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1. Introduction

It is an interesting and important problem to describe the rough shape of mapping spaces
that arise in analysis and geometry. Answering such a question typically amounts to proving
a homotopy principle (h-principle) to the effect that analytic solutions can be classified by
topological data; in particular, a solution exists in the absence of topological obstructions.
For a survey of the h-principle and its applications, see the monographs by Gromov [15],
Eliashberg and Mishachev [9], and Spring [20]. In complex analysis, a synonym for h-
principle is Oka principle. This is a subject with a long and rich history going back to Oka’s
paper [19] in 1939; we refer to the monograph [11].

In this paper, we describe the rough shape of the space L (M,C2n+1) of holomorphic
Legendrian immersions of an open Riemann surface M into the complex Euclidean space
C2n+1, n ≥ 1, with the standard holomorphic contact structure (1.2). Our main result is
that L (M,C2n+1) is weakly homotopy equivalent to the space C (M, S4n−1) of continuous
maps from M to the (4n − 1)-dimensional sphere, and is homotopy equivalent to it if M
has finite topological type; see Corollary 1.2. Analogous results for several other mappings
spaces were obtained in [12].

We begin by introducing the relevant spaces of maps. All spaces under consideration are
endowed with the compact-open topology, unless otherwise specified.

A holomorphic 1-form α on a complex manifold X of odd dimension 2n+ 1 ≥ 3 is said
to be a contact form if it satisfies the nondegeneracy condition α∧ (dα)n 6= 0 at every point
of X . The model is the complex Euclidean space C2n+1 with coordinates

(1.1) x = (x1, . . . , xn) ∈ Cn, y = (y1, . . . , yn) ∈ Cn, z ∈ C,
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and α the standard contact form

(1.2) α = dz +
n∑
j=1

xj dyj .

By Darboux’s theorem, every holomorphic contact form on a (2n+1)-dimensional complex
manifold is given by (1.2) in some local holomorphic coordinates at each point (see [5,
Theorem A.2]; for the smooth case, see e.g. [14, Theorem 2.5.1]).

A smooth map F : M → C2n+1 from a smooth manifold M is said to be Legendrian if
F ∗α = 0 on M . It is an elementary observation that every smooth Legendrian surface in a
3-dimensional complex contact manifold is a complex curve; see Proposition 1.5.

Let M be a connected open Riemann surface. Denote by I (M,C2n) the space of all
holomorphic immersions M → C2n, and consider the closed subspace

I∗(M,C2n) =
{

(x, y) ∈ I (M,C2n) : xdy =

n∑
j=1

xj dyj is an exact 1-form on M
}
.

Elements of I∗(M,C2n) will be called exact holomorphic immersions. Let

(1.3) I∗(M,C2n)
φ
↪−→ I (M,C2n)

be the inclusion. Note that the map

L (M,C2n+1) −→ I∗(M,C2n)× C,

given for a fixed choice of a base point u0 ∈M by

(1.4) L (M,C2n+1) 3 (x, y, z) 7−→ (x, y, z(u0)) ∈ I∗(M,C2n)× C,

is a homeomorphism. This follows immediately from the formula

(1.5) z(u) = z(u0)−
∫ u

u0

xdy, u ∈M,

which holds for any Legendrian immersion (x, y, z) ∈ L (M,C2n+1), observing also that
the integral

∫ u
u0
xdy is independent of the choice of a path from u0 to u (and hence defines

a Legendrian immersion by the above formula) if and only if (x, y) ∈ I∗(M,C2n). It
follows that the projection π : L (M,C2n+1)→ I∗(M,C2n) is a homotopy equivalence.

Fix a nowhere vanishing holomorphic 1-form θ on M ; such exists by the Oka-Grauert
principle [11, Theorem 5.3.1]. The specific choice of θ will be irrelevant. For every
immersion σ ∈ I (M,C2n), the map dσ/θ : M → C2n is holomorphic and it avoids the
origin 0 ∈ C2n. The correspondence σ 7→ dσ/θ defines a continuous map

ϕ : I (M,C2n) −→ O(M,C2n
∗ ).

Here, C2n
∗ = C2n \ {0}. By [12, Theorem 1.4], ϕ is a weak homotopy equivalence, and a

homotopy equivalence if M has finite topological type.

Let ι : O(M,C2n
∗ ) ↪→ C (M,C2n

∗ ) denote the inclusion of the space of holomorphic
maps into the space of continuous maps. Since C2n

∗ is a homogeneous space of the complex
Lie group GL2n(C), ι is a weak homotopy equivalence by the Oka-Grauert principle [11,
Theorem 5.3.2]; if M has finite topological type, then ι is a homotopy equivalence [17].

Finally, the radial projection C2n
∗ → S4n−1 onto the unit sphere induces a homotopy

equivalence τ : C (M,C2n
∗ )→ C (M,S4n−1).
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In summary, all the maps in the following sequence except φ are known to be weak
homotopy equivalences, and to be homotopy equivalences when M has finite topological
type:

(1.6) L (M,C2n+1)
π−→ I∗(M,C2n)

φ
↪−→ I (M,C2n)

ϕ−→
ϕ−→ O(M,C2n

∗ )
ι

↪−→ C (M,C2n
∗ )

τ−→ C (M, S4n−1).

The following is our main result.

Theorem 1.1. For every connected open Riemann surface M , the inclusion

I∗(M,C2n) ↪−→ I (M,C2n)

of the space of exact holomorphic immersions M → C2n, n ≥ 1, into the space of all
holomorphic immersions is a weak homotopy equivalence, and a homotopy equivalence if
the surface M has finite topological type.

Since a composition of (weak) homotopy equivalences is again a (weak) homotopy
equivalence, Theorem 1.1 implies the following.

Corollary 1.2. All the maps in the sequence (1.6), and compositions thereof, are weak
homotopy equivalences, and homotopy equivalences if M has finite topological type. This
holds in particular for the map L (M,C2n+1)→ C (M,S4n−1).

The first part of Theorem 1.1 follows immediately from Theorem 4.1, which establishes
the parametric Oka principle with approximation for the inclusion (1.3). The same
proof gives the parametric Oka principle with approximation for holomorphic Legendrian
immersions; see Remark 4.2. The basic case of the latter result is [5, Theorem 1.1]. The
parametric case considered here is more demanding, but unavoidable when analysing the
homotopy type of these mapping spaces. The second part of Theorem 1.1 is proved in Sec.
5. Our proofs bring together tools from complex analysis and geometry, convex integration
theory, and the theory of absolute neighborhood retracts.

The examples in [10] show that Theorem 1.1 and Corollary 1.2 have no analogue for
more general holomorphic contact structures on Euclidean spaces; see Remark 1.4. In those
examples, the contact structure is Kobayashi hyperbolic, and hence it does not admit any
nonconstant Legendrian maps from C or C∗.

It was shown in [5] that the space L (M,C2n+1) is very big from the analytic viewpoint.
In particular, every holomorphic Legendrian map K → C2n+1 from a (neighborhood of) a
compact O(M)-convex subset K ⊂ M can be approximated on K by proper holomorphic
Legendrian embeddings of M into C2n+1. Furthermore, every bordered Riemann surface
carries a complete proper holomorphic Legendrian embedding into the ball of C3, and a
complete bounded holomorphic Legendrian embedding in C3 such that the image surface is
bounded by Jordan curves. (An immersion F : M → Rn is said to be complete if the pull-
back of the Euclidean metric on Rn by F is a complete metric on M .) Analogous results
for holomorphic immersions M → Cn (n ≥ 2), null holomorphic curves in Cn (n ≥ 3),
and conformal minimal immersions in Rn (n ≥ 3) were proved in [1, 2].

On a compact bordered Riemann surface M , we define for every integer r ≥ 1
the corresponding mapping spaces L r(M,C2n+1) and I r

∗ (M,C2n) ⊂ I r(M,C2n) by
considering maps of class C r(M) that are holomorphic in the interior M̊ = M \ bM ;
see Subsec. 2.2. These spaces are complex Banach manifolds (see Theorem 2.3), and
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hence absolute neighborhood retracts, and the corresponding maps in the sequence (1.6)
are homotopy equivalences (see Remark 4.2 and Sec. 5).

We will now explicitly describe the homotopy type of L (M,C2n+1) and determine its
homotopy groups in terms of the homotopy groups of the sphere S4n−1.

