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Abstract Let M be an open Riemann surface and A be the punctured cone in

Cn \ {0} on a smooth projective variety Y in Pn−1. Recently, Runge approximation

theorems with interpolation for holomorphic immersions M → Cn, directed by A,

have been proved under the assumption that A is an Oka manifold. We prove

analogous results in the algebraic setting, for regular immersions directed by A from a

smooth affine curveM into Cn. The Oka property is naturally replaced by the stronger

assumption that A is algebraically elliptic, which it is if Y is uniformly rational.

Under this assumption, a homotopy-theoretic necessary and sufficient condition for

approximation and interpolation emerges. We show that this condition is satisfied in

many cases of interest.
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1. Introduction and main results

Let A0 be a conical closed complex subvariety of Cn, n ≥ 2. By Chow’s theorem, A0

is algebraic and is the common zero set of finitely many homogeneous holomorphic

polynomials. Assume that A = A0 \ {0} ⊂ Cn∗ = Cn \ {0} is smooth and connected,

so A is the punctured cone on a connected submanifold Y of Pn−1. If M is an open

Riemann surface, a holomorphic immersion M → Cn is said to be directed by A, or to

be an A-immersion, if its complex derivative with respect to any local holomorphic

coordinate on M takes its values in A. A systematic investigation of A-immersions

was made by Alarcón and Forstnerič in [4]. In particular, under the assumption

that A is an Oka manifold not contained in any hyperplane in Cn, they proved an

Oka principle for A-immersions, including the Runge and Mergelyan approximation

properties. (For the theory of Oka manifolds, see the monograph [23]. We note

that A is Oka if and only if Y is.) In the subsequent paper [1] by Alarcón and

Castro-Infantes, interpolation was added to the picture. A parametric Oka principle

for directed immersions was proved by Forstnerič and Lárusson in [24].

In this paper, we pursue the algebraic analogues of the above results for directed

immersions. We prove a general uniform approximation theorem with interpolation

for A-immersions of open Riemann surfaces in affine spaces in the algebraic category.

To this end, throughout the paper, it is natural to assume that the punctured cone

A is not only Oka but algebraically elliptic in the sense of Gromov (see [25] or [23,
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Definition 5.6.13]). Likewise, in the algebraic setting, the open Riemann surface M

will be a smooth affine curve, so M is the complement in a compact Riemann surface

M of finitely many points p1, . . . , pm, which we call the ends of M . We assume,

without loss of generality, that M and M are connected. A complex-valued function

or a complex form on M is regular if it is holomorphic and extends meromorphically

to M . Algebraic Oka theory is more rigid than standard Oka theory. Obstructions

arise that are not present in the holomorphic theory (see [29]), so it is no surprise that

approximation by regular A-immersions introduces new difficulties. For instance, it

is fundamental in the proofs in [4, 1, 24] that every open Riemann surface admits a

holomorphic 1-form without zeros, while in general a smooth affine curve does not

carry any nowhere-vanishing regular 1-forms. Our method of proof, dealing directly

with 1-forms instead of passing to maps, overcomes this complication without being

technically much more difficult.

The following is our first main result. Recall that a regular map M → Cn is proper

if and only if its meromorphic extension to M has an effective pole (an actual pole

of positive order) at each end of M . Also note that A defines a subbundle A of

(T ∗M)⊕n with fibre isomorphic to A, whose sections are n-tuples (α1, . . . , αn) of

(1, 0)-forms with no common zeros, such that the ratio (α1 : · · · : αn) takes values

in Y .

Theorem 1.1. Let A ⊂ Cn∗ be the punctured cone on a connected submanifold Y

of Pn−1, n ≥ 2, and assume that A is algebraically elliptic and not contained in

a hyperplane in Cn. Let M be a smooth affine curve and A be the subbundle of

(T ∗M)⊕n defined by A. Finally, let K be a holomorphically convex compact subset

of M and u : K → Cn be a holomorphic A-immersion. Then the following are

equivalent.

(i) u can be uniformly approximated on a neighbourhood of K by regular A-

immersions M → Cn.

(ii) u can be uniformly approximated on a neighbourhood of K by proper regular

A-immersions M → Cn agreeing with u on any given finite set in K.

(iii) There is a neighbourhood U of K such that the homotopy class of continuous

sections of A |U that contains du also contains the restriction of a regular

section of A on M .

(iv) There is a neighbourhood U of K such that the homotopy class of continuous

sections of A |U that contains du also contains the restriction of an exact

regular section of A on M with an effective pole at each end of M .

Remark 1.2. (a) The only punctured cone in C∗ is C∗ itself, which is not

algebraically elliptic, so Theorem 1.1 is vacuous for n = 1. For n = 2, the only

punctured cone in C2
∗ satisfying the assumptions of Theorem 1.1 is C2

∗ itself. Our

proof of Theorem 1.1 uses several results from [4, 1], which are stated for holomorphic

immersions directed by punctured cones A ⊂ Cn∗ with n ≥ 3 and A 6= Cn∗ . Although

an inspection of the proofs in [4, 1] shows that the results that we apply are valid

for n ≥ 2 and A = Cn∗ (in fact, extensions of some of these results are proved for
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arbitrary n ≥ 1 in [8] and [24, Section 5]), we shall give a separate proof, much

simpler, of this special case of Theorem 1.1.

(b) Algebraic ellipticity may be formulated in several nontrivially equivalent ways.

It was observed in [29] that the following properties of a smooth algebraic variety are

equivalent: algebraic subellipticity, the algebraic homotopy Runge property, and the

algebraic version of Gromov’s Ell1 property (for the definitions of these properties,

see [29]). And recently, Kaliman and Zaidenberg showed that algebraic ellipticity

and algebraic subellipticity are equivalent [27].

The optimal known sufficient condition for A to be algebraically elliptic is given

by a very recent theorem of Arzhantsev, Kaliman, and Zaidenberg [12, Theorem

1.3]. They showed that A is algebraically elliptic if Y is uniformly rational, meaning

that Y is covered by Zariski-open sets, each isomorphic to a Zariski-open subset

of affine space (see also [16], where uniformly rational manifolds are called “plain”,

and [17]). Then Y itself is also algebraically elliptic [12, Theorem 1.3]. The class

of uniformly rational manifolds is closed under products and under blow-ups with

smooth centres. Also, the total space of an algebraic fibre bundle over a uniformly

rational manifold with a uniformly rational fibre is itself uniformly rational.

Most (but not all) known examples of uniformly rational manifolds are in fact

covered by Zariski-open sets isomorphic to affine space itself. Such manifolds are

said to be A-covered or of class A0 (see [13, Section 4]). The following are examples

of manifolds of class A0: projective spaces, Grassmannians, flag manifolds, smooth

projective rational surfaces, and smooth projective toric varieties.

(c) Approximating holomorphic maps by regular maps is an important theme in

algebraic geometry. Such approximation is impossible in general, even for maps

between very simple affine algebraic manifolds. For example, let Σn, n ≥ 2, be the

complex n-sphere {(z0, . . . , zn) ∈ Cn+1 : z2
0 + · · · + z2

n = 1}. It is a homogeneous

space of the connected linear algebraic group SO(n+ 1,C), which has no nontrivial

characters, so Σn is algebraically flexible [11, Proposition 5.4] and hence algebraically

elliptic. Loday showed that every regular map Σp × Σq → Σp+q is nullhomotopic

when p and q are odd, but there is a continuous map, and hence a holomorphic map,

Σp × Σq → Σp+q that is not nullhomotopic ([30]; see also [23, Example 6.15.7]) and

thus not approximable by regular maps.

(d) The main task in the proof of Theorem 1.1 is to show that (iii) implies (ii). A

key ingredient in our proof is Forstnerič’s approximation theorem for sections of an

algebraic fibre bundle with algebraically elliptic fibre [22, Theorem 3.1] (see also [23,

Theorem 6.15.3]). Applying this theorem requires a homotopy-theoretic necessary

and sufficient condition, which in our setting corresponds to (iii).

The following definitions are convenient.

Definition 1.3. With notation as above, we say that a pair (A,M) is good if A
has a regular section on M , and we say that (A,M) is very good if every homotopy
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class of continuous (or, equivalently, holomorphic) sections of A on M contains a

regular section. Furthermore, we say that A is good if (A,M) is good for every

smooth affine curve M , and we say that A is very good if (A,M) is very good for

every smooth affine curve M .

Remark 1.4. An algebraically elliptic projective manifold is unirational and hence

simply connected by Serre’s [35, Proposition 1]. Also, by the first half of [35,

Lemma 2], the fundamental group of an algebraically elliptic manifold is finite.

