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Abstract. Little is known about the behaviour of the Oka property of a complex

manifold with respect to blowing up a submanifold. A manifold is of Class A if it is

the complement of an algebraic subvariety of codimension at least 2 in an algebraic

manifold that is Zariski-locally isomorphic to Cn. A manifold of Class A is alge-

braically subelliptic and hence Oka, and a manifold of Class A blown up at finitely

many points is of Class A . Our main result is that a manifold of Class A blown up

along an arbitrary algebraic submanifold (not necessarily connected) is algebraically

subelliptic. For algebraic manifolds in general, we prove that strong algebraic dom-

inability, a weakening of algebraic subellipticity, is preserved by an arbitrary blow-up

with a smooth centre. We use the main result to confirm a prediction of Forster’s

famous conjecture that every open Riemann surface may be properly holomorphically

embedded into C2.

1. Introduction and Results

Modern Oka theory has evolved from Gromov’s seminal work on the Oka principle [10].

(The monograph [6] is a comprehensive reference on Oka theory. See also the surveys

[7] and [8].) Oka theory may be viewed as the study of approximation and interpolation

problems for holomorphic maps from Stein spaces into suitable complex manifolds. The

goal, for suitable targets, is to show that such a problem can be solved as soon as there

is no topological obstruction to its solution. The suitable targets turn out to be the so-

called Oka manifolds. From another point of view, Oka theory is the study of complex

manifolds that are the targets of many holomorphic maps from Stein spaces, with the

word many interpreted homotopically. The fundamental result in this direction is that

every continuous map from a Stein space to an Oka manifold can be deformed to a

holomorphic map. From a third point of view, Oka theory is seen as an answer to the

question: What is a good definition of anti-hyperbolicity for complex manifolds?

The prototypical examples of Oka manifolds are complex Lie groups and their ho-

mogeneous spaces. Among other known examples are manifolds of the so-called Class

A . A manifold is of Class A if it is the complement of an algebraic subvariety of codi-

mension at least 2 in an algebraic manifold1 that is Zariski-locally isomorphic to Cn.
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(A similar class was introduced in [10, §3.5.D].) The subclass A0 of algebraic manifolds

Zariski-locally isomorphic to Cn contains, for example, Cn itself, complex projective

spaces, all Grassmannians, all compact rational surfaces, all smooth complete toric va-

rieties, and any vector bundle over a manifold in A0. (Our definitions of A0 and A are

more general than [6, Definition 6.4.5]; see Remark 3.) For more examples of manifolds

of class A0, see [1, Section 4] (where the term A-covered is used).

A challenging open question in basic Oka theory is whether the Oka property for,

say, projective manifolds is a birational invariant. In other words, how can you say what

it means for a complex manifold to be bimeromorphically equivalent to an Oka manifold

Y without mentioning Y ? We do not know. Our understanding of the interaction of

the Oka property with the operation of blowing up a submanifold, even just a point,

is still very limited. The following result is due to Gromov ([10, §3.5.D”]; see also [6,

Proposition 6.4.7] and [1, Section 4, Statement (9)]).

Theorem (Gromov). A manifold of Class A blown up at finitely many points is of

Class A and hence Oka.

Forstnerič proved that Cn blown up at each point of a tame discrete set is Oka [6,

Proposition 6.4.11]. It follows that a complex torus of dimension at least 2, blown up

at finitely many points, is Oka [6, Corollary 6.4.12]. We are not aware of any other

previous results about blow-ups of Oka manifolds being Oka.

Our main result is a strengthening of Gromov’s theorem.

Main Theorem. A manifold of Class A blown up along any algebraic submanifold

(not necessarily connected) is Oka.

We do not tackle the Oka property directly, but instead verify a geometric sufficient

condition for it to hold, called algebraic subellipticity. (This is how manifolds of Class A
are shown to be Oka.) An algebraic manifold is algebraically subelliptic if it has a finite

dominating family of algebraic sprays [6, Definition 5.5.11]. Algebraic subellipticity is

a very interesting property for the following reasons.

• It is (obviously) a purely algebraic property, but . . .

• . . . it has massive analytic consequences (namely the Oka property).

• It satisfies a localisation principle (due to Gromov [10, §3.5.B]; see also [6, Propo-

sition 6.4.2]), which sometimes offers the only way to the Oka property, for

example here and in [11, Proposition 4.10]. There is no known holomorphic

analogue of this principle.

