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Abstract. We generalize the classical Wolff-Denjoy theorem to certain infinitely connected

Riemann surfaces. Let X be a non-parabolic Riemann surface with Martin boundary ∆.
Suppose each Martin function ky, y ∈ ∆, extends continuously to ∆\{y} and vanishes there.

We show that if f is an endomorphism of X and the iterates of f converge to the point

at infinity, then the iterates converge locally uniformly to a point in ∆. As an application,
we extend the Wolff-Denjoy theorem to non-elementary Gromov hyperbolic covering spaces

of compact Riemann surfaces. Such covering surfaces are of independent interest. Finally,
we use the theory of non-tangential boundary limits to give a version of the Wolff-Denjoy

theorem that imposes certain mild restrictions on f but none on X itself.

Introduction. The classical theorem on the iteration of endomorphisms of the unit disc
D, i.e., holomorphic maps from D into itself, is the theorem of Wolff and Denjoy of 1926.
It states that if such a map f is not an elliptic automorphism of D, then the iterates fn

converge locally uniformly to a point in the closed unit disc D. The following theorem of
Heins [Hei] seems to be the strongest available generalization of the Wolff-Denjoy theorem
to arbitrary Riemann surfaces.
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Theorem (Heins). Let f be an endomorphism of a Riemann surface X covered by D.

Then one of the following holds:

(1) The iterates of f converge locally uniformly to a point in X. This point is the

unique fixed point of f .

(2) f is an automorphism of X of finite order.

(3) X is D, D \ {0} or an annulus, and f is an irrational rotation, so a subsequence

(fnk) converges locally uniformly to the identity.

(4) The iterates of f converge locally uniformly to an end of X.

Moreover, in case (4), if X is a smoothly bounded domain in a compact Riemann surface,

then the iterates of f converge locally uniformly to a boundary point of X.

Suppose now that X is a non-parabolic Riemann surface (meaning that X has a Green
function), so the Martin boundary of X is defined. For the theory of the Martin boundary,
see [CC2] or [Has]. The Martin compactification is finer than the end compactification.
In fact, the connected components of the Martin boundary correspond to the ends of
X. It is natural to ask whether the iterates of an endomorphism of X always converge
to a point of the Martin boundary in case (4) above. As far as I know, this is an open
question for infinitely connected surfaces. In this paper, we give an affirmative answer for
surfaces X that satisfy what we call the Picard existence principle, a simple and explicit
condition on the Martin functions of X. It holds in particular if X is regular and satisfies
a boundary Harnack principle.

This enables us to extend the Wolff-Denjoy theorem to Galois covering spaces of com-
pact Riemann surfaces whose covering group is non-elementary hyperbolic in the sense
of Gromov. It is a non-trivial fact, due to Ancona [Anc], that such covering surfaces
satisfy the Picard existence principle. These surfaces are infinitely connected, except for
the disc itself. They have come up in investigations of covering spaces of projective alge-
braic manifolds related to the Shafarevich conjecture and turned out to have interesting
function-theoretic properties, see [Lár]. Examples are given by connected Riemann sur-
faces in the open unit ball in Cn, n ≥ 2, that are preimages of smooth curves in compact
quotients of the ball.

Notation. Let X be a non-parabolic Riemann surface with Poincaré distance d. Let
Gx = G(x, ·) be the Green function with pole x ∈ X. Let ∆ be the Martin boundary of
X with respect to a fixed base point a ∈ X, X = X ∪∆ be the Martin compactification,
and ky be the Martin function with pole y ∈ ∆. It is the limit of G(·, z)/G(a, z) as z → y.
We define the following property that X may or may not have.

Picard existence principle (PEP). Each Martin function ky extends continuously to

∆ \ {y} and vanishes there.

Let us give a sufficient condition for PEP to hold. Suppose X is regular, meaning that
the Dirichlet problem can be solved for all continuous functions on ∆. Let y ∈ ∆ have a
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decreasing neighbourhood basis Vn, n ∈ N. Let un be a non-negative continuous function
on ∆, supported on Vn, whose harmonic extension hn has hn(a) = 1. Then

hn(x) =

∫
∆

kz(x)un(z)σ(z), x ∈ X,

where σ is the harmonic measure on ∆. By passing to a subsequence, we may assume
that the probability measures unσ converge in the weak-star topology to a measure µ on
∆. Clearly, µ is supported on y, so µ = δy and hn → ky pointwise (and hence locally
uniformly) by the integral formula.