Thus, under the assumptions of Theorem 1.1, π1(Y ) = 0 and π1(A) is finite. Also,

π1(A) is cyclic, being a quotient of the fundamental group of the fibre C∗ of the

bundle A→ Y .

The tangent bundle TM is holomorphically trivial, so continuous sections of A
may be identified with continuous maps M → A. Since M has the homotopy type of

a finite bouquet of circles and deformation-retracts onto an embedded bouquet, the

homotopy classes of continuous maps M → A are in bijective correspondence with

homomorphisms π1(M) → π1(A). Hence there are only finitely many such classes.

If A is simply connected, then there is only one class, so (A,M) is good if and only

if it is very good. In general, we are not aware of any pair (A,M) as in Theorem

1.1 that is good but not very good.

In Section 2, we establish the following sufficient conditions for a cone to be good

and a pair to be good or very good.

Proposition 1.5. Let Y , A, and M be as in Theorem 1.1.

(a) If Y has a rational curve of degree 1 or 2, then A is good.

(b) If M has genus 0, then (A,M) is very good.

(c) If TM is algebraically trivial, for example if M has genus 1 or is planar, then

(A,M) is good.

Projective varieties of low codimension and defined by equations of low degree are

covered by lines. Among the instances of this metatheorem are [28, Lemma V.4.8.1,

Exercise V.4.10.5] and [32, Theorem 3.1]. Similar results exist for conics in place

of lines (see [26, Proposition 2.4]). It is reasonable to ask whether every punctured

cone A as in Theorem 1.1 is good.

Thus Proposition 1.5(a) applies to many cones of interest in the present context,

such as those in the following examples.

Example 1.6. (a) A first important example is the “large cone” A = Cn∗ , n ≥ 2;

see Remark 1.2(a). Every immersion into Cn is directed by A. Theorem 1.1 is new

even for these simplest of all cones.

(b) A cone of fundamental importance in the theory of minimal surfaces in

Euclidean space and satisfying the hypotheses of Theorem 1.1 is the punctured

null quadric A = {(z1, . . . , zn) ∈ Cn∗ : z2
1 + · · · + z2

n = 0}, n ≥ 3. For this cone,

Theorem 1.1 was proved in [10] by a rather involved method that heavily uses the
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special geometry of the cone. The initial motivation for the present work was to

generalise this result to the largest possible class of cones, while giving an easier,

more conceptual proof than the proof in [10].

(c) The cone A = {(z1, . . . , z4) ∈ C4
∗ : z1z4 − z2z3 = 0} is isomorphic to the

punctured null quadric in C4
∗ and satisfies the requirements of Theorem 1.1. It

plays a key role in the theory of surfaces of constant mean curvature 1 in hyperbolic

space. Bryant [18] calls a holomorphic immersion of a Riemann surface into the

special linear group SL2(C) = {(z1, . . . , z4) ∈ C4 : z1z4− z2z3 = 1}, directed by A, a

null curve. The projection of a holomorphic null curve in SL2(C) to the hyperbolic

3-space H3 = SL2(C)/SU(2) is a conformally immersed surface of constant mean

curvature 1 (also called a Bryant surface), and every simply connected surface in

H3 of constant mean curvature 1 arises in this way. We refer to [36, 19] and the

introduction of the more recent paper [2] for background on this subject. It is an

open question whether every open Riemann surface admits a proper holomorphic

null immersion or embedding into SL2(C) [5, Problem 1]. The same question in the

algebraic category is open as well.

In Section 2, we prove that all the cones in Example 1.6 are in fact very good and

discuss their interest in the literature. Theorem 1.1 and the following corollaries,

concerning good and very good pairs, are proved in Section 4; see Remark 4.1 for a

slight extension of these results.

Corollary 1.7. Under the assumptions of Theorem 1.1, the following are equivalent.

(i) There is a regular A-immersion M → Cn.

(ii) For any finite set Λ ⊂ M , every map Λ → Cn extends to a proper regular

A-immersion M → Cn.

(iii) (A,M) is good.

(iv) There is an exact regular section of A on M with an effective pole at each end

of M .

Corollary 1.8. Under the assumptions of Theorem 1.1, the following are equivalent.

(i) Every holomorphic A-immersion K → Cn, where K ⊂ M is compact and

holomorphically convex, can be uniformly approximated on K by regular A-

immersions M → Cn.

(ii) Every holomorphic A-immersion K → Cn, where K ⊂ M is compact and

holomorphically convex, can be uniformly approximated on K by proper regular

A-immersions M → Cn agreeing with the given holomorphic A-immersion

K → Cn on any given finite set in K.

(iii) (A,M) is very good.

(iv) Every homotopy class of continuous sections of A on M contains an exact

regular section with an effective pole at each end of M .

For any open Riemann surface M and any punctured cone A ⊂ Cn, n ≥ 3,

that is Oka and not contained in a hyperplane, Alarcón and Forstnerič proved a
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general existence result for proper holomorphic A-embeddings M → Cn in [4]. For

n = 2, it is an open question whether every open Riemann surface admits a proper

holomorphic embedding into C2 [21, 15]. The problem seems very difficult even for

smooth affine curves; see [23, Sections 9.10–9.11]. In the algebraic setting, it is well

known that every smooth affine curve regularly embeds in C3, while most of them

do not regularly embed in C2. Except for the large cones, even for the punctured

null quadrics in Example 1.6(b), the following question remains open.

Question 1.9. Let A and M be as in Theorem 1.1 with A 6= Cn∗ and assume that

the pair (A,M) or the cone A is good or even very good. Is there a proper regular

A-embedding M → Cn?

A main difficulty in extending the results in this paper to embeddings is that

one cannot use the standard transversality method that has proved useful in the

holomorphic category (see [4, Section 6]). Indeed, this method would allow us to

eliminate the self-intersections in a compact piece of the affine curve, but to make

it embedded one would need to apply it in a recursive way, which does not seem

compatible with our approach.

Our method of proof also gives results analogous to Theorem 1.1 for directed

harmonic maps into Rn, n ≥ 3, including conformal minimal immersions. We explain

this in Section 5. In fact these results follow from a more general approximation

theorem for regular sections of A with control on their periods, which we state and

prove in Section 3 as Theorem 3.1. The following result, saying in particular that

the periods of a regular section of A on M can be prescribed arbitrarily whenever

the pair (A,M) is good, is an example of the consequences of Theorem 3.1. As far

as we know, the result is new even for the “large cones” in Example 1.6(a).

Theorem 1.10. Let A, M , and A be as in Theorem 1.1 and assume that t0 is a

regular section of A on M . Then for any group homomorphism F : H1(M,Z)→ Cn
there is a regular section t of A on M homotopic to t0 such that t has an effective

pole at each end of M and
∫
C t = F(C) for every loop C in M .

In particular, the following hold for any pair (A,M) as in Theorem 1.1.

• (A,M) is good if and only if every class in the cohomology group H1(M,Cn)

contains a regular section of A on M with an effective pole at each end of M .

• (A,M) is very good if and only if every class in the cohomology group H1(M,Cn)

contains a regular section of A on M with an effective pole at each end of M in

each homotopy class of continuous sections of A on M .

See Theorem 3.8 for a slight extension of this result. Theorem 1.10 strengthens

the implications (iii) ⇒ (iv) in Theorem 1.1 and Corollaries 1.7 and 1.8. There is

a long history of results about cohomology classes containing representatives with

special properties. The holomorphic analogue of Theorem 1.10 is [8, Corollary 2(a)].

It does not require the assumption that (A,M) is good or any similar hypothesis.
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2. Good and very good pairs and cones

In this section we first prove Proposition 1.5, providing sufficient conditions for a

cone to be good or for a pair to be very good in the sense of Definition 1.3. Then

we show that the cones presented in Example 1.6 are very good.

Proof of Proposition 1.5. (a) Let f : P1 → Pn−1, [z, w] 7→ [q1(z, w), . . . , qn(z, w)], be

a rational curve of degree 1 in Y . Here, q1, . . . , qn are homogeneous polynomials of

degree 1. Let ω and η be regular forms on M with no common zeros (such a pair

exists by Riemann-Roch). Then (q1(ω, η), . . . , qn(ω, η)) is a regular section of A. If

f has degree 2, then we apply the same argument to a pair of regular sections on M

with no common zeros of a square root of T ∗M .

