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Abstract. We consider the analogue for regular maps from affine varieties to suitable

algebraic manifolds of Oka theory for holomorphic maps from Stein spaces to suitable

complex manifolds. The goal is to understand when the obstructions to approximation

or interpolation are purely topological. We propose a definition of an algebraic Oka

property, which is stronger than the analytic Oka property. We review the known

examples of algebraic manifolds satisfying the algebraic Oka property and add a new

class of examples: smooth nondegenerate toric varieties. On the other hand, we show

that the algebraic analogues of three of the central properties of analytic Oka theory

fail for all compact manifolds and manifolds with a rational curve; in particular, for

projective manifolds.

1. Introduction and Results

The past 15 years or so have seen the development of a rich theory of approximation

and interpolation of holomorphic maps from Stein spaces to complex manifolds that are

“big” in the sense that the complex plane is big and the disc is small. The prototypi-

cal examples of “big” complex manifolds are complex Lie groups. By the 1960s, good

approximation and interpolation theorems for them and their homogeneous spaces had

been proved by Grauert, Cartan, and others. In a seminal paper of 1989 [12], Gromov

showed how to extend such theorems to the larger class of elliptic manifolds, using

his linearisation method of dominating sprays. Since 2000, the theory has grown into

a subfield of holomorphic geometry in its own right, the foremost contributor being

Forstnerič. Oka manifolds have emerged as the natural targets of maps from Stein

spaces. They are defined by close to 20 nontrivially equivalent properties involving ap-

proximation or interpolation or both. (The monograph [10] is a comprehensive reference

on Oka theory; see also the survey [11].)

Among the properties of a complex manifold Y investigated in Oka theory are the

following, where X denotes an arbitrary reduced Stein space.

• The approximation property (AP): Every continuous map X → Y that is holo-

morphic on a holomorphically convex compact subset K of X can be uniformly

approximated on K by holomorphic maps X → Y .
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• The interpolation property (IP): A holomorphic map from a subvariety of X to

Y has a holomorphic extension X → Y if it has a continuous extension.

• The basic Oka property (BOP): Every continuous map X → Y is homotopic to

a holomorphic map.

• The homotopy Runge property (HRP): For every holomorphic map f0 : X → Y ,

a holomorphically convex compact subset K of X with a neighbourhood U , and

a homotopy of holomorphic maps ft : U → Y , t ∈ [0, 1], there is a holomorphic

map F : X × C → Y with F (·, 0) = f0 and F (·, t) as close to ft as desired,

uniformly on K.

• Subellipticity (SEll): Y admits a finite dominating family of holomorphic sprays

(for more details, see [10, Definition 5.6.13]).

• Ell1:
1 For every holomorphic map f : X → Y , there is a holomorphic map

F : X × Cm → Y for some m ≥ 1, such that F (·, 0) = f and F (x, ·) : Cm → Y

is a submersion at 0 for every x ∈ X.

Deep theorems provide the following implications.
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SEll //
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)
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AP, IP, and HRP are among the many equivalent formulations of the Oka property.

Subellipticity is a useful geometric sufficient condition for the Oka property to hold.

Ell1 is primarily of interest as a stepping stone on the way to transversality theorems

for holomorphic maps into Oka manifolds (see [10, Section 8.8]). The converses of the

implications→ and↗ are true when Y is Stein, but are open in general. The converse

of ↘ obviously fails when Y is the disc, but no noncontractible counterexamples are

known.

The goal of this paper is to investigate the analogues of these properties and their

relationships in the algebraic category. Each of the six properties has an algebraic

version for an algebraic manifold2 Y , with X replaced by an arbitrary affine variety,

holomorphic maps from X, X × C, X × Cm, or subvarieties of X by regular maps

(that is, morphisms), and holomorphic sprays on Y by algebraic sprays. The algebraic

analogue of a holomorphic property P will be called aP.

A very different picture emerges in the algebraic case.

Theorem 1. For algebraic manifolds, aSEll, aEll1, and aHRP are equivalent.

