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Abstract. Let X be a projective manifold of dimension n ≥ 2 and Y → X be an

infinite covering space. Embed X into projective space by sections of a sufficiently

ample line bundle. We prove that any holomorphic function of sufficiently slow growth
on the preimage of a transverse intersection of X by a linear subspace of codimension

< n extends to Y . The proof uses a Hausdorff duality theorem for L2 cohomology.
We also show that every projective manifold has a finite branched covering whose

universal covering space is Stein.

1. Introduction.

Infinite covering spaces of projective algebraic manifolds form an interesting and
natural class of non-compact complex manifolds, whose function theory is still not
well understood. The central problem in this area is the conjecture of Shafarevich
that the universal covering space of any projective manifold is holomorphically
convex. There are no known counterexamples to this conjecture, and it has been
verified only in a number of fairly special cases. For a survey of results up to 1985,
see [Gur]. For more recent results, see [ABR], [Nap1], [Nap2] and [Ram].

It is well known that any holomorphic function on a subvariety of a Stein space
extends to the whole space. In this paper, we prove such an extension theorem
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for covering spaces of projective manifolds, of necessity restricted to certain well-
behaved functions and subvarieties.

Let X be a projective manifold of dimension n ≥ 2, and π : Y → X be an infinite
covering space. Suppose X is embedded in some projective space by sections of a
very ample line bundle L. The generic linear subspace of codimension k < n
intersects X transversely in a submanifold C of codimension k, whose preimage
D in Y is connected. The main result of the paper states that if L is sufficiently
positive, then a holomorphic function f on D extends to all of Y if it does not grow
too fast. More precisely, we must have |f | ≤ ceεr for ε > 0 small enough, where r is
the distance from a fixed point in D in a metric pulled back from C. In particular,
if f is bounded or grows polynomially with respect to r, then f extends to Y .

For the proof we need a vanishing theorem in L2 cohomology for negative vector
bundles. We deduce it from the L2 Kodaira-Nakano vanishing theorem for positive
vector bundles by means of a Hausdorff duality theorem, which seems not to have
been previously recorded in the literature.

The extension theorem reduces many questions about covering spaces of projec-
tive manifolds to questions about holomorphic functions of slow growth on covering
spaces of compact Riemann surfaces. For example, it is not known if Y can contain
a non-compact hypersurface Z, whose irreducible components Zi are all compact.
The non-existence of such a hypersurface is an obvious necessary condition for
holomorphic convexity. A curve C as above intersects each π(Zi), so D = π−1(C)
intersects Z in an infinite discrete subset E. If there are two points in E that
can be separated by a holomorphic function of slow growth on D, then we have a
contradiction.

To take another example, suppose D is convex with respect to functions of slow
growth for every curve C as above. If K is a compact subset of Y with holomorphi-
cally convex hull K̂, then K̂ ∩ D is compact. In particular, K̂ ∩ π−1(x) is finite for
every x ∈ X. It is not clear how close this is to implying that Y is holomorphically
convex.

At present, very little is known about the existence of bounded or slowly growing
functions on covering spaces of compact Riemann surfaces. Applications of the
extension theorem must await further study of this interesting subject.

At the end of the paper, we point out that projective manifolds whose universal
covering space is not only holomorphically convex, but actually Stein, are plentiful
in the sense that every projective manifold has such a manifold as a finite branched
covering space.

Acknowledgements. I would like to thank Professor R. Narasimhan for introduc-
ing me to the Shafarevich problem and Professor D. Burns for helpful conversations.
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2. Duality for L2 cohomology.

We start by reviewing the definition and some basic properties of L2 cohomology.
For more details, see [Che] and [SaZu].