(b) Since TM is algebraically trivial, regular sections of A may be identified

with regular maps M → A. We need to show that every homomorphism

π1(M) → π1(A) is induced by a regular map (see Remark 1.4). Consider the piece

π1(C∗) → π1(A) → π1(Y ) = 0 of the long exact sequence of homotopy groups

associated to the projection A → Y . By the universal property of the free group

π1(M), every homomorphism π1(M) → π1(A) factors through the homomorphism

π1(C∗) → π1(A). Since M has genus 0, every homomorphism π1(M) → π1(C∗) is

induced by a regular map M → C∗ and the proof is complete.

(c) A has a regular section corresponding to a constant map M → A. �

2.1. The large cone. We begin by proving that the large cone A = Cn∗ , n ≥ 2, is

very good. In this case, an A-immersion is nothing but an immersion. We give a

self-contained proof, not relying on Theorem 1.1 (see Remark 1.2(a)). We first show

that condition (ii) in Theorem 1.1 always holds for the large cone, even including

jet interpolation.

Proposition 2.1. Let M be a smooth affine curve and K be a holomorphically

convex compact subset K of M . Then every holomorphic immersion K → Cn,

n ≥ 2, may be approximated uniformly on a neighbourhood of K by proper regular

immersions M → Cn agreeing with the given immersion to any given finite order at

any given finite subset of K. Furthermore, we can choose the approximating regular

immersions such that all their component functions are proper.

Proof. For simplicity of exposition we shall assume that n = 2. The proof for

n ≥ 3 follows the same lines. So assume that K ⊂ M = M \ {p1, . . . , pm} is a

holomorphically convex compact subset and u = (u1, u2) : K → C2 is a holomorphic

immersion. Also, for the jet interpolation condition, let Λ ⊂ K be a finite set

and d ≥ 1 be an integer. Choose a smoothly bounded connected compact domain1

L ⊃ K in M such that M \
◦
L = D1 ∪ · · · ∪ Dm, where D1, . . . , Dm are mutually

1It is customary to call a nonempty set in a topological space a compact domain if it is compact

and is the closure of a connected open set. Lacking a better term, in this paper we also refer to the

union of finitely many mutually disjoint compact domains as a compact domain.
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disjoint smoothly bounded closed discs centred at p1, . . . , pm, respectively. By the

classical Runge theorem with jet interpolation we may approximate u uniformly on

a neighbourhood of K by a holomorphic map L → C2 agreeing with u to order d

at all points of Λ. By general position, this map can be chosen to be an immersion

on a neighbourhood of L. Thus we may assume without loss of generality that u

extends to L as a holomorphic immersion u = (u1, u2) : L→ C2.

Fix a finite set F = {q1, . . . , qm} with qi ∈ D̊i \{pi} for i = 1, . . . ,m. By Royden’s

Runge theorem for regular functions [34, Theorem 10], we may approximate u1

uniformly on a neighbourhood of L by a regular function v1 : M → C agreeing with

u1 to order d at all points of Λ and satisfying

(2.1) min{|v1(p)| : p ∈ F} > max{|v1(p)| : p ∈ bL}.

Assuming that the approximation is close enough, the holomorphic map (v1, u2) :

L → C2 is still an immersion on a neighbourhood of L. Let B denote the set

of critical points of v1 on M \ L. Since v1 is regular, B is finite. Also choose

for i = 1, . . . ,m a smoothly bounded closed disc ∆i ⊂ D̊i \ {pi} such that

B ⊂ ∆ = ∆1 ∪ · · · ∪∆m. Extend u2 : L→ C to a holomorphic map u2 : L∪∆→ C
such that u2 is an immersion on ∆ and

(2.2) min{|u2(p)| : p ∈ ∆} > max{|u2(p)| : p ∈ bL}.

(Recall that L∩∆ = ∅ and L and ∆ are compact.) Again by [34, Theorem 10], we

may approximate u2 uniformly on a neighbourhood of L ∪∆ by a regular function

v2 on M agreeing with u2 to order d at all points of Λ. If the approximation is close

enough, then v = (v1, v2) : M → C2 is still an immersion on a neighbourhood of L,

while v2 : M → C is an immersion on a neighbourhood of ∆. Since v1 : M → C is

an immersion on M \ (L ∪ B) and B ⊂ ∆, we infer that v : M → C2 is a regular

immersion. Note that v is close to u uniformly on a neighbourhood of K and agrees

with u to order d at all points of Λ. Finally, assuming that v2 is sufficiently close to

u2 uniformly on L ∪∆, condition (2.2) ensures that

min
{
|v2(p)| : p ∈ ∆ =

m⋃
i=1

∆i

}
> max

{
|v2(p)| : p ∈ bL =

m⋃
i=1

bDi

}
.

We claim that v2 has a pole at pi for all i = 1, . . . ,m, so v2 : M → C is a

proper map. Indeed, otherwise, v2 would be holomorphic on the smoothly bounded

closed disc Di, violating the maximum modulus principle since ∆i ⊂ D̊i and

min{|v2(p)| : p ∈ ∆i} > max{|v2(p)| : p ∈ bDi}. Using (2.1), the same argument

shows that v1 : M → C is a proper map. In particular, v : M → C2 is proper. �

Corollary 2.2. If A = Cn∗ , n ≥ 2, M is a smooth affine curve, and A is the

subbundle of (T ∗M)⊕n defined by A, then conditions (i)–(iv) in Corollary 1.8 hold.

In particular, A is very good in the sense of Definition 1.3.

Proof. Proposition 2.1 implies (ii), while it is obvious that (ii) implies (i) and that

(iv) implies (iii). So it remains to check (iv). For this, in view of Proposition

2.1, it suffices to show that every homotopy class of continuous or, equivalently,
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holomorphic sections of A over M contains du for some holomorphic immersion

u : M → Cn. By [24, Theorems 5.3 and 5.4] (see also [8, Theorem 1]), every

holomorphic section of A over M can be deformed to an exact holomorphic section,

that is, a section of the form du. �

2.2. The null quadric. This is the cone

(2.3) A = {(z1, . . . , zn) ∈ Cn∗ : z2
1 + · · ·+ z2

n = 0}, n ≥ 3.

This cone is algebraically elliptic as seen in [7, Proposition 1.15.3]. A holomorphic

immersion M → Cn directed by A is called a null curve and its real part M → Rn
is a conformal minimal immersion. Conversely, every conformal minimal immersion

M → Rn is the real part of a holomorphic null curve on any simply connected

domain in M . The natural counterpart of a regular function in the theory of minimal

surfaces is a complete minimal surface of finite total curvature. Indeed, if M is an

open Riemann surface and X : M → Rn is a complete conformal minimal immersion

of finite total curvature, then M is a smooth affine curve and the (1, 0)-part of the

exterior derivative of X is a regular section of A on M with an effective pole at

each end of M . (See the classical surveys [33, 14, 37] or the recent monograph [7],

in particular Chapter 4.) For regular null curves and complete minimal surfaces of

finite total curvature, Theorem 1.1 was recently proved by Alarcón and López in [10]

(see [31, 3] for the case n = 3). By the results in [10], the punctured null quadric A

(2.3) is very good. The proofs in [31, 3, 10], relying mainly on the theory of Riemann

surfaces, are much more involved than the arguments here and heavily use the special

geometry of the null quadric. It does not seem that these proofs could be adapted

to more general families of regular directed immersions. For completeness, we give

a simple proof that the punctured null quadric is very good. (This can also be seen

as an immediate corollary of the results in [31, 10].) Thus, if M is a smooth affine

curve and A is the subbundle of (T ∗M)⊕n defined by A, then conditions (i)–(iv) in

Corollary 1.8 hold.

Proposition 2.3. The punctured cone A = {(z1, . . . , zn) ∈ Cn∗ : z2
1 + · · ·+ z2

n = 0},
n ≥ 3, is very good in the sense of Definition 1.3.

Proof. By Proposition 1.5(a), A is good. If n ≥ 4, then A is simply connected and

hence very good by Remark 1.4. In case n = 3, A is isomorphic to

A′ = {z = (z1, z2, z3) ∈ C3
∗ : z1z2 = z2

3}

and is not simply connected (its fundamental group is Z2: see [6, Equation (8.3)]).

We will prove that the pair (A′,M) is very good for every smooth affine curve M .