• It implies several algebraic Oka-type properties [6, Sections 7.8 and 7.10]. For

example, if X is an affine algebraic variety and Y is an algebraically subelliptic

manifold, then a holomorphic map X → Y is approximable by regular maps,

uniformly on compact subsets of X, if and only if it is homotopic to a regular

map.

The bulk of this paper is devoted to the proof of the following result.

Theorem 1. Let S be an algebraic subvariety of Cn, n ≥ 2, of codimension at least 2.

The blow-up of Cn \ S along an algebraic submanifold is algebraically subelliptic.
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By localisation of algebraic subellipticity, the following corollary is immediate, and

implies our main theorem.

Corollary 2. The blow-up of a manifold of class A along an algebraic submanifold is

algebraically subelliptic.

Remark 3. In Forstnerič’s monograph, the localisation principle for algebraic subel-

lipticity is proved under the assumption that the algebraic manifold Y in question is

quasi-projective [6, Proposition 6.4.2]. This assumption is only used to ensure that for

every point y ∈ Y and every algebraic subvariety Z of Y with y /∈ Z, there is an alge-

braic hypersurface H in Y with Z ⊂ H but y /∈ H. By [4, Theorem 4.1], every algebraic

manifold has this property, so the quasi-projectivity assumption is not needed.

Next we present two corollaries of the fact that Cn blown up along an algebraic

submanifold is Oka.

The first result confirms a prediction of the conjecture that every open Riemann

surface may be properly holomorphically embedded into C2. This is the remaining

unresolved case of Forster’s famous conjecture [5, p. 183]. Let A be an open Riemann

surface embedded in Cn (such an embedding exists for every n ≥ 3). If there is an

embedding f : A → C2, then f extends to a holomorphic map F : Cn → C2, and

F−1(f(A)) either is, or (if F−1(f(A)) = Cn) contains, a hypersurface in Cn containing A

that retracts holomorphically onto A. When A is algebraic, Corollary 4 below confirms

that A is indeed a hypersurface retract.

By [9, proof of Proposition 12 and Remark 13], if A is a connected analytic sub-

manifold of Cn, every holomorphic vector bundle over A is holomorphically trivial, the

blow-up B of Cn along A is Oka, and every continuous map A→ B is null-homotopic,

then A is a holomorphic retract of a smooth analytic hypersurface in Cn. This result,

Theorem 1, and the observation that B is simply connected yield the following corollary.

Corollary 4. Let A be a connected algebraic submanifold of Cn. If A is a curve or A is

contractible, then A is a holomorphic retract of a smooth analytic hypersurface in Cn.

As far as we know, there are contractible affine algebraic manifolds A that are not

known to be a hypersurface, for example Ramanujam’s surface R and products such as

R×R and R× Ck. For such A, the corollary is nontrivial.

One of the dozen or more nontrivially equivalent formulations of the Oka property

says that a complex manifold Y is Oka if for every Stein manifold X with a subvariety S,

a holomorphic map S → Y has a holomorphic extension X → Y if it has a continuous

extension. The second result follows from Theorem 1 and the universal property of the

blow-up; the details are given in Section 3.

Corollary 5. Let A be an algebraic submanifold of Cn, n ≥ 2, A 6= Cn, and let T

be a discrete subset of Cm, m ≥ 1, or a smooth analytic curve in Cm, m ≥ 2. Let

f : T → Cn be holomorphic (an arbitrary map if T is discrete). Then f extends to a

holomorphic map F : Cm → Cn such that F−1(A) is a hypersurface.
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We interpret the corollary to mean that there are many holomorphic maps Cm → Cn

that pull A back to a hypersurface.

We now turn to a weaker, simpler property for which we can obtain stronger results.

An algebraic manifold X is said to be algebraically dominable at a point x in X if there

is a regular map f : Cn → X such that f(0) = x and f is a local isomorphism at 0.

We say that X is algebraically dominable if it is algebraically dominable at some point,

and that X is strongly algebraically dominable if it is dominable at every point.

We use the technology of composed sprays and the Quillen-Suslin theorem to prove

the following result.

Proposition 6. An algebraically subelliptic manifold is strongly algebraically dom-

inable.

The next corollary is then immediate.

Corollary 7. The blow-up of a manifold of class A along an algebraic submanifold is

strongly algebraically dominable.