Let X be a complex manifold of dimension n with a hermitian metric and E
be a holomorphic vector bundle over X with a hermitian metric. Let Lp,q

2 (X, E)
be the space of L2 E-valued (p, q)-forms on X with the L2 norm, and W p,q

2 (X, E)
be the subspace of forms η such that ∂̄η is L2. The forms η may be taken to be
either smooth or, as we shall do, just measurable, in which case ∂̄η is understood
in the distributional sense. The cohomology of the resulting L2 Dolbeault complex
(W ·,·

2 , ∂̄) is the L2 cohomology

Hp,q

(2) (X, E) = Zp,q
2 (X, E)/Bp,q

2 (X, E),

where Zp,q
2 (X, E) and Bp,q

2 (X, E) are the spaces of ∂̄-closed and ∂̄-exaxt forms in
Lp,q

2 (X, E) respectively. The space Zp,q
2 (X, E) is closed in Lp,q

2 (X, E).
The L2 cohomology group Hp,q

(2) (X, E) is Hausdorff in the quotient topology if

and only if Bp,q
2 (X, E) is closed in Zp,q

2 (X, E). The separation space of Hp,q

(2) (X, E)

is the reduced L2 cohomology group

H̄p,q

(2) (X, E) = Zp,q
2 (X, E)/Bp,q

2 (X, E).

Assume now that the hermitian metric on X is complete. Let H
p,q

(2)(X, E) ⊂

Lp,q
2 (X, E) be the subspace of harmonic forms, say in the distributional sense. The

general Hodge theorem states that there is an isomorphism

H
p,q

(2)(X, E) ∼= H̄p,q

(2) (X, E),

so the star operator on harmonic forms induces a conjugate-linear isomorphism

H̄p,q

(2) (X, E) −→ H̄n−p,n−q

(2) (X, E∨).

Here, E∨ denotes the dual bundle of E with the dual metric.
To obtain duality for the L2 cohomology itself, this must be complemented by

a Hausdorff result such as theorem 2.3 below. Our proof of this theorem stems
from Henkin and Leiterer’s exposition in [HeLe] of the duality between ordinary
cohomology and cohomology with compact supports. Serre’s classical paper [Ser]
on that topic reduces the problem to a general lemma on Fréchet complexes. In the
L2 case, the approach taken here seems easier.
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2.1. Lemma. Let E be a real vector bundle of rank m on a smooth manifold X.

Then E has measurable sections s1, . . . , sm that generate E almost everywhere, i.e.,

outside a nullset.

Proof. There is a family (Ui)i∈I of mutually disjoint open subsets of X such that⋃
Ui is conull and E has a frame si

1, . . . , s
i
m on each Ui. These sets may e.g. be

taken to be the top-dimensional open simplices of a sufficiently fine triangulation
of X. The sections si

ν , i ∈ I, piece together to give a measurable section sν of E,
defined as zero, say, outside

⋃
Ui, and s1, . . . , sm generate E on

⋃
Ui. �

2.2. Lemma. Let E be a hermitian vector bundle on a hermitian manifold X
of dimension n. Then the dual space of Lp,q

2 (X, E) is Ln−p,n−q
2 (X, E∨). More

precisely, if λ is a continuous linear functional on Lp,q
2 (X, E), then λ =

∫
· ∧ η for

a unique form η in Ln−p,n−q
2 (X, E∨).

Proof. By lemma 2.1, the bundle E has measurable sections s1, . . . , sm, m = rankE,
that generate it a.e. By Gram-Schmidt, we may assume that they form an or-
thonormal frame a.e. The dual sections s∨ν of E∨, defined as zero where sν = 0,
are measurable and form an orthonormal frame for E∨ a.e. Also, the holomorphic
cotangent bundle T∨X of X has measurable sections φ1, . . . , φn that form an or-
thonormal frame a.e., so φ1 ∧ φ1 ∧ · · · ∧ φn ∧ φn is, up to a constant, the volume
form Ω of X a.e.