Denote by A′ the subbundle of (T ∗M)⊕3 defined by A′. Since A′ is an Oka manifold,

every homotopy class of continuous sections of A′ on M contains a holomorphic

section. Thus it suffices to see that for any holomorphically convex compact set

K ⊂ M , which is a strong deformation retract of M , and for any holomorphic

section η of A′ on a neighbourhood of K, we can approximate η on a neighbourhood
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of K by a regular section of A′ on M . For this, note that η = (η1, η2, η3), where

each ηi is a holomorphic 1-form on a neighbourhood of K such that

(2.4) η1η2 = η2
3

and η1 and η2 have no common zeros on K. By (2.4), η1 and η2 are spinorially

equivalent on a neighbourhood of K, meaning that there is a meromorphic function

f on a neighbourhood of K such that η1 = f2η2. Choose a regular 1-form ω on M

satisfying the following conditions (see [3, Lemma 3.2]).

(a) ω has no zeros on K.

(b) ω is spinorially equivalent to η1, hence also to η2, on a neighbourhood of K.

By (b), there is a meromorphic function fi on a neighbourhood of K such that

(2.5) ηi = f2
i ω, i = 1, 2.

Note that (a) ensures that fi is in fact holomorphic on a neighbourhood of K,

i = 1, 2. By (2.4) and after replacing f1 by −f1 if necessary, we may assume that

(2.6) η3 = f1f2ω on a neighbourhood of K.

Denote by Z1 the zero set of ω, a finite subset of M \K (see (a)). Let Ω1 ⊂M \K
be a compact neighbourhood of Z1 such that each component of Ω1 is a closed

disc containing a single point in Z1. Choose a meromorphic function f1 on

a neighbourhood of Ω1 such that f2
1ω is holomorphic and has no zeros on a

neighbourhood of Ω1. Fix a number ε1 > 0. By Royden’s Runge theorem for regular

functions [34, Theorem 10], there is a regular function g1 on M \ Z1 satisfying the

following conditions.

(A1) g1/f1 is holomorphic and has no zeros on K.

(B1) |g1 − f1| < ε1 on a neighbourhood of K ∪ Ω1.

(C1) g2
1ω is regular on M and has no zeros on Ω1.

Now, let Z2 denote the zero set of g1 on M \ K. Note that Z2 is finite and

Z2 ⊂ M \ (K ∪ Ω1) by (C1). Let Ω2 ⊂ M \ (K ∪ Ω1) be a compact neighbourhood

of Z2 such that each component of Ω2 is a closed disc containing a single point in

Z2. Extend the function f2 to Ω1 ∪ Ω2 by setting f2 = g1 on Ω1 and f2 = 1 on

Ω2; note that the compact sets K, Ω1, and Ω2 are mutually disjoint. Also note

that f2 is meromorphic on a neighbourhood of K ∪ Ω1 ∪ Ω2 and holomorphic on

(K ∪Ω1 ∪Ω2) \Z1. Choose ε2 > 0. By [34, Theorem 10], there is a regular function

g2 on M \ Z1 satisfying the following conditions.

(A2) g2/f2 is holomorphic and has no zeros on K.

(B2) |g2 − f2| < ε2 on a neighbourhood of K ∪ Ω1 ∪ Ω2.

(C2) g2
2ω is regular on M and has no zeros on Ω1 ∪ Ω2. (This is possible by (C1).)

Set ρi = g2
i ω, i = 1, 2. By (C1), (C2), and since Z1 ⊂ Ω1, these are regular forms

on M . By (a), (A1), (A2), and since η1 and η2 have no common zeros on K, we

see that ρ1 and ρ2 have no common zeros on K. Using also (C1), (C2), and since
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Z1 ⊂ Ω1 and Z2 ⊂ Ω2, we then infer that ρ1 and ρ2 have no common zeros on M .

Finally, consider the regular form ρ3 = g1g2ω on M . It is clear that ρ1ρ2 = ρ2
3, so

ρ = (ρ1, ρ2, ρ3) is a regular section of A′ on M . Finally, (2.5), (2.6), (B1), and (B2)

ensure that ρ is ε-close to η on a neighbourhood of K for any given ε > 0, provided

that ε1 and ε2 are chosen sufficiently small. �

3. Approximation by regular sections

In this section we establish the following theorem, the second main result of the

paper, on approximation by regular sections with control of periods. Subsequently,

we prove Theorem 1.10. Recall that the first homology group with integer coefficients

H1(M,Z) of a smooth affine curve M is isomorphic to Zr for some integer r ≥ 0.

Theorem 3.1. Let A ⊂ Cn∗ be the punctured cone on a connected submanifold

Y of Pn−1, n ≥ 2, and assume that A is algebraically elliptic and not contained

in a hyperplane in Cn. Let M be a smooth affine curve and A be the subbundle of

(T ∗M)⊕n defined by A. Also let K be a holomorphically convex compact subset of M ,

s be a holomorphic section of A on a neighbourhood of K, and F : H1(M,Z)→ Cn
be a group homomorphism such that

(3.1) F(C) =

∫
C
s for every loop C in a neighbourhood of K.

Finally, let C1, . . . , C` be smooth oriented embedded arcs in K such that C1∪· · ·∪C`
is holomorphically convex in M and each arc Cl contains a nontrivial arc disjoint

from
⋃
i 6=l Ci. Then the following are equivalent.

(i) s can be uniformly approximated on a neighbourhood of K by regular sections

t of A on M with an effective pole at each end of M , such that
∫
C t = F(C)

for every loop C in M and
∫
Cl
t =

∫
Cl
s for l = 1, . . . , `.

(ii) There is a neighbourhood U of K such that the homotopy class of continuous

sections of A |U that contains s also contains the restriction of a regular section

of A on M .

Furthemore, if (ii) holds, then the regular sections t = (t1, . . . , tn) in (i) can be

chosen such that all the component 1-forms t1, . . . , tn have an effective pole at each

end of M .

We start with some preparations. We expect the following to have been observed

before, but we do not know a reference for it.

Lemma 3.2. Let M be an open Riemann surface and Y be a connected complex

manifold. Let K be a holomorphically convex compact set in M and f : K → Y be

a continuous map. Then f admits a continuous extension M → Y . If, in addition,

Y is an Oka manifold and f is holomorphic in K̊, then f can be approximated

uniformly on K by holomorphic maps M → Y homotopic to any given continuous

extension M → Y of f .
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Proof. By the Tietze extension theorem and the existence of a smooth tubular

neighbourhood of Y once smoothly embedded into some Euclidean space, f extends

continuously to a neighbourhood of K. Let K0 ⊃ K be a smoothly bounded

holomorphically convex compact domain in M , possibly disconnected, such that f

admits a continuous extension f0 : K0 → Y . Let ρ be a smooth strongly subharmonic

Morse exhaustion function on M with K0 = {ρ ≤ 0}. Let a0 = 0 < a1 < a2 < · · ·
be a divergent sequence of regular values of ρ such that ρ has at most one critical

point in Ki+1 \ Ki for all i = 0, 1, 2, . . ., where Ki = {ρ ≤ ai}. Each Ki is a

smoothly bounded compact domain (possibly disconnected) with Ki b Ki+1 and

M =
⋃
i≥0Ki. If ρ does not have critical points in K1 \ K0, then K0 is a strong

deformation retract of K1, and hence f0 (and thus f) extends continuously to K1. If

there is a (necessarily unique) critical point of ρ in K1 \K0, then there is a smooth

embedded Jordan arc E in M intersecting K0 precisely at its two endpoints and

such that the intersection of E and the boundary of K0 is transverse and K0 ∪ E
is a strong deformation retract of K1. Since Y is path-connected, f0 extends to a

continuous map K0 ∪ E → Y , and since K0 ∪ E is a strong deformation retract of

K1, there is a continuous extension f1 : K1 → Y of f0. Repeating this process we

may then extend f1 to a continuous map f2 : K2 → Y , and continuing inductively

we obtain in the limit a continuous extension M → Y of f0, hence of f . This proves

the first assertion in the lemma. The second assertion is then guaranteed by the

Mergelyan theorem for maps from Riemann surfaces to Oka manifolds; see e.g. [20,

Corollary 8]. �

A set S in a smooth surfaceM is said to be admissible if it is of the form S = K∪E,

where K is a (possibly empty) finite union of mutually disjoint compact connected

domains with piecewise C 1 boundaries in M and E = S \ K̊ is a finite union of

mutually disjoint smooth Jordan arcs and closed Jordan curves meeting K only at

their endpoints (if at all) and such that their intersections with the boundary bK of

K are transverse; see [7, Definition 1.12.9]. Let us record the following result.

