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ABSTRACT. Let X be a complex manifold and Ax be the family of maps D — X which
are holomorphic in a neighbourhood of the closure of the unit disc D. Such maps are called
(closed) analytic discs in X. A disc functional on X is amap H : Ax — RU{—oc}. The
envelope of H is the function EH : X — RU{-o0}, z — inf {H(f); f € Ax, f(0) = z}.
Through work of Evgeny Poletsky, it has transpired that certain disc functionals on domains
in C™ have plurisubharmonic envelopes.

There are essentially only three known classes of disc functionals with plurisubharmonic
envelopes. The Poisson functional associated to an upper semi-continuous function ¢ : X —
RU{—oc} takes f € Ax to % 1% © fdX, where A is the arc length measure on the unit
circle T. The Riesz functional associated to a plurisubharmonic function v on X takes f to
% Jplog|-|A(vo f), where A(vo f) is considered as a positive Borel measure on D, equal
to zero if vo f = —oo. The Lelong functional associated to a non-negative function o on X
takes f to >, cp a(f(2)) mz(f) log|z|, where m(f) denotes the multiplicity of f at z.

Define P as the class of complex manifolds X for which there exists a finite sequence

of complex manifolds and holomorphic maps Xo P, N Xm = X, m > 0, where X

is a domain in a Stein manifold and each h; is either a covering (unbranched and possibly
infinite) or a finite branched covering (a proper holomorphic surjection with finite fibres).
The class P is closed under taking products and passing to subdomains. Besides domains
in Stein manifolds, P contains for instance all Riemann surfaces and all covering spaces of
projective manifolds.

The main result of the paper is that if X is a manifold in P, then the Poisson functional,
the Riesz functional associated to a continuous v, and the Lelong functional associated to
a generic a have plurisubharmonic envelopes. In each case, the envelope is the supremum
of a naturally defined class of plurisubharmonic functions.
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1. Introduction

Let X be a complex manifold and Ax be the family of maps f : D — X which are
holomorphic in a neighbourhood of the closure D of the unit disc D. Such maps are called
(closed) analytic discs in X. A disc functional on X is a map H : Ax — RU {—o0}.
The envelope of H is the function FH : X — RU {—o0} defined by the formula

EH(x)=inf{H(f); f € Ax, f(0) =z}, z e X.

Through work of Poletsky, it has transpired that certain disc functionals on domains in
C™ have plurisubharmonic envelopes. In this paper, we will prove that three classes of
disc functionals have plurisubharmonic envelopes for a large collection of manifolds. This
result can be viewed as a new method for constructing plurisubharmonic functions on
manifolds.

The three functionals we shall consider are the following.
Let ¢ : X — RU{—o0} be an upper semi-continuous function. Define the functional
H, = HY by the formula

Hy(f) = i/TsoofdA, f e Ay,

2T
where A is the arc length measure on the unit circle T. We call H; the Poisson functional.
Let v be a plurisubharmonic function on X. We define the functional Hy = HJ as
follows. If f € Ax and v o f is not identically —oo, then

1
() = 5= [ Tozl- 1A ).
where A(vo f) is considered as a positive Borel measure on D. If f € Ax and vo f = —o0,

then we set Hay(f) = 0. We call Hy the Riesz functional.
Let a be a non-negative function on X, and define the functional Hs = HS by the
formula
Hs(f) =Y a(f(2))m.(f) log|z|,  f € Ax.

zeD

The sum, which may be uncountable, is defined as the infimum of its finite partial sums.
Here, m,(f) denotes the multiplicity of f at z, defined in the following way. If f is
constant, set m,(f) = oco. If f is non-constant, let (U, ¢) be a coordinate neighbourhood
on X with ¢(f(z)) = 0. Then there exists an integer m such that

C(f(w)) = (w = 2)"g(w)

where g : V' — C" is a map defined in a neighbourhood V of z with g(z) # 0. The
number m, which is independent of the choice of local coordinates, is the multiplicity of
f at z. We call Hs the Lelong functional.
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Define P as the class of complex manifolds X for which there exists a finite sequence
of complex manifolds and holomorphic maps

h h h
Xo— X 5. ™ X, =X, m > 0,
where X is a domain in a Stein manifold and each h;, ¢ = 1,...,m, is either a covering

(unbranched and possibly infinite) or a finite branched covering (i.e., a proper holomor-
phic surjection with finite fibres). The class P is closed under taking products and passing
to subdomains. Besides domains in Stein manifolds, P contains for instance all Riemann
surfaces and all covering spaces of projective manifolds. By a projective manifold we
mean a complex submanifold (or a smooth algebraic subvariety) of complex projective
space P* of some dimension k.

We say that a non-negative function o on a manifold X in P is admissible if there
exists a sequence of maps as above such that a~![c,00) \ B is dense in a~![c,00) in the
analytic Zariski toplogy on X for every ¢ > 0, where

and B; denotes the (possibly empty) branch locus of h;. This holds in particular if « = 0

on B. Clearly, if X is a domain in a Stein manifold, then every non-negative function on

X is admissible. We will show that if X is a covering space over a projective manifold,

then every non-negative function which vanishes outside a countable set is admissible.
Our main results may be summarized as follows.

Main Theorem. Let X be a manifold in P. If ¢ is an upper semi-continuous function
on X, then EHY is plurisubharmonic, and

EHY = sup{u € PSH(X); u < ¢}.

If v is a continuous plurisubharmonic function on X, then EHJ is plurisubharmonic,
and

EHY =sup{u € PSH(X); u <0, L(u) > L(v)}.

If a is an admissible non-negative function on X, then EHS is plurisubharmonic, and

EH$ =sup{u € PSH(X); u <0,v, > a}.

Here, PSH(X) denotes the cone of all plurisubharmonic functions on X. In our termi-
nology, the constant function —oo is considered plurisubharmonic. A continuous pluri-
subharmonic function is assumed to take values in R. If u € PSH(X), then we denote
by L(u) the Levi form i00u of u, which is a closed, positive (1,1)-current on X, and we
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denote the Lelong number of u at x € X by v,(z). Recall that the Lelong number is
a biholomorphic invariant, and if u is plurisubharmonic in a neighbourhood of 0 in C”,
then

We agree that £(—o0) = 0, and v_,, = +00. We denote the Euclidean norm in C" by
| - |. We let D, denote the open disc in C with centre 0 and radius r. If A C C, then we
set A* = A\ {0}. We consider all manifolds to be connected by definition.

If u is plurisubharmonic in a neighbourhood of 0 in C", then 1,(0) > 1 if and only
if u —log| | is bounded above near 0. Hence, sup{u € PSH(X); u < 0,v, > a} is the
pluricomplex Green function of X with a pole at p when a« = 1 at p and o = 0 elsewhere.
More generally, when « has discrete support, the supremum is a pluricomplex Green
function with weighted poles.

The supremum of a class of plurisubharmonic functions is not always plurisubhar-
monic, for it need not be upper semi-continuous. However, as we will show later, the
suprema in the Main Theorem are upper semi-continuous and hence plurisubharmonic for
every manifold X, every upper semi-continuous function ¢ on X, every plurisubharmonic
function v on X, and every non-negative function o on X.

Suppose ® is a map which associates to a disc f € Ax a pair (uy,vy), where py is
a positive Borel measure on D, and v is a real Borel measure on T with finite positive
part. Then @ defines a disc functional H on X by the formula H(f) = vf(0), f € Ax,
where vy is the subharmonic function on D given by the Riesz representation formula

vi(2) = [ Gleydns + [ Pleedvy,
D T
where G denotes the Green function and P denotes the Poisson kernel for D,

z—G
1—2C

I Gl
27z =

G(2.Q) = 5~ log and  P(2,0)

Each of our three functionals is given by a map ® in this way. For H;, we have p; =0
and vy is the arc length measure multiplied by the restriction of ¢ o f to T. For Hs, we
have py = A(vo f) and vy = 0. Finally, for Hs, we have

pr =21y a(f(z)m=(f)d-

z€D

and vy = 0, where J, is the Dirac measure at the point z. It is easy to show that py is a
well defined Borel measure on D.
Abstracting from these three examples, Poletsky [1991, 1993] introduced the notion of
a holomorphic current. (For earlier work, see Poletsky and Shabat [1989, Section 2.9]). He
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proved that if X is a domain in C™ and & is a holomorphic current with certain additional
properties, then the functional H defined by ® as above has a plurisubharmonic envelope.
Poletsky’s theorem is quite involved, both in its statement and its proof, so in our search
for generalizations to disc functionals on manifolds, we decided to concentrate on the
existing examples: the Poisson, Riesz, and Lelong functionals. It is a challenging problem
to find a simply and abstractly defined class of disc functionals with plurisubharmonic
envelopes that contains these three examples.

The paper is organized as follows. In Section 2, we prove in detail that the Poisson
functional has plurisubharmonic envelopes on domains in Stein manifolds. We isolate a
weaker sufficient condition for the theorem to hold on a complex manifold. In Section
3, we show that the Poisson functional has plurisubharmonic envelopes on manifolds in
the class P, and we discuss the scope of P. In Section 4, we study the Riesz functional,
and in Section 5 the Lelong functional. In Section 6, we consider the case of compact
manifolds. Section 7 contains some final remarks.

Acknowledgements. We would like to thank Evgeny A. Poletsky for helpful conversations.
In writing this paper, we have relied heavily on his pioneering work. We would also like
to thank Donu Arapura, Frédéric Campana, Norm Levenberg, and Ahmed Zeriahi for
valuable discussions.

2. The Poisson functional

Let X be a complex manifold. In this section, we let H be the Poisson functional H{
defined by the formula

H{(f) =5 [wofdh  fedx,

where ¢ : X — RU{—o0} is an upper semi-continuous function. Considering discs whose
image is a point, we see that EH < ¢.

We first observe that if F'H is plurisubharmonic, then it is given as the supremum of
a naturally defined class of plurisubharmonic functions.

2.1. Proposition. Let
F={vePSH(X); v < p}

Then sup F € PSH(X) and supF < EH. Furthermore, EH € PSH(X) if and only if
FH e F, and then EH = sup F.

Let us recall that if X is a complex manifold, then the L] . topology on PSH(X)\{—oo}
is the same as the weak topology induced from the space D’(X) of distributions on X, and
this topology is induced by a complete metric on PSH(X )\ {—occ}. See Hérmander [1994,
Theorem 3.2.12]. If 7 C PSH(X)\{—o0} is compact, then sup F is upper semi-continuous
and hence plurisubharmonic. See Sigurdsson [1991, Proposition 2.1]. Therefore, the
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supremum of a subset of PSH(X) is plurisubharmonic if it is —oo or it can be expressed
as the supremum of a compact subset of PSH(X) \ {—o0}.

Proof. Suppose F # {—oo}. Let vy € F, vg # —o0, and consider the class Fy = {v €
Fi;v > v}t A sequence in Fy has locally uniform upper bounds and does not tend to
—o0 locally uniformly, so it has a subsequence converging to w € PSH(X). In fact, w is
the upper semi-continuous regularization of the limes superior of the subsequence. See
Hormander, loc. cit. Since ¢ is upper semi-continuous, we have w < ¢, so w € Fy. This
shows that Fy is compact, so sup Fy = sup F is plurisubharmonic.