A connected open Riemann surface M is homotopy equivalent to a bouquet of circles∨`
i=1 S1, where ` ∈ {0, 1, . . . ,∞} is the rank of the free abelian group H1(M ;Z) = Z`.

For ` = 0, we take the bouquet to be a point. The surface M has finite topological type if
and only if ` is finite; then M is biholomorphic to the complement of a finite set of points
and closed disks in a compact Riemann surface (see Stout [21]).

The bouquet
∨`
i=1 S1 embeds in M as a deformation retract of M . Hence we have a

homotopy equivalence

C (M,S4n−1)→ C (
∨̀
i=1

S1,S4n−1).

For a space Y , let us denote the space C (
∨`
i=1 S1, Y ) by L`Y . Then L1Y is the free loop

space LY of Y . It is well known that if we choose a base point s ∈ S1, then the evaluation
mapLY → Y , γ 7→ γ(s), is a fibration whose fibre is the loop space ΩY of Y [22, Theorem
10]. More generally, taking s to be the common point of the circles in the bouquet

∨`
i=1 S1,

` ≥ 1, the evaluation map L`Y → Y is a fibration whose fibre is (ΩY )`.

Corollary 1.2 now implies the first part of the following result.

Corollary 1.3. Let M be a connected open Riemann surface with H1(M ;Z) = Z`,
` ∈ {0, 1, . . . ,∞}. For each n ≥ 1, the spaces L (M,C2n+1) and L`S4n−1 are weakly
homotopy equivalent. If M has finite topological type, then they are homotopy equivalent.

It follows that L (M,C2n+1) is path connected and simply connected, and for each
k ≥ 2,

πk(L (M,C2n+1)) = πk(S4n−1)× πk+1(S4n−1)`.

In particular, L (M,C2n+1) is (4n− 3)-connected.

Proof. Recall that πi(Sm) = 0 for all i < m, and πm(Sm) = Z. We must prove the second
part of the corollary. It is clear for ` = 0, so let us assume that ` ≥ 1. Since Y = S4n−1 is
simply connected, L`Y is path connected. Consider the long exact sequence of homotopy
groups associated to the fibration L`Y → Y with fibre (ΩY )`,

· · · → πk+1(Y )→ πk((ΩY )`)→ πk(L`Y )→ πk(Y )→ · · · , k ≥ 1,

and recall that πi(ΩY ) = πi+1(Y ) for all i ≥ 0. We see that π1(L`Y ) = 0. The
fibration L`Y → Y has a section defined by taking a point in Y to the map that takes
the whole wedge of circles to that point. Let k ≥ 2. The induced sections of the morphisms
πj(L`Y ) → πj(Y ) for j = k and j = k + 1 yield a split short exact sequence of abelian
groups

0→ πk((ΩY )`)→ πk(L`Y )→ πk(Y )→ 0,

demonstrating that πk(L`Y ) = πk(Y )× πk+1(Y )`. �

Corollary 1.3 shows that holomorphic Legendrian immersions of an open Riemann
surface M into C2n+1 have no homotopy invariants. Any two such immersions are
homotopic through holomorphic Legendrian immersions, and every loop of Legendrian
immersions in L (M,C3) is contractible. The first nontrivial invariant of the space
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L (M,C3) is its second homotopy group; see Remark 1.4. This is very different from
the case of smooth Legendrian knots in a contact 3-manifold, where the basic topological
invariants are the rotation number and the Thurston-Bennequin number; see e.g. [7, 8, 13].

Remark 1.4. (a) Theorem 1.1 and Corollary 1.2 fail for certain other complex contact
structures on C2n+1. Indeed, for any n ≥ 1, the first author has constructed a Kobayashi
hyperbolic complex contact form η on C2n+1 [10]. In particular, every holomorphic η-
Legendrian map M → C2n+1 from M = C or M = C∗ is constant. Thus, the space
Lη(C∗,C3) = C3 is contractible. On the other hand, for the α-Legendrian maps (where
α = dz + xdy),

π2(Lα(C∗,C3)) = π2(LS3) = π3(S3) = Z
by Corollary 1.3. As observed in [10], the hyperbolic contact forms η constructed there are
isotopic to α through a 1-parameter family of holomorphic contact forms on C2n+1.

(b) It is easily seen that Corollary 1.2 fails if we include ramified Legendrian maps in the
statement. On the other hand, it was shown in [5, Lemma 4.4 and Theorem 5.1] that every
holomorphic Legendrian map of an open Riemann surface to C2n+1 can be approximated
uniformly on compacts by holomorphic Legendrian embeddings.

In conclusion, we observe that holomorphic Legendrian curves in a 3-dimensional
complex contact manifold are the only smoothly immersed Legendrian surfaces. Simple
examples show that this fails in complex contact manifolds of dimension at least 5.

Proposition 1.5. Let (X, ξ) be a 3-dimensional complex contact manifold. If M is a
smooth real surface and F : M → X is a smooth Legendrian immersion, then F (M) is
an immersed complex curve in X . Furthermore, M admits the structure of a Riemann
surface such that F : M → X is holomorphic.

Proof. Fix a point p0 ∈ M . By Darboux’s theorem, there exist local holomorphic
coordinates (x, y, z) on a neighborhood of the point F (p0) ∈ X in which the contact
structure ξ is given by α = dz + xdy. Choose smooth local coordinates (u, v) on a
neighborhood of p0 in M and write F (u, v) = (x(u, v), y(u, v), z(u, v)). Then the map
σ(u, v) = (x(u, v), y(u, v)) is an immersion. Differentiation of the equation dz+ xdy = 0
gives dx(u, v) ∧ dy(u, v) = 0 which is equivalent to xuyv − xvyu = 0. This means that
the vectors σu = (xu, yu) and σv = (xv, yv) in C2 are C-linearly dependent, and hence
they span a complex line. Clearly, this line is the image of the tangent space T(u,v)M by
the differential of σ at the point (u, v). Finally, since the equation dz = −xdy is C-linear,
it follows that dFp(TpM) is a complex line in TF (p)X for every point p ∈M .

Let J : TX → TX denote the almost complex structure operator induced by the given
complex structure on X . Since dFp(TpM) is a J-complex line in TF (p)X for every
p ∈ M , there exists a unique almost complex structure J0 : TM → TM such that
dFp(J0η) = JdFp(η) for every p ∈ M and η ∈ TpM . The surface (M,J0) is then a
Riemann surface and F : M → X is a holomorphic Legendrian immersion. �

2. Preliminaries

2.1. Riemann surfaces and mapping spaces. For n ≥ 1, we denote by | · | the Euclidean
norm on Cn. Given a topological space K and a map f : K → Cn, we define

‖f‖0,K := sup{|f(u)| : u ∈ K}.
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Let M be an open Riemann surface. We denote by O(M) the algebra of all holomorphic
functions on M . If K is a compact subset of M , then O(K) is algebra of all holomorphic
functions on open neighborhoods of K in M , where we identify any pair of functions that
agree on some neighborhood of K. If K is a smoothly bounded compact domain in M ,
then for any integer r ≥ 0, we denote by C r(K) the algebra of all r times continuously
differentiable complex valued functions on K, and by A r(K) the subalgebra of C r(M)

consisting of all functions that are holomorphic in the interior K̊ = K\bK ofK. We denote
by ‖f‖r,K the C r norm of a function f ∈ C r(K), where the derivatives are measured
with respect to a Riemannian metric on M ; the choice of the metric will not be important.
The corresponding notation O(M)n and A r(K)n and norms ‖ · ‖r,K are used for maps
f = (f1, . . . , fn) with values in Cn, whose component functions fj belong to the respective
function spaces.

A compact bordered Riemann surface is a compact Riemann surfaceM whose nonempty
boundary bM consists of finitely many smooth Jordan curves. The interior M̊ = M \ bM
of a compact Riemann surface is a bordered Riemann surface. It is classical [21] that every
compact bordered Riemann surface M is conformally equivalent to a smoothly bounded
compact domain in an open Riemann surface M̃ , so the function spaces A r(M) are defined
as above. Note that A r(M) is a complex Banach algebra for every r ≥ 0.

