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1. Introduction.

Hardy theory deals with holomorphic and harmonic functions whose growth is bounded
in a certain precise sense that has turned out to be fruitful, important and appropriate
for many purposes. The Hardy class Hp(X), 0 < p < ∞, of a Riemann surface X is
the space of holomorphic functions f on X such that |f |p has a harmonic majorant, and
H∞(X) is the space of bounded holomorphic functions on X. In this paper, we will study
Hardy classes on infinite-sheeted Galois covering spaces of compact Riemann surfaces.
Such covering spaces may be thought of as surfaces with a large group of automorphisms.
They are infinitely connected, with the obvious exceptions of the disc, the plane and the
punctured plane [Gri]. We will mostly assume that the covering group is hyperbolic in
the sense of Gromov [Gro1], because only in this case do we have enough information
about the action of automorphisms on the Martin boundary, where Hardy functions are
represented by measures.

The Hardy classes of the unit disc have been studied intensively ever since Hardy
introduced them in 1915, leading to many developments in function theory, functional
analysis and harmonic analysis. The theory has been extended with considerable suc-
cess to Riemann surfaces with smooth boundary, non-planar as well as planar, see e.g.
[Hei]. On the other hand, very little is known about Hardy classes of infinitely connected
surfaces. The exception is the special class of Parreau-Widom surfaces, see [Has], which
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have been shown to have a Hardy theory similar to that of the disc. Apart from rela-
tively compact domains in open surfaces, this is the only class of surfaces known to have
non-constant bounded holomorphic functions. We will show that most covering surfaces,
including those of greatest interest to us, are not Parreau-Widom.

Before describing the contents of the paper, we will discuss the possible applications
that motivated our work and give some evidence that the restriction to Gromov hyperbolic
coverings is natural and mild enough to be of interest.

Besides being of interest in itself, the Hardy theory of covering surfaces has potential
applications to the Shafarevich conjecture, a central problem in higher dimensional ana-
lytic geometry. This conjecture states that the universal covering space of any projective
algebraic manifold is holomorphically convex. There are no known counterexamples to
the conjecture, and it has been verified only in a number of fairly special cases. For a
survey of results related to the Shafarevich conjecture prior to 1985, see [Gur]. For more
recent results in this area, see [ABR, Cam1, Cam2, Cam3, Kat, Kol1, Kol2, Nap1, Nap2,
NR, Ram]. In our paper [Lár], we approached the problem of constructing holomorphic
functions on covering spaces by proving an extension theorem that we will now describe.

Let M be a projective algebraic manifold of dimension n ≥ 2 and π : Y → M be an
infinite covering space. Suppose M is embedded in some projective space by sections of a
very ample line bundle L. The generic linear subspace of codimension k < n intersects M
transversely in a submanifold C of codimension k. By the Lefschetz hyperplane theorem,
C is connected and the inclusion of C in M induces an epimorphism of fundamental
groups, so the preimage X = π−1(C) is connected. The extension theorem states that
if L is sufficiently positive, then a holomorphic function f on X extends to all of Y if it
does not grow too fast. More precisely, we must have |f | ≤ ceεr for ε > 0 small enough,
where r is the distance from a fixed point in X with respect to any metric pulled back
from C. In particular, if f is bounded, then f extends to Y .

Now take k = n−1, so that X is a Riemann surface. Then Harnack’s inequality easily
implies that functions f in the Hardy class Hp(X) satisfy the above bound on growth and
therefore extend to Y if p is large enough. The relevance of Hardy theory for coverings
of compact Riemann surfaces is now clear. In a sense, many Hp functions on X for p
large give many holomorphic functions on Y . It is an interesting open problem to decide
whether Hp-convexity of some or all X in Y as above, for p sufficiently large, implies
holomorphic convexity of Y . By Hp-convexity of X we mean that for every infinite subset
S of X without limit points there is an Hp function on X which is unbounded on S.

Let us briefly discuss the restriction to Gromov hyperbolic coverings. First we recall
that a simply connected complete Kähler manifold of non-positive sectional curvature is
a Stein manifold [Wu]. Hence the Shafarevich conjecture is true for a compact Kähler
manifold of negative sectional curvature. Such manifolds have hyperbolic fundamental
groups. Hyperbolicity of π1(M) is a condition on the large-scale geometry of the universal
covering space of M . The class of hyperbolic coverings is therefore a natural one to
consider, but how substantial is the generalization? In other words, which projective
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manifolds have a hyperbolic fundamental group? As far as I know, this question has not
been given the attention it deserves, but we can make a few elementary observations.

As mentioned above, if M is negatively curved, e.g. a ball quotient, then π1(M) is
hyperbolic. From such manifolds we can construct many more examples. Namely, π1(M2)
is hyperbolic if π1(M1) is hyperbolic and one of the following holds:

(1) M2 is an ample divisor in M1 and dimM2 ≥ 2.
(2) M2 = M1 ×M with π1(M) finite, e.g. M simply connected.
(3) There is a finite unbranched covering M1 →M2 or M2 →M1.

It is easy to see that if M is obtained from a negatively curved manifold in this way, then
the universal covering of M is holomorphically convex, but not necessarily Stein, so M
may not be non-positively curved.

We might add that hyperbolicity of the fundamental group of a compact Kähler man-
ifold M does not seem closely related to other important notions of hyperbolicity. It is
claimed, though, that if π1(M) is hyperbolic and π2(M) = 0, then M is Kähler hyperbolic
and hence Kobayashi hyperbolic [Gro2].

Additional motivation for studying Gromov hyperbolic coverings of compact Riemann
surfaces comes from the work of Ancona [Anc], to be described in section 2, which exhibits
a strong relationship between geometry and potential theory for such spaces. In this paper
we attempt to bring function theory into the picture as well.

Let us now describe the contents of the paper. In section 2 we summarize the necessary
background material on Gromov hyperbolicity and the Martin boundary and give new
examples of Gromov spaces. Section 3 contains our results on the boundary action of
a cocompact hyperbolic covering group in the general setting of Riemannian manifolds.
In section 4 these results are applied to prove the following theorem on Hardy classes,
which gives a sufficient condition for the existence of as many Hp functions as there can
possibly be.

Main Theorem. Let X be a Galois covering space of a compact Riemann surface with

a non-elementary hyperbolic covering group. Then either:

(1) every positive harmonic function on X is the real part of a holomorphic function,

or

(2) if u ≥ 0 is the real part of an H1 function on X, then the boundary decay of u at

a zero on the Martin boundary of X is no faster than its radial decay.

In case (1), X is Hp-convex for each p <∞.