Let v € F and f € Ax. Then

W) < 5 [vorans - [porar=Hp.

™

This shows that sup F < FH. [
The following theorem is the main result of this section.

2.2. Theorem. If X is a domain in a Stein manifold, and ¢ : X — RU{—o0} is an
upper semi-continuous function, then EHY{ is plurisubharmonic.

To prove the theorem it suffices to show that the envelope v = EH is upper semi-
continuous, and that

u(h(0)) < 2L/Tuohd)\, (2.1)

™

for every h € Ax.

Before we go into the details of the proof, let us give a brief outline of it. By the
monotone convergence theorem, H;’ (f) \, Hf (f) as j — oo for every sequence of upper
semi-continuous functions ¢; \, ¢, so EH{’ \, EH{. Since the limit of a decreasing
sequence of plurisubharmonic functions is plurisubharmonic, and since there exists a
decreasing sequence of continuous functions tending to ¢, in the proof we may assume
that ¢ is continuous.

First we prove the existence of holomorphic variations of analytic discs. More precisely,
if fo € Ax and g = fo(0), then there exists r > 1, a neighbourhood V' of z(, and
f € O(D, xV,X), such that f(z,z9) = fo(z) for z € D,, and f(0,z) = x for z € V.
It then follows that = — H(f(:,x)) is continuous. This shows that if o € X, then for
every 3 > u(xg) there is a continuous function v on a neighbourhood U of z, such that
u < v < [ onU. Hence, u is upper semi-continuous.

To prove (2.1) it suffices to show that for every ¢ > 0 and v € C(X,R) with v > u,
there exists g € Ax such that g(0) = h(0) and

1
< — . .
H(g)_QW/Tvohd)\—l—s (2.2)
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The construction of g is performed in three steps. First we show that there exist r > 1
and F' € C*(D, x T, X), such that F'(-,w) € Ax, F(0,w) = h(w) for all w € T, and

7 H(F(-,e"?))db < /vohd)\—f—s. (2.3)

0 T

Next we show that there exist s € (1,7) and G € O(Dsx Dy, X ), such that G(0,w) = h(w)
for all w € Dy, and

27 2
H(G(-,€")) dh < H(F(-,e")) df + e. (2.4)
0 0
Finally, we show that there is 6y € [0,27] such that if g is defined by the formula

g(2) = G(e'%2, ), then
1 27

H(g) < 5~ ; H(G(-,€)) db. (2.5)

By combining the inequalities (2.3-5), we get (2.2), and (2.1) follows.

For the proof of Theorem 2.2 we need several lemmas. In all of them we assume that
X is a complex manifold, not necessarily a domain in a Stein manifold, and that u is the

envelope of H. The first lemma states that we have a holomorphic variation of discs in
X.

2.3. Lemma. Let fo € Ax. Then there exists an open neighbourhood V' of xo = fo(0)
in X, r>1,and f € O(D, x V,X), such that

(i) f(z,20) = fo(z) for all z € D,, and

(ii)) f(0,x) ==z for allxz € V.
Moreover, if fo is non-constant, then for every finite set M C D\ {0} we can find f such
that f(a,z) = fo(a) and mq(f(-,x)) = ma(fo) for all a € M and oll z € V. If fo is
constant, then for every finite set M C D\ {0} and every N > 0, we can find f such that
f(a,x) = fo(a) and my(f(-,z)) > N for alla € M and all x € V.

Proof. Choose rg > 1 such that fo € O(D,,, X). For every t € (1,r], the graph S; =
{(z, fo(2)); z € D;} is a submanifold of D; x X. It is isomorphic to D;, and hence
Stein. By a theorem of Siu [1976, Main Theorem and Corollary 1], there exists a Stein
neighbourhood W of S, in D,, x X, and a biholomorphic map of W onto a neighbourhood
of the zero section of the normal bundle of S, which identifies S, with the zero section.
Since the normal bundle of .S, is trivial, it is biholomorphic to S,, x C", where n is the
dimension of X. Now we take ¢ € (1,7(), and conclude that there exists a neighbourhood
U of S¢ in D,, x X and a biholomorphic map ® : U — D; x D™ such that ®(z, fo(z)) =
(z,0) for all z € D;. The map f is then defined by the formula

flzm) = pr(q)_l((? 0) +x(2)2(0,))) (2.6)



where pr: C x X — X is the natural projection and y is a polynomial.

If M = @, then we set x = 1. If M # @&, then for a € M we set n, = mq(fo) if
fo is non-constant, but choose n, > N if f; is constant. We then define y by x(z) =
[I.er(1 —2/a)*. If r € (1,t), then there exists a neighbourhood V' of x¢ such that
(2,0) + x(2)®(0,2) € Dy x D" for all z € D, and = € V. If we define f by (2.6), then it
is apparent that all the conditions are satisfied. [

2.4. Lemma. Let xg € X, # € R, and assume that u(xg) < B. Then there exists a
neighbourhood V- of ¢ in X, r > 1, and f € O(D, x V, X), such that f(0,2) = x and
u(z) < H(f(e,z)) < B forallz V.

Proof. By the definition of u, there exists fo € O(D,,, X), ro > 1, such that fo(0) = z
and H(fy) < 8. We set M = @& and choose f satisfying the conditions in Lemma 2.3.
As mentioned above, we may assume that ¢ € C(X,R). Then the function V" — R,
x — H(f(-,x)), is continuous. We have H(f(-,z0)) = H(fo) < (3, so replacing V by a
smaller neighbourhood of z(, we conclude that u(x) < H(f(-,z)) < B forallz € V. O

2.5. Lemma. Leth € Ax, e >0, andv € C(X,R) with v > u. Then there exist r > 1
and F € C*(D, x T, X), such that F(-,w) € Ax, F(0,w) = h(w) for all w € T, and
(2.3) holds.

Proof. Let wy € T, and set xg = h(wp). By Lemma 2.4, there exists ro > 1, an open
neighbourhood V; of xg, and f € O(D,, x Vp, X), such that f(0,z) =z and H(f(-,x)) <
v(x) + ¢/8n for all x € V. We can take an open arc Iy C T containing wg such that
h(w) € V, for all w € Iy, and define Fy : D,, x Iy — X by Fo(z,w) = f(z,h(w)). By
replacing ry by a smaller number greater than 1 and Iy by a smaller open arc containing
wp, we may assume that Fy(D,, X Iy) is relatively compact in X.

A simple compactness argument now shows that there exists a cover of T by open arcs
{Ij}j-v:l, r; > 1, and F; € C*(D,, x I;, X), such that F;(-,w) € Ax, F;(0,w) = h(w),
F;(D,; x I;) is relatively compact in X, and H(F};(-,w)) < v(h(w))+e/87 for all w € I;.
We set r = min; r;.

Let M be a compact subset of X containing the image of all the functions F;, and let
C > max{0,sup H(f)} + sup,, |v|, where the first supremum is taken over all f € Ax
with f(D;) C M for some ¢ > 1.

There exists a subset A in {1,..., N} and disjoint closed arcs J; C I;, j € A, such
that A(T \ UJ;) < €/(4C). By possibly removing some arcs I; from the cover of T, we
may assume that A = {1,..., N}. We choose disjoint open arcs K;, J; C K; C I;, and
a function p € C*°(T), such that 0 < p < 1, p(w) = 1 if w € UJ;, and p(w) = 0 if
w € T\ UK}, and finally define F': D, x T — X by

FJ(Q('U))Z,’W), ZEDT, U)GKJ',

F(z,w) =
(zw) {h(w), 2€D,, weT\UK;.
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The choice of g ensures that F' € C*°(D, x T, X), F(-,w) € Ax, and F(0,w) = h(w). If
we combine the inequalities we already have, then we get

27

e <Y [ HE ) avw) +

gZ/‘]}vohd)\—i—%g/Tvohd)\—i—a,
J J

and we have proved (2.3). O

2.6. Lemma. Letr > 1, h€ O(D,,X), and F € C>*(D, x T, X), such that F(-,w) €
O(D,, X), and F(0,w) = h(w) for all w € T. Furthermore, assume that there exists an
open neighbourhood of

M, ={(z,w,F(z,w)); z € Dp,w € T} U{(0,w,h(w)); w € D,} (2.7)

in D, x D, x X, which is biholomorphic to a domain in a Stein manifold. Then there
exists s € (1,7), a natural number jo, and a sequence F; € O(Ds x Aj, X), j > jo, where
Aj is an open annulus containing T, such that
(i) F; — F uniformly on Dy x T as j — oo,
(ii) there is an integer kj > j such that the map (2, w) — Fj(zw
to a map G; € O(Ds; x Dy, X), where s; € (1,s), and
(iii) G;(0,w) = h(w) for all w € D;.

ki w) can be extended

Proof. Every Stein manifold is biholomorphic to a submanifold of C” for some v, so by
assumption there exists a biholomorphic map ® : U — V from a neighbourhood U of
M, onto a domain V' in some submanifold Y of C¥. By Siu [1976, Main Theorem and
Corollary 1], there is a Stein neighbourhood Z of Y in C¥, and a holomorphic retraction
0:Z—Y. Weset V=0"1V). Then V is open in C¥. We define F' € C>°(D, x T,C")
by F(z,w) = ®(z,w, F(z,w)), h € O(D,,C") by h(w) = ®(0,w, h(w)), and for any j € N
we define F; € O(D, x D¥,C¥) by

J

Fj(z,w) = h(w) + Z (%/g ’ (F(z, ") — }Nl(ew))e_““e d@) w”. (2.8)

k=—j

Since the function 6 — F(z,¢e") — h(e*?) is infinitely differentiable with period 27, its
Fourier series converges uniformly on R. Hence the series in (2.8) converges uniformly on
{2} x T for every z € D, as j — oo. The convergence is uniform on Dy x T, ¢t € (1,7). In
fact, an integration by parts of the integral in (2.8) shows that it can be estimated by

0? (F(z, e?) — ﬁ(ew))

06?
9
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so this follows from Weierstrass’ theorem.

Now we let ¢ € (1,r). Since F(z,w) € V for all (z,w) € D, x T, and F; — F
uniformly on D; x T, we can choose jy so large that Fj(z,w) € V for all (z,w) € Dy x T
and j > jo. If s € (1,¢), then by continuity we can choose an open annulus A; containing
T such that Fj(z,w) € V for all (z,w) € D, x A;. We define F; € O(D, x Aj, X) by
F; = pr od~logo Fj, where pr : C2 x X — X is the natural projection. Then (i) holds.

For every z € D,., the map w — Fj(z,w) — 71( ) has a pole of order at most j at the
origin, and for every w € D}, the map z — F (z,w) — h(w) has a zero at the origin.
Hence (z,w) + Fj(zw",w) can be extended to a holomorphic map D x D — C¥ for every
k> ;.

