
DEFORMATIONS OF OKA MANIFOLDS

FINNUR LÁRUSSON

Abstract. We investigate the behaviour of the Oka property with respect to defor-
mations of compact complex manifolds. We show that in a family of compact complex
manifolds, the set of Oka fibres corresponds to a Gδ subset of the base. We give a
necessary and sufficient condition for the limit fibre of a sequence of Oka fibres to be
Oka in terms of a new uniform Oka property. We show that if the fibres are tori, then
the projection is an Oka map. Finally, we consider holomorphic submersions with
noncompact fibres.

1. Introduction

The class of Oka manifolds has emerged from the modern theory of the Oka principle,
initiated in 1989 in a seminal paper of Gromov [6]. They were first formally defined
by Forstnerič in 2009 in the wake of his result that some dozen possible definitions are
all equivalent [3]. The Oka property can be seen as an answer to the question: what
should it mean for a complex manifold to be “anti-hyperbolic”? For more background,
see the survey [5]. One of the many open problems in Oka theory is to clarify the place
of Oka manifolds in the classification theory of compact complex manifolds, surfaces
in particular. To address this problem, we need to understand how the Oka property
behaves with respect to deformations of compact complex manifolds. In this paper, we
take some first steps in this direction.

Let π : X → B be a family of compact complex manifolds, that is, a proper
holomorphic submersion, and therefore a smooth fibre bundle, from a complex manifold
X onto a complex manifold B. Write Xt for the compact complex manifold π−1(t),
t ∈ B. We wish to say as much as possible about the structure of the set Oπ of t ∈ B
for which Xt is Oka.

It is well known that the set of t ∈ B for which Xt is hyperbolic is open ([7], Theorem
3.11.1). Thus we might expect Oπ to be closed. It is not clear that this is a reasonable
conjecture. We will prove two weaker results. We show that Oπ is Gδ (Corollary 8).
We also prove (Corollary 14) that if tn → s in B and Xtn is Oka for every n ∈ N, then
Xs is Oka if (and in fact only if) the family {Xtn : n ∈ N} is uniformly Oka in a sense
introduced here (Definition 9).

As well as asking about Oka properties of the fibres of the projection π, we can ask
about Oka properties of π itself as a map. It is an open question whether π is an Oka
map if all its fibres are Oka. We show that the answer is affirmative if the fibres are
tori (Theorem 16).

Finally, we indicate how our results in Sections 2 and 3 can be extended to holomor-
phic submersions whose fibres are not necessarily compact. We point out that every Gδ
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subset of a complex manifold B can be realised as Oπ for some holomorphic submersion
π : X → B with noncompact fibres.

Acknowledgement. I am grateful to Franc Forstnerič for helpful discussions.

2. The convex approximation property for compact manifolds

We will formulate the Oka property of a complex manifold Y as the convex approxima-
tion property: Y is Oka if and only if for every k ≥ 1, every holomorphic map to Y from
a compact convex subset K of Ck can be uniformly approximated on K by holomorphic
maps Ck → Y . (By a holomorphic map on a compact set we mean a holomorphic map
on an open neighbourhood of the set.)

Let Y be compact. We fix a Hermitian metric ω on Y . We use it to filter sets of
holomorphic maps by normal families. For our purposes, the choice of filtration seems
immaterial. To get a quantitative handle on the Oka property of Y , we introduce the
following definition.

Definition 1. By a quintuple we shall mean a quintuple (K,U, V, r, ε), where K is a
nonempty compact subset of Ck, k ≥ 1, U ⊂ V b Ck are open neighbourhoods of K,
r > 0, and ε > 0. Note that U and V are assumed to be relatively compact in Ck. For
every quintuple (K,U, V, r, ε), let

σ(K,U, V, r, ε)(Y ) = sup
f :U→Y hol.
‖f∗ω‖U≤r

inf
g:V→Y hol.
d(f,g)<ε on K

‖g∗ω‖V ∈ [0,∞].

Here, ‖·‖ denotes the supremum norm with respect to the Euclidean metric on Ck,
and the distance d(f, g) is with respect to ω. In the proof of Theorem 7 below, it is
important to have a weak inequality in ‖f ∗ω‖U ≤ r and a strict inequality in d(f, g) < ε.
We take the infimum of the empty set to be ∞.

Clearly, σ(K,U, V, r, ε)(Y ) increases as r increases, ε decreases, U shrinks, and V
expands. Also, σ(K,U, V, r, ε)(Y ) is finite if and only if there is R > 0 such that every
holomorphic map f : U → Y with ‖f ∗ω‖U ≤ r can be approximated to within ε on
K by a holomorphic map g : V → Y with ‖g∗ω‖V ≤ R. Since Y is compact, whether
σ(K,U, V, r, ε)(Y ) is finite for all r and ε with K, U , and V fixed is independent of the
choice of a Hermitian metric on Y .