Note that if a projective manifold is algebraically dominable, then it is unirational

and hence rationally connected. We do not know any examples of algebraic manifolds

that are dominable but not algebraically subelliptic, but it seems unlikely that the two

properties are equivalent. Strong dominability is not known to imply the Oka property.

Using Theorem 1 and Proposition 6, we establish the following result.

Proposition 8. The blow-up of Cn, n ≥ 2, along a closed subscheme A is algebraically

dominable at every point over the complement of the singular locus of A.

A closed subscheme of Cn is nothing but an ideal in the coordinate ring C[x1, . . . , xn].

Finally, we are able to show that algebraic dominability is preserved by an arbitrary

blow-up with a smooth centre. The analogous result for algebraic subellipticity is

beyond our reach for now.

Theorem 9. Let B be the blow-up of an algebraic manifold X along an algebraic sub-

manifold. If X is algebraically dominable at a point x, then B is algebraically dominable

at every point over x. Hence, if X is algebraically dominable, so is B, and if X is

strongly algebraically dominable, so is B.

Let us mention the related result that if X is uniformly rational (meaning that X

is covered by open sets isomorphic to open subsets of affine space), then so is B ([10,

§3.5.E], [3, Proposition 2.6]).

In the next section we prove Theorem 1. In the final section we prove Corollary 5,

Proposition 6, Proposition 8, and Theorem 9.

2. Proof of Theorem 1

2.1. This section is devoted to the proof of our main result, Theorem 1. We start

by proving the theorem in case S = ∅. Let B be the blow-up of Cn, n ≥ 2, along
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an algebraic submanifold A of Cn (not necessarily connected) with exceptional divisor

E ⊂ B. Write π for the projection B → Cn. Without loss of generality we may

assume that each component of A has codimension at least 2. We will show that B

is algebraically subelliptic. By Gromov’s localisation principle, it suffices to show that

B can be covered by Zariski-open sets U carrying regular sprays Cs × U → B that

together dominate at each point b of B. Now B \ E is isomorphic to Cn \ A, which,

as shown by Gromov ([10, §0.5.B(iii)], [6, Proposition 5.5.14]), is algebraically elliptic

(with some high value of s). Thus we take b ∈ E. The sprays constructed below all

have s = 1.

Let a = π(b) ∈ A. We may take a to be the origin in Cn. Viewing E as the

projectivised normal bundle of A, we can represent b by a vector v ∈ TaCn \ TaA. The

kernel of the tangent map dbπ : TbB → TaCn is the subspace Tbπ
−1(a) of dimension

codimaA− 1. The image of dbπ is Cv ⊕ TaA. We first construct sprays that span the

kernel. Then we give a different construction of sprays that span some vector (that we

have not tried to pin down) over a generic vector in the image. This suffices to prove

the theorem.

Let r = codimaA ≥ 2. After a linear change of coordinates, TaA ⊂ TaCn ∼= Cn is

given by the equations x1, . . . , xr = 0. Then, in a Zariski neighbourhood U of a in Cn, A

is the common zero locus of polynomials u1, . . . , ur with uj(x) = xj+higher order terms.

We can take Cn \ U to consist of the components of A other than the component A0

containing a (call their union A1) and of the common zeros of u1, . . . , ur other than

A0. By removing from U a subvariety of A0 not containing a, we may assume that

dxu1, . . . , dxur are linearly independent for all x ∈ A ∩ U . We view π−1(U) ⊂ B as the

closure in U × Pr−1 of the set

{(x, λ) ∈ (U \ A)× Pr−1 : λ = [u1(x), . . . , ur(x)]}.

In other words, π−1(U) is the graph of the rational map [u1, . . . , ur] : U → Pr−1. The

map π is the projection onto the first factor. Note that π−1(U) is covered by r affine

Zariski-open sets of the same form, one of which is

Y = {(x, λ) ∈ U × Cr−1 : uj(x) = λjur(x), j = 1, . . . , r − 1}.

Note also that ur ◦ π is a defining function for E ∩ Y as a submanifold of Y . We may

assume that b ∈ Y . Let B̃ be the graph of the rational map [u1, . . . , ur] : Cn → Pr−1
and π̃ : B̃ → Cn be the projection. The projection π̃−1(Cn \ A1)→ π−1(Cn \ A1) is an

isomorphism over U .