1This is Gromov’s term. The property could also be called relative ellipticity.
2An algebraic manifold is a connected smooth algebraic variety over C, by definition quasi-compact

in the Zariski topology. We take a subvariety to be closed and not necessarily irreducible.
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Theorem 2. Let Y be an algebraic manifold.3

(a) If Y contains a rational curve, that is, there is a nonconstant regular map from

P1 to Y , then Y does not satisfy aAP, aIP, or aBOP.

(b) If Y is compact, then Y does not satisfy aAP, aIP, or aBOP.

Theorem 1 suggests that “algebraic Oka theory” should focus on the equivalent

properties aSEll, aEll1, and aHRP. It is tempting to introduce the term the algebraic

Oka property (aOka) for them.

On the other hand, the properties aAP, aIP, and aBOP are of no interest for compact

manifolds and manifolds with a rational curve; in particular for projective manifolds.

For affine manifolds Y , the authors’ understanding of these properties is limited. The

affine spaces Cn, n ≥ 1, satisfy the six algebraic properties. More generally, when Y

is contractible, aBOP is obviously true, and aAP holds if, and aIP holds if and only

if, Y is a regular retract of some affine space. We would not be surprised if the three

properties turned out to fail for all noncontractible affine manifolds. We provide some

examples below.

The properties aAP, aIP, and aBOP make sense, as defined, for singular varieties.

The proof of Theorem 2 is easily generalised to a possibly singular algebraic variety Y

that embeds as a subvariety in a smooth variety. It is well known that not all singular

varieties do. In particular, Theorem 2 holds for a projective variety Y . Little is known

about the Oka theory of singular targets. The first paper on this topic is [17]. The

results there show that analytic Oka theory changes quite dramatically when we move

from smooth targets to singular targets.

Our third theorem provides a new class of examples of aOka manifolds.

Theorem 3. Every smooth nondegenerate toric variety is locally flexible and hence

algebraically Oka.

It is known that every smooth toric variety is Oka ([19], [8, Theorem 2.17]).

Remark 1. We rely on Forstnerič’s work in [7] (see also [10, Sections 6.15 and 8.8]).

He proved that aSEll implies both aHRP [7, Theorem 3.1] and aEll1 [7, Proposition

4.6].

Forstnerič showed that if a holomorphic map from an affine variety X to an aOka

manifold is homotopic to a regular map, then it is approximable by regular maps. The

converse is easily proved, because two continuous maps from X that are sufficiently

close on a sufficiently large compact subset of X are homotopic. (Here we need to

know that there is a compact subset of X that is a strong deformation retract of X [13,

Theorem 1.1].) For the same reason (noting also that aAP trivially implies AP, which,

as already mentioned, nontrivially implies BOP), aAP implies aBOP.

Forstnerič gave two aOka counterexamples to aBOP, and therefore to aAP, in [10,

Examples 6.15.7 and 6.15.8]. One is the complex projective space Pn for n ≥ 3. The

other is the complex n-sphere Σn = {(z0, . . . , zn) ∈ Cn+1 : z20 + · · · + z2n = 1} for even

3We take Y to have positive dimension, that is, we exclude the point.
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n ≥ 2. It is a homogeneous space of the connected linear algebraic group SO(n+ 1,C),

which has no nontrivial characters, and therefore flexible [1, Proposition 5.4].

An affine manifold is flexible if its tangent bundle is generated by complete regular

vector fields with regular flows. Equivalently, the subgroup of the algebraic automor-

phism group generated by subgroups isomorphic to (C,+) acts infinitely transitively

([1], [3]). The notion of flexibility has been extended to quasi-affine manifolds [6]. An

algebraic manifold is locally flexible if it is covered by quasi-affine Zariski-open sub-

sets that are flexible; it is then aOka [16, Corollary 3.2] and has “many” birational

automorphisms.

Remark 2. (a) If an algebraic manifold is aOka, then it is Oka as a complex manifold

(because algebraic subellipticity obviously implies subellipticity, which in turn implies

the Oka property).

(b) It is easily seen that:

• the product of two aOka manifolds is aOka,

• a regular retract of an aOka manifold is aOka,

• a finite unbranched covering space of an aOka manifold is aOka.