Since F;j(0,w) = h(w) € V for all w € D7, there exists § > 0 such that Fj(zw*, w) € V
for all integers k > j and (z, )€D5><]D) SlnceF(z w) € V for all (z,w) € D x T,
we can choose 0j € (0 1) such that Ej(z,w) € V for all (z,w) € D x (D\ D, i), so we
conclude that Fj(zw”,w) € V for all (z,w) € D x (D\ D o;) and all integers k > j. Now
we take k; so large that |zw*i| < ¢ for all (2,w) € D x D,,. Then Fj(zws w) cV
for all (z,w) € D x D. We finally choose s; € (1,s) such that Ej(zw*i ,w) € V for all
(2,w) € Dy, x Dy, and define G; by G;(z,w) = (pro®~! oo o F})(zw*s,w). Then (ii)
and (iii) hold. O

The condition in Lemma 2.6 is obviously satisfied if X is a domain in a Stein manifold.

2.7. Lemma. Let h and F satisfy the conditions in Lemma 2.6. Then for every e > 0,
there exist s € (1,r) and G € O(Dg x Dy, X), such that G(0,w) = h(w) for all w € Dy,
and (2.4) holds.

Proof. Let I; and G be sequences satisfying the conditions in Lemma 2.6. Assume that
¢ € C(X,R). Then for sufficiently large j we have

27 27 2T 2T
L 1 L
T / ©(Fj(e' ) dtdd < — / / o(F (e, ) dtdf + ¢
0 0 27 Jo 0

_ [T H(F(-,e"%))df + . (2.9)
0

Now we fix a value j for which (2.9) holds, set s = s, and define G € O(D; x Dy, X) by
G(z,w) = Gj(z,w). Then it is clear that G(0,w) = h(w) for all w € D, and we have

27 ) 27 27
(Gt = o [ [ am (e o) arag
2# 27 ' ]
— / o(Fj(e™, e?)) dtdb. (2.10)
o Jo

The inequality (2.4) now follows by combining (2.9) and (2.10). O
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2.8. Lemma. Let s > 1, and G € O(Ds x Dy, X). Then there exists g € O(Dg, X) such
that g(0) = G(0,0) and (2.5) holds.

Proof. The right hand side of (2.5) is equal to

27 27 27 27 ) )
@ // )Y dtdf = —— @) // et ') dtdh.

Here we have considered the map x : R2 — R, (t,0) — o(G(e',e')), and made the
change of variables (¢,60) — (6 + t,t), which has Jacobian —1. There is 6 € [0, 27] such

that
1 27 27 ' ] 1 2 ' ' ]
—/ / o(G(e', ') dtd > —/ o(G(eel e'h)) dt.
2m)* Jo  Jo 21 Jo

If we set g(2) = G(e* 2, z), then g(0) = G(0,0) and (2.5) holds. O

Proof of Theorem 2.2. We may assume that ¢ € C(X,R). By Lemma 2.4, u is upper
semi-continuous. We need to prove that for every h € Ax, the inequality (2.1) holds.
As we noted after the statement of the theorem, for every ¢ > 0 and v € C(X,R) with
v > u, we need to construct g € Ax such that ¢g(0) = h(0) and (2.2) holds. Choose r, s,
F, G, and g, such that all the conditions in Lemmas 2.5-8 are satisfied. If we combine
the inequalities (2.3-5), then we get (2.2), and (2.1) follows. O

The application of Lemma 2.6 is the only place in the proof where we need X to be a
domain in a Stein manifold.

3. Extensions to manifolds

If X and Y are complex manifolds, h : X — Y is a holomorphic map, and H is a
functional on Ay, then a pullback functional h*H on Ax is naturally defined by the
formula

WH(f)=H(hof), fe€Ax.

Note that
E[h*H) > EH o h.
We have
W HY = Hf".

Suppose h is a covering. Then for any p € X there is a bijective correspondence
between f € Ax with f(0) = p and g € Ay with g(0) = h(p) such that g = ho f. Hence,
E[h"H|= FEH o h,

so FH is plurisubharmonic if and only if E[h*H] is
We have established the following.
11



3.1. Proposition. Let X andY be complex manifolds such that there exists a holomor-
phic covering X — Y. If EHY € PSH(X) for every upper semi-continuous function ¢
on X, then EH{ € PSH(Y) for every upper semi-continuous function ¢ on'Y.

To prove the analogous result for finite branched coverings, we need the first part of
the following lemma. The second part will be used in Section 4.

3.2. Lemma. Let h : X — Y be a k-sheeted finite branched covering. Let u be a
plurisubharmonic function on X. Then the function hyu, defined by the formula

haly) =7 Y ma(huz),

z€h~1(y)

18 plurisubharmonic on'Y, and
kL(h.u) = hoL(u),

where h.L(u) denotes the direct image under h of the closed positive (1,1)-current L(u).

Proof. Let B C Y be the branch locus of h. Then h : X \ h=}(B) — Y \ B is a finite
unbranched covering, so h,u is plurisubharmonic on Y \ B. The restriction h,ulY \ B
extends to a plurisubharmonic function v on Y with

v(y) = limsup h,u(z), y € B.
z—y,z¢B

If w is continuous, then h,u is continuous, so v = h,u, and h,u is plurisubharmonic. In
the general case, let p € B and U be an open coordinate ball containing p. We have a
finite map h : h=1(U) — U, so h=1(U) is Stein, and the main approximation theorem for
plurisubharmonic functions holds on h=1(U). Let V be a relatively compact open ball in
U with p € V. Then there are smooth plurisubharmonic functions u,, on h=!(V) such
that w,, \, u. Since h,u, are plurisubharmonic and h,u, \, hsu, we conclude that h,u
is plurisubharmonic on V.

To prove the second part of the lemma, assume u # —oo, and let n be a smooth
(n—1,n— 1)-form on Y with compact support, n = dimY. Then

KL (ht) (n) = ki /

Y

(hau)00n = kz/ (h.u)00n

Y\B

=¢/ umw%wﬂ/ﬁm&mmzcwwmnzmawwx
X\h—1(B) X

so kL(hsu) = hL(u). O
12



3.3. Proposition. Let X and Y be compler manifolds such that there exists a finite
branched covering h : X — Y. If EH{ € PSH(X) for every upper semi-continuous
function ¢ on X, then EH{ € PSH(Y) for every upper semi-continuous function ¢ on
Y.

Proof. Let ¢ : Y — RU{—00} be upper semi-continuous. Let w = EHth. By assump-
tion, w is plurisubharmonic on X, and EHf oh <w. Now w < poh, soh,w < ¢, and
h.w < EH{. Hence,

(hxw)oh < EH{ oh < w.

Now (h,w) o h < w implies that (h,w)oh = w, so EH{ oh = w, and FH{ = h,w is

plurisubharmonic. [

In the introduction, we defined P as the class of complex manifolds X for which there
exists a finite sequence of complex manifolds and holomorphic maps

h h -
X0—1>X1—2>—>Xm:X, mZO,
where X is a domain in a Stein manifold and each h;, + = 1,...,m, is either a covering

or a finite branched covering. Theorem 2.2 and Propositions 3.1 and 3.3 now imply the
following result.

3.4. Theorem. The Poisson functional has plurisubharmonic envelopes on manifolds
n P.

In the remainder of this section we will study the scope of the class P. First of all, it
is clear that if X is in P, and X — Y is either a covering or a finite branched covering,
then Y is in P.

3.5. Proposition. Let'Y be a domain in a complexr manifold X. If X is in P, then Y
15 1 P.
Proof. First, let us note that if A : X’ — X is a holomorphic covering, Y is a domain in X
and Y is a connected component of h=1(Y), then h|Y’ — Y is a holomorphic covering.
Likewise, if h : X’ — X is a finite branched covering, Y is a domain in X and Y’ is a
connected component of h=1(Y"), then h|Y’ — Y is a finite branched covering.
Now let
h1 ha hm,

Xo— X1 — ... 5 X,,=X
be a sequence as in the definition of P. If m = 0, then X is a domain in a Stein manifold,
so Y is too, so Y is in P. Suppose m > 1. Define a sequence

k k k
Yo YV 5. 5Y, =Y

by induction as follows. For ¢ =m,..., 1, let Y;_1 C X;_1 be a connected component of
h;1(Y;) and let k; = h;|Y;_1. Then Y is a domain in a Stein manifold, and we see that

(2

YisinP. O
13



3.6. Proposition. Let X and Y be manifolds in P. Then the product X xY is in P.

Proof. First let us note that if h : X — Y is a holomorphic covering, and Z is a manifold,
then h xid : X x Z — Y x Z is a holomorphic covering. Likewise, if h : X — Y is a
finite branched covering, and Z is a manifold, then A x id : X x Z — Y x Z is a finite
branched covering. Also recall that the product of Stein manifolds is Stein.

Now let

h h h k k k
Xo— X >... 52X, =X, Yo YV 5. -5Y, =Y

be sequences as in the definition of P. We may assume that they are of the same length,
because such sequences can always be extended by identity maps. Now replace each map
X; — X;41 by the composition X; — X;;1 = X;4+1, and each map Y; — Y, by the
composition Y; =Y; — Y; ;1. Then the sequence

hixk hom Xk
X()XYO o,

= X XY
shows that X x Y is in P, because each map in the sequence is of the form h x id or
id x k, where h or k is a holomorphic covering or a finite branched covering. [

3.7. Proposition. P contains all Riemann surfaces.

Proof. All Riemann surfaces except P! are covered by a Stein manifold (namely C or D).

A non-constant meromorphic function on, say, a torus gives a finite branched covering to
Pl O

A slightly weaker version of the following theorem was given in Larusson [1995, Propo-
sition 4.1]. The proof here is different, although the key idea still comes from Gromov
[1991, 0.3.A.(e)]. We will not need the full strength of the theorem until Section 5.

3.8. Theorem. Let M be a projective manifold and S be a countable subset of M. Then
there exists a projective manifold N and a finite branched covering h : N — M, such that

(1) the universal covering space of N is Stein, and
(2) the branch locus of h does not intersect S.

For the proof, we need the following special case of Theorem 2 in Kleiman [1974].

3.9. Theorem (Kleiman). Let X andY be projective manifolds, and f : X — P™ and
g:Y — P" be holomorphic maps. For v in the automorphism group I' = PGL(n + 1,C)
of P, let vX denote X considered as a space over P™ via the map ~vf. Then for every
in a dense Zariski-open subset of T, the fibre product (yX) xpn Y is smooth.

Recall that in concrete terms, the fibre product (7X) xpn Y is the subvariety of points
(z,y) in X x Y with vf(z) = g(y).
14



Proof of Theorem 3.8. The proof will involve the maps in the following diagram.

y — 2 N " o m

[

E
Q —— Q — P
p g

Let n = dim M, and let () be an n-dimensional projective manifold. There are finite
branched coverings f : M — P" and g : Q — P™. For v € I', the projections from
(YM) xpn @ onto M and @ are open since v f and g are open. By Kleiman’s theorem,
(YM) xpn @ is smooth for the generic . Let N be a connected component of (yM) Xpn Q
for such v, and let A and k be the projections from N to M and @) respectively. Then h
and k are open, and hence surjective, so they are finite branched coverings.