The frame sνφi1∧· · ·∧φip
∧φj1

∧· · ·∧φjq
for E⊗Λp,qT∨X induces an isomorphism

Φ : L2(X)N → Lp,q
2 (X, E),

preserving the inner products up to a constant. Similarly, we get an isomorphism

Ψ : L2(X)N → Ln−p,n−q
2 (X, E∨),

such that for any f, g ∈ L2(X)N ,

f · g Ω = c Φ(f) ∧ Ψ(g),

where c is a suitable constant and f · g = f1g1 + · · · + fNgN .
Now if λ is a continuous linear functional on Lp,q

2 (X, E), then λ◦Φ is a continuous
linear functional on L2(X)N , so there is g ∈ L2(X)N such that

(λ ◦ Φ)(f) =

∫
f · g Ω

for all f ∈ L2(X)N . If α ∈ Lp,q
2 (X, E), then

λ(α) = (λ ◦ Φ)(Φ−1(α)) =

∫
Φ−1(α) · g Ω = c

∫
α ∧ Ψ(g),

so λ =
∫

· ∧ η with η = Ψ(cg). Clearly, η is unique. �
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2.3. Theorem. Let E be a hermitian vector bundle on a complete hermitian

manifold X of dimension n. If Hn−p,n−q+1
(2) (X, E) is Hausdorff for some p, q, then

Hp,q

(2) (X, E∨) is also Hausdorff.

Proof. Let η ∈ Bp,q
2 (E∨); say η is the L2 limit of a sequence ∂̄θν with θν ∈

Lp,q−1
2 (E∨). We need to show that η = ∂̄ξ for some ξ ∈ Lp,q−1

2 (E∨), so η ∈

Bp,q
2 (E∨). If α ∈ Zn−p,n−q

2 (E), then
∫

α ∧ η is the limit as ν → ∞ of

∫
α ∧ ∂̄θν =

∫
∂̄(α ∧ θν) =

∫
d(α ∧ θν) = 0,

by Stokes’ theorem for L1 forms on a complete manifold [Gaf], so
∫

α ∧ η = 0.

Hence we can define a linear functional λ on Bn−p,n−q+1
2 (E) by the formula

λ(β) =

∫
α ∧ η if β = ∂̄α, α ∈ Ln−p,n−q

2 (E).

We claim that λ is continuous. Let W ′ be W n−p,n−q
2 (E) with the complete

Sobolev norm ‖ · ‖L2
+ ‖∂̄ · ‖L2

. Then ∂̄ : W ′ → Bn−p,n−q+1
2 (E) is a continuous

epimorphism. By assumption, Bn−p,n−q+1
2 (E) is closed in Zn−p,n−q+1

2 (E), which is

complete, so Bn−p,n−q+1
2 (E) is complete. Therefore ∂̄ is open by the open mapping

theorem. Now λ ◦ ∂̄ is the functional
∫

· ∧ η on W ′, which is clearly continuous.
Hence, λ is continuous.

By the Hahn-Banach theorem, λ extends to a continuous linear functional on
Ln−p,n−q+1

2 (E). By lemma 2.2 there is ξ ∈ Lp,q−1
2 (E∨) such that

λ = (−1)p+q+1

∫
· ∧ ξ.

Then ∂̄ξ = η, because

(−1)p+q+1

∫
∂̄α ∧ ξ = λ(∂̄α) =

∫
α ∧ η

for all smooth E-valued (n − p, n − q)-forms α with compact support. �

2.4. Corollary. Let E be a hermitian vector bundle with curvature Θ on a complex

manifold X of dimension n with a complete Kähler form ω. If Θ ≥ ε ω for some

ε > 0 in the sense of Nakano, then

Hq

(2)(X, E∨) = 0 for q < n.
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Proof. By the L2 Kodaira-Nakano vanishing theorem [Dem], [Ohs], Hn,r

(2) (X, E) = 0

for r > 0. Hence, H̄q

(2)(X, E∨) = 0 for q < n by duality. Also, Hq

(2)(X, E∨) is

Hausdorff for 1 ≤ q ≤ n by theorem 2.3, and obviously for q = 0. �

Remark added in July 1994. Using the Bochner-Kodaira-Nakano identity along
the lines of the usual proof of the Kodaira-Nakano vanishing theorem, one can prove
that Hq

(2)(X, E∨) = 0 for q < n if the curvature of E∨ is at most −ε ω for some ε > 0

in the sense of Nakano. This was pointed out to me by Professor M. Ramachandran.
This is sufficient to prove theorem 3.1 and does not require theorem 2.3.