By Gromov’s localisation principle for algebraic subellipticity ([12, §3.5.B]; see also [10,

Proposition 6.4.2]), the algebraic Oka property is Zariski-local. (Since the properties

aAP, aIP, and aBOP fail for P1 but hold for C, they are not Zariski-local.)

(c) A smooth compact algebraic surface Y is aOka if and only if it is rational. Indeed,

if Y is aOka, then Y is unirational and hence rational. Conversely, if Y is rational, then

Y is covered by Zariski-open subsets isomorphic to C2, so Y is aOka. (By [1, Example

5.3], a flexible affine manifold need not be rational or even stably rational.)

(d) Forstnerič showed that every compact aOka manifold of dimension n is the image

of a regular map from Cn (his result [9, Theorem 1.6] in fact says more). His argument

can be easily extended to a proof that if Y is an n-dimensional aOka manifold and K is

a compact subset of Y , then there is a regular map from Cn to Y whose image contains

K. It follows that every finite subset of Y lies in a regular image of C. Equivalently,

the values of regular maps from affine varieties to Y can be prescribed at finitely many

points.

Suppose that Y is an aOka manifold of dimension n. By aEll1, Y is strongly alge-

braically dominable, meaning that for every y ∈ Y , there is a regular map g : Cn → Y

with 0 7→ y that is nondegenerate at 0. The image of g is constructible and has

nonempty interior in the Hausdorff topology, so it contains a nonempty Zariski-open

set. Being quasi-compact in the Zariski topology, Y is covered by the images of finitely

many such maps. If Y is noncompact, we do not know whether Y is the image of a

single regular map from Cn. In particular, we do not know whether C2 \{0} is a regular

image of C2.

(e) As far as the authors are aware, no aOka manifold is known not to be locally

flexible. Quite a few different kinds of examples of locally flexible manifolds may be

found in the literature. Some are flexible (for a list of examples, see [2, Section 3])
4



and some are Zariski-locally isomorphic to affine space (also said to be of Class A0 or

A-covered; for a list of examples, see [4, Section 4]). Our Theorem 3 provides a new

class of examples of aOka manifolds: smooth nondegenerate toric varieties.

It does not seem reasonable to conjecture that all aOka manifolds are locally flexible.

In the light of our current knowledge, the two classes appear rather different. The aOka

property is preserved by regular retracts; flexibility is not (see Remark 3(b) below), but

for local flexibility it is an open question. Arbitrary blow-ups of, say, C3 are aOka

[20, Theorem 1], but are not known to be locally flexible. Local flexibility is preserved

by removing subvarieties of codimension at least 2 [6, Theorem 1.1] and yields many

birational automorphisms; both are unknown for the aOka property (although aOka

manifolds do have many dominant rational self-maps).

(f) We do not know whether the algebraic Oka property is a birational invariant,

but we may be close: the blow-up of a locally flexible (or merely locally stably flexible)

algebraic manifold along any algebraic submanifold (not necessarily connected or of pure

dimension) is aOka [16, Theorem 0.3]. Also, strong algebraic dominability, a property

of algebraic manifolds that is implied by the algebraic Oka property, is preserved by

blowing up along any algebraic submanifold [20, Theorem 9]. (Although C2 satisfies

aAP, aIP, and aBOP, C2 blown up at a point satisfies none of them by Theorem 2(a).)

(g) If a projective manifold is aOka, then it is unirational. By Ishkovskikh and

Manin’s solution of the Lüroth problem [15], every smooth quartic in P4 has a finite

group of birational automorphisms, so it cannot be rational or locally flexible, whereas

Segre showed that some quartics are unirational. It follows that among projective

manifolds (in fact among smooth quartics in P4), either there are aOka manifolds that

are not locally flexible, or there are unirational manifolds that are not aOka (or both).

Remark 3. (a) Let Y be a projective variety. By the Jouanolou trick (first used in Oka

theory in [18]), Y carries an affine bundle whose total space A is affine. For Y = Pm,

we take A to be the complement Am in Pm × Pm of the hypersurface defined by the

equation z0w0+· · ·+zmwm = 0, with the projection Am → Pm onto the first component.