Proposition 2. The compact manifold Y is Oka if and only if σ(K,U, V, r, ε)(Y ) is
finite for every quintuple (K,U, V, r, ε) such that K is convex.

Proof. ⇐ This is easy (and does not require compactness of Y ).

⇒ Suppose σ(K,U, V, r, ε)(Y ) =∞ for some quintuple (K,U, V, r, ε) with K convex.
This means that for every n ∈ N, there is a holomorphic map fn : U → Y with
‖f ∗nω‖U ≤ r, such that every holomorphic map g : V → Y with d(fn, g) < ε on K
(there may be none) has ‖g∗ω‖V > n. Since the family {fn : n ∈ N} is equicontinuous,
by passing to a subsequence, we may assume that (fn) converges locally uniformly on
U to a holomorphic map f : U → Y . Find n0 such that d(f, fn) < ε/2 on K for all
n ≥ n0. If Y was Oka, we could find a holomorphic map g : Ck → Y with d(f, g) < ε/2
on K. Then d(fn, g) < ε on K for n ≥ n0, and ‖g∗ω‖V ≤ n for n large enough, which
is a contradiction. �

We now slightly modify Definition 1.
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Definition 3. For every quintuple (K,U, V, r, ε), let

τ(K,U, V, r, ε)(Y ) = sup
f :U→Y hol.
‖f∗ω‖U<r

inf
g:V→Y hol.
d(f,g)≤ε on K

‖g∗ω‖V ∈ [0,∞].

Note that the weak inequality in Definition 1 has become strong and vice versa.
This will be important in the proof of Theorem 12. Clearly,

τ(K,U, V, r, ε)(Y ) ≤ σ(K,U, V, r, ε)(Y ).

The following result is proved in the same way as Proposition 2.

Proposition 4. The compact manifold Y is Oka if and only if τ(K,U, V, r, ε)(Y ) is
finite for every quintuple (K,U, V, r, ε) such that K is convex.

Now take a nonempty compact convex subset K of Ck, k ≥ 1. Choose a decreasing
basis of open neighbourhoods Un, n ∈ N, of K, and an increasing sequence of open
balls Vn, n ∈ N, in Ck with radius going to infinity, such that U1 ⊂ V1. Let

σKn (Y ) = σ(K,Un, Vn, n, 1/n)(Y ), τKn (Y ) = τ(K,Un, Vn, n, 1/n)(Y ).

Clearly,

τ1 ≤ σ1 ≤ τ2 ≤ σ2 ≤ τ3 ≤ · · · .

Definition 5. Let K be a compact convex subset of Ck, k ≥ 1. We say that a complex
manifold Y is K-Oka if every holomorphic map K → Y can be uniformly approximated
on K by holomorphic maps Ck → Y .

The following proposition is now immediate.

Proposition 6. Let K be a nonempty compact convex subset of Ck, k ≥ 1. The compact
manifold Y is K-Oka if and only if σKn (Y ) is finite for all n ∈ N. Equivalently, τKn (Y )
is finite for all n ∈ N.

We conclude this section by pointing out that the sequences (σKn (Y )) and (τKn (Y ))
go to infinity if K has nonempty interior and dimY 6= 0. Otherwise there is c > 0
such that every holomorphic map fn : Un → Y with ‖f ∗nω‖Un ≤ n can be approximated
to within 1/n on K by a holomorphic map gn : Vn → Y with ‖g∗nω‖Vn ≤ c. By
equicontinuity it follows that every holomorphic map K → Y extends to Ck (more
precisely, every holomorphic map from an open neighbourhood of K to Y is equal on
K to a holomorphic map Ck → Y ). If K has nonempty interior and dimY 6= 0, this is
absurd.

3. The Oka property in a family of compact manifolds

Let π : X → B be a family of compact complex manifolds, that is, a proper holomor-
phic submersion from a complex manifold X onto a complex manifold B. Fix a base
point 0 in B. Take a Hermitian metric ω on X. Write Xt for the compact complex
manifold π−1(t), t ∈ B. For a quintuple (K,U, V, r, ε), write σU,V (t) or simply σ(t) for
σ(K,U, V, r, ε)(Xt), and τU,V (t) or simply τ(t) for τ(K,U, V, r, ε)(Xt), defined using the
metric ω|Xt.