2.2. To produce the first type of spray, we make use of the complete regular flows on

Cn fixing A pointwise, and therefore restricting to complete flows on Cn\A, that appear

in Gromov’s proof that Cn \ A is algebraically elliptic. Define

φ : C× Cn → Cn, φ(t, x) = x+ th(τ(x))ζ,

where τ : Cn → Cn−1 is a surjective linear projection such that τ |A is proper, ζ 6= 0 is

in the kernel of τ , and h : Cn−1 → C is a polynomial which vanishes on the subvariety

τ(A). For a generic choice of h, τ , ζ, and ξ ∈ TbB, we have:
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• η = dbπ(ξ) /∈ TaA.

• ζ /∈ Cη + TaA.

• dbur(η) 6= 0.

• (dτ(a)h ◦ daτ)(η) 6= 0.

Extend ξ to a vector field (with the same name) on a small enough neighbourhood of

b in E ∩ Y that the above properties hold with b replaced by a nearby y ∈ E ∩ Y and

a replaced by π(y).

Define a regular map f : C× Y → Cn \ A1 by the formula

f(t, y) = φ(t, π(y)) = th(τ(x))ζ + x.

If y = (x, λ) ∈ E ∩ Y , then uj(f(t, y)) = uj(x) = 0, so there are regular functions

λ1, . . . , λr on C × Y such that uj(f(t, y)) = ur(x)λj(t, y) for j = 1, . . . , r and (t, y) ∈
C× Y . The map f lifts to a rational map F : C× Y → π̃−1(Cn \ A1) ⊂ B̃ with

F (t, y) = (f(t, y), [λ1(t, y), . . . , λr(t, y)]).

We claim that F is regular on C× V for some Zariski neighbourhood V ⊂ Y of b.

First, it is clear that F is regular on C × (Y \ E). Next, for F to be regular on

C× {b}, we require (λ1(t, b), . . . , λr(t, b)) 6= (0, . . . , 0) for all t ∈ C. Differentiating the

identity uj(f(t, y)) = ur(x)λj(t, y) with respect to y at (t, b) and evaluating the tangent

maps at ξ gives

(1) dauj
(
t(dτ(a)h ◦ daτ ◦ dbπ)(ξ)ζ + dbπ(ξ)

)
= λj(t, b)db(ur ◦ π)(ξ).

The common kernel of dau1, . . . , daur is TaA, so our requirement is met if

t(dτ(a)h ◦ daτ ◦ dbπ)(ξ)ζ + η /∈ TaA

for all t ∈ C. This holds since ζ /∈ Cη + TaA and η /∈ TaA. Finally, we show that

F is regular on C × {y} for y ∈ E ∩ Y sufficiently close to b. Otherwise, there is a

sequence ((tν , yν)) with yν ∈ E∩Y , yν → b, and λj(tν , yν) = 0 for j = 1, . . . , r. We may

assume that tν →∞, for otherwise the inequality (λ1(t, b), . . . , λr(t, b)) 6= (0, . . . , 0) for

all t ∈ C is contradicted. Now (1) holds with b replaced by yν and a by π(yν) ∈ A, and

t = tν . Letting ν →∞, we conclude that dauj
(
(dτ(a)h ◦ daτ)(η)ζ

)
= 0 for j = 1, . . . , r,

that is, (dτ(a)h ◦ daτ)(η)ζ ∈ TaA, which is ruled out by the generic choices made above.

Thus, postcomposing F with the projection onto π−1(Cn \A1), which is an isomor-

phism over U , yields a regular spray G on V ⊂ π−1(U) with values in π−1(Cn\A1) ⊂ B.

Now
∂f

∂t
(0, b) = 0, so

∂G

∂t
(0, b) must lie in Ker dbπ = Tbπ

−1(a). Differentiating (1) with

respect to t at (0, b) gives

∂λj
∂t

(0, b)daur(η) = (dτ(a)h ◦ daτ)(η)dauj(ζ).

By the choice of u1, . . . , ur, dauj(ζ) = ζj. Hence the derivative at 0 of the lifting

C→ Cr \ {0}, t 7→ (λ1(t, b), . . . , λr(t, b)), is

(dτ(a)h ◦ daτ)(η)

daur(η)
(ζ1, . . . , ζr).

