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Abstract. We show that the homotopy type of a complex manifold X satisfying the
Oka property is captured by holomorphic maps from the affine spaces Cn, n ≥ 0, into
X. Among such X are all complex Lie groups and their homogeneous spaces. We
present generalisations of this result, one of which states that the homotopy type of
the space of continuous maps from any smooth manifold to X is given by a simplicial
set whose simplices are holomorphic maps into X.

1. Introduction

Motivated by Gromov’s comments in his seminal paper [12], Sec. 3.5.G and 3.5.G’, we
prove in Sec. 2 that the homotopy type of an Oka manifold X (as a topological space)
is captured by holomorphic maps from the affine spaces Cn, n ≥ 0, into X. In Sec.
3 we present generalisations of this result. We start with a very brief review of some
background material.

The concept of an Oka manifold has evolved from Gromov’s paper and subsequent
work, mainly due to Forstnerič, see in particular [4] and [5]. By a Stein inclusion we
mean the inclusion into a reduced Stein space S (or a Stein manifold: the choice is
immaterial) of a closed analytic subvariety T . A complex manifold X has the basic
Oka property with interpolation (BOPI) with respect to T ↪→ S if every continuous
map h : S → X with h|T holomorphic can be deformed to a holomorphic map S → X
with h|T fixed. Also, X has the interpolation property with respect to T ↪→ S if every
holomorphic map h : T → X extends to a holomorphic map S → X. The following are
equivalent (see [15]) and define what it means for X to be Oka:

(1) X has BOPI with respect to every Stein inclusion.
(2) X has the interpolation property, or equivalently BOPI, with respect to every

Stein inclusion T ↪→ Cn, n ≥ 1, where T is contractible (holomorphically or
topologically: the choice is immaterial).

The Oka property has several other equivalent formulations. Each of these has a para-
metric version, where instead of a single map h as above we have a family of maps
depending continuously on a parameter. The parametric Oka properties are all equiv-
alent [4], and are equivalent to the Oka property [7].

A holomorphic map f : X → Y has the parametric Oka property with interpolation
(POPI) if for every Stein inclusion T ↪→ S, every finite polyhedron P with a subpoly-
hedron Q, and every continuous map g : S×P → X such that the restriction g|S×Q is
holomorphic along S (meaning that g(·, q) : S → X is holomorphic for each q ∈ Q), the
restriction g|T × P is holomorphic along T , and the composition f ◦ g is holomorphic
along S, there is a continuous map G : S × P × I → X, where I = [0, 1], such that:
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(1) G(·, ·, 0) = g,
(2) G(·, ·, 1) : S × P → X is holomorphic along S,
(3) G(·, ·, t) = g on S ×Q and on T × P for all t ∈ I,
(4) f ◦G(·, ·, t) = f ◦ g on S × P for all t ∈ I.

Equivalently, Q ↪→ P may be taken to be any cofibration between cofibrant topological
spaces, such as the inclusion of a subcomplex in a CW-complex, and the existence of G
can be replaced by the stronger statement that the inclusion into the space, with the
compact-open topology, of continuous maps h : S × P → X with h = g on S ×Q and
on T × P and f ◦ h = f ◦ g on S × P of the subspace of maps that are holomorphic
along S is acyclic, that is, a weak homotopy equivalence (see [14], §16). Taking P to
be a point and Q empty defines BOPI for f . A complex manifold X is Oka if and only
if the constant map from X to a point satisfies BOPI or, equivalently, POPI. For maps
in general, it is not known whether BOPI implies POPI.

The notion of a holomorphic submersion being subelliptic was defined by Forstnerič
[2], generalising the concept of ellipticity due to Gromov [12]. Subellipticity is the
weakest currently-known sufficient geometric condition for a holomorphic map to satisfy
POPI (see Forstnerič’s recently-proved parametric Oka principle for liftings [6]) and for
a complex manifold to be Oka.