The following semicontinuity result is our first main theorem.
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Theorem 7. Let (K,U, Vj, r, ε), j = 1, 2, be quintuples such that V1 b V2 and V2 is
Stein. Then

lim sup
t→0

σU,V1(t) ≤ σU,V2(0).

The following two corollaries are consequences of the theorem and Proposition 2.

Corollary 8. The set of t ∈ B for which Xt is Oka is Gδ.

Proof. Now σ is finite for all quintuples (K,U, V, r, ε) with K convex if and only if σ is
finite for a suitable countable set of such quintuples. Namely, we can take r and 1/ε to
be integers, V to be a ball of integer radius centred at the origin, and in between any
compact convex K and an open neighbourhood U of K we can fit the convex hull of a
finite set of points with rational coordinates and the interior of a larger such hull.

Fix K,U, r, ε and take an increasing sequence V1 b V2 b · · · b Ck of Stein open
neighbourhoods of U . Write σn for σU,Vn . It suffices to show that

⋂
{σn < ∞} is Gδ.

This holds since by Theorem 7, {σn <∞} is a neighbourhood of {σn+1 <∞}. In other
words, for each n ≥ 1, there is an open set Wn with

{σn+1 <∞} ⊂ Wn ⊂ {σn <∞},
so
⋂
{σn <∞} =

⋂
Wn. �

Definition 9. Let A be a relatively compact subset of B. The family {Xt : t ∈ A} is
uniformly Oka if sup

t∈A
σ(t) <∞ for every quintuple (K,U, V, r, ε) with K convex.

Requiring A to be relatively compact makes the definition independent of the choice
of ω. The next corollary, which is an immediate consequence of Theorem 7, suggests
that the uniform Oka property is a reasonable notion.

Corollary 10. If A is a compact subset of B and Xt is Oka for all t ∈ A, then the
family {Xt : t ∈ A} is uniformly Oka.

To prove Theorem 7 we need a lemma. It is surely known, but for the reader’s
convenience we sketch a proof.

Lemma 11. Let M be a Stein manifold and f : M → X0 be holomorphic. For every
relatively compact open subset Ω of M , there is an open neighbourhood W of 0 in B
and a holomorphic map F : Ω×W → X such that π ◦ F = pr2 and F (·, 0) = f |Ω.

By an example of Brody and Green [2], in general we cannot take Ω = M . (Their
example also shows that the set of t ∈ B for which Xt is hyperbolic need not be closed.)

Proof. As a Stein submanifold of M×X, the graph of f has a Stein open neighbourhood
V in M × X. Let p = π ◦ pr2 : V → B. Since p is a holomorphic submersion, Ker p∗
is a holomorphic subbundle of the holomorphic tangent bundle TV of V . Since V is
Stein, TV splits into the direct sum of Ker p∗ and a holomorphic subbundle isomorphic
to p∗TB. Thus every holomorphic vector field on B lifts by p to one on V .

We may now proceed as in the usual proof of Ehresmann’s fibration theorem. We
lift the vector fields ∂/∂zj on B (defined using local coordinates on a neighbourhood
of 0) to holomorphic vector fields on V , postcompose the map m 7→ (m, f(m)) by the
flows of the liftings, one after another, and then postcompose by pr2 : V → X. The
flows are defined for long enough to cover the same neighbourhood of 0 in B for all
initial points in Ω. �
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Proof of Theorem 7. We argue by contradiction. Suppose there is a sequence (tn) in B
converging to 0 such that lim

n→∞
σU,V1(tn) exists (possibly equal to ∞) and

lim
n→∞

σU,V1(tn) > σU,V2(0).

Write Xn for Xtn . First suppose that lim
n→∞

σU,V1(tn) is finite; then we may assume that

σU,V1(tn) is finite for all n ≥ 1, and we have

lim
n→∞

σU,V1(tn) > σU,V2(0) + 3δ

for some δ > 0. For each n ≥ 1, find a holomorphic map fn : U → Xn with ‖f ∗nω‖U ≤ r
such that

inf
g:V1→Xn hol.
d(fn,g)<ε on K

‖g∗ω‖V1 > σU,V1(tn)− δ,

so

inf
g:V1→Xn hol.
d(fn,g)<ε on K

‖g∗ω‖V1 > lim
n→∞

σU,V1(tn)− 2δ > σU,V2(0) + δ

for n large enough. By passing to a subsequence, we may assume that (fn) converges
locally uniformly on U to a holomorphic map f : U → X0. Then ‖f ∗ω‖U ≤ r. There is
a holomorphic map h : V2 → X0 such that d(f, h) < ε on K and ‖h∗ω‖V2 < σU,V2(0)+δ.