Lemma 3.3. Let A ⊂ Cn∗ be the punctured cone on a connected submanifold Y

of Pn−1, n ≥ 2, and assume that A is an Oka manifold and is not contained in

a hyperplane in Cn. Let M be an open Riemann surface, S = K ∪ E ⊂ M be a

holomorphically convex admissible set, and C1, . . . , C` be smooth oriented embedded

Jordan arcs and closed Jordan curves in S such that C1∪· · ·∪C` is holomorphically

convex in M and each Cl contains a nontrivial arc disjoint from
⋃
i 6=l Ci. Finally,

let θ be a holomorphic 1-form vanishing nowhere on M . Then every map f : S → A

which is of class C r (r ≥ 0) on a neighbourhood of S and holomorphic on S̊ = K̊

can be approximated in C r(S) by holomorphic maps F : M → A such that F (M)

is not contained in a hyperplane in Cn, F agrees with f on any given finite set

in S, F agrees with f to any given finite order on any given finite set in S̊, and∫
Cl
Fθ =

∫
Cl
fθ for all l = 1, . . . , `.

Note that the given map f in the lemma extends to a continuous map M → A

by Lemma 3.2, and hence there is no topological obstruction to holomorphic
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approximation. When A is the punctured null quadric (2.3), Lemma 3.3 coincides

with [7, Lemma 3.3.1]. The proof for an arbitrary cone A as in the statement follows

the proof in [7] word for word, but using the tools from [4, 1] that deal with maps

into an arbitrary cone. See also [1, Lemma 4.2] for an analogous result in a slightly

different topological setting. We leave the details of the proof to the reader.

Lemma 3.4. Let A ⊂ Cn∗ be the punctured cone on a connected submanifold Y of

Pn−1, n ≥ 2, and assume that A is an Oka manifold, not contained in a hyperplane

in Cn. Also let σ : [0, 1]→ A be a path. Then for any µ ∈ Cn, there is a homotopy

of paths σt : [0, 1] → A, t ∈ [0, 1], such that σ0 = σ, σt(0) = σ(0) and σt(1) = σ(1)

for all t ∈ [0, 1], and
∫ 1

0 σ
1(x) dx = µ.

Proof. Applying a small deformation to σ keeping σ(0) and σ(1) fixed, we can assume

that σ([0, 1]) is not contained in any hyperplane in Cn. This enables us to use the

analogue of [24, Lemma 3.1] with the punctured null quadric replaced by the cone

A (see [8, p. 10] or [24, proof of Theorem 5.3]) to obtain a homotopy σt satisfying

the conclusion of the lemma. Note that the approximate condition in [24, Lemma

3.1] can be made exact since σ([0, 1]) is not contained in any hyperplane in Cn, as

is seen in [8, proof of Theorem 1] and [24, proof of Theorem 5.3]. We also refer to

[1, Lemma 3.3] for a closely related result. �

With Lemmas 3.3 and 3.4 in hand, we are now ready to prove the following first

main technical step in the proof of Theorem 3.1.

Proposition 3.5. Let A and M be as in Theorem 3.1. Also let F : H1(M,Z)→ Cn
be a group homomorphism and θ be a nowhere-vanishing holomorphic 1-form on

M . Then every continuous map f : M → A is homotopic to a holomorphic map

f̃ : M → A such that f̃(M) is not contained in a hyperplane in Cn and∫
C
f̃ θ = F(C) for every loop C in M.

Furthermore, if f is holomorphic on a neighbourhood of a holomorphically convex

compact set K in M ,

(3.2)

∫
C
fθ = F(C) for every loop C in a neighbourhood of K,

and C1, . . . , C` are smooth oriented embedded arcs in K such that C1 ∪ · · · ∪ C`
is holomorphically convex in M and each arc Cl contains a nontrivial arc disjoint

from
⋃
i 6=l Ci, then a holomorphic map f̃ as above can be chosen to approximate f

uniformly on a neighbourhood of K, to agree with f to any given finite order on any

given finite set in K, and to satisfy∫
Cl

f̃ θ =

∫
Cl

fθ for l = 1, . . . , `.

We point out that the interpolation condition in this proposition (or in Lemma

3.3) will not be required for further developments in this paper. In particular, it is

not used to prove Theorem 1.1.
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Proof. We may assume without loss of generality that K 6= ∅ is a smoothly bounded

compact domain, possibly disconnected.

We claim that K can be assumed to be connected. Indeed, otherwise denote by

K0,K1, . . . ,KN , N ≥ 1, the connected components of K. Attach to K a union E

of N mutually disjoint smooth embedded Jordan arcs γ1, . . . , γN in M meeting K

precisely at their two endpoints and such that their intersections with the boundary

bK of K are transverse. Then the compact set S = K ∪ E ⊂ M is admissible [7,

Definition 1.12.9]. Further, choose each arc γi to have one endpoint in bKi and the

other endpoint in bKj for some j 6= i, in such a way that S is connected. Since this

process creates no new loops (because K has one more component than the arcs

we are adding), S is holomorphically convex in M . Note that the first homology

group H1(S,Z) of S is isomorphic to Zr for some integer r ≥ 0 (see [7, Lemma

1.12.10]) and the inclusion K ↪→ S induces an isomorphism H1(K,Z) → H1(S,Z).

Let `′ = `+r. By [7, proof of Proposition 3.3.2], there are smooth oriented embedded

Jordan curves C`+1, . . . , C`′ in S forming a homology basis of S such that
⋃`′

l=1Cl
is holomorphically convex in M and each Cl, l = 1, . . . , `′, contains a nontrivial arc

disjoint from
⋃
i 6=l Ci. By Lemma 3.3, we may approximate f uniformly on S by

a holomorphic map f ′ : M → A agreeing with f to any given order on any given

finite set in K and satisfying
∫
Cl
f ′θ =

∫
Cl
fθ for all l = 1, . . . , `′. In particular,∫

C f
′θ = F(C) for every loop C in a neighbourhood of S by (3.2) and the fact that

C`+1, . . . , C`′ generate H1(S,Z) ∼= H1(K,Z). Moreover, if the approximation of f

by f ′ on S is sufficiently close, then f ′ and f are homotopic on a neighbourhood of

S and there is a continuous map f ′′ : M → A homotopic to f such that f ′′ = f ′

on a neighbourhood of S (and also outside a bigger neighbourhood of S if desired).

Therefore, replacing f by f ′′ and K by S, we may assume that K is connected, as

claimed.

We now fix Jordan curves C`+1, . . . , C`′ in the connected compact domain K

forming a homology basis of K, where `′ = `+dim(H1(K,Z)), such that C1∪· · ·∪C`′
is holomorphically convex in M and each Cl, l = 1, . . . , `′, contains a nontrivial arc

disjoint from
⋃
i 6=l Ci. We proceed by induction on the Euler characteristic χ(M \K)

of M \K, which is a nonpositive integer. Assume for the basis of the induction that

χ(M \K) = 0, so K is a strong deformation retract of M and the inclusion K ↪→M

induces an isomorphism H1(K,Z) → H1(M,Z). Applying Lemma 3.3 again, we

may approximate f uniformly on a neighbourhood of K by a holomorphic map

f̃ : M → A agreeing with f to any given finite order on any given finite set in

K, such that f̃(M) is not contained in a hyperplane in Cn and
∫
Cl
f̃ θ =

∫
Cl
fθ for

l = 1, . . . , `′. Since C`+1, . . . , C`′ generate the homology of M , this and (3.2) ensure

that
∫
C f̃ θ = F(C) for every loop C in M . Moreover, if the approximation is close

enough, then f̃ is homotopic to f over K, and since K is a strong deformation

retract of M , f̃ is homotopic to f over all of M as well.

For the inductive step, assume now that the theorem holds whenever K is a

connected smoothly bounded compact domain with −χ(M \K) = k for some integer
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k ≥ 0, and suppose that−χ(M\K) = k+1. Attach to K a smooth embedded Jordan

arc E in M meeting K precisely at its two endpoints and such that its intersection

with the boundary bK of K is transverse. Then the compact set S = K ∪ E is

connected and admissible. Choose E so that S is holomorphically convex in M and

−χ(M \S) = k, that is, there is a smooth embedded closed Jordan curve in S which

contains E whose homology class belongs to H1(S,Z) but not to H1(K,Z). In view

of (3.2), we can use Lemma 3.4 in order to deform f : S → A to a continuous map

f ′ : S → A such that f ′ = f on a neighbourhood of K and
∫
C f
′θ = F(C) for every

loop C in S. Since f ′ is homotopic to f on S, it admits a continuous extension to

M which is homotopic to f on all of M (we can in fact choose f ′ to equal f outside

a neighbourhood of E if desired). Reasoning as above, we can assume that f ′ is

holomorphic on a neighbourhood of S, thereby reducing the proof to the case when

−χ(M \K) = k. The induction hypothesis then completes the proof. �

Remark 3.6. Proposition 3.5 remains true with M replaced by an arbitrary open

Riemann surface and with the cone A being Oka but not necessarily algebraically

elliptic. This follows by a standard recursive application of the arguments in the

proof we have given and we leave further details to the reader.