The branch locus of h is (yf)~!(B), where B is the branch locus of g, so (2) holds if
and only if f(S) N~y~'B = @, which is true for v in a Hausdorff-dense subset of I' by a
Baire category argument.

Now let p: Q — Q be the universal covering of Q. Let Y be a connected component
of the fibre product N x¢ Q, with projections ¢ : Y — N and j : Y — Q. Since p is a
submersion, Y is smooth. If z € N, and the neighbourhood U of k(z) is evenly covered
by p, then the neighbourhood k~!(U) of x is evenly covered by ¢q. Hence, ¢ is a covering.
Since N is compact, j is proper. Also, j is open since k is, so j is surjective. Hence j is
a finite branched covering.

Now choose @ so that Q is Stein. For instance, we could take Q to be a product of n
compact hyperbolic Riemann surfaces; then Q is a polydisk. Since j is a finite branched
covering, Y is Stein. Since Y is covered by the universal covering space N of N, we
conclude that N is Stein. O

The existence of a finite branched covering N — @ implies that N inherits various
properties from ). For instance, if ) is of general type, then so is N. Also, if @ is
Kobayashi hyperbolic, then so is N. Both of these properties are satisfied if () is chosen
to be a product of hyperbolic Riemann surfaces.

Let us note an interesting consequence of the proof of Theorem 3.8. If My, ..., M} are
equidimensional projective manifolds, then there exists a projective manifold N with a
finite branched covering N — M; for each 1.

3.10. Corollary. A covering space of a projective manifold is in P.

Proof. Let M be a projective manifold and X — M be a covering. By Theorem 3.8,

there is a projective manifold N with a finite branched covering N — M, such that

the universal covering space N of N is Stein. Let Y be a connected component of the

fibre product N x,; X, with projections ¢: Y — N and k£ : Y — X. As in the proof of
15



Theorem 3.8, we see that Y is smooth, ¢ is a covering, and k is a finite branched covering.
Now Y is covered by N, and the diagram N — Y — X shows that X is in P. O

The corollary implies that all projective manifolds lie in P. There are many examples
of non-projective compact manifolds in P. All tori lie in P. So does a Hopf manifold,
because its universal covering space is C" \ {0}, which is a domain in the Stein manifold
C™, but it is not projective or even Kahler. An Inoue surface X is in P because its
universal covering space is C x D, but X does not contain any curves.

Compact complex manifolds X whose universal covering space is a domain {2 in P with
non-empty complement of (2n — 2)-dimensional Hausdorff measure zero are studied in
Lérusson [1998]. Blanchard manifolds and Nori’s higher dimensional Schottky coverings
are examples of such manifolds. As shown in Larusson [1998], X is not of class C; in
particular, X is neither Kahler nor Moishezon. Since P" is in P, so is ). Hence, X is in
P.

Recall that a simply connected compact complex surface with trivial canonical bundle
is called a K3 surface. There are K3 surfaces X that contain no curves. Such X do
not lie in P, because if Y — X is a covering or a finite branched covering, then it is an
isomorphism, and X is of course not isomorphic to a domain in a Stein manifold.

4. The Riesz functional

As before, we let X be a complex manifold. Recall that a plurisubharmonic function v
on X defines the Riesz functional H3 on X by the formula

1
()= - [logl-1Awef),  fedx,
T Jp
where A(vo f) is considered as a positive Borel measure on D. If f € Ax and vo f = —o0,

then we set Hy(f) = 0.

The Riesz functional is closely related to the Poisson functional. By the Riesz repre-
sentation formula, we have

(N = 5 [1ogl-1awe 1) = [ GO.9Awe f)
— u(f(0)) - / P(0,)(v o f) dA
— o(F(0)) %/vofd)\ (4.1)

T
for f € Ax, where G is the Green function and P is the Poisson kernel for D, so

H3(f) =v(f(0)) +H " (f)
and
EH) =v+EH;".

This formula, along with Theorem 3.4, implies the following result.
16



4.1. Proposition. Let v be a plurisubharmonic function on a complex manifold X. If
EH{" is plurisubharmonic, then EHY is plurisubharmonic.
If X is in the class P, and v is continuous, then EHJ is plurisubharmonic.

We note that if h: X — Y is a holomorphic map, and v € PSH(Y'), then
h*HY = HY°".
By the remarks at the beginning of Section 3, this implies that if h is a covering, then
EHY°" = EHY o h.

Hence, if h : X — Y is a holomorphic covering, and EHj € PSH(X) for every v €
PSH(X), then FHJ € PSH(Y') for every v € PSH(Y).

Assume now that v is continuous. We will show that if X is in the class P, then EHJ
is the supremum of a naturally defined class of plurisubharmonic functions.

First of all, let us note that formula (4.1) shows that Lemma 2.4 holds for HJ. So does
Lemma 2.5, because it uses only Lemma 2.4, and the fact that H is bounded above on
every set of discs with images in a fixed compact set. A straightforward modification of
the proof shows that Lemma 2.7 holds for H5. Next we need a strengthening of Lemma
2.8.

4.2. Lemma. Leth € Ax, s> 1, G € O(Ds x Dy, X) and assume that G(0,w) = h(w)
for all w € Ds. Then there exists g € O(Ds, X) such that g(0) = G(0,0) and
1 27

Hy(g) < Hy(h) + o ; H3 (G(-,e")) do. (4.2)

Proof. The right hand side of (4.2) is equal to

27
v(h(O))—% /0 v(h(ei?)) db

1 27

+ Py (v(G(O, eie)) — % /027r U(G(e“,ew)) dt) do

0
— 1 o QWU ot pit it
=v(G(0,0)) (2702/0 /0 (G( ,e')) dtde.

Here we have made the same change of variables as in the proof of Lemma 2.8. Now
there exists 90 € [0, 27], such that

2 2 0 27 0
’I, it i < ’I, 0 it it .
@ / / ) dtdf —/ eit, eit)) dt

If we set g(2) = G(e* 2, 2) then ¢g(0) = G(0,0) and (4.2) holds. [

Proceeding as in the proof of Theorem 2.2, but using Lemma 4.2 instead of Lemma
2.8, we can now prove the following result. We remark that continuity of v is only needed
to obtain Lemmas 2.4 and 2.7.

17



4.3. Proposition. Let v be a continuous plurisubharmonic function on a domain X in
a Stein manifold. Then

EH%f@DSEQU%+%RAEHSOﬁM, Je Ax. (4.3)

Having proved this proposition for domains in Stein manifolds, we can easily extend
it to manifolds which are covered by such domains by lifting discs.

For a plurisubharmonic function v on a complex manifold X, we define
Fo={wePSH(X); w <0, L(w) > L(v)},

where £(v) denotes the Levi form i00v of v, which is a closed positive (1,1)-current on
X. We agree that £(—o0) = 0.

We note that F, may be empty, for instance on manifolds, such as C", that have no
non-constant negative plurisubharmonic functions.

4.4. Theorem. Let X be a complex manifold and v € PSH(X). Then supF, €
PSH(X). If w € F, and f € Ax, then w(f(0)) < H3J(f). Hence, supF, < EHJ.
Furthermore, if either

(1) X is in the class P, and v is continuous, or
(2) EHY € PSH(X) and (4.3) holds,
then EHS € F,, unless EHS = —oco. In any case, EH3 = sup F,.

Proof. Let H = Hy, F = F,, and v = EH. As in the proof of Proposition 2.1, if
F # {—o0}, then we take wy € F\ {—o0} and consider the class Fo = {w € F; w > wp}.
Now weak convergence implies convergence of Levi forms in the sense of currents, so F
is compact, and sup Fy = sup F € PSH(X).

Let w € F and f € Ax. Assume that vo f # —oo and w o f # —oo; otherwise,
w(f(0)) < H(f) is clear. Define a function s on X as w —v on X \v~!(—o00) and as —oo
on v~ (—00). Then s is locally integrable and £(s) > 0, so the function § defined locally
as lim._,o s * x., where y. are smoothing kernels, is a well defined plurisubharmonic
function on X, and 5o f is subharmonic on D. Since v,w € PSH(X), on X \ v~(—o00)
we have

s=lims*y. =limwx* x. — limv * y. = w — v,
so §o f = (w—w)o f almost everywhere on D, and A(w o f) > A(vo f). Hence, by the

Riesz representation formula,

1

w(f(0)) = 5

sl 18@wo )+ 5 [ woray
<—/MI wﬁ<%AMMWWﬁ:mﬁ



Now suppose (2) holds. Define a function s on X as u—v on X \v~!(—o00) and as —o0
on v~ (—o0). Let f € Ax. If v(f(0)) # —oc, then by (4.3) and the Riesz representation
formula,

s(f(0)) = u(f(0)) —v(f(0))
gH;(f)qL%/Tuofd)\—H;(f)—%/Tfuofd)\g%/Tsofd)\,

where, for the last inequality, we observe that (v o f)~!(—o0) N T is null with respect to
A because [vo fd\> —o00,s0 so f = (u—wv)o f almost everywhere on T.
This shows that s satisfies the sub-mean value property

S((0)) < 2i/qrsofd)\ for all f € Ay.

™

If v = —o00, then u = 0 € F. Let us therefore assume that u,v # —oo. Then s is
a locally integrable function on X. Since s satisfies the sub-mean value property, the
function s defined locally as lim._o s * x., where Y. are smoothing kernels, is a well
defined plurisubharmonic function on X. Since u,v € PSH(X), on X \v~!(—00) we have

s=lims*y. =limu*x. — limv* y. =u —v.

Hence, L(u —v) = L(§) > 0,s0 u € F.

We have shown that if (2) holds, then v € F unless u = —oco. By Propositions 4.1 and
4.3, (2) holds if v is continuous and X is a domain in a Stein manifold. To show that
u € F unless u = —oo if (1) is satisfied, we need only prove the following claim.

Claim. Let X and Y be complex manifolds, and h : X — Y be a holomorphic map which
is either a covering or a finite branched covering. Let v € PSH(Y'), and suppose that
FEHY € PSH(Y) and EHY°" € PSH(X). If EHY" € Fyop, then EHY € F,.

Proof of claim. First suppose h is a covering. Then FHY°" = E[h*HY] = EHY o h.
By assumption, L(EHS o h) > L(v o h). Since h is a local biholomorphism, this implies
immediately that L(EHY) > L(v), so EH € F,.