This shows that PEP holds for a regular surface X if the space of positive harmonic
functions on X that vanish on a given open set in ∆ is closed in the locally uniform
topology. Hueber [Hue] has shown that this is equivalent to the following boundary
Harnack principle.

Boundary Harnack principle. For any open subsets U and V of X with V ⊂ U and

any x ∈ X, there is c > 0 such that

h ≤ c h(x) on V ∩ X

for all positive harmonic functions h on X that vanish continuously on U ∩ ∆.

We now state our main result, which strengthens Heins’ theorem. The method of proof
is borrowed from [Hei].

Theorem 1. Let X be a non-parabolic Riemann surface satisfying PEP. If the iterates

of an endomorphism f of X converge to the point at infinity, then the iterates converge

locally uniformly to a point in the Martin boundary of X.

Note that by Heins’ theorem, it suffices to assume merely that the orbit {fn(x)} of
some point x ∈ X is unbounded. Note also that if fn → ∞ pointwise, then fn → ∞
locally uniformly since f shrinks the Poincaré distance.

Before proceeding to the proof, we need to establish the following geometric property
of the Martin compactification. It says that distinct Martin boundary points are infinitely
far apart in the Poincaré metric.

Lemma. Let X be a non-parabolic Riemann surface satisfying PEP, and let p and q be

distinct points in ∆. For every M > 0 there are neighbourhoods U of p and V of q in X
such that

d(U ∩ X, V ∩ X) > M.

Proof. Otherwise, there are sequences xn → p and yn → q in X such that d(xn, yn) is
bounded. Then

kq ≤ ckp
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for some c > 0 by [CC1]. Hence, by PEP, kq vanishes continuously on all of ∆, so kq = 0,
which is absurd. �

Proof of theorem 1. We may assume that ∆ contains at least two points; otherwise there
is nothing to prove. Then PEP implies that Ga(x) → 0 as x → ∞.

Choose p ∈ X such that p(n) = fn(p) 6= a, n ≥ 0. Since Ga(p(n)) → 0, there is a
subsequence (n(k)) such that

Ga(p(n(k))) > Ga(p(n(k) + 1)).

Furthermore, there is a subsequence (n(k(j))) such that p(n(k(j))) converges to a point
q ∈ ∆.

Now Gx is characterized as the smallest positive superharmonic function u on X with
u(z) + log |z| harmonic near x, where z is a local coordinate centred at x. This implies
that

G(f(x), f(y)) ≥ G(x, y), x, y ∈ X.

Hence,
G(f(x), p(n(k(j)) + 1)) ≥ G(x, p(n(k(j)))),

and
G(f(x), p(n(k(j)) + 1))

G(a, p(n(k(j)) + 1))
≥

G(x, p(n(k(j))))

G(a, p(n(k(j))))
. (*)

The Poincaré distance on X is shrunk by f , so the distance between p(n(k(j))) and
p(n(k(j)) + 1) is bounded independently of j. Hence, p(n(k(j)) + 1) → q by the lemma.

Letting j → ∞ in (*) now yields

kq ◦ f ≥ kq.

For any x ∈ X, we have fn(x) → ∞ and kq(f
n(x)) ≥ kq(x) > 0, so fn(x) → q by PEP.

By the lemma, this implies that fn → q locally uniformly on X. �

It is easy to see that theorem 1 holds under various slightly different hypotheses. For
instance, the above proof works with minor modifications if we assume that Ga vanishes
at infinity and for every q ∈ ∆,

(1) kq is unbounded, and

(2) for every neighbourhood U of q in X, kq is bounded on X \ U .

Ancona’s work. Ancona [Anc] has obtained strong results about the interplay of geom-
etry and potential theory on Riemannian manifolds that are Gromov hyperbolic, coercive
and have bounded geometry. Among other things, he has shown that they satisfy PEP for
the Laplace-Beltrami operator. His conditions are rather complicated to state precisely,
so we content ourselves with the following statement.
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Theorem (Ancona). Let X be a Galois covering space of a compact Riemannian man-

ifold with a non-elementary hyperbolic covering group. Then X satisfies PEP.