Positive harmonic functions are easily constructed as Poisson integrals of measures on
the boundary. Hence the first alternative in this dichotomy provides a large supply of
holomorphic functions of slow growth, which are in general very hard to construct. The
second alternative is characteristic of the higher dimensional case. It gives a necessary
condition for a boundary function to extend to the real part of a holomorphic function.
Section 4 contains a further discussion of this, as well as examples.
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The dichotomy needs to be clarified, and many questions remain unanswered. For
instance, I do not know if group theoretic properties of the covering group determine
which alternative holds, or if (1) always holds for covering spaces with one end. We
are primarily interested in covering spaces with one end, because the universal covering
space of a compact Kähler manifold with infinite fundamental group has one end [ABR].
In section 5 we show that there are hyperbolic covering spaces of compact Riemann
surfaces of any genus greater than 1 with infinitely many ends that have no non-constant
bounded holomorphic functions, although they do have an infinite dimensional space
of bounded harmonic functions. These covering spaces are domains of discontinuity of
certain Schottky groups.

Section 5 also contains our proof that a Parreau-Widom covering space of a com-
pact Riemann surface is either the disc or homeomorphic to a sphere with a Cantor set
removed. I expect, but cannot prove, that the latter possibility does not occur.

Finally, in section 6, we give a very short proof of a theorem of Kifer and Toledo,
illustrating the advantages of working on the boundary. This theorem states that if a
Galois covering space of a compact Riemannian manifold M has a non-constant bounded
harmonic function, then it has an infinite dimensional space of such functions. It actually
suffices to assume that M is parabolic. We also prove an analogous theorem for positive
harmonic functions.

Most of the results we state for a Galois covering space X with a covering group Γ
apparently still hold if Γ is only assumed to act properly discontinuously on X. In other
words, the assumption that Γ act freely on X seems largely superfluous. We have not
pursued this generalization in detail.

All covering spaces considered in this paper will be Galois, meaning that the covering
group acts transitively on the fibres. All our manifolds will be connected.

Acknowledgement. I would like to thank László Lempert for helpful discussions and
for critically reading a draft of the paper.

2. Gromov hyperbolicity and the Martin boundary.

In this section we will describe some necessary background material and establish
notation. For the theory of Gromov hyperbolic spaces and groups we refer the reader
to Gromov’s original paper [Gro1], the expositions [CDP] and [GH], and the summary
in [CP]. The Martin boundary of Riemann surfaces is discussed in [CC] and [Has]. Fi-
nally, one should consult [Anc] on the Martin boundary of Riemannian manifolds and its
relationship to the Gromov boundary.

Let X be a metric space with distance function d. We will write |x− y| for d(x, y) and
|x| for d(x, o), where the base point o ∈ X is fixed once and for all. A geodesic in X is
an isometry from an interval in R into X, or the image of such an isometry.

The Gromov product of x, y ∈ X with respect to the base point o is

(x|y) = (x|y)o = 1
2 (|x| + |y| − |x− y|).
4



We call X Gromov hyperbolic or simply Gromov if there is δ ≥ 0 with

(x|y) ≥ min{(x|z), (y|z)} − δ, x, y, z ∈ X.

If any two points in X can be joined by a geodesic segment, then this means that geodesic
triangles inX are uniformly thin. Among the basic examples of Gromov spaces are simply
connected complete Riemannian manifolds with sectional curvature bounded above by a
negative constant. Trees form another important class of Gromov spaces.

The following result, prompted by a question of Fausto Di Biase, gives new examples
of Gromov spaces. They will not play a role elsewhere in the paper.

2.1. Proposition. Let X be a simply connected, smoothly bounded, strongly pseudo-

convex domain in Cn. Consider X as a metric space with the Bergman metric, the

Carathéodory metric or the Kobayashi metric. Then X is Gromov.

Proof. The Bergman metric has negative sectional curvature bounded away from zero
outside a compact set [Kle], so X is Gromov in the Bergman metric. It is well known
that for a C2 bounded strictly pseudoconvex domain, the three distances are mutually
comparable outside a compact; see [JP] and the references therein. Hence X is also
Gromov in the Carathéodory and Kobayashi metrics. �

This result may be of interest because it gives examples of Gromov metrics that are
very different from Riemannian metrics. There are domains X as in the proposition
(necessarily not strongly convex) with infinitely many Kobayashi geodesics joining the
same two points and infinitely many Kobayashi geodesics having the same tangent vector
at a point [Myung-Yull Pang, private communication].

It is not clear to what extent the conditions on X can be relaxed. Bounded symmetric
domains of rank at least 2 are simply connected and weakly pseudoconvex, but not
Gromov, since they contain flats. An annulus in C is not simply connected, but still
Gromov in the Poincaré metric.

From now on, we will assume that X is a complete Riemannian manifold with the
distance function given by the Riemannian metric.

Suppose X is Gromov. Scaling the metric on X by the functions e−ε|·| with ε > 0
sufficiently small, we obtain a class of metrics | · − · |ε on X, called visual metrics.
CompletingX with respect to any one of these metrics gives the Gromov compactification
X̄ of X. The Gromov boundary ∂X = X̄ \X can also be constructed as the set of ends
of geodesic rays issuing from o. The Gromov product extends to X̄ in the following way.
For x, y ∈ X̄,

(x|y) = inf lim inf
n→∞

(xn|yn),

where the infimum is taken over all sequences (xn) in X converging to x and (yn) con-
verging to y. (This is the definition of [CDP]. The definition in [GH] is slightly different,
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but essentially equivalent.) Clearly, there are xn → x and yn → y in X such that
(xn|yn) → (x|y), and (x|y) is the smallest such limit. For any xn → x and yn → y in X,

lim inf
n→∞

(xn|yn) − 2δ ≤ (x|y) ≤ lim inf
n→∞

(xn|yn).

We have

|x− y|ε ≤ ce−ε(x|y), x, y ∈ X̄,

where c depends only on δ and ε. On ∂X, |x− y|ε and e−ε(x|y) are actually comparable.
Next we describe the Martin boundary of X (for the Laplace-Beltrami operator).

Assume that X is non-parabolic, i.e., that X has a non-constant negative subharmonic
function. This means that X has a Green kernel G, which yields the Martin kernel

ky(x) = k(x, y) = G(x, y)/G(o, y), x, y ∈ X.

The Martin compactification X∗ of X is the unique compactification of X to which
all the functions y 7→ k(x, y), x ∈ X, extend continuously such that the extensions
separate the points of the Martin boundary ∆ = X∗ \X. The Martin compactification is
metrizable. The Martin functions ky, y ∈ ∆, are positive harmonic functions on X with
ky(o) = 1. Among them are all the minimal such functions; they correspond to points in
the minimal Martin boundary ∆1, which is a non-empty Gδ subset of ∆. Recall that a
positive harmonic function u is called minimal if every positive harmonic minorant of u
is a constant multiple of u.