Now suppose h is a k-sheeted finite branched covering. Then, by Lemma 3.2,

L(h EHYM) = %h*E(EHg"h) > %h*ﬁ(v o h) = L(ha(vo h)) = L(v),
so h.EHY°" € F,, and
(h EHY™) o h < EHY o h < E[h*HY] = EHY".
This implies that EHY°" = EHY o h, so EHY = h,EH3°", and, by the above,
L(EHS) = L(h.EH3*") > L(v),

so FHy € F,. U
19



5. The Lelong functional
Let 3 be a non-negative function on ID. Then
p=2m Z B(b)dy
beD
is a well defined positive Borel measure on . Let

v(z) = /D => B ) log| 7

bebD

i

Then v is a subharmonic function on . We have v # —oc if and only if

S A1 =) = 5= [ (1= 1+ D <

beb

see Hormander [1994, Chapter III]. Suppose v # —oo. Then p has finite mass on compact
sets, so [ is zero outside a countable set, and the sum that defines p converges in the
sense of distributions. Also, Av = pu, so v, = u({-}) = . In fact, v is the largest negative
subharmonic function on D with Lelong numbers at least 3.

If X is a complex manifold, v € PSH(X), f € Ax, and b € D, then

Vuof(b) = vu(f (b)) (f)-

In view of this, if « is a non-negative function on X, we define f*a : D — [0, 00) by the
formula

fra(b) = a(f(b))m(f)-

Let X be a complex manifold. Recall that a non-negative function o on X defines the
Lelong functional Hg by the formula

=) fra®)logll,  feAx.
beD

We have
Hg (f) = v (0),
where v} is the largest negative subharmonic function on D with Lelong numbers at least
*a. If v} # —o0, then
f

13 (1) = v30) = [ o] oy

Let
Fo={wePSH(X); w <0,v, > a}.
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5.1. Proposition. Let X be a complex manifold and let o : X — [0,00). Then sup F,
is plurisubharmonic. If w € F, and f € Ax, then w(f(0)) < H§(f). Hence, sup Fo <
EHS. Finally, EHS is plurisubharmonic iof and only if EHS € F,,, and then EHS =
sup Fg.-

Proof. As in the proof of Proposition 2.1, if F, # {—oo}, then we take wy € F, \ {—o0}
and consider the class Fyp = {w € Fn;w > wp}. For p € X, the map u — v,(p)
is an upper semi-continuous function on PSH(X) \ {—oco}. Hence, Fy is compact, so
sup Fo = sup F, is plurisubharmonic.

Let w € F, and f € Ax. Then w o f is subharmonic on D, and vy, > f 10, > f*a,
sow o f <. Hence, w(f(0)) <v§(0) = H§(f).

Suppose EH$ is plurisubharmonic. Let (U, ¢) be a coordinate neighbourhood centred
at p € X. We may assume that ((U) = {z € C"; |z| < 2}. Forz € U with 0 < |((z)] < 1,
define f € Ax by the formula

Then f(0) =z and f(—[¢(z)]) = p, so
EHZ (x) < Hg (f) < a(p) log[¢(x)],

and vpge (p) > op). Hence, EHS € F. O

Let us note a few simple consequences of the proposition.

Let v < 0 be plurisubharmonic on X, and set & = v,,. Thenv € F,,sov <u = FHS.
Suppose u is plurisubharmonic. Then this implies that v, < v,, but since u € F,, we
also have v, > a. Hence, v, = v,.

Recall that by a theorem of Siu [1974], if u € PSH(X), then v, ![c, 00) is a subvariety
of X (i.e., a closed analytic subset of X) for all ¢ > 0. See also Kiselman [1979] and
Demailly [1987]. If w = EH$ is plurisubharmonic, then the proposition implies that
Vu > @, so if u # —o0, then a~![c, 00) is contained in a proper subvariety of X for each
c>0.

Let a be a non-negative function on X. For ¢ > 0, let Z. be the Zariski closure of
a~1[e, ), i.e., the smallest subvariety of X containing a~![c, c0). Define a non-negative

function & on X as con Z.\ |J Z; for each ¢ > 0. Then &~ ![c,00) = Z, for each ¢ > 0,
t>c
and & is the smallest function on X with & > «, such that d_l[c, o0) is a subvariety of

X for all ¢ > 0.
If w € PSH(X) and v, > «, then v,, > & by Siu’s theorem. Hence, F, = F4, so if
EH$ is plurisubharmonic, then by the proposition,

EH? < EHS =supF, =supFs < EH??,
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so EHY = FHS, and EHS is plurisubharmonic.

Like the Riesz functional, the Lelong functional is related to the Poisson functional,
but this relationship will take considerable work to establish.
We define a function k¢ : X — R U {—o0} by the formula

k% (z) = inf{a(f(2))log|z|; f € Ax, f(0) = x, z € D}. (5.1)

Observe that the definition does not change if we restrict z to the interval (0,1). In
the case where suppa = {a} and a(a) = 1, the function k% is identical to the function
kx(a,-) defined by Edigarian [1996] by the formula

kx(a,z) =inf{logt; t € (0,1), f(t) = a, f(0) = z, for some f € Ax}.

The function k% is related to the Kobayashi pseudodistance kx on X. By definition,
kx is the largest pseudodistance on X smaller than dx, where

dx(x,a) = inf{op(z,w); f(z) =z, f(w) = a for some f € O(D, X)},
and pp denotes the Poincaré distance in D,

Z—w

on(z,w) = tanh ™!

1—wz

By composing the map f in the definition of dx with an automorphism which sends
0 to z and then replacing it by z +— f(z/r) with r > 1 and r close to 1, we see that
kx(a,x) =logtanh dx (z,a) for all z € X. Consequently,

kS (x) = iggca(a) logtanh dx (z, a).
5.2. Proposition. Let X be a complex manifold, let o : X — [0,00), and define kS by

(5.1). Then k% < 0, k% is upper semi-continuous, and for every p € X there exists a
coordinate neighbourhood (U, () centred at p such that

kx (z) < a(p)log|¢(z)],  zeU. (5.2)

Proof. 1t is obvious that k& < 0. Take zo € X, § € R, and assume that k% (z9) < 0.
Then there exist fo € Ax and ty € (0, 1), such that f(0) = z¢ and a(f(t9)) logty < 8. By
Lemma 2.3, there exists an open neighbourhood V of xg, r > 1, and f € O(D, x V, X),
such that f(z,x9) = fo(z) for all z € D,., f(0,x) =z, and f(tg,x) = fo(to) for all z € V.
Then k% (z) < a(f(to,x))logty < [ for all x € V, and we have proved that k% is upper
semi-continuous.
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Now we take p € X and choose a coordinate neighbourhood (U, () centred at p with
CU)={2z€C"; |z| <2}. For x € U with 0 < |¢(x)| < 1, we construct an analytic disc
f € Ax with f(0) = z and f(—|¢(z)|) = p in the same way as in the proof of Proposition
5.1. Then k% (z) < a(p)log|((z)|, so (5.2) holds. O

Now EHf?‘ < k%, soif EHf?‘ € PSH(X), then (5.2) implies that EHf?‘ € F,. Hence,
Proposition 5.1 shows that EH'X < EHE.

Edigarian [1996] has proved that if X is a domain in C", supp a = {a}, and a(a) = 1,
then gx(-,a) = EH = EH f X , where gx(+,a) denotes the pluricomplex Green function
on X with a logarithmic pole at a. We will now generalize this result to an arbitrary
non-negative function o on a domain in a Stein manifold.

5.3. Theorem. Let X be a domain in a Stein manifold, let o be a non-negative function
on X, and define kS by (5.1). Then EHS = EHfX, i.e., for every x € X we have

EHg () =inf{) [ a(z)logl|; f € Ax, f(0) = 2}

zeD
= inf{ifqugg o fdX; f € Ax, f(0) = 2} = EH~ ().

Hence, EHS' is plurisubharmonic.

As we have already noted, we only need to show that EHS < EHf X Since kS is
upper semi-continuous, this inequality follows if we can prove that for every h € Ax,
e >0, and v € C(X,R) with v > k%, there exists g € Ax such that g(0) = h(0) and

™

1
HS (g) < 2—/vohd)\—|—8. (5.3)
T

The construction of g is similar to that in Section 2, but somewhat more complicated.
First we prove a variant of Lemma 2.5, in which we construct F' € C*(D, x T, X)
and finitely many functions o, € C°(T), such that F(0,w) = h(w) for all w € T,
F(o,(w),w) = a, for w on a certain arc J,, and

N
Za(ay)/log|ay|d)\§/UOhd)\—l—s. (5.4)
T

T

v=1

Next we use a similar approximation method as in Lemmas 2.6 and 2.7 to construct
G € O(Dy x Dy, X) and 7, € O(D; \ D1 ), such that G(0,w) = h(w) for all w € Dy,
G(1,(w),w) = a, for all w € J,, and

N

WE

a(ay)/Tlog|Ty|d)\ < a(ay>Alog|ay|dA+e. (5.5)

1

v=1

[NUAN
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We prove that there exist £ € T, a natural number k, ¢ > 0, and ¢ € (0,1), such that
f € Ax and ® € O(D x D) defined by the formulas

—c/k
f(z) = G(&27, 2) and O(z,w) = w% (5.6)
satisty
27 N
HS(f o ®(- Z /1ogm\ d\ +e. (5.7)
0 =

If fuj’%‘(()) = —o00, then we simply take ¢ = f. Otherwise, it turns out that one can find
g € Ax of the form g(z) = f o ®(e%2, 2), such that

2
Hi(9) < 5 [ HE(fo(e)) db. (53)
0

We get (5.3) by combining the inequalities (5.4,5,7,8).

For the proof we need some lemmas. In all of them we assume that X is a domain in
a Stein manifold, h € Ax, ¢ > 0, and v € C(X,R) with v > k%. In each of the proofs
we also assume that the conditions in the previous lemmas are satisfied. First we prove
a variant of Lemma 2.5 with k% in the role of w.

5.4. Lemma. There existr > 1, s € (1,r), FF € C*(D, x T, X), a natural number N,
and forv=1,...,N, a, € X, 0, € C°(T,C*), and disjoint closed arcs J, C T, such
that
(i) F(-,w) € Ax and F(0,w) = h(w) for allw € T,
(ii) F(oy(w),w) = a, for all w € T such that |o,(w)| < s and then |o,(w)| > s for
all p # v,
(iii) |oy, (w )| <1 for allw € J, and A\(T\ Ufjv:l Jy) <,
(iv) o1(w),...,on(w) are distinct for any w € T,
v) 27N max, a(a, ) maxrlog |0, | < £/2, and
)

(vi) (5.4) holds.

Proof. Let wy € T, set g = h(wy), and choose fy € Ax such that fo(0) = xo, f(tg) = ao,
and a(ap)log |to| < v(zo) + /87 for some ty € D*. By Lemma 2.3, there exists ro > 1,
an open neighbourhood V) of xo, and f € O(D,, x Vo, X), such that f(z,x0) = fo(2)
for all z € D,,, f(0,x2) = z, and f(to,x) = fo(to) = ap for all x € Vj. By replacing Vj
by a smaller neighbourhood of xy we also get a(ap)log|to| < v(z) + &/8n for all x € Vj.
We can take an open arc Iy C T containing wg such that h(w) € V; for all w € Iy, and
define Fy : D,, x Iy — X by Fy(z,w) = f(z, h(w)). By replacing ¢ by a smaller number
in (1,00) and Iy by a smaller open arc containing wg, we may assume that Fo(D,, X Io)

is relatively compact in X.
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A simple compactness argument now shows that there exists a cover of T by open arcs
{IN |, r,>1,F, € C®°(D,, x1I,,X),t, €D* and a, € X, such that F,(-,w) € Ay,
F,(0,w) = h(w), F,(t,,w) = a,, the set F, (D, x I,) is relatively compact in X, and
alay)loglt,| < v(h(w)) + €/8x for all w € I,,. By replacing F,, by a composition with a
rotation in the first variable, we may assume that the points ¢, lie on distinct rays from
the origin.