3. Extension theorems.

Now let π : Y → X be a covering space of a compact n-dimensional Kähler
manifold X with a Kähler form ω. Let Y have the pullback metric. We will always
assume that n ≥ 2.

3.1. Theorem. Let

(1) φ be a smooth function on Y such that dφ is bounded,

(2) L be a line bundle on X with canonical connection ∇ and curvature Θ in a

hermitian metric h, and

(3) C be the zero locus of a section s of L over X with ∇s 6= 0 at each point of

C.

If

Θ ≥ L(φ) + ε ω

for some ε > 0, then every holomorphic function f on D = π−1(C) such that f2e−φ

is integrable on D can be extended to a holomorphic function F on Y such that

F 2e−φ is integrable on Y .

The condition in (3) means that for every p ∈ C there is a coordinate neighbour-
hood (U, z) centred at p and a holomorphic frame e for L on U such that s = z1e
on U . Hence C is a smooth (possibly disconnected) hypersurface in X, unless C is
empty, in which case the theorem is trivial.

By induction, the theorem generalizes to the case where C is the common zero
locus of sections s1, . . . , sk, k < n, of L over X, which, in a trivialization, can be
completed to a set of local coordinates at each point of C.

If L is very ample, and therefore the pullback of the hyperplane bundle by an
embedding of X in some projective space, then this condition simply means that
the linear space {s1, . . . , sk = 0} intersects X transversely in a smooth subvariety
of codimension k.
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Proof. Assume C 6= ∅. Let U0 be the pullback of the complement of a closed
neighbourhood of C, and U1, . . . , UN be the pullbacks of shrunk coordinate polydiscs
covering a larger neighbourhood of C, in which C = {z1 = 0}. Also pull back a
smooth partition of unity (χi) subordinate to (Ui).

Let f be a holomorphic function on D such that f 2e−φ is integrable on D. For
i ≥ 1, extend f to a holomorphic function fi on Ui which is constant on each line
{z2, . . . , zn constant}. Let f0 = 0 on U0. By (3) and since fi = f = fj on D, we
can define a holomorphic section of the dual bundle L∨ on Uij = Ui ∩ Uj by the
formula

uij = (fi − fj)s
∨.

Then
vi =

∑
j

uijχj

is a smooth section of L∨ on Ui and vi − vj = uij . Hence, ∂̄vi = ∂̄vj on Uij , so we
get a ∂̄-closed L∨-valued (0, 1)-form η on Y defined as ∂̄vi on Ui.

Let us show that |η|2e−φ is integrable on Y . On U0, s is bounded away from 0
and

η = ∂̄v0 = −
∑

j

fjs
∨∂̄χj ,

so
|η|2 ≤ c

∑
j

|fj|
2.

Here and in the following, we denote by the same letter c any constant not depending
on the particular function f . Also,

∫
Uj

|fj|
2e−φωn ≤ c

∫
D∩Uj

|f |2e−φωn−1

because dφ is bounded. Since f2e−φ is integrable on D, so is |η|2e−φ on U0. For
i ≥ 1,

η = ∂̄vi =
∑

j

(fi − fj)s
∨∂̄χj

on Ui, so it remains to show that

(*)
∑

i,j≥1

∫
Uij

|fi − fj |
2|s|−2e−φωn < ∞.
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For x ∈ Uij , i, j ≥ 1, there are xi ∈ D∩Ui and xj ∈ D∩Uj such that fi(x) = f(xi)
and fj(x) = f(xj) and dist(xi, xj) ≤ c|s(x)|, so

|fi(x) − fj(x)||s(x)|−1 ≤ c sup |df |,

where the supremum is taken over D ∩ (Ui ∪ Uj). By the Cauchy inequalities and
since dφ is bounded,