Let hp(X), 1 ≤ p < ∞, be the space of real harmonic functions u on X such that
|u|p has a harmonic majorant, and let h∞(X) be the space of real bounded harmonic
functions on X. The space h1(X) is the space of functions that can be written as the
difference of two positive harmonic functions. Such functions are represented by finite
real Borel measures on the Martin boundary by means of a generalized Poisson integral.
More precisely, for every u ∈ h1(X) there is a unique measure µ on ∆1 such that

u(x) =

∫

∆1

ky(x)µ(y), x ∈ X.

Then we write u = H[µ]. Conversely, every measure µ on ∆1 defines a function u ∈ h1(X)
in this way, so µ 7→ H[µ] is an order-preserving isomorphism from the vector space M(∆1)
of finite real Borel measures on ∆1 onto h1(X). The constant function 1 is represented
by the harmonic measure σ on ∆1. The Lebesgue spaces Lp(∆) are defined with respect
to σ. Every u = H[µ] in hp(X) has a fine boundary function û ∈ Lp(∆) such that ûσ is
the absolutely continuous part of µ. If µ = ûσ, then u is called quasi-bounded. This is
always the case if p > 1. For an absolutely continuous measure vσ, v ∈ L1(∆), we simply
write H[v] instead of H[vσ].
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From now on, we will assume that X is a Galois covering space of a compact manifold
with a covering group Γ of isometries. Then X is Gromov if and only if Γ is hyperbolic.
This means that the word metric on Γ, defined using any finite set of generators, makes Γ
into a Gromov space. Also, X is non-parabolic if and only if Γ has more than quadratic
growth, which means that Γ is neither finite nor a finite extension of Z or Z × Z [Anc,
Var, VSC]. Then the Green function Go with pole o vanishes at infinity [CF, Var].

Assume finally that Γ is hyperbolic and non-elementary, i.e., neither finite nor a finite
extension of Z. Then Γ is non-amenable, so X has a non-constant bounded harmonic
function [LS]. In particular, X is non-parabolic. Also, Γ acts on the Gromov boundary
∂X, which is uncountable and perfect as a metric space, by homeomorphisms which
are Lipschitz and quasi-conformal with respect to the visual metrics. We highlight the
following important fact, proved in [GH].

2.2. Proposition. Every point of the Gromov boundary has a dense Γ-orbit.

The key to the main result of this paper is the following theorem of Ancona [Anc],
which relates the potential theory of X to its geometry.

2.3. Theorem (Ancona). Let X be a Galois covering space of a compact Riemannian

manifold with a non-elementary hyperbolic covering group. Then the Gromov compacti-

fication of X is naturally homeomorphic to the Martin compactification of X.

More precisely, there is a Γ-equivariant homeomorphism φ : X̄ → X∗ such that φ|X is
the identity and for x ∈ ∂X, the Martin function kφ(x) is the unique positive harmonic
function u on X with u(o) = 1 that is bounded above by a multiple of Go on the
complement of any neighbourhood of x in X̄. This implies that ky, y ∈ ∆, extends
continuously to X∗ \ {y} and vanishes on ∆ \ {y}. All the Martin functions are minimal,
so ∆1 = ∆.

Hence the geometrically defined Gromov boundary and the analytically defined Martin
boundary are in fact the same. We will identify them by means of the homeomorphism
φ and denote both of them by ∂X.

Ancona also proves that the Dirichlet problem is solvable on X for any continuous
function on ∂X. In other words, if u is a continuous function on ∂X, then

lim
x→a

H[u](x) = u(a), a ∈ ∂X.

3. The boundary action of a hyperbolic group.

In this section, X will denote a Galois covering space of a compact Riemannian man-
ifold M with a non-elementary hyperbolic covering group Γ. Then X is a Gromov space
and the Gromov boundary is naturally homeomorphic to the Martin boundary. We will
investigate the action of Γ on the compactification X̄ and the boundary ∂X. The main
question to be addressed is: When does a positive harmonic function on X have a dense
Γ-orbit in h1(X)? Our results will be used in section 4 to study the Hardy classes of X
when M is a compact Riemann surface.
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3.1. Lemma. The harmonic measure σ on ∂X has no atoms.

Proof. If a ∈ ∂X has positive mass, then ka is bounded because

σ(a)ka(x) ≤

∫

∂X

ky(x)σ(y) = 1, x ∈ X.

But on a geodesic ray from o to a,

c−1 ≤ Goka ≤ c

[Anc]. Since Go vanishes at infinity, ka is unbounded near a. �

3.2. Lemma. Let a ∈ ∂X. Then there are γn ∈ Γ, n ∈ N, such that γn(o) → a and the

map

N → X, n 7→ γn(o),

is a quasi-isometry with

|n−m| − 2D ≤ |γn(o) − γm(o)| ≤ |n−m| + 2D, (3.1)

where D is the diameter of M . Hence, every boundary point is a conical limit point.

Suppose γ−1
nk

(o) → b for a subsequence (nk). Then b ∈ ∂X and γnk
→ a locally

uniformly on X̄ \ {b}. In fact, for every compact K ⊂ X̄ with b 6∈ K there is c > 0 such

that

min
K

(γnk
|a) ≥ nk − c.

Finally, if γ−1
nk

(a) → a′, then a′ 6= b.

A boundary point a is a conical limit point if it can be approached non-tangentially,
i.e., within a bounded distance of any geodesic ray ending at a, by points in any Γ-orbit.

If a is the attracting fixed point of a hyperbolic isometry γ ∈ Γ, then it is well known
that the sequence of iterates γn, n ∈ N, has all the properties that we have asserted for the
sequence (γnk

), mutatis mutandis, with b being the repelling fixed point of γ. Our lemma
states that every boundary point can be approached by a sequence of transformations
having the same essential properties as the iterates of a hyperbolic isometry. The last
statement of the lemma will not be needed in the following, but is included to strengthen
the generalization.

Proof. Let α : [0,∞[→ X be a geodesic ray from o to a. For every n ∈ N there is γn ∈ Γ
with |α(n) − γn(o)| ≤ D. Then (3.1) is clear.

Suppose γ−1
nk

(o) → b and let K ⊂ X̄ be compact with b 6∈ K. Let x ∈ K. Then

(γn(x)|a) ≥ min{(γn(x)|γn(o)), (γn(o)|a)} − δ.
8



We will consider each of the two products on the right hand side in turn. First we have

(γn(o)|a) ≥ lim inf
t→∞

(γn(o)|α(t))− 2δ

= 1
2

lim inf
t→∞

(|γn(o)| + |α(t)| − |γn(o) − α(t)|) − 2δ

≥ n−D − 2δ.