We choose 1 < s < s9 < r = min, r,, such that 20N max, a(a,)logsy < /4, a
compact subset M of X containing the image of all the functions F,, and a constant

C > 1+ 27N maxa(a,)|log|t,|| + sup |v]|.
v M

We choose J, and K, in the same way as in the proof of Lemma 2.5, and then define the
functions ¢ and F' as there. Then (i) holds.

We can always choose the function ¢ such that ¢ > 0 on Uivzl K,. Furthermore, if
K, ={e?;0¢ (a,,B,)} and J, = {9 0 € [,,6,]}, where a,, < v, < §, < 3,, then
we can choose p increasing on («,,7,) and decreasing on (6,,53,). Then J, = {w €
K, ; |t,|/o(w) < s} is a closed arc and J, C J, C K,. We can choose o, € C*(T)
with image on the ray from 0 through t,, such that o,(w) = t,/e(w) for w € J,
s < |oy(w)] < sg for w € K, \ J), and |0, (w)| = s¢ for w € T\ K,. Then (ii)-(v) are
satisfied.

To prove (vi), we combine our inequalities in a similar way as in the proof of Lemma
2.5:

N N
Za(al,)/log\ayw)\gZa(a,,)/ log\t,,\d)\—i—E
v=1 T v=1 Jv 4
al €
< vohdA—f——ﬁ/vohdA—ka 0

T

v

Now we have come to the approximation property, which is analogous to Lemma 2.6.

5.5. Lemma. There exists a natural number jo, and for every j > jo a number s; €
(1,5), Gj € O(Ds; x Ds,, X), and 7,; € O(Ds, \El/sj), v=1,...,N, such that
(i) Gj(0,w) = h(w) for all w € Dy,
(ii) |7'l,]| — |oy| uniformly on T,
(ili) Gj(ry;(w), w) = a, for all w € Dy, \ Dy, such that |7,;(w)| < s;, and
(iv) |7'l,]( )| <1 forallw e J,.

Proof. With the same reasoning as in the proof of Lemma 2.6, we conclude that there
exists a biholomorphic map ® : X — V, where V is a domain in a submanifold Y of C",
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and that there exists a Stein neighbourhood Z of Y in C" with a holomorphic retraction
0:7Z —Y. Weset V.= o¢"1V). Then V is open in C*. We set ' = ®o F €
C®(D, x T,C"), h=®oh e O(D,,C"), and &, = P(a,).

Since 0,01 (w), ...,on(w) are distinct for any w € T, there exists a unique polynomial
P(-,w) of one complex variable with values in C" and degree at most N, which solves
the interpolation problem

P(0,w) = h(w),  P(o,(w),w)=a,  v=1,...,N, (5.9)

and we can express P(z,w) by Lagrange’s interpolation formula

N z —oy(w) N 20, N z—oy(w
P(z,w) = h E .
z:Hl —ou(w) = ou(w) g —06( )
LFu

Furthermore, we can write

F(z,w) =P(z,w) + (z —o1(w)) -+ (2 — on(w)) Fo(z, w).

We see directly that FO(O,w) = 0, and that F} is a C°° map and holomorphic in the
first variable in a neighbourhood of every point (z,w) € Ds x T for which |o,(w)| > s
for all v. If |0, (wo)| < s for some v, then |0, (wp)| > s for all u # v, and there exists a
neighbourhood Uy of wy in T such that |0, (w)| < s, |0, (w)] > s, and F(o, (w),w) = &,
for all p # v and w € Uy. Since P is the solution of the interpolation problem (5.9), we
can write

P(z,w) = F(o,(w),w) + (z — 0, (w)) Py(z, w),

where Py € C*°(C x Uy, C") is a polynomial in z. This shows that for all (z,w) € Dy x Uy
with z # o, (w),

N

~ W) = ﬁ’(z,w) —F(O'V(UJ),U]) o 2w é
FO( ’ ) ( Z—(T,/(w) PO( ’ )) e];[l Z—O‘g(w).
{#v

SNince Fis in C™ (D, x T,C") and is holomorphic in the first variable, this shows that
Fy € C>*(Ds x T,C"), and that Fy is holomorphic in the first variable. Now we let Fj;
and o0, be the j-th partial sums of the Fourier series of Fjy and o, respectively, i.e.,

J 27
. 1 s o
Foj(z,w) = Z <%/0 F()(Z,elg)e_lked@)w’~C

k=—j
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and .
o .(w)— i (i /QWJ (eig)e_iké) d@)wk
v N 2m Jo Y ’
k=—j

In the same way as in the proof of Lemma 2.6, we conclude that Foj — [}, uniformly on
D; x T for every t € (1,s). Since o, € C*°(T), it also follows that ¢, ; — ¢, uniformly
on T. We now set

Py (zw) = ) [T 2 26l)  5n 2 T2 0u()

Ty (W) — 055 ()

and
Fi(z,w) = Pj(z,w) + (2 — 01j(w)) - -+ (z — o, (w)) Fo; (2, w).

The map F j is meromorphic on Dy x Dy with values in C", with a pole of order at most
7 at the origin, with no poles on Dy x T for large j, and F~’j — F uniformly on D; x T for
all t € (1,s). Furthermore, 0,,; € O(C*) with a pole of order at most j at 0.

Now we choose jo such that the numbers oq;(w),...,on;(w) are distinct and non-
zero for all j > jo and w € T. Then the functions o,;, p = 1,..., N, and o,; — 0y;,
p,¢=1,..., N, u# £ have finitely many zeros in D. Let by, ...,b,, be an enumeration of
all the zeros of these functions counted with multiplicities, and let N; be the set consisting
of them. We define the Blaschke product B; by

We have Fj € O(D, x (D" \WN;),C"). For every w € D \ N, the function z s Fy;(z,w)
has a zero at the origin, and for every z € D, the function w — F;(z, w) has a pole of
order at most j at the origin. For every w € C* \ N with |o,;(w)| < r, we have

F(ov;(w), w) = a.

We now observe that for k£ > j, the map ~jk defined by

Fji(z,w) = Fj(zw* Bj(w), w)
is holomorphic in D x D, and the function ok defined by
oyj(w)

~ wFB;(w)
27
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is meromorphic in C* and without zeros in D*. Moreover, Fjx(o,,1(w), w) = @, for every
w € D} with |o,;(w)| < r. With exactly the same reasoning as in the proof of Lemma
2.6, we conclude that there exists k; > j and s; € (1, s), such that G; € O(Ds, x D, V),

where éj is defined by the formula

Gj(z,w) = Flg,; (z,w) = Fj(2w® B;(w), w).

If we set G; = dlogo éj, Tuj = Oujk;> and replace s; by a smaller number such that
7y is holomorphic in the annulus Dy, \ Dy, then (i)-(iv) are satisfied. O

5.6. Lemma. There ezistst € (1,s), a map G € O(Dy x Dy, X), and functions 7, €
O(Dy \ D1 1), such that
(i) G(0,w) = h(w) for all w € Dy,
(ii) 7 (w) # 0 for allw € Dy \ D1y and |1,| <1 on J,,
(iii) G(7(w),w) = a, for all w € Dy \ D1, such that |7, (w)| < t,
(iv) 27N max, a(a,) maxrylog|7,| < &/2, and
)

i
(v) (5.5) holds.

Proof. This follows directly from Lemmas 5.4 and 5.5, if we take j sufficiently large, and
set G =G, t=s;,and 1, =7,;. U

5.7. Lemma. There exist £ € T, a natural number k, ¢ > 0, and ¢ € (0,1), such that
feAx and ® € O(D x D) defined by (5.6) satisfy (5.7). Furthermore, for k sufficiently
large, the derivatives of the functions z — ®(z,w) and z — ®(wz,z) are non-zero at
every point z € D for each w € T.

Proof. Since T, (w) # 0 for all w € D; \ D, /t> we can choose ¢ > 0 so large that

e ¢ — 1, (w
ne " =7 >C‘<1ogm< w) + 5=

log (5.10)

M

1 — 7, (w)ne~

forallp e D, w € T, and v = 1,..., N, where M > > «(a,). We define the function

P e OC\{-1}) b '
¥(z) = exp <cz _T_ 1).

Observe that z +— (2 —1)/(z+ 1) maps D onto the left half plane, and T \ {—1} onto the
imaginary axis. Hence ¢ maps D onto D*, and T \ {—1} onto T. For every n € T and
every w € J,, we define ¢, (-;n,w) € O(C\ {—1}) by

mp(z) — 1 (w)

1 — 7, (whph(2)
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Since |7, (w)| < 1for allw € J,, (D) = D*, and ¢(T\{—1}) = T, we see that ¢, (-;n,w)
is an inner function, and since it is continuous on D\ {—1}, we have |p, (z;n, w)| =1 for
all z € T\ {—1}, and

t—l}ﬂ—i— (;Ou(t; n, ’LU) = —T,/(U)) 7£ 0.

Hence, the function ¢, (+ ; 7, w) has no radial limit equal to zero. Now Frostman’s theorem
implies that ¢, (+;n,w) is a Blaschke product. See Noshiro [1960, p. 33].