Every bordered Riemann surface M admits smooth closed curves C1, . . . , C` ⊂ M̊

forming a basis of the homology group H1(M ;Z) = Z` such that the union C =
⋃`
j=1Cj

is Runge in M , meaning that the Mergelyan approximation theorem [18] holds: every
continuous function onC can be uniformly approximated by functions that are holomorphic
on M . When M is connected, this holds if and only if M \ C has no relatively compact
connected components.

2.2. Spaces of Legendrian immersions. Let n ∈ N = {1, 2, 3, . . .}. On the space C2n+1

we use the coordinates (x, y, z) introduced by (1.1). To simplify the notation, we often
write the standard contact form (1.2) on C2n+1 in the form

α = dz + xdy, where xdy =

n∑
j=1

xj dyj .

We identify C2n
(x,y) with the subspace {z = 0} ⊂ C2n+1. Recall (see (1.3)) that I (M,Cn)

denotes the space of holomorphic immersions M → Cn, and I∗(M,C2n) is the closed
subspace of I (M,C2n) consisting of holomorphic immersions (x, y) : M → C2n for
which the holomorphic 1-form xdy is exact on M : the exact holomorphic immersions.
The space L (M,C2n+1) of holomorphic Legendrian immersions M → C2n+1 is
homeomorphic to I∗(M,C2n)× C provided M is connected; see (1.4).

On a compact bordered Riemann surface M with smooth boundary we introduce the
analogous mapping spaces for any integer r ≥ 1:

• I r(M,Cn) is the space of holomorphic immersions M → Cn of class A r(M);
• I r

∗ (M,C2n) is the space of holomorphic immersions (x, y) : M → C2n of class
A r(M) for which the holomorphic 1-form xdy =

∑n
j=1 xj dyj is exact;

• L r(M,C2n+1) is the space of immersions F : M → C2n+1 of class A r(M) such
that F ∗α = 0, that is, F is Legendrian with respect to the contact form (1.2).
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As in Sec. 1, when M is connected, the map (1.4) induces a homeomorphism

L r(M,C2n+1)→ I r
∗ (M,C2n)× C.

2.3. The period map, dominating sprays, and a local structure theorem. Let M be an
open Riemann surface of finite topological type. Let H1(M ;Z) = Z` with ` ≥ 0. Pick
closed curves C1, . . . , C` ⊂M forming a Runge homology basis (see Subsec. 2.1). Let

P = (P1, . . . ,P`) : O(M)2n → C`

be the period map whose j-th component is given by

(2.1) Pj(x, y) =

∫
Cj

x dy, x, y ∈ O(M)n.

Note that P(x, y) = 0 if and only if the 1-form xdy =
∑n

i=1 xi dyi is exact, and hence

I∗(M,C2n) = {(x, y) ∈ I (M,C2n) : P(x, y) = 0}.

If M is a compact smoothly bordered Riemann surface, then (2.1) defines a period map

(2.2) P : A r(M)2n → C`, r ∈ N,

and
I r
∗ (M,C2n) = {(x, y) ∈ I r(M,C2n) : P(x, y) = 0}.

The following lemma provides an important tool used in the proof of Theorem 4.1.
Clearly, the lemma is vacuous if (and only if) ` = 0, that is, M is the closed disk D.

Lemma 2.1. Let M be a compact bordered Riemann surface, and let P be the period map
(2.2) associated to a Runge homology basis of M . Assume that P is a compact Hausdorff
space (a parameter space) and r ∈ N. Given a continuous map (x, y) : P ×M → C2n

such that for every p ∈ P , the map (x(p, · ), y(p, · )) : M → C2n is nonconstant, of class
A r(M), and its differential is continuous as a function of (p, u) ∈ P ×M , there exist an
integer N ∈ N and a continuous map (x̃, ỹ) : P ×M × CN → C2n such that the map
(x̃(p, · , · ), ỹ(p, · , · )) : M × CN → C2n is of class A r(M × CN ) for every p ∈ P , its
differential is continuous on P ×M × CN , and the partial differential

(2.3)
∂

∂ζ

∣∣∣∣
ζ=0

P(x̃(p, · , ζ), ỹ(p, · , ζ)) : CN −→ C`

is surjective for every p ∈ P . (Here, ζ = (ζ1, . . . , ζN ) are coordinates on CN .)

A map (x̃, ỹ) with surjective differential (2.3) is called a period dominating holomorphic
spray of maps P ×M → C2n with the core (x̃(· , · , 0), x̃(· , · , 0)) = (x, y).

Note that continuity of a map (x, y) : P × M → C2n, which is holomorphic on the
interior M̊ for each p ∈ P , implies continuity of its M -derivative of any order on P × M̊ .
Since the period basis for M is supported in M̊ , the lemma holds under this weaker
assumption, which already ensures continuity of the period map (2.3). However, we shall
use the lemma in the more general situation when M is an admissible set (see Remark 2.2).
Since such sets may include arcs, we need the stronger hypothesis that the differential is
continuous in all variables.
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Proof. Without loss of generality, we assume that the Riemann surface M is connected.
When P = {p} is a singleton, a spray with these properties was obtained in [5, proof of
Theorem 3.3]. (We drop P from the notation.) An inspection of that proof shows that there
exists a spray of this type, with N = ` = rankH1(M ;Z), such that all but one of its
component functions x̃j , ỹj are independent of ζ ∈ C`. For example, if yk is nonconstant,
there is a map (x̃, ỹ) satisfying (2.3) such that for all u ∈M and ζ ∈ C` we have

ỹ(u, ζ) = y(u),

x̃j(u, ζ) = xj(u) for j ∈ {1, . . . , n} \ {k},

x̃k(u, ζ) = xk(u) +
∑̀
j=1

gj(u)ζj ,(2.4)

where the functions g1, . . . , g` ∈ A r(M) are chosen such that
∫
Ci
gj dyk approximates

the Kronecker symbol δi,j for i, j = 1, . . . , `. The approximation can be as close as
desired. One first constructs smooth functions gj on the curves Ci in the homology basis
such that

∫
Ci
gj dyk = δi,j and then applies Mergelyan’s theorem to obtain functions in

A r(M). Similarly, if xk is nonconstant but yk is constant, the goal is accomplished by
letting ỹk(u, ζ) = yk +

∑`
j=1 gj(u)ζj for suitably chosen functions g1, . . . , g` ∈ A r(M),

while the other components of the map are independent of ζ ∈ C`.

To obtain the parametric case, we observe that the nonparametric case for a given
parameter value p0 ∈ P automatically satisfies the domination condition (2.3) for all
points p in an open neighborhood U ⊂ P of p0. Since P is compact, finitely many such
neighborhoods U1, . . . , Um cover P , and it suffices to combine the associated sprays, each
with the parameter space C`, into a single spray with the parameter space Cm`. �

Remark 2.2 (Admissible sets). Lemma 2.1 also holds, with the same proof, if M is a
compact admissible set in an open Riemann surface M̃ ; see [6, Definition 5.1]. This means
that M = K ∪Γ, where K =

⋃
jKj is a union of finitely many pairwise disjoint, compact,

smoothly bounded domains Kj in M̃ and Γ =
⋃
i Γi is a union of finitely many pairwise

disjoint smooth arcs or closed curves that intersect K only in their endpoints, or not at
all, and such that their intersections with the boundary bK are transverse. By Mergelyan’s
theorem [18], every function f ∈ A r(M), r ≥ 0, can be approximated in the C r(M)-
topology by functions holomorphic on a neighborhood of M . If in addition M is Runge
(O(M̃)-convex) in M̃ , which holds if and only if the inclusion map M ↪→ M̃ induces an
injective homomorphism H1(M ;Z) ↪→ H1(M̃ ;Z), then the approximation is possible by
functions holomorphic on M̃ .

An application of Lemma 2.1 and the implicit function theorem give the following
structure theorem for the spaces I r

∗ (M,C2n) and L r(M,C2n+1).

Theorem 2.3. Let M be a compact bordered Riemann surface. For every r ≥ 1, the spaces
I r
∗ (M,C2n) and L r(M,C2n+1) are complex Banach manifolds.

Proof. In view of the homeomorphism L r(M,C2n+1) → I r
∗ (M,C2n) × C induced by

the map (1.4), it suffices to show that I r
∗ (M,C2n) is a closed complex Banach submanifold

of I r(M,C2n), the latter being an open subset of the complex Banach space A r(M)2n.

