider the cube

pullback

���
�
�
�
�
�
�

%%KKKKKKKKKK
// C(Q,A)

��

%%KKKKKKKKKK

C(P,B) // C(Q, B)

pullback

%%KKKKKKKKKK
// C(Q,C)

%%KKKKKKKKKK

C(P,B) // C(Q, B)

The map C(Q,A) → C(Q,C) is acyclic because Q is cofibrant and A → C is acyclic.
The maps C(Q,A) → C(Q,B) and C(Q, C) → C(Q, B) are Serre fibrations because Q
is cofibrant and A → B and C → B are Serre fibrations. Hence, the top and bottom
squares are homotopy pullbacks and we get an induced weak equivalence of the pullbacks.
Therefore, finally, we get an induced weak equivalence LA → LC .

17. Subellipticity and the Oka property. Subelliptic manifolds satisfy the Para-
metric Oka Principle with Interpolation. This theorem originated in Gromov’s work [G]
and was proved in detail by Forstnerič and Prezelj [FP, Thm. 1.4] for elliptic manifolds;
for the extension from ellipticity to subellipticity, see [F1]. Hence, subelliptic manifolds
are Oka.

I conjecture that this result extends to nonconstant maps: that a holomorphic map
which is both a subelliptic submersion and a topological fibration is Oka. This is an open
question even for nontrivial elliptic fibre bundles. Here is a small step in this direction,
proving the conjecture in the case of discrete fibres, including the case of covering maps.

18. Proposition. A holomorphic map which is a topological fibration and a local bi-
holomorphism is Oka.

Proof. Let f : X → Y be a topological fibration and a local biholomorphism and T ↪→ S
be a Stein inclusion. First, the inclusion O(S, X) ↪→ Cf,T (S, X) is acyclic: it is in fact
the identity map because f is a local biholomorphism. Second, the square

O(S, X) //

α

��

C(S, X)

β

��
O(S, Y )×O(T,Y ) O(T,X) // C(S, Y )×C(T,Y ) C(T,X)

15



is a pullback, because a continuous lifting in a square of holomorphic maps with right-
hand map f is holomorphic, again because f is a local biholomorphism. Since f is a
Serre fibration, so is β by Axiom SM7, and hence α. �

We now come to the main result of this paper, describing the intermediate fibrations.
Notice the similarity with the Oka property as expressed by condition (iv) above.

19. Theorem (characterization of intermediate fibrations). A map F → G of
prestacks is an intermediate fibration if and only if

(1) for every Stein inclusion T ↪→ S, the induced map

F (S)→ G(S)×G(T ) F (T )

is a fibration, and
(2) in any diagram

T //

��

F

��

// PF

��
S // G // PG

the map of the simplicial set of liftings S → F into the simplicial set of liftings
S → PF , given by postcomposition with F → PF , is acyclic.

We remark that taking T = ∅ in (1) and (2) yields precisely the description of pro-
jective fibrations between prestacks fibrant at p given earlier: (1) says that F → G is
a pointwise fibration and (2), using (1), says that the induced map F → G ×PG PF is
pointwise acyclic.

Proof. First suppose F → G is an intermediate fibration and let T ↪→ S be a Stein
inclusion. Then (1) follows directly from Axiom SM7 for the intermediate structure. As
for (2), consider the equivalent diagram

T //

��

F

��

// E

��~~
~~

~~
~

S // G

where E = G×PG PF . Since F (p)→ G(p) is a fibration, PF → PG and hence E → G
is an injective fibration. Also, F → E is acyclic. Working in the over-under category
T ↓ S ↓ G with the model structure induced from the intermediate structure on S, we
need to show that HomT↓S↓G(S, F ) → HomT↓S↓G(S, E) is acyclic. Now T → F → G
and T → E → G are fibrant in T ↓ S ↓ G since F → G and E → G are fibrations in S.
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By Brown’s Lemma [H, 7.7], we may assume that F → E is an intermediate fibration in
addition to being acyclic. Consider the fibration sequences

HomT↓S↓G(S, F )

��

// Hom(S, F )

��

// Hom(S, G)×Hom(T,G) Hom(T, F )

��
HomT↓S↓G(S, E) // Hom(S, E) // Hom(S, G)×Hom(T,G) Hom(T,E)

Since S and T are intermediately cofibrant, the middle and right-hand vertical maps are
acyclic, so the left-hand vertical map is acyclic too.

Now suppose F → G satisfies (1) and (2). We need to show that F → G is an interme-
diate fibration. First, (1) implies that Hom(B,F ) → Hom(B,G) ×Hom(A,G) Hom(A,F )
is a fibration for every intermediate cofibration A→ B (this property is preserved under
simplicial saturation).