Observe that every zero of ¢, (+;n,w) is a zero of the function z — n(2) — 7, (w). Its
derivative n1'(z) is non-zero at every point z € D, so all the zeros are simple. Let us
now take (zg,n0,wp) € D x T x J,, and assume that ¢, (zo; 10, wp) = 0. Take an open
disk Dy such that zy is the only zero of ¢, (-;n9,wo) in Dy. Then there exists an open
neighbourhood Uy of (g, wp) in C? such that (z,n,w) — ¢, (z;n,w) is holomorphic in
Dqy x Uy, the function A\ given by

A w) = - /aD WZ""‘“Z) dz

T 2mi (z) — 7 (w)

is holomorphic in Uy, A(no, wo) = 20, and ¢, (A(n, w);n,w) = 0 for all (n, w) € U.
We let {z0,1}72, be the zeros of ¢, (+; 1o, wop). Since ¢, (+; 10, wo) is a Blaschke product,
we have

o0

— H ‘ZOul|7

=1

noe” ¢ — 7, (wo)

1 — 7, (wo)noe=¢

l0u (03 M0, wo)| = '

and from (5.10) it follows that we can find a natural number Ly and a real number
00 € (0,1) such that
Lo

> log(|z0ul/00) < log 7 (wo)| +
=1

£
2M°

Now each of the zeros zp,; defines a holomorphic function z,;, such that z,;(n0, wo) = 2w,
0y (zui(n, w);n, w) = 0, and

3

Lo
;log(lzyz(ﬂ,w)\/go) <log|m ()| + 577

for all (n,w) in some neighbourhood of (1, wp). By a simple compactness argument, we

now conclude that there exist an integer L and ¢ € (0, 1), such that for every (n,w) €
T x J, we can find zeros A 1(n,w), ..., A\,r(n,w) of v, (+;n, w), satisfying

3

ST (5.11)

Zlog(\%l(mw)l/g) < log |1, (w)| +
=1
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Now we define the functions ¢, € O(C \ {—e*/*}) by

djk(’z) = 1+ e_c/kz'

By writing

. _ —C/k Z—l
Yp(z)=1+(1—c¢ )71 Fapmryre

we see that ¢ — 1 uniformly on compact subsets of I, and if we let log denote the
principal branch of the logarithm, then we see that

—c/k) z—1 z—1

klg&klog@bk(z) B klingok(l 1te</fz  “z+1

and the convergence is uniform on compact subsets of ID. This implies that 1/1,? —
uniformly on compact subsets of D. We choose to € (1,1/0). Since |7,| < 1 on J,, we
can choose a neighbourhood U, of J, in D; such that |7,| < 1 on U,, and since ¢, — 1
uniformly on compact subsets of D, we can choose kg such that wiy(pz) € U, for all
k> ko, w € J,, and z € Dy,. Condition (iii) in Lemma 5.6 now implies that

G(1, (wipk(02)), wr(02)) = ay, k> ko,w € Jy,,z € Dy,. (5.12)
We observe that {\,;(n,w)/o}, are zeros of the function
z = (ez) — T (w),
and that this function is the uniform limit on D;, of the sequence of functions
2 mPr(e2)" = 7 (wyn(e2), k> ko.

By Hurwitz’ theorem we conclude from (5.11) that for k large enough there are zeros
AR (n,w) of this function so close to A,;(n,w)/o that

L
k
> log AL (m, w)] < log |7 (w)| + 5. (5.13)

Now (5.12) implies that for z = A%, (n,w), ..., A*, (n,w), and (n,w) € T x J,, we have

G(nvw(02)", wik(0z)) = ay. (5.14)
If we set @ = |J(T x J,), then (5.13-14) implies that

N
Hg (G0 )", wie(e+) < Y alay,) log |7, (w)| + /2, (n,w) e Q.  (5.15)
v=1
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Now let S denote the image of @ under the map T? — T2, (n,w) — (nw™",w). Since the
absolute value of the Jacobian of this map is 1, we have A(S) = A(Q) > 27 (27 —¢), and we
conclude that there exists £ € T such that A\(R) > 2mr—e, where R = {w € T; ({,w) € S}.
By (5.15) we have

N
Hg (G(&(wi(e-)®, win(e+) <Y alay)loglr, (w)| +¢/2,  weR,
v=1

and property (iv) in Lemma 5.6 implies that

27

0

N
Hg (G(E(e” (o))", i (o Z /log|ﬂ,|d)\—|—5.

A priori, we interpret the integral on the left as an upper integral, i.e., the infimum of the
integrals of all Borel functions that dominate the integrand. Now we define f and ® by
(5.6), observe that ®(z,w) = wiyy(pz), and conclude that (5.7) holds. The last statement
of the lemma is obvious from the fact that ¢, — 1 locally uniformly on D. [J

5.8. Lemma. Let f € Ax and ® € O(D x D) with ®([D x D) C D. Assume that
v§#(0) > —oo, and that the derivatives of the functions z — ®(z,w) and z — ®(wz, z)
are non-zero at every point z € D for each w € T. Then there exists g € Ax defined by
g(2) = fo®(e2, 2), z €D, for some Oy € [0, 27|, such that (5.8) holds.
Proof. Let us first observe that

Avf,, = A(vf o p) in D, (5.16)

for every ¢ € O(D) with (D) C D and ¢’ (2) # 0 for every z € D. In fact, since v # —o0,
we have
Av§ =21 fra(b)s,
beD
where the sum is countable and convergent in the sense of distributions. By assumption,

©(D) is open, so v o # —o0, and the pullback ¢p*u of any distribution v on D is well
defined. Therefore,

A(vf o) = Ap™vf = o (AvF)|¢'|> =21 > fra(b)e™ sy ||,
beD

If b € D and p(c) = b for some ¢ € D, then there is a neighbourhood U of ¢ such
that ¢=1(b) N U = {c}, and ¢|U is biholomorphic onto a neighbourhood of b. Hence,
©*0p = |¢'(c)| 725, in U. This implies that

A@§op) =21 (fop)alc)d. = Avf,,.
ceD
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From (5.16) we get
HE(f o) :/log|-|A(v?ogp). (5.17)
D

Now we need the following lemma.

5.9. Lemma. (See Poletsky [1993, Lemma 3.2].) Let r > 1, and w € PSH(D, x D,).

For 0 € R, we define a subharmonic function wg on D, by the formula we(z) = w(e®z, 2).

Then there exists 6y € [0, 2w such that

27
/1og\ | Awg, < i/ </log| : |Aw(-,ei9)) o). (5.18)
D 21 Jo D

Proof. If w = —oo, then both sides of (5.18) are zero, so we may assume that w # —oo.
The Riesz representation formula applied to wg gives

27
27w(0,0) = / log |« | Awg +/ w(e 0t et dt.
D 0

Since w # —oo, there exists 6y € [0, 2] with wg, # —o0, for otherwise w would be —oo
on a 3-real-dimensional set in D, x Dr, SO fT wg,d\ # —oo. If w(0,0) = —oo, this shows

that the left hand side of (5.18) is —
Now let us assume that w(0, 0) 7é —o00. By integrating with respect to 6, we get

(27)%w(0, 0) :/027r (/log| |Awg) d0+/2ﬂ /% Yy dtde.

Applying the Riesz representation formula to z — w(0, z), we get

27
2mw(0,0) = / log| - | Aw(0, ) —|—/ w(0, e df.
D 0

By assumptlon w(0,+) # —oo a.e. on T, so the Riesz representation formula applied to
z — w(z,e"?) shows that

27
/ log| - |Aw(-, ) = 27w(0, e) —/ w(e', e dt for a.e. 6.
D 0

The terms on the right are semi-continuous, so 6 +— [;log| - [Aw(-,e?) is Lebesgue-

measurable. Also,

(2m)2w(0, 0) < /027r </Dlog| |Aw )d@—i—/% /27r %) dt do.



Hence,

/027r</Dlog|-\Aw9) d9§/02ﬂ</ﬂ)log|-\Aw(-,ew)) de,

and (5.18) follows. [

End of proof of Lemma 5.8. Set w = v§ o ®, choose 0y such that (5.18) holds, set
g(2) = fo®(ez, 2), and ¢(z) = ®(e'? 2, 2). Then (5.16-18) give

H§<g>:/Dlog|-|A<v?oso>=/Dlog|-|Aweo

1 27 0
< — . . el
<5 ), (/Dlog| | Aw(-, e ))d@

1 o @ 0
=5 ; (/Dlog|-|A(vfqu(-,e )))d@
1 27 0
— 5 [ 5o .

In particular, this computation shows that the last integrand is a Lebesgue-measurable
function of 6. [

Proof of Theorem 5.3. We have already seen that EHS > EHf?{. As we noted after the

statement of Theorem 5.3, the inequality EHS < FH f X will follow if we can prove that
for every h € Ax, e > 0, and v € C(X,R) with v > k%, there exists g € Ax such that
g(0) = h(0) and (5.3) holds. We choose F', a,, 0, G, 1, f, and ® as in Lemmas 5.4-9. If
v$(0) = —oo, then we set g = f. Then g(0) = G(0,0) = h(0), and (5.3) holds trivially. If
v$(0) > —oo, then we choose g satisfying the conditions in Lemma 5.8, and (5.3) follows
by combining (5.4,5,7,8). Now Theorem 2.2 and Proposition 5.2 imply directly that EHS
is plurisubharmonic. [l

In the remainder of this section, we will show that, with some restrictions, the Lelong
functional has plurisubharmonic envelopes on manifolds in P.
We note that if h: X — Y is a holomorphic covering, and 3 : Y — [0, 00), then

hWHY = HJ"  so  EHE" = EHY oh.
This implies the following result.
5.10. Proposition. Let X andY be complex manifolds such that there is a holomorphic

covering X — Y. If EHS € PSH(X) for all non-negative functions o on X, then
EH? € PSH(Y) for all non-negative functions 3 on Y .

For finite branched coverings we have the following result. Unfortunately, we are
unable to deal with the case when the non-negative function is non-zero at a branch
point.
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5.11. Proposition. Let h : X — Y be a finite branched covering. Let 3 be a non-
negative function on'Y which is zero on the branch locus of h. If EH?Oh 18 plurisubhar-
monic on X, then

EHY" = EHY oh  so  EHY = h,EHS",

and EH36 is plurisubharmonic on 'Y .

Proof. If f € Ax, then H360h(f) = Hg(hof), SO EH??oh < EH??Oh. By Proposition 5.1,
EH:? °h ¢ Fgon- Since h is unbranched over points where 3 > 0, and the Lelong number
is additive, this implies that h*EH:th € Fp. Hence,

hEHy" o h < EHY o h < EHY",

so EHP" = EHY oh. O

5.12. Theorem. Let o be a non-negative function on a manifold X in P. Suppose there
exists a sequence

h h h?n
X0—1>X1—2>—>Xm:X, mZO,

of complex manifolds and holomorphic maps, where Xg is a domain in a Stein manifold

and each h;, i =1,...,m, is either a covering or a finite branched covering, such that
a~ e, 00) \ B is Zariski-dense in a”'[c,00) for each ¢ > 0, (5.19)
where .

B = U(hm 00 hit1)(By),

=1

and B; denotes the (possibly empty) branch locus of h;.
Then EHS s plurisubharmonic.

Clearly, (5.19) is true if « = 0 on B. If a = @&, i.e., a~![c,00) is a subvariety of X
for each ¢ > 0, then a~1(0, c0) is a countable union of subvarieties of X, and « satisfies
(5.19) if and only if B contains no irreducible component of a=1(0, c0).

Proof. Let 3 = xa, where x denotes the characteristic function of X \ B. Then B =&
by assumption. Since 3 vanishes on B, Theorem 5.3 and Propositions 5.10 and 5.11
imply that EH?,B is plurisubharmonic. Hence, by the remarks following Proposition 5.1,

EH?? = EH36. Also, <a<a= B, so PHS = EH?? is plurisubharmonic. [J
On covering spaces of projective manifolds we can ignore the branch loci if a vanishes

outside a countable set.
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5.13. Theorem. Let X be a covering space of a projective manifold. If av: X — [0, 00)
vanishes outside a countable set, then EHS is plurisubharmonic.