Obviously, I r
∗ (M,C2n) = {σ ∈ I r(M,C2n) : P(σ) = 0} is a closed subset of

I r(M,C2n). The period map P : A r(M)2n → C` is holomorphic. Lemma 2.1 (with P
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a singleton) says that P has maximal rank ` at each point σ ∈ A r(M)2n that represents a
nonconstant map. Hence, the conclusion follows from the implicit function theorem. �

It is easily seen that the tangent space to the submanifold I r
∗ (M,C2n) of I r(M,C2n)

at the point σ0 = (x0, y0) ∈ I r
∗ (M,C2n) equals

Tσ0I
r
∗ (M,C2n) =

{
σ = (x, y) ∈ A r(M)2n :

∫
Cj

xdy0 + x0dy = 0, j = 1, . . . , l
}
,

where the curves C1, . . . , Cl form a basis of H1(M ;Z).

3. An application of the convex integration lemma

In this section, we establish a key technical result, Lemma 3.2, which will be used in the
proof of Theorem 4.1 in order to extend families of Legendrian immersions across a smooth
arc attached to a compact smoothly bounded domain in a Riemann surface.

Let P be a compact Hausdorff space; it will serve as the parameter space. Let
C 0,1(P × [0, 1]) denote the space of all continuous functions f : P × [0, 1]→ C, considered
as a family of paths fp = f(p, · ) : [0, 1] → C depending continuously on p ∈ P , whose
derivative ḟp(s) = dfp(s)/ds is also continuous in both variables (p, s) ∈ P × [0, 1]. The
analogous notation

C 0,1(P × [0, 1],Cn) = C 0,1(P × [0, 1])n

is used for maps f = (f1, . . . , fn) : P × [0, 1]→ Cn.

We shall need the following lemma.

Lemma 3.1. Let Q ⊂ P be compact Hausdorff spaces, and let f ∈ C 0,1(P × [0, 1])
and h ∈ C (P × [0, 1]) be complex valued functions, with h nowhere vanishing. Write
fp = f(p, · ) and similarly for h. Let b : P → C be a continuous function such that

b(p) =

∫ 1

0
fp(s)hp(s) ds, p ∈ Q.

There is a homotopy f t ∈ C 0,1(P × [0, 1]) (t ∈ [0, 1]) satisfying the following conditions:

(i) f tp = fp for all (p, t) ∈ (P × {0}) ∪ (Q× [0, 1]);

(ii) f tp(s) = fp(s) and ḟ tp(s) = ḟp(s) for s = 0, 1 and for all (p, t) ∈ P × [0, 1];

(iii)
∫ 1

0 f
1
p (s)hp(s) ds = b(p) for all p ∈ P .

Proof. This is a parametric version of Gromov’s one-dimensional convex integration lemma
[16, Lemma 2.1.7]. The basic version of Gromov’s lemma says that for any open connected
set Ω in a Euclidean space Rn (or in a Banach space), the set of integrals

∫ 1
0 f(s)ds over

all paths f : [0, 1]→ Ω, with fixed endpoints f(0) and f(1) in Ω, equals the convex hull of
Ω. It is a trivial matter to adapt it to arcs of class C 1 with the matching conditions for the
derivatives at the endpoints of [0, 1]. For the parametric version we refer to [20, Theorem
3.4]. The nowhere vanishing function h plays the role of a weight; it would suffice to
assume that h is not identically zero and work on the corresponding subinterval. �

In preparation for the next lemma, we need some additional notation. Given z =
(z1, . . . , zn), w = (z1, . . . , zn) ∈ Cn, we write zw =

∑n
j=1 zjwj . We denote by

(3.1) I (P × [0, 1],Cn) ⊂ C 0,1(P × [0, 1],Cn)
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the set of all f ∈ C 0,1(P × [0, 1],Cn) for which the derivative ḟp(s) = dfp(s)/ds ∈ Cn is
nowhere vanishing on (p, s) ∈ P × [0, 1]. We think of f ∈ I (P × [0, 1],Cn) as a family
of immersed arcs fp : [0, 1]→ Cn depending continuously on the parameter p ∈ P .

The following is the main technical lemma used in the proof of Theorem 4.1.

Lemma 3.2. LetQ ⊂ P be compact Hausdorff spaces, let ξ = (f, g) ∈ I (P × [0, 1],C2n)
with f, g ∈ C 0,1(P × [0, 1])n, and let β : P → C be a continuous function such that

(3.2) β(p) =

∫ 1

0
fp(s)ġp(s)ds, p ∈ Q.

Then there exists a homotopy ξt = (f t, gt) ∈ I (P × [0, 1],C2n) (t ∈ [0, 1]) satisfying the
following conditions:

(a) ξtp = ξp for (p, t) ∈ (P × {0}) ∪ (Q× [0, 1]);

(b) ξtp(s) = ξp(s) and ξ̇tp(s) = ξ̇p(s) for s = 0, 1 and (p, t) ∈ P × [0, 1];

(c)
∫ 1

0 f
1
p (s)ġ1

p(s)ds = β(p) for p ∈ P .

In [12, Lemma 3.1] we give more precise analogues of Lemmas 3.1 and 3.2 by controlling
the integrals in (iii) and (c) for all t ∈ [0, 1]. This can be proved here as well, but is not
needed for the application in the present paper.

Proof. Since the derivative ξ̇p(s) = (ξ̇p,1(s), . . . , ξ̇p,2n(s)) ∈ C2n is nowhere vanishing on
(p, s) ∈ P × [0, 1] and P is compact, an elementary argument gives finitely many pairs of
compact sets Uj ⊂ Vj in P (j = 1, . . . ,m), with Uj ⊂ V̊j and

⋃m
j=1 Uj = P , and pairwise

disjoint closed segments I1, . . . , Im contained in [0, 1] such that for every j = 1, . . . ,m,
there exists an index k = k(j) ∈ {1, 2, . . . , 2n} such that

(3.3) ξ̇p,k(s) 6= 0 for all s ∈ Ij and p ∈ Vj .

The proof of the lemma proceeds by a finite induction on j = 1, . . . ,m. The desired
homotopy is obtained as a composition of m homotopies, each supported on one of the
segments I1, . . . , Im. We explain the initial step; the subsequent steps are analogous.

Thus, let j = 1 and let k = k(1) ∈ {1, 2, . . . , 2n} be such that (3.3) holds for j = 1.
Suppose first that k ∈ {n + 1, . . . , 2n}. Write k = n + l with l ∈ {1, . . . , n}. Recall
that ξ = (f, g) where f, g ∈ C 0,1(P × [0, 1])n. Then (3.3) means that the function ġp,l is
nowhere vanishing on I1 for all p ∈ V1. Let us define the function b : P → C by

(3.4) b(p) = β(p)−
∫

[0,1]\I1
fp,l(s)ġp,l(s)ds−

∫ 1

0

n∑
i=1
i 6=l

fp,i(s)ġp,i(s)ds.

In view of (3.2) we have that

b(p) =

∫
I1

fp,l(s)ġp,l(s)ds, p ∈ Q.

We now apply Lemma 3.1 with Q ⊂ P replaced by the pair of parameter sets V1 ∩Q ⊂ V1,
the interval [0, 1] replaced by the segment I1, with the functions on I1 given by

fp = fp,l, hp = ġp,l for p ∈ V1,
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and with the function b given by (3.4). (When applying Lemma 3.1, we pay attention to
the matching condition (ii) at the endpoints of the interval I1). This gives a homotopy
f tp,l ∈ C 0,1(V1 × [0, 1]) (t ∈ [0, 1]) satisfying the following conditions:

(a’) f tp,l = fp,l for all (p, t) ∈ (V1 × {0}) ∪ ((Q ∩ V1)× [0, 1]);

(b’) f tp,l(s) = fp,l(s) for all s = [0, 1] \ I1 and (p, t) ∈ V1 × [0, 1];

(c’)
∫
I1
f1
p,l(s)ġp,l(s)ds = b(p) for all p ∈ V1.

Condition (b’) means that the deformation is supported on the segment I1.