Let us say that an intermediate cofibration A→ B is good if in any diagram

A //

��

F

��

// PF

��
B // G // PG

in S, the map of the simplicial set of liftings B → F into the simplicial set of liftings
B → PF is acyclic. By (2), Stein inclusions are good. With the help of (1), we will
show that all intermediate cofibrations are good. Assuming this, the proof is complete.
Namely, take a square

A //

��

F

��
B // G

where A→ B is an acyclic intermediate cofibration. By (1), F (p)→ G(p) is a fibration,
so PF → PG is an injective fibration and there is a lifting B → PF . Since A → B is
good, there is also a lifting B → F .

By piecing together arguments that have already been used in this paper, the reader
can show that the generating cofibrations S × ∂∆n ∪T×∂∆n T ×∆n → S ×∆n are good.
It is easy to see that being good is preserved under pushouts and retracts: pushouts give
isomorphisms of lifting spaces and retracts give retractions of lifting spaces. It remains
to show that a transfinite composition of good intermediate cofibrations is good.
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Let A→ B and B → C be good and consider a diagram

A //

��

F

��

// PF

��

B

��
C // G // PG

Let LAC and L′AC be the simplicial sets of liftings C → F and C → PF in the squares
with left-hand map A → C and right-hand maps F → G and PF → PG, respectively.
We define LAB and L′AB similarly. The fibre over a lifting B → F of the map LAC → LAB

given by precomposing with B → C is the simplicial set LBC of liftings in the square with
left-hand map B → C, right-hand map F → G, and this particular top map B → F . We
define L′BC similarly. We have a pullback square

LAC
//

��

LAB

��
Hom(C,F ) // Hom(C,G)×Hom(B,G) Hom(B,F )

where the right-hand map takes a map in LAB to the constant map C → G in Hom(C,G)
and itself in Hom(B,F ). Since the bottom map is a fibration, so is the top map LAC →
LAB . (It follows that the simplicial set of liftings in any square with right-hand map
F → G whose left-hand map is an intermediate cofibration is fibrant: just take A = B
and A→ B to be the identity map.)

By the same argument, L′AC → L′AB is also a fibration. Thus the rows in the diagram

LBC
//

��

LAC
//

��

LAB

��
L′BC

// L′AC
// L′AB

are fibration sequences. The left-hand and right-hand vertical maps are acyclic by as-
sumption, so the middle one is too, which shows that A→ C is good.

We now move to the transfinite case. Let λ be an ordinal and A : λ→ S be a functor
such that for every limit ordinal γ < λ, the induced map colimα<γ Aα → Aγ is an
isomorphism, and such that for every ordinal α with α+1 < λ, the map Aα → Aα+1 is a
good intermediate cofibration. We will show by transfinite induction that the composition
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A0 → colimα<λ Aα is good. Suppose µ ≤ λ and A0 → colimα<β Aα is good for all β < µ.
We need to show that A0 → colimα<µ Aα is good.

Assume µ is a successor, say µ = β+1. If β is a limit ordinal, then A0 → colimα<β Aα =
Aβ = colimα<µ Aα is good by the induction hypothesis. If β is a successor, say β = γ +1,
then A0 → colimα<β Aα = Aγ → Aγ+1 = colimα<µ Aα is good, being the composition of
two good maps.

Suppose now that µ is a limit ordinal and take a square

A0
//

��

F

��
colimα<µ Aα

// G

Define a µ-tower L : µop → sSet such that Lα is the simplicial set of liftings in the square

A0
//

��

F

��
Aα

// colimα<µ Aα
// G

for α < µ. Define L′ similarly for PF → PG. Then L and L′ are fibrant objects in the
category of µ-towers with the pointwise cofibration simplicial model structure [GJ, VI.1],
the main point being that for all α < µ, the map Lα+1 → Lα is a fibration, as shown
above. Thus, since the map L → L′ is pointwise acyclic by the induction hypothesis, it
induces an acyclic map from limα<µ Lα to limα<µ L′α, that is, from the simplicial set of
liftings colimα<µ Aα → F to the simplicial set of liftings colimα<µ Aα → PF . �

Suppose that the prestacks F and G are represented by complex manifolds X and Y
respectively. We have

Hom(S, PX) = PX(S) = Hom(sS, sX) = sC(|sS|, X).

Using the homotopy equivalence |sS| → S, we can verify that our characterization of
the map F → G induced by a holomorphic map X → Y being an intermediate fibration
means precisely that X → Y satisfies the Oka property as defined by condition (iv) above.

20. Corollary. A holomorphic map is an intermediate fibration if and only if it is Oka.

It follows that subelliptic manifolds are intermediately fibrant and that holomorphic
covering maps are intermediate fibrations. Also, the class of Oka maps is preserved under
composition, pullbacks, and retracts.

Our conjecture now looks like this.
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21. Conjecture. A subelliptic submersion is an intermediate fibration if and only if it
is a topological fibration.

This would be a new manifestation of the Oka Principle, in a sense dual to the usual
formulations that refer to Stein manifolds, saying that for holomorphic maps satisfying
the geometric condition of subellipticity there is only a topological obstruction to being
a fibration in our new, holomorphic sense.