Proof. Let p: X — M be a holomorphic covering onto a projective manifold M. Let
S = pa~1(0,00). Then S is a countable subset of M. Let h : N — M be the finite
branched covering provided by Theorem 3.8 applied to M and S. Proceeding as in the
proof of Corollary 3.10, we obtain a finite branched covering Y — X, whose branch locus
B is the preimage under p of the branch locus of h, so a = 0 on B. Furthermore, Y is
covered by a Stein manifold. The conclusion now follows from Theorem 5.12. [

6. Compact manifolds

We will now consider envelopes of disc functionals on a compact complex manifold X.
Here, the problem takes on a different character, because all plurisubharmonic functions
on X are constant, so methods for constructing them are not of interest. Instead, results
on plurisubharmonicity of envelopes provide information about existence of analytic discs
in X. We will consider only the Poisson functional and the Lelong functional, since the
Riesz functional is identically zero on a compact manifold.

6.1. Proposition. The following are equivalent for a compact complexr manifold X .

(1) The Poisson functional has plurisubharmonic envelopes on X.
(2) For every p € X, U # @ open in X, and € > 0, there is f € Ax such that
f(0) =p and
AT\ f7HU)) <e.

Proof. (1) = (2): Let p € X and U # & be open in X. Let ¢ equal 0 on U and 1 on
X \U. Then ¢ is upper semi-continuous on X, u = EH{ is plurisubharmonic on X, and
u=0onU,sou=0on X. Hence, for every £ > 0 there is f € Ax with f(0) = p and

£ > /T<pofd>\ = AT\ f1(U)).

(2) = (1): Let ¢ be upper semi-continuous on X. Let a € RU {—oo0} be the infimum
of ¢. To show that EH{ = a, just apply (2) to the non-empty open sets U = {p < c},
where ¢ \, a, and note that by compactness, ¢ is bounded above. [J

The proof shows that (1) implies (2) for any manifold X such that every plurisubhar-
monic function on X which is bounded above is constant.

6.2. Remark. Let us note that when constructing envelopes of disc functionals on

a manifold X, we cannot restrict ourselves to the family of analytic discs f : D — X

that extend holomorphically to a single larger disc D,., r > 1. More precisely, there is a
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manifold X in the class P, and an upper semi-continuous function ¢ on X, such that the
function v defined by the formula

o(@) = inf{/goofd)\; FeOD, X), f(0)=a}, zEX,
T

is not plurisubharmonic on X for any r > 1.

To see this, let X be a compact manifold whose universal covering space is the unit
ball in C". There are many examples of such manifolds. Then X isin P. Let p € X, and
let (U,) be a decreasing neighbourhood basis of a point ¢ # p in X. Let ¢,, equal 0 on
U, and 1 on X \ U,,. Fix r > 1. If v defined as above using ¢,, is plurisubharmonic, then
v = 0, so as in the proof of Proposition 6.1, we get holomorphic maps f, : D, — X such
that f,(0) = p and A\(T\ f,1(U,)) < 1/n. Now X is taut, so there is a subsequence of
(fn) that converges uniformly on compact sets to a holomorphic map f : D, — X. Then
f(0) =p but f(T) = {q}, which is absurd.

Now we turn to the Lelong functional.

6.3. Proposition. The following are equivalent for a compler manifold X such that
every plurisubharmonic function on X which is bounded above is constant.

(1) The Lelong functional has plurisubharmonic envelopes on X .
(2) For everyp,q € X, p# q, and M > 0, there is f € Ax such that f(0) =p and

Z m,(f) log|z| < —M.

ze€f~(q)

Proof. (1) = (2): Let a equal 1 at ¢ and 0 on X \ {¢}. By assumption, u = FH§ is
plurisubharmonic. Also, u(q) = —o0, so u = —o0, and (2) is immediate.

(2) = (1): Let a: X — [0,00). If & = 0, then u = FH$ = 0. Say a(q) > 0. Then
u(q) = —oo. Applying (2) to any p # ¢, we get u(p) = —oo. Hence, u = —oco. O

The proof shows that (2) implies (1) for all manifolds X.

The following is an immediate consequence of Propositions 6.1 and 6.3.

6.4. Proposition. Suppose X and Y are compler manifolds with no non-constant neg-
ative plurisubharmonic functions, and h : X — 'Y is a surjective holomorphic map.

If the Lelong functional has plurisubharmonic envelopes on X, then the Lelong func-
tional has plurisubharmonic envelopes on Y .

If Y is compact and the Poisson functional has plurisubharmonic envelopes on X, then
the Poisson functional has plurisubharmonic envelopes on Y .

Recall that a compact complex manifold X is called Moishezon if the transcendence
degree of its field of meromorphic functions equals its dimension. Then X can be made
into a projective manifold by blowing up finitely many submanifolds. In particular, X is
the image of a holomorphic map from a projective manifold.
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6.5. Corollary. The Poisson functional and the Lelong functional have plurisubhar-
monic envelopes on Moishezon manifolds.

Proof. By Proposition 6.4 and the remarks above, it suffices to show that the Poisson
functional and the Lelong functional have plurisubharmonic envelopes on a projective
manifold X.

Let a : X — [0,00). If & = 0, then EH§ = 0. Otherwise, let 8(p) = a(p) > 0 for
some p € X, and f# =0 on X \ {p}. By Theorem 5.13, EH:? is plurisubharmonic, so
EH? = —o0, and FHE = —oo0.

To show that the Poisson functional has plurisubharmonic envelopes on X we can
invoke Theorem 3.4 and Corollary 3.10, but a more elementary proof which avoids the
latter can be given. Namely, let p € X and U # @ be open in X. By embedding X
in some projective space and intersecting it transversely with a linear subspace of the
appropriate dimension, we obtain a smooth 1-dimensional subvariety Y in X containing
p and intersecting U. By Theorem 3.4 and Proposition 3.7, the Poisson functional has
plurisubharmonic envelopes on the compact Riemann surface Y. By Proposition 6.1,
there are f € Ay such that f(0) = pand A(T\ f~1(UNY)) is arbitrarily small. This shows
that the Poisson functional has plurisubharmonic envelopes on X, again by Proposition
6.1. O

We do not know if all Moishezon manifolds belong to the class P.

7. Final remarks
Let us recall the classical Kontinuitétssatz; see for instance Krantz [1992].

7.1. Kontinuitatssatz. Let X be a domain in C". The following are equivalent.

(1) X is pseudoconver. B
(2) If fne Ax, neN, and | f(T) cC X, then | fn(D) CC X.

The statement (2) is called the Kontinuitétsprinzip.
Since we can reparametrize analytic discs at will, we see that (2) is equivalent to the
following statement:

(2’) If f, € Ax,n e N, and |J f,(T) CC X, then f,(0) 4 cc.

Here, oo denotes the point at infinity in the one-point compactification of X.

We do not know if the Kontinuitéitssatz generalizes to arbitrary manifolds. However,
the theory of the Poisson functional provides a new Kontinuitatssatz with a stronger
Kontinuitatsprinzip, which holds for a great many manifolds.

7.2. Theorem. Let X be a manifold on which the Poisson functional has plurisubhar-
monic envelopes, such as a manifold in the class P. The following are equivalent.

(1) X is pseudoconvex, meaning that X has a plurisubharmonic exhaustion function.
37



(2) There is an upper semi-continuous function ¢ on X such that if f, € Ax, n € N,
and

sup/gpofnd)\<oo,
neNJT

then f,(0) 4 occ.

Proof. 1f X is pseudoconvex, take ¢ to be a plurisubharmonic exhaustion of X. For the
converse, if ¢ is as in (2), then FHY is a plurisubharmonic exhaustion on X. O

The contrapositive of this theorem is also of interest.

7.3. Theorem. Let X be a manifold on which the Poisson functional has plurisubhar-
monic envelopes. The following are equivalent.

(1) X is not pseudoconver.
(2) For every upper semi-continuous function ¢ : X — RU{—o0} there are f,, € Ax,
n € N, such that f,(0) — oo and

Sup/QOOfnd)\<oo.
T

neN

Taking ¢ to be an exhaustion, we see that (2) implies that there are f, € Ax with
frn(0) — o0, such that for every € > 0 there is a compact set K in X with

MT\ f7HK)) <e for all n.

Roughly speaking, X fails to be pseudoconvex because it contains arbitrarily large ana-
lytic discs whose boundaries stay mostly within a compact set.

This is a very interesting feature of the theory of envelopes of disc functionals, viewed
as a method for constructing plurisubharmonic functions. The method tries to construct
a plurisubharmonic function with specified properties (here, an exhaustion), and if it
fails, it tells us why. It gives an obstruction in terms of the existence of analytic discs
with certain properties. Here, it is easy to see that (2) implies (1) for all manifolds, but
what the method shows is that if X is not pseudoconvex, the reason is the existence of
analytic discs as in (2). Thus the method gives a general answer to the question, why is
this manifold not pseudoconvezr?, in terms of the existence, rather than the non-existence
of something (at least for a large class of manifolds). Before, this question did not even
seem to make sense in general.

Here is a sample problem about plurisubharmonic functions. When does a plurisubhar-
monic function on a submanifold extend to a plurisubharmonic function on the ambient
manifold? 1t is known that the answer is affirmative when the ambient manifold is Stein,
but otherwise this is essentially an open question. A good answer would have many inter-

esting applications, for instance to pseudoconvexity of covering spaces. There are various
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results in this vein for holomorphic functions, but one would like to tackle the ques-
tion without using holomorphic functions, because while the two classes of functions are
closely related locally, globally this relation is very subtle, as evidenced by the existence
of non-compact pseudoconvex manifolds with no non-constant holomorphic functions.
But here we run into the problem that for plurisubharmonic functions we have nothing
comparable to the powerful methods for constructing holomorphic functions, such as the
celebrated 0-method.

The theory of envelopes of disc functionals is a new candidate for a general method for
constructing plurisubharmonic functions. Although existing work has primarily focussed
on developing the basic theory, there is already at least one important application: Polet-
sky’s characterization of the polynomial hull of a pluriregular compact set in C™ [1993].
Let us conclude by giving a simple proof of a variant of this result.

7.4. Theorem. For a compact set K and a point p in C™, the following are equivalent.

(1) p is in the polynomial hull of K.
(2) There is an open ball B containing K and p such that for every neighbourhood U
of K and every e > 0, there is f € Ap with f(0) =p and

AT\ fH0)) < e.

Proof. (1) = (2): Let B be an open ball containing K and p. Suppose p is in the
polynomial hull of K. Then p is in the plurisubharmonic hull of K in B. Let U be a
neighbourhood of K in B, and set ¢ = 0 on U and ¢ =1 on B\ U. Then ¢ is upper
semi-continuous on B, and v = FH{ is plurisubharmonic on B. Since u=0on U D K,
we have u(p) = 0. By the definition of the Poisson functional, this means that for every
e > 0 there is f € Ap such that f(0) =p and e > 27 H{(f) = M(T \ f~1(U)).

(2) = (1): Let P be a polynomial. Then

1

1 _
[P(p)| < —/\P\OfSSHP\PH—)\(T\f H(U)) sup |[P| — sup |P|
27 T U 2 B K

asU — K and e — 0. O
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