Proof of Theorem 3.1. (i) ⇒ (ii): If s is sufficiently close on a neighbourhood U of

K to a regular section t of A on M , then s and t are homotopic through continuous

sections of A |U .

(ii) ⇒ (i): We proceed in two steps. The first one is given by the following claim.

Claim 3.7. If (ii) holds, then s can be uniformly approximated on a neighbourhood

of K by regular sections t of A on M such that
∫
C t = F(C) for every loop C in M

and
∫
Cl
t =

∫
Cl
s for l = 1, . . . , `.

Note that the section t given by this claim satisfies (i) except it may not have a

pole at each end of M .

Proof. Let s0 be a regular section of A on M that is homotopic to s over a

neighbourhood of K; it exists by (ii). Then s0 is homotopic over all of M to a

continuous section s′ of A on M that equals s on a smaller neighbourhood of K (see

Lemma 3.2). So by replacing s by s′, we can assume that s is continuous on M and

s and s0 are homotopic on all of M . Fix a holomorphic 1-form θ vanishing nowhere

on M and write

(3.3) f = s/θ : M → A and f0 = s0/θ : M → A.

Note that f and f0 are homotopic, f0 is holomorphic, and f is continuous on M and

holomorphic on a neighbourhood of K. By Proposition 3.5, f can be deformed to

a holomorphic map f̃ : M → A that approximates f uniformly on a neighbourhood

of K, such that f̃(M) is not contained in a hyperplane in Cn,

(3.4)

∫
C
f̃ θ = F(C) for every loop C in M,
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and

(3.5)

∫
Cl

f̃ θ =

∫
Cl

fθ for l = 1, . . . , `

(see (3.1)). In particular, f̃ : M → A is homotopic to f0 on M and is nonflat in

the sense of [1, Definition 3.1] and nondegenerate in the sense of [4, Definition 2.2].

Note that f̃ θ is a holomorphic section of A on M satisfying the conclusion of the

claim, except it may not be regular.

Let L be a connected smoothly bounded compact domain in M = M\{p1, . . . , pm}
with K ⊂ L̊ and M \

◦
L = D1 ∪ · · · ∪Dm, where D1, . . . , Dm are mutually disjoint

smoothly bounded closed discs centred at p1, . . . , pm, respectively. Recall that the

first homology group H1(M,Z) is isomorphic to Zr for some r ≥ 0 and that the

inclusion L ↪→ M induces an isomorphism H1(L,Z)→ H1(M,Z). Write `′ = `+ r.

By [7, proof of Proposition 3.3.2], there are smooth oriented embedded Jordan curves

C`+1, . . . , C`′ in L forming a homology basis of L such that

Γ = C1 ∪ · · · ∪ C`′

is holomorphically convex in M and each Cl, l = 1, . . . , `′, contains a nontrivial arc

disjoint from
⋃
i 6=l Ci. Consider the period-interpolation map

P = (P1, . . . ,P`′) : C (Γ,Cn)→ (Cn)`
′

= C`
′n

defined by

(3.6) Pl(h) =

∫
Cl

hθ ∈ Cn, h ∈ C (Γ,Cn), l = 1, . . . , `′.

Arguing as in [7, proof of Lemma 3.3.1, Step 2] but with the punctured null quadric

replaced by the cone A (see also [1, Lemma 4.2] and [4, Lemma 5.1]), we can find

an open ball V centred at the origin 0 in some Ck and a holomorphic P-dominating

spray φ : V ×M → A with core f̃ , that is, a holomorphic map such that φ(0, ·) = f̃

and
∂

∂ζ

∣∣∣
ζ=0

P
(
φ(ζ, ·)

)
: (Cn)`

′ → (Cn)`
′

is an isomorphism.

(Note that [1, Lemma 4.2] and [4, Lemma 5.1] deal with the case when M is a

compact bordered Riemann surface, but the same proof applies when M is an

arbitrary open Riemann surface since we only need to control the periods on the

finitely many arcs and curves C1, . . . , C`′ .) We may assume that the spray φ extends

continuously to a map φ : Ck ×M → A. Since A satisfies the basic Oka property

with approximation and interpolation (see [23, Corollary 5.4.5]), φ may be deformed

to a holomorphic spray σ : Ck×M → A such that σ(0, ·) = f̃ , with sufficiently close

approximation on a neighbourhood of {0} × L ⊃ {0} × Γ to ensure that σ is still

P-dominating:

(3.7)
∂

∂ζ

∣∣∣
ζ=0

P
(
σ(ζ, ·)

)
: (Cn)`

′ → (Cn)`
′

is an isomorphism.

Using θ, we turn σ into a holomorphic spray σθ of sections of A on M parametrised

by Ck such that σ(0, ·)θ = f̃ θ. We may view the spray σθ as a holomorphic section
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of the pullback of A by the projection Ck ×M → M . By Forstnerič’s algebraic

approximation theorem [22, Theorem 3.1] (see also [23, Theorem 6.15.3]), since A is

algebraically elliptic and f̃ θ is homotopic to the regular section f0θ = s0 of A on M

(see (3.3)), we may uniformly approximate the spray σθ over W × L by a regular

spray τ of sections of A on M parametrised by Ck, where W is a closed ball centred

at the origin in Ck. By (3.7), if the approximation is close enough then near the

origin is a parameter ζ0 ∈ Ck such that

(3.8) P
(
τ(ζ0)/θ

)
= P

(
σ(0, ·)

)
= P

(
f̃).

Then t = τ(ζ0) is a regular section of A on M which is close to f̃ θ = σ(0, ·)θ on L

and hence to s = fθ on K; see (3.3). It follows from (3.6) and (3.8) that

(3.9)

∫
Cl

t =

∫
Cl

f̃ θ for l = 1, . . . , `′.

This, (3.3), and (3.5) show that
∫
Cl
t =

∫
Cl
fθ =

∫
Cl
s for l = 1, . . . , `. Finally,

since the curves C`+1, . . . , C`′ form a basis of H1(M,Z), (3.4) and (3.9) imply that∫
C t =

∫
C f̃ θ = F(C) for every loop C in M . �

To complete the proof that (ii) ⇒ (i), it remains to see that we can find a

regular section t as in Claim 3.7 with an effective pole at each end of M . For

this, we adapt the argument in the proof of Proposition 2.1 to our current more

general framework. By Claim 3.7, we may assume that s extends to a regular

section of A on M . Let L c K be a smoothly bounded compact domain in

M = M \ {p1, . . . , pm} such that M \
◦
L = D1 ∪ · · · ∪ Dm, where D1, . . . , Dm are

mutually disjoint smoothly bounded closed discs centred at p1, . . . , pm, respectively.

In particular, bL = bD1 ∪ · · · ∪ bDm. Fix a holomorphic 1-form ϑ vanishing nowhere

on a neighbourhood of D = D1∪· · ·∪Dm ⊃ bL. Also choose for each i = 1, . . . ,m a

smoothly bounded closed disc ∆i ⊂ D̊i \ {pi}, set ∆ = ∆1 ∪ · · · ∪∆m, and consider

a holomorphic section s̃ of A on a neighbourhood of L ∪ ∆ such that s̃ = s on a

neighbourhood of L and the map

(3.10) g = (g1, . . . , gn) =
s̃

ϑ
: ∆ ∪ bL→ A

satisfies

(3.11) min{|gk(p)| : p ∈ ∆} > max{|gk(p)| : p ∈ bL} for k = 1, . . . , n.