Take an open set V ′ in Ck with V1 b V ′ b V2. By Lemma 11, since V2 is Stein, there
is an open neighbourhood W of 0 in B and a holomorphic map H : V ′ ×W → X such
that π ◦H = pr2 and H(·, 0) = h|V ′. For n sufficiently large, setting gn = H(·, tn)|V1 →
Xn, we have d(fn, gn) < ε on K and ‖g∗nω‖V1 < σU,V2(0) + δ, which is a contradiction.

When lim
n→∞

σU,V1(tn) =∞, there are holomorphic maps fn : U → Xn with ‖f ∗nω‖U ≤
r such that

inf
g:V1→Xn hol.
d(fn,g)<ε on K

‖g∗ω‖V1 > σU,V2(0) + 1

for n large enough, and we conclude as above. �

Our second main result is dual to Theorem 7.

Theorem 12. Let (K,Uj, V, r, ε), j = 1, 2, be quintuples such that U2 b U1 and U1 is
Stein. Then

τU1,V (0) ≤ lim inf
t→0

τU2,V (t).

Proof. We argue by contradiction. Suppose there is a sequence (tn) in B converging to
0 such that lim

n→∞
τU2,V (tn) exists and

lim
n→∞

τU2,V (tn) < τU1,V (0),

so in particular lim
n→∞

τU2,V (tn) is finite and we may assume that τU2,V (tn) is finite for all

n. Find a holomorphic map f : U1 → X0 such that ‖f ∗ω‖U1 < r and

lim
n→∞

τU2,V (tn) + δ < inf
g:V→X0 hol.
d(f,g)≤ε on K

‖g∗ω‖V

with δ > 0 (the infimum might be infinite).

Take an open set U ′ in Ck with U2 b U ′ b U1. By Lemma 11, since U1 is Stein,
there is an open neighbourhood W of 0 in B and a holomorphic map F : U ′×W → X
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such that π ◦ F = pr2 and F (·, 0) = f |U ′. We may assume that tn ∈ W for all n. Let
fn = F (·, tn)|U2 → Xtn . Then ‖f ∗nω‖U2 < r for n large enough. For such n, there is a
holomorphic map gn : V → Xtn with d(fn, gn) ≤ ε on K and ‖g∗nω‖V < τU2,V (tn) + δ/2,
so ‖g∗mω‖V < lim

n→∞
τU2,V (tn) + δ for m large enough.

By passing to a subsequence, we may assume that (gn) converges locally uniformly
on V to a holomorphic map g : V → X0. Then d(f, g) ≤ ε on K and

‖g∗ω‖V ≤ lim
n→∞

τU2,V (tn) + δ,

which is a contradiction. �

The following result is an immediate consequence of Theorem 12, as it is clear that
σ can be replaced by τ in Definition 9.

Corollary 13. If A is a relatively compact subset of B and the family {Xt : t ∈ A} is
uniformly Oka, then the family {Xt : t ∈ Ā} is also uniformly Oka. In particular, Xt

is Oka for every t ∈ Ā.

The next result follows from Corollaries 10 and 13.

Corollary 14. Let tn → 0 in B and suppose Xtn is Oka for all n ∈ N. Then X0 is
Oka if and only if the family {Xtn : n ∈ N} is uniformly Oka.

An examination of the proofs of Theorems 7 and 12 shows that for Corollary 14
to hold, the Hermitian metrics on Xtn used to define what it means for the family
{Xtn : n ∈ N} to be uniformly Oka need not be the restrictions of a Hermitian metric
on X as assumed above. It suffices that the metrics on Xtn converge to a Hermitian
metric on the central fibre X0 as n→∞.

It remains an open question whether X0 must be Oka if Xt is Oka for all t ∈ B \{0}.
The following corollary of Theorems 7 and 12 explains how X0 would fail to be Oka.

Corollary 15. The central fibre X0 is not Oka if and only if lim
t→0

σKn (t) =∞ for some

nonempty compact convex subset K of Ck and every sufficiently large n ∈ N.

4. Families of tori

Let π : X → B be a family of compact complex manifolds. It is an open question
whether π is an Oka map if all its fibres are Oka manifolds.

Theorem 16. The projection of a family of complex tori is an Oka map.

Proof. Let B be the space of n× n complex matrices T with det ImT > 0. Let X be
the quotient of Cn ×B by the free and properly discontinuous action of Z2n given by
the formula

m · (z, T ) = (z +m ·
[
I
T

]
, T ),

with the induced projection p : X → B. It is well known that the family p is complete
and effective and contains every n-dimensional torus ([8]; see also [1], §7.3). In other
words, p is a minimal versal deformation of every n-dimensional torus.