Next, let U be a neighbourhood of K and V be a neighbourhood of b such that
Ū ∩ V̄ = ∅. This implies that there is c > 0 with

(y|z) ≤ c, y ∈ U, z ∈ V.

Suppose xj → x in X. Then

(γnk
(x)|γnk

(o)) = (x|o)γ−1
nk

(o) ≥ lim inf
j→∞

(xj |o)γ−1
nk

(o) − 2δ.

For j and k sufficiently large,

2(xj|o)γ−1
n

k
(o) = |xj − γ−1

nk
(o)| + |γ−1

nk
(o)| − |xj |

= |xj | + |γ−1
nk

(o)| − 2(xj |γ
−1
nk

(o)) + |γ−1
nk

(o)| − |xj|

≥ 2|γ−1
nk

(o)| − 2c = 2|γnk
(o)| − 2c,

so
(γnk

(x)|γnk
(o)) ≥ |γnk

(o)| − c− 2δ ≥ nk −D − c− 2δ.

Therefore,
(γnk

(x)|a) ≥ nk − c,

with c independent of x ∈ K, so in any of the visual metrics on X̄,

‖γnk
− a‖ε,K ≤ cε max

x∈K
e−ε(γn

k
(x)|a) ≤ cεe

−ε(nk−c) → 0 as k → ∞.

Finally, γ−1
nk

(o) and γ−1
nk

(a) both converge to the same point if and only if

(o|a)γnk
(o) = (γ−1

nk
(o)|γ−1

nk
(a)) → ∞,

but
(o|a)γnk

(o) ≤ lim inf
t→∞

(o|α(t))γnk
(o)

and

2(o|α(t))γn
k
(o) = |γnk

(o)| + |α(t) − γnk
(o)| − |α(t)|

≤ |α(nk)| + |α(t) − α(nk)| − |α(t)| + 2D

= 2D
9



for t ≥ nk. �

We make h1(X) into a Banach space by defining the norm ‖u‖ of u ∈ h1(X) to be
v(o), where v is the least harmonic majorant of |u|. If u = H[µ], where µ is a measure
on ∂X, then v = H[|µ|], where |µ| is the total variation of µ, so

‖u‖ = v(o) =

∫

∂X

|µ| = ‖µ‖.

Hence, µ 7→ H[µ] is an isometry of the Banach space M(∂X) of finite real Borel measures
on ∂X onto h1(X).

The action of Γ on h1(X) by precomposition corresponds to an action by Banach
automorphisms µ 7→ γ∗µ on M(∂X) with

H[γ∗µ] = H[µ] ◦ γ.

The action on absolutely continuous measures uσ, u ∈ L1(∂X), is given by

γ∗(uσ) = (u ◦ γ)σ.

3.3. Lemma. The action of Γ on M(∂X) is continuous in the weak-star topology.

Note that the proof does not use hyperbolicity.

Proof. Let λ be a weak-star continuous functional on M(∂X), say λ(µ) =
∫

∂X
hµ with h

continuous on ∂X. Let γ ∈ Γ. We need to show that the linear functional λ ◦ γ∗ is also
weak-star continuous.

Consider the continuous functions y 7→ ky(x), x ∈ X, on ∂X. They span a subspace
E in C(∂X). If µ ∈M(∂X) and

H[µ](x) =

∫

∂X

ky(x)µ(y) = 0

for all x ∈ X, then µ = 0. Hence, E is weakly dense, and thus norm dense, in C(∂X).
For x ∈ X and µ ∈M(∂X),

∫

∂X

ky(x)(γ∗µ)(y) = H[γ∗µ](x) = H[µ](γx) =

∫

∂X

ky(γx)µ(y)

=

∫

∂X

ky(γo)kγ−1(y)(x)µ(y),

because, as is easily verified,

ky ◦ γ = ky(γo)kγ−1(y), y ∈ ∂X. (3.2)
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Hence,
∫

∂X

h(γ∗µ) =

∫

∂X

k
·
(γo)h ◦ γ−1µ

for every h ∈ E, and therefore for every h ∈ C(∂X). This shows that the linear functional
λ ◦ γ∗ is represented by the continuous function k

·
(γo)h ◦ γ−1. �

Suppose now that u ≥ 0 is an integrable function on ∂X. If u has a zero at a point
a ∈ ∂X, then we can use the visual metrics on X̄ to compare the boundary decay of u
at a to the radial decay of H[u] at a.

Let α : [0,∞[→ X be a geodesic ray from o to a. Let ξ be the infimum of the numbers
ζ > 0 such that for some c > 0,

H[u](α(t)) ≥ cζ−|α(t)| = cζ−t, t ≥ 0.

If
∫

∂X
uσ > 0, so H[u] > 0, then such numbers ζ exist by Harnack’s inequality, and there

is an upper bound for ξ depending only on X. Since

(α(t)|a) ≥ t = lim
s→∞

(α(t)|α(s)) ≥ (α(t)|a) + 2δ,

ξ is also the infimum of the numbers ζ > 0 such that for some c > 0,

H[u](α(t)) ≥ cζ−(α(t)|a) ≥ cε|α(t) − a|(log ζ)/ε
ε , t ≥ 0.

We say that the boundary decay of u at a is faster than its radial decay if there is a
neighbourhood V ⊂ ∂X of a such that

u(x) ≤ cε|x− a|sε , x ∈ V,

with s > (log ξ)/ε, in any or all of the visual metrics. Equivalently,

u(x) ≤ cη−(x|a), x ∈ V,

with η > ξ.

3.4. Theorem. Let X be a Galois covering space of a compact Riemannian manifold

with a non-elementary hyperbolic covering group Γ. Let u be a non-negative integrable

function on ∂X. If u(a) = 0 and the boundary decay of u at a is faster than its radial

decay, then the Γ-invariant subspace spanned by uσ in M(∂X) is weak-star dense.

Proof. We may assume that H[u] > 0. Find γn ∈ Γ such that γn(o) → a as in lemma
3.2, and suppose γ−1

nk
(o) → b. Let

vn = u ◦ γn

/

∫
∂X

u ◦ γnσ.
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Then vn ≥ 0 and
∫

∂X
vnσ = 1. We claim that vnk

σ converges to the Dirac measure δb as
k → ∞ in the weak-star topology.

We need to show that if U ⊂ ∂X is open and b 6∈ Ū , then
∫

U
vnk

σ → 0, i.e.,

∫

U
u ◦ γnk

σ
∫

∂X
u ◦ γnk

σ
→ 0 as k → ∞.