This shows that we can produce r − 1 sprays that span all of Tbπ
−1(a).
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2.3. We now turn to a different construction of sprays that span some vector over a

generic vector in the image Cv ⊕ TaA of dbπ.

It is well known that every algebraic subvariety of Cn is a rational hypersurface

retract. Here, we restrict a linear projection L : Cn → Cn−r+1 to A0 and let W =

L−1(L(A0)). (Recall that r = codimaA.) For generic L, the regular map A0 → L(A0)

is biregular at a, the hypersurface W in Cn is smooth at a, and we have a rational

retraction W → L(A0)→ A0. Thus, possibly after shrinking U , there is a hypersurface

W in Cn containing A0 and smooth at a, with a regular retraction ρ : W ∩U → A∩U .

We may assume that any one of the polynomials u1, . . . , ur, say ur, is a defining function

for W . Let V be the hypersurface (W ∩ U)× Cr−1 in U × Cr−1.

Now V is defined by the equation ur = 0 and Y is defined by the equations uj = λjur,

j = 1, . . . , r − 1. Thus V ∩ Y = E ∩ Y . Since dxu1, . . . , dxur are linearly independent

for all x ∈ A ∩ U , we see that V and Y intersect transversely over A ∩ U .

It is well known that the Zariski topology of a smooth algebraic variety has a basis

consisting of open sets that are isomorphic to closed affine hypersurfaces ([2, Theorem

5.7], [13, Theorem 2.5]). We need a variant of this fact.

Claim. There is a Zariski neighbourhood Z of b in U ×Cr−1 and a regular embedding

γ of (V ∪ Y ) ∩ Z as a closed subvariety of Cm, m = n+ r − 1.

We take the claim for granted for now and prove it in the next subsection. Write

V ′ = V ∩ Z and Y ′ = Y ∩ Z. Because γ(V ′) and γ(Y ′) intersect transversely, the

well-defined map γ(V ′ ∪ Y ′) → Cn defined on γ(V ′) as ρ ◦ π ◦ γ−1, and on γ(Y ′)

as π ◦ γ−1, is regular. We extend this map to a regular map φ : Cm → Cn. Then

γ(E ∩ Y ′) ⊂ γ(V ′) ⊂ φ−1(A).

Let I(A) be the defining ideal of A. Next we show that φ∗I(A) is principal near

γ(b). Let p be a defining polynomial for γ(V ′). Then there are polynomials q1, . . . , qr
such that

uj ◦ φ = p qj, j = 1, . . . , r.

It suffices to show that γ(E ∩ Y ′) ∩ {q1, . . . , qr = 0} is empty (so φ−1(A) = γ(V ′) near

γ(E ∩ Y ′)). For this, it is enough to find a tangent vector w ∈ Tγ(b)Cm such that

qj(γ(b))dγ(b)p(w) + p(γ(b))dγ(b)qj(w) = dγ(b)(uj ◦ φ)(w) 6= 0

for some j ∈ {1, . . . , r}, since then qj(γ(b)) 6= 0. Thus we need dγ(b)φ(w) /∈ TaA. Now

dbπ(TbY ) is larger than TaA, so there is w ∈ Tγ(b)γ(Y ′) with dγ(b)(π ◦ γ−1)(w) /∈ TaA.

Since φ = π ◦ γ−1 on γ(Y ′), we have dγ(b)φ(w) = dγ(b)(π ◦ γ−1)(w).

Take ζ in Tγ(b)Cm (identified with Cm itself) and define a regular map

f : C× Y ′ → Cn, f(t, y) = φ(γ(y) + tζ),

with f(0, ·) = π on Y ′. Since f ∗I(A) is principal near (0, b), the rational lifting F :

C × Y ′ → B of f is regular near (0, b). In fact, for generic ζ ∈ Cm, F is regular on

the product of C and some Zariski neighbourhood of b in Y ′. Namely, let Q be the

subvariety of Cm where φ∗I(A) is not principal. We need the line γ(b) + Cζ to avoid

Q, also at infinity in Pm. Since codimQ ≥ 2, this holds for generic ζ.
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Now
∂f

∂t
(0, b) = dγ(b)φ(ζ). Since dγ(b)φ(Tγ(b)γ(V ′)) = TaA, we have

dγ(b)φ(Tγ(b)Cm) = dbπ(TbY ).

Hence we obtain local sprays F such that
∂F

∂t
(0, b) lies over a generic vector in dbπ(TbY ),

as desired.