Let ξtp = (f tp, gp) : [0, 1]→ C2n (t ∈ [0, 1]) denote the homotopy whose l-th component
equals f tp,l and whose other components agree with the corresponding components of ξp.
Note that ξtp agrees with ξp on [0, 1] \ I1 for all t ∈ [0, 1] and p ∈ V1, and hence
is an immersion (since its component ġp,l is nowhere vanishing on I1 and ξtp = ξp
on [0, 1] \ I1). Clearly, ξtp satisfies conditions (a) and (b) in Lemma 3.2 for (p, t) ∈
(V1 × {0}) ∪ ((Q ∩ V1) × [0, 1]), and it satisfies condition (c) for all p ∈ V1 in view
of the definition (3.4) of the function b.

Pick a continuous function χ : P → [0, 1] such that χ = 1 on U1 and suppχ ⊂ V̊1.
Replacing f tp by fχ(p)t

p and ξtp by ξχ(p)t
p yields a homotopy, defined for all p ∈ P , which

satisfies conditions (a) and (b), and it satisfies condition (c) for p ∈ U1.

This concludes the first step if k(1) ∈ {n+ 1, . . . , 2n}. If on the other hand k = k(1) ∈
{1, . . . , n}, we apply the same argument with the roles of the components reversed, using
the integration by parts formula∫ 1

0
fp,k(s)ġp,k(s) ds = fp,k(1)gp,k(1)− fp,k(0)gp,k(0)−

∫ 1

0
gp,k(s)ḟp,k(s) ds.

In this case, the assumption is that ḟp,k(s) 6= 0 for all s ∈ I1 for p ∈ V1. The same
argument as above gives a homotopy gtp,k, supported on I1, which achieves condition (c) for
all p ∈ U1. As before, the other components of the map are kept fixed.

This concludes the first step of the induction.

In the second step with j = 2, we take as our datum the map ξ1 ∈ I (P × [0, 1],C2n)
(the final map at t = 1 in the homotopy obtained in step 1). By following the proof of step
1 with the pair of parameter sets Q2 = Q ∪ U1 ⊂ P , we find a family of immersions

ξ1,t
p = (f1,t

p , g1,t
p ) : [0, 1]→ C2n, (p, t) ∈ P × [0, 1],

satisfying the following conditions:

• ξ1,t
p = ξ1

p for (p, t) ∈ (P × {0}) ∪ (Q2 × [0, 1]);

• ξ1,t
p (s) = ξ1

p(s) for all s ∈ [0, 1] \ I2 and (p, t) ∈ P × [0, 1];

•
∫ 1

0 f
1,1
p (s)ġ1,1

p (s)ds = β(p) for all p ∈ U1 ∪ U2.

Since the deformation ξ1,t
p is supported on I2 which is disjoint from I1, it does not destroy

the immersion property of the individual maps [0, 1] → C2n in the family. Also, since the
deformation is fixed for p ∈ Q2 = Q ∪ U1, it does not change the values of the integrals in
(c) for p ∈ Q2, and in addition it achieves the correct values for points p ∈ U2.
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We now take ξ2 = ξ1,1 ∈ I (P × [0, 1],C2n) as the datum in step 3, let Q3 = Q2 ∪ U2,
and proceed as before. After m steps of this kind, the proof is complete. �

4. A parametric Oka principle for Legendrian immersions

LetM be an open Riemann surface. In this section we prove the parametric Oka principle
with approximation for the inclusion I∗(M,C2n) ↪→ I (M,C2n) in Theorem 1.1.

Let P be a compact Hausdorff space. We introduce the following mapping spaces:

I (P ×M,C2n) = {σ ∈ C (P ×M,C2n) : σp ∈ I (M,C2n) for every p ∈ P};
I∗(P ×M,C2n) = {σ ∈ I (P ×M,C2n) : σp ∈ I∗(M,C2n) for every p ∈ P}.

Here, σp = σ(p, · ) : M → C2n. Given a compact set K ⊂M , we write

‖σ‖1,P×K = sup
x∈K
|σp(x)|+ sup

x∈K
|dσp(x)|

where the norm |dσp| of the differential is measured with respect to a fixed Hermitian metric
on TM (whose precise choice will not be important) and the Euclidean norm on C2n.

Theorem 4.1. Assume that M is an open Riemann surface, Q ⊂ P are compact Hausdorff
spaces, D b M is a smoothly bounded domain whose closure D̄ is O(M)-convex, and
σ = (x, y) ∈ I (P ×M,C2n) (n ≥ 1) satisfies the following two conditions:

(a) σ|Q×M ∈ I∗(Q×M,C2n);
(b) there is an open set U ⊂M , with D̄ ⊂ U , such that σ|P×U ∈ I∗(P × U,C2n).

Given ε > 0, there is a homotopy σt ∈ I (P ×M,C2n) (t ∈ [0, 1]) satisfying the following
conditions:

(1) σtp = σp for every (p, t) ∈ (P × {0}) ∪ (Q× [0, 1]);

(2) σt|P×D ∈ I∗(P ×D,C2n) for every t ∈ [0, 1];
(3) ‖σt − σ‖1,P×D̄ < ε for every t ∈ [0, 1];

(4) σ1 ∈ I∗(P ×M,C2n).

If a continuous map ϕ : X → Y satisfies the parametric h-principle (without
approximation), then ϕ is a weak homotopy equivalence. Hence, the first part of Theorem
1.1 is an immediate corollary of Theorem 4.1.

Remark 4.2. (a) The proof of Theorem 4.1 gives the analogous result for a compact
bordered Riemann surface M ; in this case, the proof is completed in finitely many steps.

(b) The proof of Theorem 4.1 also gives the parametric Oka principle with approximation
for Legendrian immersions. However, a minor difference in the proof is explained in the
paragraph following the proof of Theorem 4.1. It has to do with the fact that the map
L (M,C2n+1) → I∗(M,C2n) × C (see (1.4)) is a homeomorphism only when M is
connected. Hence, when extending an exact holomorphic immersion σ = (x, y) (the
projection of a Legendrian immersion (x, y, z)) across a smooth arc E connecting a pair
of disjoint domains in M , we must ensure that the integral of the 1-form xdy on E equals
the difference of the values of the last component z at the respective endpoints of the arc; in
view of (1.5), this ensures the correct extension of the z-component.
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Proof of Theorem 4.1. Pick a smooth strongly subharmonic Morse exhaustion function
ρ : M → R and exhaust M by sublevel sets

Dj = {u ∈M : ρ(u) < cj}, j ∈ N,

where c1 < c2 < c3 < . . . is an increasing sequence of regular values of ρ chosen such that
limj→∞ cj =∞. We may assume that each interval [cj , cj+1] contains at most one critical
value of the function ρ, and thatD1 coincides with the given domainD in Theorem 4.1. Let
U1 = U ⊃ D̄1 be the open neighborhood of D̄1 as in the theorem.

To begin the induction, set ε0 = ε and

σt,1 = σ|P×U1 ∈ I∗(P × U1,C2n), t ∈ [0, 1].

We shall inductively find a sequence of open sets Uj ⊃ D̄j in M , homotopies

σt,j ∈ I (P × Uj ,C2n), t ∈ [0, 1], j ∈ N

and numbers εj > 0 satisfying the following conditions for j = 1, 2, 3, . . .:

(aj) σ
t,j
p = σp|Uj for every (p, t) ∈ (P × {0}) ∪ (Q× [0, 1]);

(bj) σ
t,j |P×D1 ∈ I∗(P ×D1,C2n) for every t ∈ [0, 1];

(cj) ‖σt,j − σt,j−1‖1,P×D̄j−1
< εj for every t ∈ [0, 1];

(dj) σ
1,j |P×Dj ∈ I∗(P ×Dj ,C2n);

(ej) εj < εj−1/2;
(fj) If σ̃t : P × D̄j−1 → C2n satisfies ‖σ̃t−σt,j−1‖1,P×D̄j−1

< 2εj for every t ∈ [0, 1],
then σ̃t(p, · ) : D̄j−1 → C2n is an immersion for every p ∈ P and t ∈ [0, 1].