Since |α(n) − γn(o)| is bounded (see the proof of lemma 3.2), we have

∫

∂X

u ◦ γnσ = H[u ◦ γn](o) = H[u](γn(o)) ≥ cH[u](α(n)) ≥ cζ−n.

for some ζ < η. There is c > 0 such that

(γnk
(x)|a) ≥ nk − c for all x ∈ Ū .

Hence, γnk
(U) ⊂ V for k large enough, and

∫

U

u ◦ γnk
σ ≤ c

∫

U

η−(γnk
(x)|a)σ(x) ≤ cη−nk ,

so
∫

U
u ◦ γnk

σ
∫

∂X
u ◦ γnk

σ
≤ c

(

η

ζ

)−nk

→ 0 as k → ∞.

We have shown that the weak-star closure Ē of the Γ-invariant subspace E spanned
by uσ in M(∂X) contains the Dirac measure δb. By lemma 3.3, Ē is Γ-invariant. For
γ ∈ Γ,

γ∗(δb) = kb(γ(o))δγ−1(b)

by (3.2). Hence Ē contains all the Dirac measures δγ(b), γ ∈ Γ. Since each Γ-orbit in ∂X
is dense by proposition 2.2, this implies that E is weak-star dense in M(∂X). �

What does the condition that the boundary decay be faster than the radial decay mean
when X is the unit disc D with boundary T? We have H[u](z) ≥ c(1 − |z|) by the Hopf
lemma or by Harnack’s inequality at the boundary, so as z → a radially,H[u](z) ≥ c|z−a|.
Here, | · | denotes the ordinary absolute value. The condition means that there is ε > 0
with u(z) ≤ c|z− a|1+ε for z ∈ T close to a. In this particular situation it may in fact be
shown that the conclusion of the theorem holds if u is only assumed to be differentiable
at a.

Let us view this from a representation-theoretic perspective. We are considering a
representation of Aut(D) or SL(2,R) on M(T) with the weak-star topology, restricted
to a cocompact lattice Γ. This representation is different from the well-known unitary
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representations of SL(2,R). As usual, one is interested in invariant subspaces. Let us
start by dividing out by the obvious Γ-invariant subspace of constant multiples of the
harmonic measure (which is just the normalized Lebesgue measure on T), and call the
quotient W . It may well happen that the representation of Γ on W is reducible. If there
is a normal subgroup H in Γ such that the intermediate covering Y = D/H has a non-
trivial Martin boundary ∆, which is for instance the case if Γ/H is non-amenable, then
the pullback of M(∆) gives a non-trivial weak-star closed Γ-invariant subspace of W .
What we have claimed, however, is that a proper weak-star closed Γ-invariant subspace
of W cannot contain uσ for any non-constant differentiable function u on T.

4. Hardy classes on covering surfaces.

This section contains our results on the Hardy classes of Gromov covering spaces of
compact Riemann surfaces. We want to construct Hp functions on such spaces. We take
the point of view that hp functions are easy to obtain as Poisson integrals of Lp functions
on the boundary. The problem we wish to address is to decide when such functions are
real parts of holomorphic functions. Our main result, theorem 4.2, states that all h1

functions are real parts of holomorphic functions unless the boundary decay of the real
part of an H1 function at a boundary minimum is never faster than the radial decay.
This latter condition is characteristic of the higher dimensional case.

We will prove the theorem for all dimensions, although it is an interesting dichotomy
only for Riemann surfaces. In higher dimensions, harmonic functions are of course not
pluriharmonic in general. Then the theorem gives a necessary condition for a boundary
function to extend to the real part of a holomorphic function. Such a restriction is to
be expected. For example, consider the open unit ball Bn in Cn, n ≥ 2, and let u be
a pluriharmonic function on Bn. If L is a complex line, then u is harmonic on Bn ∩ L,
which is a disc in L, and the maximum value in the disc is taken on the boundary. Hence,
the interior decay of u at a boundary minimum controls its boundary decay.

Let X be a non-parabolic Kähler manifold with Martin boundary ∆. The Kähler
condition implies that real parts of holomorphic functions are harmonic. Let u ∈ h1(X)
be represented by a measure µ on ∆1. We know that u is the real part of a holomorphic
function if and only if the (1,0)-derivative ∂u is d-exact. This happens if and only if all
the periods of u are zero. We will investigate the periods by representing them on the
boundary.

Let α be a loop in X. The period of u over α is the real number

i

∫

α

∂u.

13



Using the integral representation of u, we get

i

∫

α

∂u = i

∫

α

∂x

(

∫

∆

ky(x)µ(y)
)

=

∫

∆

(

i

∫

α

∂xky(x)
)

µ(y)

=

∫

∆

hαµ,

where

hα(y) = i

∫

α

∂ky, y ∈ ∆.

Using Harnack’s inequality and the continuity of the function (x, y) 7→ ky(x) on X×∆, it
is easy to show that we can differentiate under the boundary integral and then interchange
the two integrals. Also, the function hα is continuous, so the period functional of α is
weak-star continuous on M(∆1).

We have proved the following lemma.

4.1. Lemma. Let X be a non-parabolic Kähler manifold. The subspace of real parts of

holomorphic functions is weak-star closed in M(∆1).

Now we state our main theorem. Recall from section 2 that u ∈ h1(X) is called quasi-
bounded if its boundary measure is absolutely continuous with respect to the harmonic
measure. Then u = H[û], where û ∈ L1(∆) is the fine boundary function of u.

4.2. Theorem. Let X be a Galois covering space of a compact Kähler manifold with a

non-elementary hyperbolic covering group. Then either:

(1) every h1 function on X is the real part of a holomorphic function, or

(2) if a quasi-bounded harmonic function u ≥ 0 on X is the real part of a holomorphic

function, then the boundary decay of u at a zero in ∂X is no faster than its radial

decay.

In case (1), if X is a Riemann surface, then X is Hp-convex for each p < ∞.

We may rephrase the dichotomy as follows. If a non-constant integrable function on
∂X with a sufficiently flat minimum extends to the real part of a holomorphic function
on X, then every measure on ∂X does.

Proof. Let u = H[û] be a quasi-bounded harmonic function on X which is the real part
of a holomorphic function. Let E be the Γ-invariant subspace spanned by ûσ in M(∂X).
Then H[µ] is the real part of a holomorphic function for every µ ∈ E. By lemma 4.1,
H[µ] is the real part of a holomorphic function for every µ in the weak-star closure of E.
If u ≥ 0 and the boundary decay of u at a zero in ∂X is faster than its radial decay, then
the weak-star closure of E is all of M(∂X) by theorem 3.4.
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Now suppose that (1) holds and dimX = 1. Let 1 < p < ∞ and z ∈ ∂X. By lemma
3.1, σ(z) = 0, so it is easy to construct a continuous Lp function v : ∂X → [0,∞] with
v(z) = ∞. Then H[v](x) → ∞ as x→ z in X. Namely, given M > 0, find a finite-valued
continuous function w < v on ∂X such that w(z) > M . Since the boundary is regular,
H[w](x) → w(z) as x → z in X. Hence, H[v](x) > H[w](x) > M if x ∈ X is sufficiently
close to z.