2.4. We conclude the proof of Theorem 1 in case S = ∅ by proving the claim. Our

argument is based on Jelonek’s proof of [13, Theorem 2.5].

Let V = W × Cr−1 and Y be the closure of V and Y in Cm, respectively. Then

R = (V ∪ Y ) \ U is a subvariety of codimension at least 2 in Cm. Let T be the union

of V and a hypersurface containing Y . Then T is a hypersurface in Cm with b ∈ T .

We will show that b has a Zariski neighbourhood Z in Cm, disjoint from R, such that

T ∩ Z embeds as a closed subvariety of Cm.

After a generic change of coordinates of the form xj 7→ xj + ajxm, j = 1, . . . ,m− 1,

xm 7→ xm, T has a defining polynomial of the form

xkm +
k−1∑
j=0

aj(x1, . . . , xm−1)x
j
m = 0.

Let p : Cm → Cm−1 be the projection (x1, . . . , xm) 7→ (x1, . . . , xm−1). Then p(R) is

contained in a hypersurface in Cm−1 defined by a polynomial h. Let H = {x ∈ Cm :

xm = 0} and N = {x ∈ Cm : h(x1, . . . , xm−1) = 0}. We may assume that 0 /∈ T ∪ N
and b /∈ H ∪ N . Let R′ = T ∩ (H ∪ N). Then R ⊂ R′ and Z = Cm \ R′ is a Zariski

neighbourhood of b. Define

F : Cm → Cm, (x1, . . . , xm) 7→ (x1, . . . , xm−1, h(x1, . . . , xm−1)xm).

Clearly, F restricts to an automorphism of Cm \ N . Using the form of the defining

polynomial of T , it is easy to show that

F (T ) ∩N ⊂ H ∩N.

It follows that F (T ) \H = F (T ) \H. Since F (N) ⊂ H, we have

F (T ) \H = F (T \N) \H ⊂ Cm \N.

Hence F (T ) \H is isomorphic to

F−1(F (T \N) \H) = T \ (H ∪N) = T ∩ Z.

Now define

σ : Cm → Cm, (x1, . . . , xm) 7→ (x1xm, . . . , xm−1xm, xm).

Then σ is an automorphism of Cm \H and σ−1(H) = σ−1(0) = H. Since 0 /∈ T ∪ N ,

we have 0 /∈ F (T ), so

σ−1(F (T )) = σ−1(F (T ) \ {0}) = σ−1(F (T )) \H = σ−1(F (T ) \H).

We conclude that T ∩ Z is isomorphic to the closed subvariety σ−1(F (T )) of Cm.
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2.5. Now let S be an algebraic subvariety of Cn, n ≥ 2, of codimension at least 2, and

A be an algebraic submanifold of Cn \ S. Let B be the blow-up of Cn \ S along A.

We indicate how the proof above can be modified so as to show that B is algebraically

subelliptic.

We include S in Cn \ U . In the definition of the map φ in the construction of the

first type of spray, we replace A by the union of S and the closure of A in Cn. The map

f then takes values in Cn \ (A1 ∪ S) and the construction goes through.

In the definition of the map f in the construction of the second type of spray,

we replace γ(y) + tζ by a flow that avoids φ−1(S). To obtain such a flow we need

codimφ−1(S) ≥ 2, which must be built into the construction of φ as an extension. To

this end we use the following corollary of a theorem of Jelonek.

Proposition 10. Let m ≥ n, X be an algebraic subvariety of Cm, and f : X → Cn

be a polynomial map. Then there is a polynomial map F : Cm → Cn extending f such

that dimF−1(z) \X ≤ m− n for all z ∈ Cn.

Proof. Embed Cn as Cn × {0} in Cm. Then f induces a map f̃ : X → Cm, which

extends to a polynomial map F̃ : Cm → Cm such that F̃ |Cm \X has finite fibres [12,

Theorem 3.9]. Let π : Cm → Cn, (z1, . . . , zm) 7→ (z1, . . . , zn). Then F = π ◦ F̃ is the

desired map. �

3. Other Proofs

Proof of Corollary 5. Let π : B → Cn be the blow-up along A and let f : T → Cn

be holomorphic. First note that f factors through π by a holomorphic map g : T →
B. This is clear if T is discrete, so suppose that T is a smooth analytic curve. If

f(T ) 6⊂ A, then the preimage of A by f , as a complex subspace of T , is locally principal

since dimT = 1, so by the universal property of the blow-up, f factors through π. If

f(T ) ⊂ A, we use the geometric construction of the blow-up. The pullback by f of

the normal bundle of A in Cn is holomorphically trivial, again since dimT = 1, and a

nowhere-vanishing section of the pullback bundle over T defines g.