∫
Uij

|fi − fj |
2|s|−2e−φωn ≤ c

∫
Uij

sup |df |2e−φωn ≤ c

∫
D∩(Vi∪Vj)

|f |2e−φωn−1,

where Vi ⊃ Ui, Vj ⊃ Uj are pullbacks of larger polydiscs. Since f 2e−φ is integrable
on D, (*) follows.

The weighted metric eφh in L has curvature −L(φ) + Θ ≥ ε ω, so corollary 2.4
implies that H1

(2)(Y, L∨) = 0 with respect to the weighted dual metric e−φh∨. Since

η is L2 in this metric, there is a smooth section w of L∨ such that |w|2e−φ is
integrable and ∂̄w = η. Let ui = vi − w. Then ui is a holomorphic section of L∨

on Ui and ui − uj = uij , so

fi − ui ⊗ s = fj − uj ⊗ s on Uij .

Hence we obtain a holomorphic extension F of f to Y by setting

F = fi − ui ⊗ s = fi + w ⊗ s −
∑

j

(fi − fj)χj

on Ui. The term w ⊗ s is L2 with respect to e−φ by construction of w and since
s is bounded. The other two terms on the right hand side can be shown to be L2

with respect to e−φ by arguments similar to those used for η above. Hence, F 2e−φ

is integrable. �

Let δ(x) be the distance from a fixed point in Y to x ∈ Y in the pullback
metric. By a result of Napier [Nap1], there is a smooth function τ on Y , obtained
by smoothing δ, such that

(1) c1δ ≤ τ ≤ c2δ + c3 for some constants c1, c2, c3 > 0,
(2) dτ is bounded, and
(3) L(τ) is bounded.
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By (1) and since the curvature of Y is bounded below, there is c > 0 such that
e−cτ is integrable on Y . Let a ≥ 0 be the infimum of such numbers c.

Assume now that X is projective algebraic with a very ample line bundle L. We
may think of X as embedded in some projective space and of L as the restriction
to X of the hyperplane bundle with the standard positively curved metric. Then
zero loci of sections of L are hyperplane sections of X. By Bertini’s theorem,
the generic linear subspace of codimension k < n intersects X transversely in a
smooth subvariety C of codimension k. By the Lefschetz hyperplane theorem, C
is connected and the map π1(C) → π1(X) is surjective, which implies that the
preimage D = π−1(C) in Y is also connected.

Suppose
Θ ≥ aL(τ) + ε ω

for some ε > 0. Since L(τ) is bounded, this can be achieved by replacing L by a
sufficiently high tensor power of itself. Then we also have

Θ ≥ (a + b + ε1)L(τ) + ε ω

for some b, ε, ε1 > 0.
Let f be a holomorphic function on D such that f 2e−bτ is bounded. Since

e−(a+ε1)τ is integrable on Y and dτ is bounded, e−(a+ε1)τ is integrable on D. Hence,
f2e−(a+b+ε1)τ is integrable on D. By theorem 3.1 applied with φ = (a + b + ε1)τ , f
extends to a holomorphic function on Y .

Let r(x) be the distance from a fixed point in D to x ∈ D in some metric pulled
back from C. Then ε0r ≤ τ+c for some ε0, c > 0. By the above, if f is a holomorphic
function on D such that f2e−ε0br is bounded, then f extends to Y . In particular,
if f is bounded or grows polynomially with respect to r, then f extends from D to
Y .

The above discussion may be summarized as follows.