By (1), there is a holomorphic function f on X with H[v] = Re f . We need to show
that f ∈ Hp(X) or that w = Im f ∈ hp(X). Let ψ : D → X be the universal covering.
Since H[v] ∈ hp(X), we have H[v] ◦ ψ ∈ hp(D). By M. Riesz’ theorem, the harmonic
conjugate w ◦ψ of H[v] ◦ψ is also in hp(D). Since |w ◦ψ|p is invariant under the covering
group of ψ, so is its least harmonic majorant. Hence, |w|p has a harmonic majorant on
X. �

The remainder of this section will be devoted to a discussion of the one-dimensional
case.

The disc is of course an example of a Riemann surface X with h1(X) ⊂ Re O(X). It
is in fact the only surface X of finite topological type with non-constant h1 functions
such that h∞(X) ⊂ Re O(X). Namely, suppose X has finite topological type. Then X
is isomorphic to a compact surface with a finite number of points and discs removed.
Assume that at least one disc has been removed, for otherwise X has no non-constant
positive harmonic functions. Consider the surface Y obtained by removing a slightly
smaller disc. It is homeomorphic to X. If X is not the disc, then X and Y are not
simply connected, so there is a harmonic function u on Y which is not the real part of a
holomorphic function. Then neither is u|X, and u|X is bounded.

Let us describe a method for constructing infinitely connected examples of Riemann
surfaces X with h1(X) ⊂ Re O(X). Suppose we have a non-constant holomorphic map
C → S between compact Riemann surfaces of genus at least 2. Pull back the universal
covering D → S to a covering X → C. It is easy to show that X is connected if and only
if the induced morphism π1(C) → π1(S) is surjective. We assume this is the case. Then
X is Gromov in the Poincaré metric (or any other metric pulled back from C), because
the covering group π1(S) is hyperbolic. The induced map φ : X → D is a surjective
quasi-isometry, so it extends to a homeomorphism ∂X → T of the boundaries, which
preserves the Hölder structure defined by the visual metrics. This means that

1
c (x|y) − c′ ≤ (φ(x)|φ(y)) ≤ c(x|y) + c′, x, y ∈ ∂X.

Fix a ∈ ∂X. Given any θ > 1, there is g ∈ H1(D) such that the boundary function v̂ of
v = Re g satisfies v̂ ≥ 0, v̂(φ(a)) = 0 and

v̂(z) ≤ θ−(z|φ(a)), z ∈ T.

We can simply define v̂(z) to equal θ−(z|φ(a)). Let f = g◦φ ∈ H1(X) and u = Re f = v◦φ.
Then û ≥ 0, û(a) = 0 and

û(x) = v̂(φ(x)) ≤ θ−(φ(x)|φ(a)) ≤ θc′θ−(x|a)/c, x ∈ ∂X.
15



By choosing θ large enough, we can get

û(x) ≤ cη−(x|a), x ∈ ∂X,

with η arbitrarily large. This shows that X violates (2) and thus satisfies (1) in theorem
4.2.

The map φ : X → D is proper and its fibres are uniformly bounded in the Poincaré
metric on X. These properties alone imply that h1(X) ⊂ Re O(X) and X is Hp-convex,
as shown by the following result.

4.3. Proposition. Let X and Y be Riemann surfaces and φ : X → Y be a proper

holomorphic map with uniformly bounded fibres in the Poincaré metric on X. Then φ
induces a homeomorphism ∆X

1 → ∆Y
1 between the minimal Martin boundaries of X and

Y , and

h1(X) = h1(Y ) ◦ φ.

Hence,

h1(X) ⊂ Re O(X) iff h1(Y ) ⊂ Re O(Y ),

and for 1 ≤ p <∞,

X is Hp-convex iff Y is Hp-convex.

Here, the Martin boundaries are defined with respect to base points oX ∈ X and
oY ∈ Y such that φ(oX) = oY .

Proof. The map φ is a finite branched covering. Let k be the number of sheets of φ. For
a harmonic function u on X, let

(φ∗u)(y) =
1

k

∑

φ(x)=y

u(x)

for y ∈ Y outside the branch locus of φ. Extended across the branch points, φ∗u is a
harmonic function on Y . For a function v on Y , let φ∗v = v ◦ φ. Then φ∗φ

∗v = v and
φ∗φ∗u is the average of u over fibres.

Now let u > 0 be harmonic on X. Then ũ = φ∗φ∗u > 0 is also harmonic. Since the
fibres of φ are uniformly bounded, by Harnack’s inequality there is a constant c > 0 such
that

ũ ≤ cu.

If u is minimal, this implies that ũ and u are proportional, so u = ũ = (φ∗u) ◦ φ. It is
easy to verify that φ∗u is minimal on Y .

16



If u ∈ h1(X), then there is a measure µ on ∆X
1 such that

u(x) =

∫

∆X
1

ky(x)µ(y), x ∈ X.

We have seen that the functions ky, y ∈ ∆X
1 , are constant on fibres, so u is too. Therefore,

h1(X) = h1(Y ) ◦ φ.
Now we can easily show that if v is a minimal positive harmonic function on Y , then

so is φ∗v on X. Hence, the map φ∗ : ∆X
1 → ∆Y

1 has inverse φ∗, and these maps are
clearly continuous in the topology of locally uniform convergence. �

The proof shows that the proposition holds for any metric onX with a uniform Harnack
inequality, for instance a metric that pulls up to a metric with bounded geometry on the
disc. The Poincaré metric is such a metric. More generally, a uniform Harnack inequality
holds for any complete Riemannian metric with Ricci curvature bounded below [Yau].
(It is actually an infinitesimal version of the Harnack inequality that is proved in [Yau].)

The squaring map z 7→ z2 on the unit disc shows that a proper holomorphic map may
not have uniformly bounded fibres.