Conditions (a1), (b1) and (d1) hold by the definition of σt,1, (e1) is fulfilled by choosing
0 < ε1 < ε0/2, while (c1) and (f1) are vacuous. Assume for a moment that sequences with
these properties exist. Conditions (cj), (ej) and (fj) ensure that the sequence (σt,j)j∈N
converges to a limit

σt = lim
j→∞

σt,j : P ×M −→ C2n, t ∈ [0, 1]

such that σtp : M → C2n is a holomorphic immersion for every p ∈ P and t ∈ [0, 1] and
(3) holds. Condition (aj) ensures that all homotopies σt,j are fixed on the parameter set
(P × {0}) ∪ (Q × [0, 1]), which gives (1). Condition (bj) shows that σtp : D → C2n is an
exact holomorphic immersion for every p ∈ P and t ∈ [0, 1], so (2) holds. Condition (dj)
shows that σ1

p : M → C2n is an exact holomorphic immersion for every p ∈ P , which gives
(4). This shows that the theorem holds if we can construct such a sequence of homotopies.

We now explain the induction. Assume that the quantities satisfying the above conditions
have been found up to an index j ∈ N. Then, conditions (ej+1) and (fj+1) hold provided
that the number εj+1 > 0 is chosen small enough; fix such a number. We shall now explain
how to obtain σt,j+1 and Uj+1 satisfying conditions (aj+1)–(dj+1). We distinguish two
topologically different cases: (a) the noncritical case, and (b) the critical case.

(a) The noncritical case: ρ has no critical values in [cj , cj+1]. In this case, D̄j

is a deformation retract of D̄j+1. (In the critical case considered below, we use the
noncritical case also for certain noncritical pairs of sets K ⊂ L defined by another strongly
subharmonic function.)
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Pick a Runge homology basis B = {γi}li=1 for H1(Dj ;Z), that is, such that the union of
supports

⋃l
i=1 |γi| is O(Dj)-convex. Let P denote the associated period map (2.1):

P(σ) =

(∫
γi

xdy

)
i=1,...,l

∈ Cl, σ = (x, y) ∈ I (Dj ,C2n).

Note that the pair (B,P) also applies to the domain Dj+1 since D̄j is a deformation retract
of D̄j+1. Let ζ = (ζ1, . . . , ζN ) denote the coordinates on CN . Shrinking Uj ⊃ D̄j if
necessary, Lemma 2.1, applied with the parameter space P ′ = P × [0, 1], gives an integer
N ∈ N and a spray

σ̃t = (x̃t, ỹt) : P × Uj × CN → C2n, t ∈ [0, 1],

such that the map σ̃tp = σ̃t(p, · , · ) : Uj × CN → C2n satisfies the following conditions:

(i) σ̃tp is holomorphic on Uj × CN for every (p, t) ∈ P × [0, 1];

(ii) σ̃tp(· , 0) = σtp(· , 0) at ζ = 0 ∈ CN for every (p, t) ∈ P × [0, 1];
(iii) the partial differential

(4.1)
∂

∂ζ

∣∣∣∣
ζ=0

P(σ̃tp(· , ζ)) : CN −→ C`

is surjective for every (p, t) ∈ P × [0, 1].

Furthermore, in view of Mergelyan’s theorem [18], the functions gj used in the construction
of σ̃t (see (2.4)) can be chosen holomorphic on M . Since the spray σ̃t is linear in ζ ∈ CN
and the core σ̃tp(· , 0) = σtp is holomorphic onM for all (p, t) ∈ (P ×{0})∪(Q× [0, 1]), σ̃tp
is holomorphic onM×CN for all (p, t) ∈ (P ×{0})∪ (Q× [0, 1]). Pick an open relatively
compact neighborhood Uj+1 b M of D̄j+1 which deformation retracts onto D̄j+1. Since
the map σ̃tp(· , 0) = σtp is an immersion on the respective domain for every (p, t) ∈ P×[0, 1],
we can shrink Uj slightly around D̄j and choose a ball B ⊂ CN around the origin such that

(iv) σ̃tp(· , ζ) : Uj → C2n is an immersion for every (p, t) ∈ P × [0, 1] and ζ ∈ B̄, and

(v) σ̃tp(· , ζ) : U j+1 → C2n is an immersion for all (p, t) ∈ (P × {0}) ∪ (Q × [0, 1])

and ζ ∈ B̄.

Claim: σ̃t can be approximated as closely as desired in the C 1 norm on D̄j × B̄, and
uniformly in the parameters (p, t) ∈ P × [0, 1], by a homotopy

τ t : P × Uj+1 ×B → C2n, t ∈ [0, 1],

satisfying conditions (i)–(v) above and also the following two conditions:

• τ t(p, · , ζ) : Uj+1 → C2n is a holomorphic immersion for every (p, t) ∈ P × [0, 1]
and ζ ∈ B, and
• τ t(p, · , · ) = σ̃t(p, · , · ) for all (p, t) ∈ (P × {0}) ∪ (Q× [0, 1]).

Proof of the claim. Such τ t can be found by following the noncritical case in [12, proof
of Theorem 5.3] when the cone A equals C2n. The only difference is that, in the
present situation, the maps σ̃tp depend holomorphically on the additional complex parameter
ζ ∈ B ⊂ CN . We outline the main steps and refer to the cited source for the details.
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Fix a nowhere vanishing holomorphic 1-form θ on M . Let d denote the exterior
differential on M . Consider the family of holomorphic maps

(4.2) φ̃tp(· , ζ) = dσ̃tp(· , ζ)/θ : Uj → C2n
∗

for (p, t) ∈ P × [0, 1] and ζ ∈ B̄. Their ranges avoid the origin since the maps σ̃tp(· , ζ) are
immersions by condition (iv). Furthermore, for each (p, t) ∈ (P × {0}) ∪ (Q× [0, 1]) and
ζ ∈ B̄, the map φ̃tp(· , ζ) : U j+1 → C2n

∗ is holomorphic on U j+1 in view of condition (v).

Let Q denote the period map defined for any map φ : Dj → C2n by

Q(φ) =

(∫
Ci

φ θ

)
i=1,...,l

∈ (C2n)l.

Here, {Ci}li=1 is a Runge homology basis of H1(Dj ;Z). We embed the family of
maps (4.2) as the core of a spray φtp(· , ζ, w) (that is, φtp(· , ζ, 0) = φ̃tp(· , ζ)), depending
holomorphically on another set of parameters w ∈ CN ′ for some integer N ′ ∈ N, such that
the partial differential

∂

∂w

∣∣∣∣
w=0

Q(φtp(· , ζ, w)) : CN
′ → (C2n)l

is surjective for every (p, t) ∈ P × [0, 1] and ζ ∈ B. Such Q-period dominating sprays
were constructed in [4, Lemma 5.1]; see also [3, Lemma 3.6] for the parametric case.

Fix a ballB′ ⊂ CN ′ centered at the origin. Since C2n
∗ is an Oka manifold, the parametric

Oka principle with approximation [11, Theorem 5.4.4] shows that we can approximate the
family of holomorphic maps φtp : Uj × B̄× B̄′ → C2n

∗ in the C r topology on D̄j ×B×B′
by a continuous family of holomorphic maps

ψtp : Uj+1 ×B ×B′ → C2n
∗ , (p, t) ∈ P × [0, 1],

such that ψtp(· , ζ, w) = φtp(· , ζ, w) for all (p, t) ∈ (P × {0}) ∪ (Q × [0, 1]) and
(ζ, w) ∈ B × B′. Assuming that the approximation is close enough, the implicit function
theorem gives a continuous functionw = w(p, t, ζ) on P×[0, 1]×B̄ with values in CN ′ and
close to 0, such thatw is holomorphic in ζ ∈ B, vanishes for (p, t) ∈ (P×{0})∪(Q×[0, 1])
and ζ ∈ B, and we have the period vanishing conditions

(4.3) Q
(
ψtp(· , ζ, w(p, t, ζ))

)
= 0 for all (p, t, ζ) ∈ P × [0, 1]×B.

Pick an initial point u0 ∈ Dj . It is straightforward to verify that the family of maps

τ t(p, u, ζ) = σ̃t(p, u0, ζ) +

∫ u

u0

ψtp(· , ζ, w(p, t, ζ)) θ, u ∈ Uj+1,

then satisfies the claim. (Since D̄j is a deformation retract of Uj+1, the integral is
independent of the choice of the path in Uj+1 due to the period vanishing condition (4.3).)
If Dj is disconnected, the same argument applies on each connected component. �

We continue with the proof of the theorem. Assuming as we may that the approximation
of σ̃t by τ t is close enough, the period domination property (4.1) of the spray σ̃t and the
implicit function theorem give a continuous map

ζ : P × [0, 1]→ B ⊂ CN ,
with values close to 0 (depending on how close τ t is to σ̃t), such that

(4.4) ζ vanishes on the set (p, t) ∈ (P × {0}) ∪ (Q× [0, 1]),
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and the family of holomorphic immersions

σt,j+1
p = τ t(p, · , ζ(p, t)) : Uj+1 → C2n

satisfies the period conditions

(4.5) P(σt,j+1
p ) = P(σt,jp ), (p, t) ∈ P × [0, 1].