3.2. Theorem. Let Y → X be a covering space of a projective manifold X of

dimension n ≥ 2. Embed X into projective space by sections of a sufficiently am-

ple line bundle. Then any holomorphic function of sufficiently slow growth on the

preimage of a transverse intersection of X by a linear subspace of codimension < n
extends to all of Y .

The distance r seems a more natural measure of growth than τ for functions on
D. When C is a curve, we have in mind the distance in the standard metric of
constant curvature. It would be interesting to have some estimates on the size of
ε0b, and especially to know how this number changes when L is replaced by tensor
powers of itself.
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4. Projective manifolds with Stein universal coverings.

In [Gro], Gromov points out that every projective manifold can be dominated
by a Kähler hyperbolic manifold. This is also true for manifolds whose universal
covering space is Stein.

4.1. Proposition. Every projective algebraic manifold X has a finite branched

covering Y → X, where Y is a projective manifold whose universal covering space

is Stein.

In general, suppose P is a property of projective manifolds such that

(1) if Y → X is a finite branched covering and X is P , then Y is P , and
(2) manifolds Zn which are P exist in every dimension n.

Let X be an arbitrary n-dimensional projective manifold. By intersecting n suffi-
ciently ample smooth hypersurfaces in X × Zn, we obtain an n-dimensional sub-
manifold Y in X × Zn such that the projections Y → X and Y → Zn are finite.
Since Zn is P , so is Y by (1). Therefore, X is dominated by a projective manifold
which is P .

4.2. Lemma. Let X be a projective manifold with a positive line bundle L and

π : Y → X be a covering space. If π∗L is holomorphically trivial and has a bounded

trivialization, then Y is Stein.

Proof. Let s be a bounded trivialization of π∗L. Then u = − log |s|2 is a strictly
plurisubharmonic function which is bounded below and its Levi form is bounded
away from zero. Let τ be the smoothed distance from a point in Y as described
in section 3. It is an exhaustion of Y with bounded Levi form. Then cu + τ is a
strictly plurisubharmonic exhaustion of Y for c > 0 large enough, so Y is Stein. �

By the lemma, to prove the proposition, it suffices to show that conditions (1)
and (2) above are satisfied by the property of having a positive line bundle which
has a bounded trivialization on the universal covering.

So suppose X is a projective manifold with a positive line bundle L which has
a bounded trivialization s on the universal covering X̃. Let f : Y → X be a finite
branched covering and p : Ỹ → Y be the universal covering of Y . Then f lifts to
a possibly infinite branched covering f̃ : Ỹ → X̃. By Grauert’s ampleness criterion
[Gra], f∗L is an ample line bundle on Y , so f∗L has a positively curved metric. The

trivialization f̃∗s of p∗f∗L is bounded with respect to the pullback of this metric.

As for (2), let C be a compact Riemann surface of genus at least 2. The canonical
bundle of C is ample, and its pullback to the universal covering of C, which is the

10



unit disc ∆, is trivial. In the Poincaré metric

idz ∧ dz̄

(1 − |z|2)2

the trivialization dz has length 1 − |z|2, which is bounded. In dimension n >
1, the product Cn also has an ample canonical bundle, whose pullback to the
universal covering ∆n is trivialized by the form dz1 ∧ · · · ∧ dzn, which has length
(1 − |z1|

2) . . . (1 − |zn|
2) in the product Poincaré metric. Therefore, we can take

Zn = Cn.

References

[ABR] D. Arapura, P. Bressler, M. Ramachandran, On the fundamental group of a compact

Kähler manifold, Duke Math. J. 68 (1992), no. 3, 477–488.

[Che] J. Cheeger, On the Hodge theory of Riemannian pseudomanifolds, Geometry of the Laplace

operator (Honolulu, Hawaii, 1979), Proc. Sympos. Pure Math., vol. 36, Amer. Math. Soc.,
Providence, R.I., 1980, pp. 91–146.

[Dem] J.-P. Demailly, Estimations L2 pour l’opérateur ∂̄ d’un fibré vectoriel holomorphe semi-
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