Let φ : X → D be a proper holomorphic map with uniformly bounded fibres. Proposi-
tion 4.3 implies that points in X in the same φ-fibre cannot be separated by h1 functions,
and hence not by bounded holomorphic functions either, whereas points in different φ-
fibres obviously can. Similar examples can be constructed using the extension theorem
in [Lár] described in the introduction. Let S be a compact Riemann surface of genus
at least 2. Consider a sufficiently ample curve C in the surface S × S and let X be its
pullback in the covering space D×S. Then points in X in the same slice {z}×S, z ∈ D,
cannot be separated by a bounded holomorphic function. Such a function would extend
to a holomorphic function on D × S and be constant on the slice. Somehow, the Hardy
theory of X detects compact subvarieties in the ambient space.

All the surfaces X with h1(X) ⊂ Re O(X) obtained from the disc using proposition
4.3 have one-dimensional minimal Martin boundary; the boundary is just the circle. I do
not know if examples with higher dimensional boundary exist.

An attractive case to consider would be a surface X in the ball Bn in Cn produced by
pulling up an ample curve from a compact quotient of the ball. The inclusion X ↪→ Bn is
a cobounded quasi-isometry between Gromov spaces, so the boundary of X is the sphere
∂Bn = S2n−1. I do not know if h1(X) ⊂ Re O(X). A first step towards a solution would
be to determine if X has a bounded holomorphic function which is not the restriction of
a bounded holomorphic function on the ball.

It is not hard, though, to show that X is Hp-convex for any p < ∞, so we do have
examples of Hp-convex surfaces with boundaries of arbitrarily high dimension.

5. Parreau-Widom covering surfaces.

In this section, we recall the six homeomorphism classes of non-compact covering
spaces of compact Riemann surfaces. (As before, all coverings are assumed to be Galois.)
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We show that five of these classes do not contain any Parreau-Widom surfaces other
than the disc. One of these five classes contains the covering surfaces that are of primary
interest from the point of view of the Shafarevich conjecture. This shows that previously
existing Hardy theory has little bearing on our investigation. We are unable to determine
if there are any Parreau-Widom surfaces in the sixth class, but we do give examples from
this class of surfaces with no non-constant bounded holomorphic functions.

Let us first recall that a non-compact orientable surface is determined up to homeo-
morphism by the following topological invariants.

The genus (the number of handles).

The space of ends, which is a totally disconnected compact Hausdorff space.

The open subset of planar ends.
This is a result of Kerékjártó. For a proof, see [Ric]. Every orientable surface is home-
omorphic to the complement of a closed totally disconnected subset E of the sphere S2

with a countable number of handles attached, such that only a finite number of handles
are attached to any compact subset of S2 \E [Ric].

Now let X be a non-compact covering space of a compact Riemann surface. In [Gri],
Kerékjártó’s classification is used to determine the possible topological types of X. We
will sketch the argument. First, X has one or two ends or its space of ends is homeo-
morphic to the Cantor set [Hop]. If X has non-zero genus, then by moving a handle all
over X by covering transformations we see that X has infinite genus and all its ends are
non-planar. Therefore X is homeomorphic to exactly one of the following six surfaces.

(1) The plane, so X is isomorphic to C or D.
(2) The punctured plane, so X is isomorphic to C \ {0}.
(3) The sphere with a Cantor set removed.
(4) An orientable surface with a single non-planar end.
(5) An orientable surface with two non-planar ends.
(6) An orientable surface with a Cantor set of non-planar ends.

We mention in passing that all six topological types are represented by coverings with
a hyperbolic covering group.

As we explained in the introduction, we are primarily interested in non-compact cov-
ering surfaces X obtained by pulling up a sufficiently ample curve C in a projective
manifold M to the universal covering space M̃ . Since M̃ has one end [ABR], so does
X. In general, the epimorphism π1(C) → π1(M) has a large kernel, so X → C is not
the universal covering and X is of type (4). Theorem 5.1 below shows that a covering
surface of type (4) is never Parreau-Widom. The class of covering surfaces of type (4) is
quite vast. It contains a continuum of different quasi-conformal types [Gri]. The function
theory of this class is uncharted territory where many interesting problems, such as the
one posed at the end of the previous section, await solution.

Let us recall that a non-parabolic Riemann surface X with a Green function Go is
18



called Parreau-Widom if
∫ ∞

0

b(t) dt <∞,

where b(t) is the first Betti number of the set {x ∈ X : Go(x) > t}. We interpret this
to mean that the topology of X grows slowly as measured by the Green function. If
X has finite topological type, then X is obviously Parreau-Widom, but one is of course
mainly interested in the infinitely connected case. If Go vanishes at infinity, then X is
Parreau-Widom if and only if

∑

Go(z) <∞, where the sum is taken over all the critical
points z of Go, counted with multiplicities. Parreau-Widom surfaces have been studied
extensively by a number of authors. They are the only infinitely connected surfaces for
which Hardy theory has been developed to any extent. They have a wealth of bounded
holomorphic functions. In particular, such functions separate points and directions. We
refer the reader to [Has] for an exposition.

5.1. Theorem. Let X be a Galois covering space of a compact Riemann surface which

is not of topological type (3). If X is Parreau-Widom, then X is the disc.

I expect, but cannot prove, that a covering surface of type (3) is never Parreau-Widom.

Proof. Assume that X is non-parabolic of infinite genus. We know that the Green func-
tion Go with pole o vanishes at infinity. We will show that X is not Parreau-Widom.

Find a regular value s of Go such that the smoothly bounded subsurface S = {G ≥ s}
has non-zero genus. By Harnack’s inequality, there is a < s with 0 < a < 1 such that

amax
K

Go < min
K

Go

for any compact set K in X \ S with diameter less than that of S. Let

An = {an > Go > an+2}, n ≥ 1.

Let Sν = γν(S), ν ≥ 1, with γν in the covering group Γ, be mutually disjoint in {Go < a},
such that X =

⋃

γν(S′) for some compact S′ ⊂ X containing S. Then each Sν is
contained in some An, and each point in {Go < a} lies in An for either one or two values
of n. For convenience we will assume that all an, n ≥ 1, are regular values of Go. If an

is critical, we can replace it by a nearby regular value without affecting the argument.
Now the (1,0)-derivative ∂Go extends to a holomorphic 1-form η on the double A′

n of
An. For the definition of the double of a bordered Riemann surface, see [AS] or [FK]. Let
g be the genus of A′

n and kn be the number of critical points of Go in An, counted with
multiplicities. By the Riemann-Roch theorem,

2kn = deg(η) = 2g − 2.
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Also, the first Betti number b1(An) of An is g, so

kn = b1(An) − 1.

Each Sν ⊂ An contains a handle. Using Mayer-Vietoris sequences, we see that these
handles give independent cycles in the homology of An. Therefore we obtain the rough
inequality

kn ≥ #{ν : Sν ⊂ An}.

Hence, we can form a sequence (zν) of critical points of Go such that zν and Sν belong
to the same An, and the number of times each critical point occurs in the sequence is at
most twice its multiplicity.