In view of (4.4), σt,j+1 satisfies condition (aj+1). Writing σt,j+1
p = (xt,j+1

p , yt,j+1
p ), it

follows from (4.5) that for every loop C ⊂ D1 and for all (p, t) ∈ P × [0, 1], we have∫
C
xt,j+1
p dyt,j+1

p =

∫
C
xt,jp dy

t,j
p = 0.

This shows that σt,j+1 satisfies condition (bj+1). The same argument for loops C ⊂ Dj+1

and t = 1 shows that (dj+1) holds. (Note that it suffices to verify the period vanishing
condition for loops in D̄j , which is a deformation retract of D̄j+1.) Finally, condition
(cj+1) holds if the approximations are close enough.

This completes the inductive step in the noncritical case.

(b) The critical case: ρ has a (unique, Morse) critical point in Dj+1 \ D̄j . In this case,
D̄j+1 deformation retracts onto a compact set of the form S = D̄j∪E, whereE is a smooth
embedded arc contained in Dj+1 \ D̄j , except for its endpoints which lie in bDj . We may
assume that E intersects bDj transversely at both endpoints. Hence, S is an admissible
Runge set in Dj+1 (see Remark 2.2 and [6, Definition 5.1]).

There are two topologically different cases to consider.

Case 1: the arcE closes inside the domainDj to a Jordan curveC such thatE = C\Dj .
This happens when the endpoints of E belong to the same connected component of D̄j . In
this case, H1(Dj+1;Z) = H1(Dj ;Z)⊕ Z where C represents the additional generator.

Case 2: the endpoints of the arc E belong to different connected components of D̄j . In
this case, no new element of the homology basis appears.

We begin with case 1. Let C be a smooth Jordan curve in M such that E = C \ Dj .
Recall that σ = (x, y) ∈ I (P × M,C2n) is the given map in the theorem, and
σt,j = (xt,j , yt,j) ∈ I (P ×Uj ,C2n) is a homotopy from the j-th step. After shrinking the
neighborhood Uj around D̄j if necessary, we can extend σt,j from P × Uj to a homotopy

σt,j = (xt,j , yt,j) : P × (Uj ∪ E)→ C2n, t ∈ [0, 1]

such that σt,jp |E : E → C2n is a C 1 immersion for every (p, t) ∈ P × [0, 1] and

σt,jp |E = σp|E for all (p, t) ∈ (P × {0}) ∪ (Q× [0, 1]).

In particular, condition (a) on σ (in the theorem) implies

(4.6)
∫
C
xt,jp dy

t,j
p = 0 for all (p, t) ∈ Q× [0, 1].

Our goal is to deform the homotopy σt,j (only) on the relative interior of E, keeping it
fixed for the parameter values (p, t) ∈ (P × {0}) ∪ (Q × [0, 1]), to a new homotopy (still
denoted σt,j = (xt,j , yt,j)) such that at t = 1 we have

(4.7)
∫
C
x1,j
p dy1,j

p = 0 for all p ∈ P.
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This can be done by using Lemma 3.2 as follows. Choose a smooth regular parametrization
λ : [0, 1] → E with λ(0), λ(1) ∈ bDj . Consider the family of immersed arcs ξtp =

(f tp, g
t
p) : [0, 1]→ C2n for (p, t) ∈ P × [0, 1] defined by

(4.8) ξtp(s) = σt,jp (λ(s)) =
(
f tp(s), g

t
p(s)

)
, s ∈ [0, 1].

It follows that ∫
E
xt,jp dy

t,j
p =

∫ 1

0
f tp(s)ġ

t
p(s)ds.

Define the function β : P → C by

(4.9) β(p) = −
∫
C\E

x1,j
p dy1,j

p , p ∈ P.

We now apply Lemma 3.2 to the family (ξtp)p,t, the pair of parameter spaces

(p, t) ∈ P ′ = P × [0, 1], Q′ = (P × {0}) ∪ (Q× [0, 1]),

the function β given by (4.9), taking into account condition (4.6). This provides a
deformation of (ξtp)(p,t)∈P ′ through a family of immersions [0, 1] → C2n of class C 1 (the
parameter of the homotopy τ ∈ [0, 1] shall be omitted) such that the homotopy is fixed for
(p, t) ∈ Q′, it is fixed near the endpoints of [0, 1] for all (p, t) ∈ P ′, and the new family
obtained at τ = 1 satisfies the condition∫ 1

0
f1
p (s)ġ1

p(s)ds = β(p), p ∈ P.

By using the parametrization λ : [0, 1] → E as in (4.8), this provides a homotopy of the
family of immersions σt,jp = (xt,jp , y

t,j
p ) : Uj ∪E → C2n which is fixed on Uj such that the

new family satisfies the condition

(4.10)
∫
E
x1,j
p dy1,j

p =

∫ 1

0
f1
p (s)ġ1

p(s)ds = β(p), p ∈ P.

Now, (4.7) follows immediately from (4.9) and (4.10).

Denote by P ′ the period map (2.1) with respect to the homology basis B of Dj and the
additional loop C. It follows from the above that P ′(σ1,j

p ) = 0 for all p ∈ P .

The inductive step can now be completed as in the noncritical case; here is an outline. By
Lemma 2.1 we can embed the family of immersions σt,jp : Uj∪E → C2n ((p, t) ∈ P×[0, 1])
as the core of a period dominating spray depending on an additional set of variables ζ ∈ CN .
(The set Uj may shrink around D̄j .) Since D̄j ∪ E is an admissible set in Dj+1 and
a deformation retract of D̄j+1, we can apply the Mergelyan theorem for holomorphic
immersions to C2n to approximate this spray, as closely as desired in the C 1-topology on
D̄j ∪E, by a spray consisting of holomorphic immersions from a neighborhood Uj+1 ⊂M
of D̄j+1 into C2n. As in the proof of the noncritical case, replacing the parameter ζ by
a suitably chosen function ζ(p, t) with values in CN and close to 0 gives a homotopy
σt,j+1 ∈ I (P × Uj+1,C2n) satisfying conditions (aj+1)–(dj+1).

This completes the induction step in case 1 of the critical case (b).

In case 2, the arc E connects two distinct connected components of D̄j . We follow the
construction in case 1 to obtain an extension of the family σtp : Uj → C2n across E to a
family of immersions Uj ∪ E → C2n; however, there is no need to adjust the value of the
integral (4.10). On the other hand, when approximating this family of maps on D̄j ∪ E by
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maps on Uj+1 ⊃ D̄j+1, we still need to use a dominating spray as in case 1 in order to keep
the period vanishing condition on curves in the homology basis B for Dj . �

Returning to Remark 4.2, we note that a nontrivial difference appears in the final
paragraph of the above proof when proving the parametric Oka property for the space of
Legendrian immersions. Recall that the map L (M,C2n+1)→ I∗(M,C2n)×C, given by
(1.4), is a homeomorphism only if M is connected. When the arc E connects two distinct
connected components of the set D̄j , we must ensure the correct value of the integral (4.10)
in order to match the z-component of the Legendrian map (which is already defined on a
neighborhood of D̄j) near the endpoints of E. This can be achieved just like in case 1.

5. Strong homotopy equivalence for surfaces of finite topological type

In this section, we complete the proof of Theorem 1.1 by showing that ifM is a connected
open Riemann surface of finite topological type, then the inclusion I∗(M,C2n) ↪→
I (M,C2n), already known to be a weak homotopy equivalence, is in fact a homotopy
equivalence. It is even the inclusion of a strong deformation retract. We closely follow the
proof of a similar result in [12, Section 6], which in turn is based on [17].