In general, we embed Y into Pm for some m and let A be the pullback of Am by the

inclusion Y ↪→ Pm. We sometimes call A an affine model or a Stein model for Y .

Every holomorphic map from a reduced Stein space to Y factors holomorphically (not

necessarily uniquely) through A. We claim that A fails to satisfy aIP.

By the proof of Theorem 2, the failure of Y to satisfy aIP is demonstrated by the

sources {0, 1} ↪→ C or by the sources S ↪→ C2, where S is a smooth irrational curve.

In the former case, we easily deduce that A fails to satisfy aIP. In the latter case, there

is a nullhomotopic regular map f : S → Y that does not factor regularly through C2

although it does continuously. We claim that f has a regular lifting to A. The lifting

is also nullhomotopic and does not factor regularly through C2 either, so A does not

satisfy aIP.

To prove that f has a regular lifting to A, it suffices to take Y = Pm and A = Am.

We need to show that if f : S → Pm is a regular map from a smooth affine curve S,

then there is a regular map g : S → Pm such that (f, g) avoids the hypersurface in
5



Pm×Pm defined by the equation z0w0 + · · ·+ zmwm = 0. Write f = [f0, . . . , fm], where

f0, . . . , fm are regular functions on S, possibly with a common zero set Z that cannot

be eliminated. Let the divisor D on S be the minimum of the divisors of f0, . . . , fm and

consider the short exact sequence

0→ Ker β → Om+1
D

β→ O → 0,

on S, where β(g0, . . . , gm) = f0g0 + · · · + fmgm. Since H1(S,Ker β) = 0, there are

g0, . . . , gm ∈ OD(S) with f0g0 + · · · + fmgm = 1. Let z be a coordinate centred at a

point of Z where D = k ≥ 1. Near the point,

(z−kf0)(z
kg0) + · · ·+ (z−kfm)(zkgm) = 1.

We conclude that the regular map g = [g0, . . . , gm] : S → Pm is as desired.

(b) We have already noted that a flexible affine manifold need not satisfy aBOP, let

alone aAP. Now we present a flexible affine counterexample to aIP.

By a simple change of coordinates, the affine model A1 of P1 can be realised as the

affine surface

A1 = {(x, y, z) ∈ C3 : xy = z(1− z)}.

Then the projection A1 → P1 takes (x, y, z) to [x, z] = [1− z, y]. A Danielewski surface

is a smooth affine surface of the form

Dn = {(x, y, z) ∈ C3 : xny = p(z)},

where n ≥ 1 and p is a polynomial of degree at least 2 all of whose zeros are simple.

So A1 is of the form D1. It is known that Danielewski surfaces with n = 1 are flexible,

whereas for n ≥ 2 they are locally flexible but not flexible. Moreover, for the same

p, the surfaces Dn × C are mutually isomorphic for all n ≥ 1. Thus A1 is flexible. It

also follows that for affine manifolds, flexibility is not preserved by regular retracts, and

local flexibility does not imply flexibility.

By another simple change of coordinates, we can realise A1 as the complex 2-sphere

Σ2, showing again that A1 is flexible (see Remark 1).

2. Proofs of the theorems

Proof of Theorem 1. As mentioned above, aSEll implies both aHRP [7, Theorem 3.1]

and aEll1 [7, Proposition 4.6]. We merely observe that aHRP and aEll1 both easily

imply the following weaker property of an algebraic manifold Y , which in turn clearly

implies aSEll by the powerful localisation principle.

Weak formulation of aOka: For every a ∈ Y , the tangent space TaY can be spanned by

vectors v, such that there is a Zariski-open neighbourhood U of a in Y (which might

as well be taken to be affine) and a regular map f : U ×C→ Y with f(y, 0) = y for all

y ∈ U and D0f(a, ·) d
dz

= v. �

Next we turn to Theorem 3. Our proof relies on two theorems.
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• The smooth locus of a nondegenerate affine toric variety is flexible [3, Theorem

0.2].

• The complement of a subvariety of codimension at least 2 in a flexible quasi-

affine manifold is flexible [6, Theorem 1.1].