Next observe that p has a dominating fibre spray σ defined on the trivial vector
bundle X × Cn over X by the formula

σ([z, T ], w) = [z + w, T ].
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Hence p is elliptic and thus Oka.

Finally, let π : X → B be a family of n-dimensional tori. Let t ∈ B. By completeness
of the family p, there is an open neighbourhood U of t in B and a holomorphic map
f : U → B such that the restriction π|π−1(U) → U is isomorphic to the pullback
family f ∗p. Since pullbacks of Oka maps are Oka, we conclude that π is Oka over a
neighbourhood of each point in B. Hence p is Oka ([4], Theorem 4.7). �

We remark that a holomorphic map with noncompact Oka fibres need not be Oka.
There is a smoothly trivial holomorphic submersion which is not Oka but all of whose
fibres are isomorphic to C∗ ([5], Example 6.6).

5. The noncompact case

The definitions and results in Sections 2 and 3 can be extended to the noncompact
case. First, let Y be a complex manifold with a complete Hermitian metric ω. By
a sextuple we mean a sextuple (K,U, V, r, ε, L), where (K,U, V, r, ε) is a quintuple as
defined above, and L is a relatively compact subset of Y . Let

σ(K,U, V, r, ε, L)(Y ) = sup
f :U→Y hol.
‖f∗ω‖U≤r
f(U)⊂L

inf
g:V→Y hol.
d(f,g)<ε on K

‖g∗ω‖V .

We define τ(K,U, V, r, ε, L)(Y ) similarly, with the weak and the strong inequality signs
interchanged. As before, we can show that Y is Oka if and only if σ(K,U, V, r, ε, L)(Y ),
or equivalently τ(K,U, V, r, ε, L)(Y ), is finite for every sextuple (K,U, V, r, ε, L) such
that K is convex.

Next, let π : X → B be a holomorphic submersion from a complex manifold X onto
a complex manifold B. Fix a base point 0 in B. Write Xt = π−1(t) for t ∈ B. Choose a
complete Hermitian metric ω on X. Let L be a subset of X such that L∩Xt is relatively
compact for every t ∈ B. We define σ(t) and τ(t) using sextuples (K,U, V, r, ε, L ∩Xt)
and the metric ω|Xt. With minor modifications, the proofs of Theorems 7 and 12 show
that

lim sup
t→0

σU,V1(t) ≤ σU,V2(0)

if V1 b V2, V2 is Stein, and L is closed, and

τU1,V (0) ≤ lim inf
t→0

τU2,V (t)

if U2 b U1, U1 is Stein, and L is open. Using an exhaustion of X by compact subsets
L, the proof of Corollary 8 yields the following generalisation.

Theorem 17. Let π : X → B be a holomorphic submersion. The set of t ∈ B for
which Xt is Oka is Gδ.

Let A be a relatively compact subset of B. We generalise Definition 9 and say
that the family {Xt : t ∈ A} is uniformly Oka if sup

t∈A
σ(t) < ∞ for every sextuple

(K,U, V, r, ε, L) with K convex and L relatively compact in X. Clearly, an equivalent
definition results from replacing σ by τ , or from requiring L to be compact or to be
open. The definition appears to depend on the choice of ω, but Corollaries 10 and 13,
whose proofs still go through, show that in fact it does not. We have the following
generalisation of Corollary 14.
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Theorem 18. Let π : X → B be a holomorphic submersion. Let tn → 0 in B and
suppose Xtn is Oka for all n ∈ N. Then X0 is Oka if and only if the family {Xtn : n ∈ N}
is uniformly Oka.

One might expect Theorem 17 to be far from optimal, due to the seemingly primitive
approach of treating the Oka property as the conjunction of a countable number of
unrelated properties. However, for submersions that are not necessarily proper, it is
easily seen that Theorem 17 is in fact sharp.

Proposition 19. Let B be a complex manifold and A ⊂ B be Gδ. There is a holo-
morphic submersion π : X → B such that the set of t ∈ B for which π−1(t) is Oka is
precisely A.

Proof. Write B \ A as a countable union
∞⋃
n=1

Fn of closed sets (we may assume the

union is infinite, as there is no harm in listing a set more than once). The subset

E =
∞⋃
n=1

Fn × {n, n+ 1} of B ×C is closed. The intersection E ∩ ({t} ×C) contains at

least two points if t ∈ B\A, but is empty if t ∈ A. Hence the projection (B×C)\E → B
has the required property. �
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