Next we need an extension of g : T → B to a continuous map Cm → B. If T is

discrete, this is elementary. For example, take an injection g1 : T → R and a continuous

map g2 : R→ B such that g = g2 ◦ g1, and extend g1 to a continuous map Cm → R. If

T is a smooth analytic curve, since B is simply connected and T is homotopy equivalent

to a disjoint union of bouquets of circles, g is homotopic to a continuous map g̃ : T → B

with a countable image. It is easy to see that g̃ extends continuously to Cm (for example

by factoring g̃ through R as above), so g does as well.

Since B is Oka, g has a holomorphic extension h : Cm → B. Let F = π ◦ h :

Cm → Cn. Then F is a holomorphic extension of f and F−1(A) = h−1(π−1(A)) is a

hypersurface – except that F−1(A) might be empty or all of Cm. To avert the former,

add an extra point or component to T and let f map it into A. To avert the latter, add

an extra point or component to T and let f map it outside of A. �
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Proof of Proposition 6. We refer to [6, Section 6.3] for Gromov’s theory of composed

sprays. Let X be an algebraic manifold with a dominating family of algebraic sprays

(Ej, πj, sj), j = 1, . . . ,m ≥ 2 (if m = 1, there is nothing to prove). The composed spray

(E1 ∗ E2, π1 ∗ π2, s1 ∗ s2) is defined as the pullback

E1 ∗ E2 = {(e1, e2) ∈ E1 × E2 : s1(e1) = π2(e2)}

with

π1 ∗ π2(e1, e2) = π1(e1), s1 ∗ s2(e1, e2) = s2(e2).

Then E1 ∗E2 is a vector bundle over E1, and it has a natural zero-section over X, but

we do not know whether it is a vector bundle, even holomorphically, over X. Otherwise

it is a spray over X in the usual sense. With that same proviso, we have a composed

spray bundle E = (· · · (E1 ∗ E2) ∗ · · · ) ∗ Em, which is dominating over X. Now E is a

vector bundle over a vector bundle over . . . a vector bundle over X, so each fibre of E

is a vector bundle over a vector bundle over . . . an affine space. (Up to this point, the

theory of composed sprays is the same in the algebraic category and the holomorphic

category.) We now invoke the Quillen-Suslin theorem, which states that every algebraic

vector bundle over an affine space is algebraically trivial, and conclude that each fibre

of E is isomorphic to an affine space, which implies that X is strongly algebraically

dominable. �

Proof of Proposition 8. Let A be a closed subscheme of Cn, n ≥ 2. The defining ideal of

A is generated by polynomials h1, . . . , hm with greatest common divisor h. The blow-up

of Cn along A is the same as the blow-up of Cn along the subscheme defined by the ideal

generated by h1/h, . . . , hm/h. Thus we may assume that A has codimension at least

2. In particular, the singular locus Z of A has codimension at least 2. By Theorem

1, the blow-up of Cn \ Z along A \ Z is algebraically subelliptic and hence strongly

algebraically dominable by Proposition 6. �

Proof of Theorem 9. Let B be the blow-up of an algebraic manifold X along an alge-

braic submanifold A. Suppose that X is algebraically dominable at a point x and let

y ∈ B lie over x. Let f : Cn → X be a regular map that takes 0 to x and is a local

isomorphism at 0. Let Ĉn be the blow-up of Cn along the subscheme f ∗A. Then 0

is not a singular point of f ∗A. Denote the blow-up projections by π : B → X and

p : Ĉn → Cn. Let F : Ĉn → B be the regular lifting of f ◦ p by π, taking a point z over

0 to y. Then F is a local isomorphism at z, so it suffices to show that Ĉn is dominable

at z, but this follows from Proposition 8. �
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[7] F. Forstnerič. Oka manifolds: from Oka to Stein and back. With an appendix by F. Lárusson.

Ann. Fac. Sci. Toulouse Math. (6) 22 (2013) 747–809.
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