Proof of Theorem 3. Let Y be a smooth nondegenerate toric variety. It is defined by

a fan F of cones in a vector space NR = N ⊗Z R, where N is a lattice. The fan is

smooth, meaning that the minimal generators of each cone in F form part of a Z-basis

for N . Nondegeneracy of Y means that the minimal generators of all the cones together

span NR.

Each maximal cone in F defines an affine toric Zariski-open subset of Y , and these

subsets cover Y . If the dimension of the cone is n = dimY , then the corresponding

subset is Cn (because the cone is smooth), which is flexible. If the dimension of the

cone C is k < n, then the corresponding subset U is Ck× (C∗)n−k. We will extend U to

a flexible quasi-affine toric Zariski-open subset V of Y . This will complete the proof.

We define V by a subfan F ′ of F . The subfan F ′ contains C along with the 1-

dimensional cones spanned by some of the minimal generators of the other cones in

F , so that these generators, together with the minimal generators of C, form a basis

for NR.

Let C ′ be the cone spanned by the cones in F ′, that is, spanned by the minimal

generators of C and the additional minimal generators used to define F ′. The cone

C ′ is pointed (that is, strictly convex), n-dimensional, and defines a possibly singular

nondegenerate affine toric variety Z. All the edges of C ′ are contained in F ′, so by the

orbit-cone correspondence, V is realised as the complement in Z of a toric subvariety

of codimension at least 2. By the two theorems, V is flexible. �

Without the two theorems, our proof shows that Y has a Zariski-open cover by two

kinds of sets. The first kind is just Cn, coming from a maximal cone C of full dimension.

A set V of the second kind is the complement of a subvariety of codimension at least

2 in the possibly singular nondegenerate affine toric variety Z. By [5, Exercise 1.2.10

and Example 1.3.20], Z is simplicial, so it is of the form Cn/G, where G is a finite

abelian group. Therefore V is a finite unbranched Galois quotient of the complement

of a subvariety of codimension at least 2 in Cn. If we could prove directly that such a

set V was flexible or just aOka, then we would not have to invoke the two theorems.

Now we turn to the proof of Theorem 2. We first consider the case of projective

varieties. The proof relies on the failure of the GAGA principle for line bundles on

affine manifolds. We show that a projective variety fails to satisfy aAP, aIP, and aBOP

for some very particular sources.

Proof of Theorem 2 for projective varieties. Let Y be a projective variety. First, note

that if Y satisfies aIP, then we can use the inclusion {0, 1} ↪→ C to obtain a noncon-

stant regular map P1 → Y . Second, suppose that Y satisfies aBOP. Since Y is not

contractible, πk(Y ) 6= 0 for some k ≥ 1, so there is a continuous map Σk → Y that is

not homotopic to a constant map. (Here, Σk is the complex k-sphere defined in Remark
7



1 above; it contains and retracts onto the real k-sphere.) Then, by aBOP, there is a

nonconstant regular map Σk → Y . One-parameter subgroups of the linear algebraic

group SO(k + 1,C) give many regular maps C∗ → Σk, so again there is a nonconstant

regular map P1 → Y .

We conclude that if Y does not contain a rational curve, then Y fails to satisfy

aIP and fails to satisfy aBOP, and hence fails to satisfy aAP. We continue the proof

assuming that there is a nonconstant regular map g : P1 → Y .

Let S be a smooth irrational curve in C2. It is well known that the algebraic Picard

group of S is “large”, even though its holomorphic Picard group is trivial. The algebraic

Picard group has plenty of nontorsion elements, so there is an algebraic line bundle L

on S so that no nonzero tensor power of L is algebraically trivial.4 It is generated by

two regular sections, so it is the pullback of the universal bundle on P1 by a regular

map f : S → P1. Let P be an ample line bundle on Y . Then g∗P is ample on P1, so

f ∗g∗P is a nonzero tensor power of L and hence algebraically nontrivial. Therefore, by

the Quillen-Suslin theorem, g ◦ f : S → Y does not factor regularly through C2, even

though it does continuously because f is nullhomotopic. This shows that Y does not

satisfy aIP.