22. An alternative approach to the intermediate structure. We have gone from
the coarse projective structure on S to the intermediate structure via the projective
structure by first enlarging the class of weak equivalences by a Bousfield localization,
keeping the cofibrations fixed, and then enlarging the class of cofibrations, keeping the
weak equivalences fixed. Alternatively, we could do this the other way around, passing
through what we shall call the coarse intermediate structure on S. The cofibrations in
this structure are the same as in the intermediate structure, but the weak equivalences
are defined pointwise, and the proof of Theorem 13 goes through word for word.

A modification of the proof of Theorem 19 gives a characterization of the coarse in-
termediate fibrations. Take a map F → G of prestacks. Instead of PF → PG, we now
use a coarsely injectively fibrant model F̃ → G̃ of F → G. In particular, F → F̃ and
G → G̃ are pointwise acyclic and F̃ → G̃ is a coarse injective fibration. Suppose that
F → G satisfies property (1) in Theorem 19. The key point is that Stein inclusions
are now automatically good, that is, (1) implies (2), and we can go on to show that all
intermediate cofibrations are good as before. Namely, consider a diagram

T //

��

F

��

// F̃

��
S // G // G̃

and the induced diagram of fibration sequences

{liftings S → F} //

��

F (S) //

��

G(S)×G(T ) F (T )

��
{liftings S → F̃} // F̃ (S) // G̃(S)×G̃(T ) F̃ (T )

Since the middle and right-hand vertical arrows are acyclic, so is the left-hand verti-
cal arrow. It follows that F → G is a coarse intermediate fibration if and only if
it satisfies property (1), that is, for every Stein inclusion T ↪→ S, the induced map
F (S) → G(S) ×G(T ) F (T ) is a fibration. Hence, the coarse intermediate fibrations are
precisely those maps that have the right lifting property with respect to the maps

S × Λn
k ∪T×Λn

k
T ×∆n → S ×∆n,
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where Λn
k denotes the k-th horn of ∆n, 0 ≤ k ≤ n (just look at the squares in the proof of

Proposition 14). By a standard factorization and retraction argument, these maps form
a generating set of acyclic coarse intermediate cofibrations.

Let us now pass to the intermediate structure by a Bousfield localization. As we
saw for the projective structure earlier, a coarse intermediate fibration F → G between
prestacks fibrant at p is an intermediate fibration if and only if the square

F //

��

G

��
PF // PG

is a homotopy pullback in the coarse intermediate structure. Since PF → PG is an
injective fibration, this is simply the old condition that the induced map F → G×PG PF
be pointwise acyclic, or in other words, that F → G be a projective fibration. This gives
one more characterization of the Oka property, namely condition (iii) above with T = ∅
in its second half, which we had previously observed to be equivalent to (iii) in the case
of manifolds.

23. Final remarks. We conclude the paper with a few additional words of motivation.
Model categories are highly nontrivial structures. Finding them in a new area of math-
ematics should be of interest in itself, especially when they can be shown to be relevant
to a topic as deep and important as the Oka Principle. The gist of the results in this
paper is that analytically defined Oka properties for complex manifolds and holomorphic
maps fit into a homotopy-theoretic framework in a precise sense: they are equivalent to
fibrancy in suitable model categories containing the category of complex manifolds. Our
definitions of the Oka property and the weak Oka property for maps, extending familiar
Oka properties of manifolds, are in fact dictated by abstract homotopy theory. In short,
we take the point of view that the Oka Principle is about fibrancy.

It is hoped that this work will eventually have concrete applications in complex analy-
sis. Here are three brief remarks in this direction. First, whether subelliptic submersions
that are also topological fibrations are closed under composition is unknown. Subelliptic
submersions are not closed under composition and neither is the class of maps with the
property attributed to elliptic bundles by Gromov’s theorem (the second half of condi-
tion (iv) above): just consider D \ {0} ↪→ C→ p. Adding to this property a holomorphic
version of Axiom SM7 (the first half of (iv)) yields our Oka property with all the func-
torial properties we could wish for. It readily implies that if the target is Oka, so is the
source, and, if our conjecture is true, has being a subelliptic submersion and a topological
fibration as a useful geometric sufficient condition.

Second, by the previous section, the Parametric Oka Principle with Interpolation, as
expressed by condition (i), can be verified by only checking it for acyclic maps Q → P
(giving coarse intermediate fibrancy) and for T = ∅ (giving projective fibrancy). I do
not know a direct proof of this (except in the special case of manifolds, where it is easy).
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Third, homotopy theory may shed light on the relationship between topological and
holomorphic contractibility for Stein manifolds. I believe it is currently unknown whether
the former implies the latter. If we had a suitable weak sufficient condition for coarse
intermediate fibrancy (weaker than subellipticity) satisfied by a topologically contractible
Stein manifold S which did not have the extension property with respect to some Stein
inclusion, then S would not be intermediately and hence not projectively fibrant and
therefore not holomorphically contractible. Candidates for such an example exist in the
literature and are being investigated. The homotopy-theoretic side of this problem is to
distinguish between coarse and fine intermediate fibrancy for complex manifolds.
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