Our approach to showing that the weak homotopy equivalence I∗(M,C2n) ↪→
I (M,C2n) is the inclusion of a strong deformation retract is to prove that the metrizable
spaces I∗(M,C2n) and I (M,C2n) are absolute neighborhood retracts (ANR). Namely, an
ANR has the homotopy type of a CW complex, and a weak homotopy equivalence between
CW complexes is a homotopy equivalence. Hence, if j : A ↪→ B is the inclusion of a
closed subspace in a metrizable space B, both spaces are ANRs, and j is a weak homotopy
equivalence, then j is a homotopy equivalence. Moreover, j is a cofibration (in the sense of
Hurewicz), so j is the inclusion of a strong deformation retract. For more information on
what is involved, we refer to [12, Section 6].

The space I (M,C2n) is an open subset of the Fréchet space of all holomorphic maps
M → C2n, so it is an ANR.

To show that the space I∗(M,C2n) is an ANR, we verify that it satisfies the so-called
Dugundji-Lefschetz property. Once we have prepared two ingredients for the proof, it
proceeds exactly as the proof of [12, Theorem 6.1].

First, we note the homeomorphism

I (M,C2n)→ O0(M,C2n
∗ )× C, σ 7→ (dσ/θ, σ(p)),

where O0(M,C2n
∗ ) is the space of holomorphic maps M → C2n

∗ with vanishing periods,
θ is a nowhere vanishing holomorphic 1-form on M , and p ∈ M is a chosen base
point. We put together the parametric Oka principles with approximation for the inclusion
I∗(M,C2n) ↪→ I (M,C2n) (Theorem 4.1), for the inclusion O0(M,C2n

∗ ) ↪→ O(M,C2n
∗ )

[12, Theorem 5.3], and for the inclusion O(M,C2n
∗ ) ↪→ C (M,C2n

∗ ), which comes from
C2n
∗ being an Oka manifold. This yields the first ingredient: the parametric Oka principle

with approximation for the inclusion I∗(M,C2n) ↪→ C (M,C2n
∗ )× C.

The second ingredient is the following lemma, which is analogous to [12, Lemma 6.4].
The proof that I∗(M,C2n) is an ANR is then so similar to the proof of [12, Theorem 6.1]
that we omit further details.

Lemma 5.1. Let M be an open Riemann surface, let r ≥ 1 be an integer, and let
ρ : M → [0,∞) be a smooth exhaustion function. Let L0 ⊃ L1 ⊃ · · · ⊃ K be
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compact smoothly bounded domains in M of the form ρ−1([0, c]), such that K contains
all the critical points of ρ. Let σ0 ∈ I∗(M,C2n) and let W be a neighborhood of σ0|K
in I r

∗ (M,C2n). Then there are contractible neighborhoods Cm of σ0|Lm in I r
∗ (Lm,C2n)

such that Cm|Lm+1 ⊂ Cm+1 and Cm|K ⊂W for all m ≥ 0.

Proof. Since K contains all the critical points of ρ, there is a homology basis B =

{γi}i=1,...,l of H1(M ;Z) whose support |B| =
⋃l
j=1 |γj | is contained in K and is Runge in

M . Let P : O(M,C2n)→ Cl denote the associated period map (2.1):

P(σ) =

(∫
Cj

x dy

)
j=1,...,l

, σ = (x, y) ∈ O(M,C2n).

Fix a map σ0 ∈ I∗(M,C2n). LetM0 be a compact smoothly bounded domain inM (say
a sublevel set of ρ) with the same topology asM and containingL0. Note that I r(M0,C2n)
is an open subset of the complex Banach space A r(M0,C2n). Pick ε0 > 0 such that the
ε0-ball around σ0 in A r(M0,C2n) is contained in I r(M0,C2n).

By Lemma 2.1, the differential of the period map P : A r(M0,C2n) → Cl at σ0 is
surjective. Let us denote it by

D = dσ0P : A r(M0,C2n) −→ Cl.
Its kernel

(5.1) Λ0 = kerD = {σ ∈ A r(M0,C2n) : D(σ) = 0}
is a closed complex subspace of codimension l in A r(M0,C2n); it is precisely the tangent
space to the submanifold I r

∗ (M,C2n) at the point σ0. Pick h1, . . . , hl ∈ A r(M0,C2n)
such that the vectors D(h1), . . . , D(hl) ∈ Cl span Cl; then

A r(M0,C2n) = Λ0 ⊕ spanC{h1, . . . , hl}.

Note that the period map P(σ) is defined whenever the domain L of σ contains the
support |B| of the homology basis. Hence, the map D = dσ0P is well defined on
C r(L,C2n) whenever |B| ⊂ L ⊂M0. Taking L = |B|, it follows that the complex Banach
space C r(|B|,C2n) decomposes as a direct sum of closed complex Banach subspaces

(5.2) C r(|B|,C2n) = kerD|C r(|B|,C2n) ⊕ spanC{h1||B|, . . . , hl||B|} = Λ⊕H.
By the implicit function theorem for Banach spaces, there are a number ε1 ∈ (0, ε0) and
smooth bounded complex functions c1, . . . , cl on the set Λε1 = {σ ∈ Λ : ‖σ‖r,|B| < ε1},
vanishing at the origin 0 ∈ Λ, such that for every σ ∈ Λε1 the map

(5.3) σ̃ = σ0||B| + σ +
l∑

j=1

cj(σ)hj ||B| ∈ C r(|B|,C2n)

satisfies the period vanishing equationP(σ̃) = 0. Morever, (5.3) gives a local representation
of the set {σ̃ ∈ C r(|B|,C2n) : P(σ̃) = 0} in a neighborhood of σ0||B| as a graph over the
affine linear subspace σ0||B| + Λ ⊂ C r(|B|,C2n).

If L is any smoothly bounded compact set with |B| ⊂ L ⊂ M0 and σ ∈ A r(L,C2n)
satisfies Dσ = 0 and ‖σ‖r,L < ε1, then (5.3) yields a map

ψL(σ) = σ0|L + σ +
l∑

j=1

cj(σ||B|)hj |L ∈ A r(L,C2n)
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such that P(ψL(σ)) = 0. Note that ψL(0) = σ0. Hence, ψL(σ) ∈ I r
∗ (L,C2n) provided

that ‖ψL(σ) − σ0‖r,L < ε0; the latter condition is satisfied if ε1 > 0 is small enough.
As before, this gives a local representation of the set {σ̃ ∈ A r(L,C2n) : P(σ̃) = 0} in a
neighborhood of σ0|L as a graph over the affine linear subspace σ0|L+Λ0|L ⊂ A r(L,C2n).
Here, Λ0 = kerD ⊂ A r(M0,C2n) (see (5.1)).

Note that for any compacts L and L′ with |B| ⊂ L ⊂ L′ ⊂M0, we have

(5.4) ψL(σ|L) = ψL′(σ)
∣∣
L

for every σ ∈ A r(L′,C2n) such that D(σ) = 0 and ‖σ‖r,|B| < ε1.

Since the functions cj are bounded on a neighborhood of the origin in Λ (see (5.2)), there
is a number ε ∈ (0, ε1) such that the set

C0 =
{
ψM0(σ) : σ ∈ Λ0, ‖σ‖r,M0 < ε

}
⊂ I r

∗ (M0,C2n)

is a neighborhood of σ0|M0 in I r
∗ (M0,C2n). Furthermore, being a smooth graph over the

ball {σ ∈ Λ0 : ‖σ‖r,M0 < ε} in the Banach space Λ0, C0 is contractible. Similarly, for
every m ∈ N, the set

Cm =
{
ψLm(σ) : σ ∈ A r(Lm,C2n), D(σ) = 0, ‖σ‖r,Lm < ε

}
⊂ I r

∗ (Lm,C2n)

is a contractible neighborhood of σ0|Lm in I r(Lm,C2n).

Taking into account that for any σ ∈ A r(Lm,C2n), we have ‖σ‖r,Lm+1 ≤ ‖σ‖r,Lm by
the maximum principle, the formula (5.4) shows that the restriction map associated to the
inclusion Lm ⊃ Lm+1 maps Cm into Cm+1 for every m ≥ 0. By choosing ε > 0 small
enough, we can also ensure that the restriction map associated to Lm ⊃ K maps Cm into a
given neighborhood W of σ0|K in I r

∗ (K,C2n). �
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domains. Preprint arXiv:1510.04006.
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