(Simply define s̃ on ∆ as s̃ = gϑ where g = (g1, . . . , gn) : ∆ → A is a holomorphic

map with min{|gk(p)| : p ∈ ∆} > max{|(s/ϑ)(p)| : p ∈ bL} for k = 1, . . . , n; note

that ∆ is compact, L ∩ ∆ = ∅, and g = s/ϑ on bL. We can even choose g to be

constant on ∆.) Since ∆ is simply connected and s̃ = s on L, s̃ and the regular

section s of A on M are homotopic over a neighbourhood of L ∪ ∆, so condition

(ii) is satisfied by the holomorphic section s̃ of A on L ∪∆. In view of Claim 3.7, s̃

can be uniformly approximated on a neighbourhood of the holomorphically convex

compact set L∪∆ ⊂M by a regular section t of A on M such that
∫
C t = F(C) for

every loop C in M and
∫
Cl
t =

∫
Cl
s for l = 1, . . . , `. Take such a section t so close to
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s̃ on L∪∆ that the holomorphic map h = (h1, . . . , hn) = t/ϑ : D \{p1, . . . , pm} → A

satisfies

(3.12) min
{
|hk(p)| : p ∈ ∆ =

m⋃
i=1

∆i

}
> max

{
|hk(p)| : p ∈ bL =

m⋃
i=1

bDi

}
;

for k = 1, . . . , n; see (3.10) and (3.11). For each i = 1, . . . ,m and k = 1, . . . , n, since

t = (t1, . . . , tn) is regular on M and ϑ is holomorphic at pi, either hk = tk/ϑ has an

effective pole at pi or hk is holomorphic at pi. To complete the proof it now suffices

to check that hk has a pole at pi for all i = 1, . . . ,m and k = 1, . . . , n. Indeed,

since ϑ is holomorphic and nowhere vanishing on D ⊃ {p1, . . . , pm}, this would

imply that tk|D\{p1,...,pm} = hkϑ has a pole at pi, i = 1, . . . ,m, and so tk would

have a pole at each end pi of M as well. So fix i ∈ {1, . . . ,m} and k = 1, . . . , n,

and suppose that hk is holomorphic at pi. Then hk is holomorphic on the smoothly

bounded closed disc Di, violating the maximum modulus principle, since ∆i ⊂ D̊i

and min{|hk(p)| : p ∈ ∆i} > max{|hk(p)| : p ∈ bDi} by (3.12). Therefore, each hk
has an effective pole at each end pi of M . �

Here is a more precise version of Theorem 1.10.

Theorem 3.8. Let A, M , and A be as in Theorem 1.1 and assume that t0 is a

regular section of A on M . Then for any group homomorphism F : H1(M,Z)→ Cn
there is a regular section t = (t1, . . . , tn) of A on M , homotopic to t0, such that

all the components 1-forms t1, . . . , tn have an effective pole at each end of M and∫
C t = F(C) for every loop C in M .

Proof. Let θ be a holomorphic 1-form vanishing nowhere on M and consider the

holomorphic map f0 = t0/θ : M → A. Recall that H1(M,Z) ∼= Zr for some integer

r ≥ 0. Fix a point p0 ∈ M and let C1, . . . , Cr be a family of smooth oriented

embedded Jordan curves forming a basis of H1(M,Z) such that Ci ∩ Cj = {p0} for

all i 6= j and the compact set Γ = C1 ∪ · · · ∪ Cr is holomorphically convex in M ,

and hence a strong deformation retract of M . By Lemma 3.4, we can deform f0|Γ
outside a neighbourhood of p0 to a continuous map f : Γ→ A with

∫
Ci
fθ = F(Ci)

for i = 1, . . . , r. Then Lemma 3.3 enables us to approximate f uniformly on Γ

by a holomorphic map f ′ : M → A with
∫
C f
′θ = F(C) for every loop C in M .

If the approximation is close enough, then f ′ is homotopic to f on Γ, so f ′ and

f0 are homotopic on M . Set s = f ′θ, which is a holomorphic section of A on

M , homotopic to the given regular section t0 = f0θ. Let K ⊂ M be a smoothly

bounded compact domain that is a strong deformation retract of M . By Theorem

3.1, s can be approximated uniformly on K by a regular section t = (t1, . . . , tn) of

A on M , such that tk has an effective pole at each end of M for all k = 1, . . . , n,

and
∫
C t = F(C) for every loop C in M . If the approximation on K is close enough,

then t is homotopic to s, hence to t0. �
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4. Regular directed immersions

In this section we first derive Theorem 1.1 on regular immersions directed by

algebraically elliptic cones from Theorem 3.1. Then we prove Corollaries 1.7 and 1.8.

Proof of Theorem 1.1. By Corollary 2.2, we may assume that n ≥ 3 and A 6= Cn∗ .
We proceed in three steps.

(ii) ⇒ (i) and (iv) ⇒ (iii) are obvious.

(i) ⇒ (iii) and (ii) ⇒ (iv): If u is near a regular A-immersion v : M → Cn on

a neighbourhood of K, then du is near dv on a smaller neighbourhood U of K. If

du and dv are sufficiently close on U , then they are homotopic through continuous

sections of A |U . Clearly, dv is exact, and since v is a regular A-immersion, dv is a

regular section of A. If in addition v is proper, then v, and hence dv, has an effective

pole at each end of M .

(iii) ⇒ (ii): Assume without loss of generality that K is a smoothly bounded

compact domain, possibly disconnected, and let Λ = {q1, . . . , q`} ⊂ K be a finite

set. We may assume that Λ ⊂ K̊.

Set s = du, so s is an exact holomorphic section of A on a neighbourhood of K:

(4.1)

∫
C
s = 0 for every loop C in a neighbourhood of K.

Assume first that K is connected. Fix a point p0 ∈ K̊ \ Λ. It is clear that

(4.2) u(p) = u(p0) +

∫ p

p0

du for any point p ∈ K,

where the integral is computed over any oriented arc in K connecting p0 and p. Let

C1, . . . , C` be smooth oriented embedded arcs in K̊ such that Ci ∩Cj = {p0} for all

i, j ∈ {1, . . . , `}, i 6= j, and the endpoints of Cl are p0 and ql, l = 1, . . . , `. By virtue

of (iii), we may use Theorem 3.1 to approximate s uniformly on a neighbourhood of

K by a regular section t = (t1, . . . , tn) of A on M , such that tk has an effective pole

at each end of M for all k = 1, . . . , n,

(4.3)

∫
C
t = 0 for every loop C in M

(see (4.1) and take F = 0 everywhere on H1(M,Z)) and

(4.4)

∫
Cl

t =

∫
Cl

s for l = 1, . . . , `.

By (4.3), t is exact. It is also regular, and hence the map v = (v1, . . . , vn) : M → Cn
given by

v(p) = u(p0) +

∫ p

p0

t, p ∈M,

is a regular A-immersion. It is clear that v is close to u uniformly on K, since K

is connected and t is close to s = du uniformly on K; see (4.2). Moreover, since tk
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has an effective pole at each end of M , so does vk, so vk : M → C is proper for all

k = 1, . . . , n. In particular, v : M → Cn is proper as well. Finally, by (4.4), v = u

on Λ. This proves (ii) in the case when K is connected.

Assume now that the compact domain K is disconnected. Denote by K0, . . . ,KN ,

N ≥ 1, the connected components of K. As in the first part of the proof of

Proposition 3.5, attach to K the union E = γ1 ∪ · · · ∪ γN of N mutually disjoint

smooth embedded Jordan arcs in M , such that each arc γi has one endpoint in

bKi and the other endpoint in bKj for some j 6= i, so as to obtain a connected

holomorphically convex compact admissible set S = K ∪ E ⊂ M . Since this

procedure does not create new loops, the inclusion K ↪→ S induces an isomorphism

H1(K,Z) → H1(S,Z). In this case, condition (4.1) implies that (4.2) holds for any

pair of points p and p0 in the same connected component of K. In view of (iii), there

is a regular section t of A on M which is homotopic to s over a neighbourhood of K.

Fix a holomorphic 1-form θ vanishing nowhere on M and consider the holomorphic

maps

(4.5) f = s/θ : K → A and g = t/θ : M → A

which are homotopic over a neighbourhood of K. Extend f to a continuous map

f : S → A which is holomorphic on a neighbourhood of K such that f and g

are homotopic on S. Fix orientations for the arcs γ1, . . . , γN and choose points

µ1, . . . , µN ∈ Cn which will be specified later. Reasoning as in the final part of the

proof of Proposition 3.5, we can now use Lemma 3.4 in order to deform f : S → A

to a continuous map f ′ : S → A such that f ′ = f on a neighbourhood of K and

(4.6)

∫
γi

f ′θ = µi for i = 1, . . . , N.

Then f ′ and g are homotopic over S. Moreover, the continuous 1-form f ′θ on S is

exact, since so is fθ = s = du on K (see (4.1)), f ′ = f on a neighbourhood of K,

and there is no closed curve in S whose homology class belongs to H1(S,Z) but not

to H1(K,Z). Thus, fixing a point p0 ∈ K̊0 \ Λ, f ′θ integrates to a continuous map

u′ : S → Cn given by

(4.7) u′(p) = u(p0) +

∫ p

p0

f ′θ, p ∈ S.