Hyperbolic groups were introduced by Gromov in [Gro]. See also [CDP] and [GH].
Gromov has suggested that such groups are in a sense generic. A group is hyperbolic if
it is Gromov as a metric space in the word metric. This means that geodesic triangles
in the Cayley graph are uniformly thin. A hyperbolic group is either almost cyclic or
non-amenable, in which case it is called non-elementary. Fundamental groups of compact
Riemannian manifolds of negative sectional curvature are examples of hyperbolic groups.
A Riemannian manifold X as in the theorem is a Gromov space. Also, X is known to be
regular and to have an infinite dimensional space of bounded harmonic functions.

From theorem 1 and the theorems of Heins and Ancona, we now obtain the following
extension of the Wolff-Denjoy theorem.

Theorem 2. Let X be a Galois covering space of a compact Riemann surface with a

non-elementary hyperbolic covering group. Let f be an endomorphism of X. Then one

of the following holds:

(1) The iterates of f converge locally uniformly to a point in the Martin compactifi-

cation of X.

(2) f is an elliptic automorphism of X. Then f has finite order, unless X = D and

f is an irrational rotation.

If f is an automorphism, then f is called elliptic if the orbit {fn(x)} of some and
hence every point x ∈ X is bounded. This is the general definition for an isometry of a
Gromov space.

Examples. Let M be a projective algebraic manifold of dimension n ≥ 2 with a hy-
perbolic fundamental group. The class of such manifolds contains all compact Kähler
manifolds of negative sectional curvature, such as ball quotients. Also, if Mo is in this
class, then so is M if one of the following holds.

(1) M is an ample divisor in Mo.
(2) M = Mo × M ′ with M ′ projective and π1(M

′) finite.
(3) There is a finite unbranched covering M → Mo or Mo → M .

Suppose M is embedded into some projective space and let C be the transverse inter-
section of M by a linear subspace of codimension n − 1. Then C is a smooth curve in
M . By the Lefschetz hyperplane theorem, C is connected and the map π1(C) → π1(M)
is surjective, which implies that the preimage X of C in the universal covering space of
M is connected. The Riemann surface X is non-parabolic iff π1(M) is not almost cyclic,
and then the Wolff-Denjoy theorem holds for X.

Final remarks. In view of theorem 1, one might conjecture that if the iterates of an
endomorphism of a non-parabolic Riemann surface X converge to the point at infinity,
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then they converge locally uniformly to a point in the Martin boundary of X. Let us
conclude by providing some further evidence for this conjecture.

We can lift an endomorphism f of X to an endomorphism F of the universal covering
D. Suppose fn → ∞. Then F n → ∞, and by the original Wolff-Denjoy theorem,
Fn → q ∈ T = ∂ D locally uniformly in D.

Observation. Let X be a non-parabolic Riemann surface with Martin boundary ∆ and

universal covering map φ : D → X. Let f be an endomorphism of X with a lifting

F : D → D such that

(1) F n → q ∈ T non-tangentially, and

(2) φ has a non-tangential limit p ∈ ∆ at q.

Then fn → p.

This is of course obvious, but the point is that no conditions are imposed on X, and
conditions (1) and (2) on f are, in a sense, generically satisfied, as we will now explain.

First, by a result of Cowen [Cow], if F : D → D is an endomorphism and F n → q ∈ T,
then F n → q non-tangentially, unless F is conjugate to a parabolic Möbius transformation
on a fundamental set. A fundamental set is an F -invariant domain that eventually
swallows any compact set under the action of F . Also, if the angular derivative

F ′(q) = lim
r→1−

F ′(rq) ∈ (0, 1]

is not equal to 1, then F n → q non-tangentially. It is reasonable to interpret this as
saying that F n → q non-tangentially for the generic F .

As for (2), combining results from [CC2, Chapter 19] and [Has, p. 60], we obtain the
following statement.

Theorem. The universal covering map φ : D → X has a non-tangential limit in ∆ at

almost every point of T.

Let us note that in general there are points in T where φ does not have a non-tangential
limit in ∆. Conical limit points of the covering group G, for instance fixed points of
hyperbolic elements of G, are examples of such points. Hence, the theorem directly
implies the well-known fact that the conical limit set of G has measure zero.
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