For each ν, choose a point xν in Sν . Then the sum
∑

Go(z) taken over all critical
points of Go, counted with multiplicity, is at least

1
2

∑

ν

Go(zν) ≥ 1
2a

2
∑

ν

Go(xν).

Choose p ∈ X \ Γo. Let m be the number of γ ∈ Γ with γ(p) ∈ S ′. By Harnack’s
inequality, there is c > 0 such that

Go(γ(p)) ≤ cGo(xν)

if γ(p) ∈ γν(S′). Hence,

1
2
a2

∑

ν

Go(xν) ≥
a2

2mc

∑

γ∈Γ

Go(γ(p)),

so if X is Parreau-Widom, then

∑

γ∈Γ

Go(γ(p)) <∞.

But then
∑

γ Go ◦ γ descends to a non-constant superharmonic function on the compact

quotient surface X/Γ, which is absurd. �

To conclude this section, we present examples of covering surfaces of type (3) with
a non-elementary hyperbolic covering group but no non-constant bounded holomorphic
functions. Our reference for the following paragraph is [Mas].

Let D be a domain in the Riemann sphere, bounded by 2g, g ≥ 1, mutually disjoint
simple closed curves C1, C

′
1, . . . , Cg, C

′
g. For i = 1, . . . , g, let γi be a Möbius transforma-

tion with γi(Ci) = C ′
i and γi(D)∩D = ∅. The Schottky group Γ generated by γ1, . . . , γg
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is free on these generators, and hence hyperbolic. It is a Kleinian group with fundamental
domain D and region of discontinuity

Ω =
⋃

γ∈Γ

γ(D ∪ C1 ∪ · · · ∪ Cg).

Furthermore, Ω is connected, and the quotient Ω/Γ is a compact Riemann surface of
genus g. It is a classical theorem that every compact Riemann surface of non-zero genus
can be represented by a Schottky group.

Assume that g ≥ 2. Then Ω is clearly of type (3). Since Γ is non-amenable, Ω has a
non-constant bounded harmonic function [LS]. This may also be proved by showing that
the complement of Ω has positive logarithmic capacity. By theorem 6.1 below, Ω actually
has an infinite dimensional space of bounded harmonic functions. However, Ω ∈ OAD

[AS]. Moreover, in many cases, E = C \ Ω has linear measure zero, which implies that Ω
has no non-constant bounded holomorphic functions [AS].

Let us consider the classical case where C1, . . . , C
′
g are circles in C and D is unbounded.

Schottky himself proved in [Sch] that if there are mutually disjoint circles in D that divide
D into triply connected regions, then the limit set E has linear measure zero. This holds
for instance if C1, . . . , C

′
g are all centred on the same line. Also, E has linear measure zero

if the distance between any two of the circles C1, . . . , C
′
g is sufficiently large compared to

their radii [Aka1, Aka2].
There are examples of classical Schottky coverings for which E has non-zero linear

measure [Aka2]. I do not know if they lie in OAB. It would be interesting to know which
Schottky coverings lie in OAB.

6. A theorem of Kifer and Toledo.

In 1988, Kifer [Kif] and Toledo [Tol] independently published proofs of the following
theorem.

6.1. Theorem (Kifer, Toledo). Let X be a Galois covering space of a compact Rie-

mannian manifold. If X has a non-constant bounded harmonic function, then the space

of bounded harmonic functions on X is infinite dimensional.

This implies that if the covering group Γ is non-amenable, then X has an infinite
dimensional space of bounded harmonic functions [LS].

It is possible to give a much simpler proof of theorem 6.1 using the Martin boundary
∆ of X with the harmonic measure. From this viewpoint, the theorem states that if ∆
is not an atom, then L∞(∆) is infinite dimensional.

So suppose that ∆ is not an atom, but that ∆ contains an atom a, for if ∆ has no
atoms, the conclusion is clear. An atom in ∆ is the union of a nullset and a point with
positive mass, so we may take a to be a point in ∆. If the Γ-orbit of a is infinite, then
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the characteristic functions of {γ(a)}, γ ∈ Γ, generate an infinite dimensional subspace
in L∞(∆).

If the Γ-orbit of a is finite, then the characteristic function of {a} is fixed by a normal
subgroup H of finite index in Γ, so its harmonic extension descends to a non-constant
bounded harmonic function on the quotient X/H. But this is absurd since X/H is
compact.

Our argument actually shows that theorem 6.1 holds if X/Γ is only assumed to be
parabolic. Namely, if X/Γ is parabolic and H is a normal subgroup of finite index in Γ,
then X/H is also parabolic, so X/H has no non-constant bounded harmonic functions.

Toledo tells me that Sullivan asked him if an analogous theorem holds for positive
harmonic functions. Our method shows that it does.

6.2. Theorem. Let X be a Galois covering space of a compact Riemannian manifold.

If X has a non-constant positive harmonic function, then h1(X) is infinite dimensional.

Proof. Let ∆ be the Martin boundary and ∆1 be the minimal Martin boundary of X.
The covering group Γ preserves ∆1. In fact, for every isometry φ of X,

ky ◦ φ = ky(φ(o)) kφ−1(y), y ∈ ∆, (6.1)

where o ∈ X is the fixed base point. This shows that if ky is minimal, then so is kφ(y).
The theorem states that M(∆1) is infinite dimensional if ∆1 is not a point, which

means that there is p ∈ ∆1 such that H[δp] = kp is not constant. If ∆1 is infinite, then
M(∆1) is clearly infinite dimensional. So suppose ∆1 is finite. Then p is fixed by a
normal subgroup Γp of finite index in Γ. For γ ∈ Γp,

kp ◦ γ = kp(γo) kp

by (6.1). Hence,
kp(γ1γ2o) = kp(γ1o) kp(γ2o), γ1, γ2 ∈ Γp,

so the map
Γp → R+, γ 7→ kp(γo),

is a group homomorphism. The kernel is a normal subgroup H of Γp such that the
quotient Γp/H is abelian.

Now the non-constant positive harmonic function kp descends to X/H, but this is
absurd since X/H is an abelian covering of the compact manifold X/Γp [LS]. �

It is not clear if it suffices to assume that X/Γ, and hence X/Γp, is parabolic. The
sphere with 4 points removed is parabolic, but has a Z2-covering with a non-constant
positive harmonic function [LM].

Added in May 1995. Vadim Kaimanovich has pointed out to me that if the Martin
boundary of a Galois covering space of a compact Riemannian manifold is not an atom,
then it contains no atoms. This follows from his work in [Kai1]; see also [Kai2]. Theorem
6.1 is an immediate corollary.
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