To show that Y does not satisfy aBOP, we use the fact that C∗ × C∗ has a “large”

holomorphic Picard group, isomorphic to H2(C∗ × C∗,Z), even though its algebraic

Picard group is trivial. Let L be a nontrivial holomorphic line bundle on C∗ × C∗.
Then no nonzero tensor power of L is holomorphically trivial. As we will explain in

a moment, L is generated by two holomorphic sections, so it is the pullback of the

universal bundle on P1 by a holomorphic map f : C∗×C∗ → P1. As before, let P be an

ample line bundle on Y . Then g∗P is ample on P1, so f ∗g∗P is a nonzero tensor power

of L and hence holomorphically nontrivial. If g ◦ f : C∗ × C∗ → Y could be deformed

to a regular map h, then h∗P would be algebraically and hence topologically trivial,

so f ∗g∗P would be topologically trivial as well, and hence holomorphically trivial by

Grauert’s Oka principle. This shows that Y fails to satisfy aBOP and hence aAP.

To generate L by two holomorphic sections on C∗ ×C∗, we first choose a nontrivial

section s, whose zero locus is a 1-dimensional subvariety Z of C∗ ×C∗. Now Z has the

homotopy type of a union of bouquets of circles (see [13]), so L|Z is topologically and

hence holomorphically trivial. Take a holomorphic section of L|Z without zeros and

extend it to a holomorphic section t of L. Then s and t generate L. �

To prove Theorem 2 in full generality we need a lemma, probably well known to

experts, but for want of a reference we sketch a proof.

Lemma 1. Let Y be a compact algebraic manifold and C be an irreducible curve in Y .

There is a finite composition Y ′ → Y of blow-ups with smooth centres, such that Y ′ is

projective and C is not contained in the image of any of the exceptional divisors.

4We have S = M \F , where M is a smooth projective curve of genus at least 1 and F ⊂M is finite

and nonempty. Every algebraic line bundle on S extends to M , so the algebraic Picard group of S is

a quotient of the Picard group of M by the finitely-generated subgroup corresponding to divisors with

support in F .
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Proof. Let U be an affine Zariski-open subset of Y with U ∩C 6= ∅. By a strong version

of Chow’s lemma [22, Proposition 5], there is a blow-up p : Ỹ → Y along an ideal I

cosupported on Y \ U , such that Ỹ is smooth and projective. We can then use the

arguments in [21, proof of Proposition D] to finish the proof as follows. By Hironaka’s

resolution of singularities, there is an iterated blow-up π : Y ′ → Y with smooth centres

over Y \ U , such that the ideal π∗I is principal. Then Y ′ is smooth and compact and

by the universal property of blow-ups, there is a birational morphism g : Y ′ → Ỹ such

that π = p ◦ g. Since p is a blow-up and hence a modification, g is also a blow-up by

[14, Lemma 4]. Since Ỹ is projective, so is Y ′. The exceptional divisors of π lie over

Y \ U , so their images do not contain C. �

Proof of Theorem 2. (a) Let Y be an algebraic manifold with a nonconstant regular

map f : P1 → Y . By Nagata’s compactification theorem and Hironaka’s resolution of

singularities, there is a smooth compactification Ȳ of Y . By Lemma 1, there is a finite

composition π : Y ′ → Ȳ of blow-ups with smooth centres, such that Y ′ is projective

and f(P1) is not contained in the image of any of the exceptional divisors.

Embed Y ′ in a projective space Pm. Let L be the hyperplane bundle on Pm and take

a hyperplane H in Pm that does not contain π−1(f(P1)). Then deg f ∗π∗(L|Y ′) equals

the intersection number f∗(P1)·π∗(L|Y ′), that is, the intersection number of the effective

curve f∗(P1) and the effective divisor π∗(H ∩ Y ′). This number is positive since f(P1)

is irreducible and not contained in π(H ∩ Y ′), so f ∗π∗(L|Y ′) is an ample line bundle on

P1. Now we can proceed as in the proof for a projective variety Y .

(b) If Y is a compact algebraic manifold satifying aAP, aIP, or aBOP, then, as in

the proof for projective varieties, we can show that Y has a rational curve. Then we

invoke part (a). �
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