By (4.2), (4.7), and since f ′ = f on K, we have that u′ = u in a neighbourhood

of K0, while u′ − u is constant on a neighbourhood of Ki for i = 1, . . . , N . In fact,

suitably choosing the constants µi in (4.6), we can ensure that

(4.8) u′ = u on a neighbourhood of K = K0 ∪K1 ∪ · · · ∪KN .

Choose smooth oriented embedded Jordan arcs C1, . . . , C` in S such that C1∪· · ·∪C`
is holomorphically convex in M and each arc Cl has initial point p0 and final point

ql ∈ Λ, l = 1, . . . , `. It follows from (4.7) and (4.8) that

(4.9)

∫
Cl

f ′θ = u(ql)− u(p0) for l = 1, . . . , `.
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Set `′ = ` + dim(H1(S,Z)). By [7, proof of Proposition 3.3.2], there are smooth

oriented embedded Jordan arcs C`+1, . . . , C`′ in S forming a homology basis of S

such that
⋃`′

l=1Cl is holomorphically convex in M and each arc Cl, l = 1, . . . , `′,

contains a nontrivial arc disjoint from
⋃
i 6=l Ci. By Lemma 3.3, we can approximate

f ′ uniformly on S by a holomorphic map F : M → A such that

(4.10)

∫
Cl

Fθ =

∫
Cl

f ′θ for l = 1, . . . , `′.

Since f ′θ is exact on S and C`+1, . . . , C`′ generateH1(S,Z), it follows that Fθ is exact

on a connected neighbourhood U of S, and hence it integrates to an A-immersion

v : U → Cn given by

(4.11) v(p) = u(p0) +

∫ p

p0

Fθ, p ∈ U.

Since F is close to f ′ on the connected compact set S, (4.7) and (4.11) ensure that v

is close to u′ on a neighbourhood of S, and hence to u on a neighbourhood of K; see

(4.8). Moreover, by (4.9) and (4.10), v = u on Λ. Finally, if the approximation of f ′

by F is close enough, then F is homotopic to f ′, and hence to g, over S. Thus Fθ is

homotopic to the regular section t = gθ of A on M over a neighbourhood of S; see

(4.5). This reduces the proof to the already settled case when K is connected. �

Proof of Corollary 1.7. The implications (ii) ⇒ (iv) ⇒ (i) ⇒ (iii) are obvious. To

show that (iii) implies (ii), we simply apply Theorem 1.1 to any holomorphic A-

immersion u : K → Cn, where K ⊂ M is a simply connected, smoothly bounded

compact neighbourhood of Λ, such that u extends the given map Λ → Cn. Such

an A-immersion trivially exists; note that a translate of an A-immersion is still

an A-immersion. Since K is simply connected, there is only one homotopy class of

continuous sections ofA |U on a suitable neighbourhood of K, hence du is homotopic

to the restriction of the regular section of A on M given by (iii) and the theorem

applies. �

Proof of Corollary 1.8. (ii) ⇒ (i) and (iv) ⇒ (iii) are obvious, while (i) ⇒ (iii) and

(ii) ⇒ (iv) are seen as in the proof of Corollary 2.2.

(iii) ⇒ (ii): Let u : K → Cn be a holomorphic A-immersion as in (i). By [1,

Theorem 1.3], u can be uniformly approximated on K by holomorphic A-immersions

v : M → Cn agreeing with u on any given finite subset of K. Assuming (iii), apply

Theorem 1.1 to approximate and interpolate v and hence u on K to obtain (ii). �

Remark 4.1. An inspection of the proof of Theorem 1.1 shows, assuming the

equivalent conditions hold, that the approximation in (ii) can be done by A-

immersions M → Cn all of whose component functions are proper regular functions

on M . Likewise, the exact regular section of A on M in (iv) can be chosen so that

all its component 1-forms have an effective pole at each end of M . The same applies

to conditions (ii) and (iv) in Corollaries 1.7 and 1.8.
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5. Directed harmonic maps

Our method of proof yields a result analogous to Theorem 1.1 for directed harmonic

maps into Rn. If M is an open Riemann surface and A and A are as in Theorem

1.1, a harmonic map φ : M → Rn is said to be directed by A, or to be an A-map, if

the (1, 0)-part ∂φ of its exterior derivative dφ is a holomorphic section of A on M .

If M is a smooth affine curve, we say that φ is regular if ∂φ is. The flux map (or

just the flux) of φ is the group homomorphism Fluxφ : H1(M,Z)→ Rn defined by

Fluxφ(C) =

∫
C
dcφ for every loop C in M,

where dcφ = i(∂φ − ∂φ) is the conjugate differential of φ. A harmonic A-map

φ : M → Rn is the real part of a holomorphic A-immersion M → Cn if and only if

Fluxφ(C) = 0 for every loop C in M or, equivalently, dcφ is exact.

We record the following third main result of this paper. We say that a harmonic

map φ : M → Rn is regular if its (1, 0)-differential ∂φ is a regular 1-form on M .

Theorem 5.1. Let A, M , and A be as in Theorem 1.1. Let K be a holomorphically

convex compact subset of M , φ : K → Rn be a harmonic A-map on a neighbourhood

of K, and F : H1(M,Z) → Rn be a group homomorphism with F(C) = Fluxφ(C)

for every loop C in a neighbourhood of K. Then the following are equivalent.

(i) φ can be uniformly approximated on a neighbourhood of K by regular harmonic

A-maps M → Rn.

(ii) φ can be uniformly approximated on a neighbourhood of K by regular harmonic

A-maps ψ : M → Rn agreeing with φ on any given finite set in K and with

flux map F , such that ∂ψ has an effective pole at each end of M .

(iii) There is a neighbourhood U of K such that the homotopy class of continuous

sections of A |U that contains ∂φ also contains the restriction of a regular

section of A on M .

(iv) There is a neighbourhood U of K such that the homotopy class of continuous

sections of A |U that contains ∂φ also contains the restriction of a regular

section t of A on M with an effective pole at each end of M and representing

any given class in the cohomology group H1(M,Cn).

Note that (iii) ⇔ (iv) is guaranteed by Theorem 1.10. As in Remark 4.1, the

sections ∂ψ in (ii) and t in (iv) can be chosen such that all their component 1-forms

have an effective pole at each end of M . The proof of Theorem 5.1 is very similar

to that of Theorem 1.1, relying on the results in Section 3, the only difference being

that now we can ignore the imaginary periods of the approximating sections.

In general, harmonic A-maps need not be immersions; by a harmonic A-immersion

we mean a harmonic A-map which is an immersion. Given a harmonic map

φ = (φ1, . . . , φn) : M → Rn on an open Riemann surface M , the holomorphic

2-form Hφ =
∑n

i=1(∂φi)
2 on M is called the Hopf differential of φ. It turns out that

φ is an immersion if and only if |Hφ| < |∂φ|2 =
∑n

i=1 |∂φi|2 everywhere on M ; see
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[9, Lemma 2.4]. This happens if and only if ∂φ/θ takes its values in Cn \ (C ·Rn) for

any nowhere-vanishing holomorphic 1-form θ on M . In particular, if A and A are

as in Theorem 5.1 with A ∩Rn = ∅ (hence n ≥ 3) and ∂φ is a section of A, then φ

is a harmonic A-immersion. So, the following holds.

Remark 5.2. Assuming in Theorem 5.1 that A ∩ Rn = ∅, we have that the given

map φ is a harmonic A-immersion. If, in addition, the equivalent conditions (i)–(iv)

hold, then the approximating maps ψ in (ii) are harmonic A-immersions as well.

The punctured null quadric A ⊂ Cn∗ in (2.3), directing holomorphic null curves

in Cn and minimal surfaces in Rn, is very good by Proposition 2.3. It also satisfies

A∩Rn = ∅. Thus, by a direct application of Theorem 5.1, we recover the following

result from [10] (see [31, 3] for the case n = 3); see Section 2.2 for background.

Corollary 5.3. Let M be a smooth affine curve, K ⊂ M be a holomorphically

convex compact set, φ : K → Rn, n ≥ 3, be a conformal minimal immersion on

a neighbourhood of K, and F : H1(M,Z) → Rn be a group homomorphism such

that F(C) = Fluxφ(C) for every loop C in a neighbourhood of K. Then φ can be

uniformly approximated on a neighbourhood of K by complete conformal minimal

immersions ψ : M → Rn of finite total curvature agreeing with φ on any given finite

set in K and satisfying Fluxψ = F .

As above, the approximating conformal minimal immersions ψ = (ψ1, . . . , ψn) :

M → Rn in the corollary can be chosen such that ∂ψk has an effective pole at each

end of M for all k = 1, . . . , n.
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