By the influential work of Grauert in [9] and [10], the primary examples of Oka
manifolds, to which our results apply, are complex Lie groups and their homogeneous
spaces, that is, complex manifolds on which a complex Lie group acts holomorphically
and transitively. Among other known examples are Cn \ A, where A is an algebraic or
a tame analytic subvariety of codimension at least 2, Pn \A, where A is a subvariety of
codimension at least 2, Hopf manifolds, Hirzebruch surfaces, and the complement of a
finite set in a complex torus of dimension at least 2 (see [3] and [5]).

2. Oka manifolds are homotopically elliptic

Our results are naturally formulated in the language of simplicial sets. Simplicial sets
are combinatorial objects that have a homotopy theory equivalent to that of topological
spaces, but tend to be more useful or at least more convenient than topological spaces
for various homotopy-theoretic purposes. For an introduction to simplicial sets, we refer
the reader to [8] or [16].

We denote by ∆ the category of finite ordinals and order-preserving maps. The
objects of ∆ are the sets n = {0, 1, 2, . . . , n}, n ∈ N, with the usual order, and a
morphism θ : n → m is a map such that θ(i) ≤ θ(j) whenever 0 ≤ i ≤ j ≤ n. A
cosimplicial object in a category C is a functor ∆ → C. A simplicial object in C is a
functor from the opposite category ∆op to C. In particular, a simplicial set is a functor
from ∆op to the category Set of sets. The category of simplicial objects in C is denoted
sC. A cosimplicial object A• in C induces a functor hA• : C → sSet, X 7→ homC(A•, X).
We call the simplicial set homC(A•, X) the homotopy type of X with respect to A•.

The standard n-simplex Tn, n ≥ 0, is the subset

Tn = {(t0, . . . , tn) ∈ Rn+1 : t0 + · · ·+ tn = 1, t0, . . . , tn ≥ 0}
of Rn+1 with the subspace topology. An order-preserving map θ : n → m induces
a continuous map θ∗ : Tn → Tm defined by the formula θ∗(t0, . . . , tn) = (s0, . . . , sm),
where

si =
∑

j∈θ−1(i)

tj
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(the sum is interpreted as zero if θ−1(i) is empty). It is easy to check that this defines
a cosimplicial object T• in the category of topological spaces. The homotopy type
sX = C (T•, X) of a topological space X with respect to T• is the usual homotopy type
of X. Here, for each n ≥ 0, C (Tn, X) denotes the set of continuous maps Tn → X. The
simplicial set sX is called the singular set of X. It is a fibrant simplicial set, that is, a
Kan complex.

The affine n-simplex An, n ≥ 0, is the affine subspace

An = {(t0, . . . , tn) ∈ Cn+1 : t0 + · · ·+ tn = 1}

of Cn+1, viewed as a complex manifold biholomorphic to Cn. An order-preserving map
θ : n → m induces a holomorphic map θ∗ : An → Am defined by the same formula
as above, and we have a cosimplicial object A• in the category of complex manifolds.
We call the homotopy type eX = O(A•, X) of a complex manifold X with respect to
A• the affine homotopy type of X. Here, for each n ≥ 0, O(An, X) denotes the set of
holomorphic maps An → X. We also call the simplicial set eX the affine singular set
of X.

A holomorphic map An → X is determined by its restriction to Tn ⊂ An, so we
have a monomorphism, that is, a cofibration eX ↪→ sX. The following lemma comes
from basic homotopy theory.

Lemma. For a complex manifold X, the following are equivalent.

(a) The affine singular set eX is fibrant and the cofibration eX ↪→ sX is a weak
equivalence of simplicial sets.

(b) The cofibration eX ↪→ sX is the inclusion of a strong deformation retract.

Proof. (a) ⇒ (b) by [13], Prop. 7.6.11.

(b) ⇒ (a) by [13], Prop. 7.8.3, and since a retract of a fibrant object is fibrant. �

We say that X is homotopically elliptic if conditions (a) and (b) are satisfied. Then
the usual homotopy type of X as a topological space is represented by the affine singular
set eX of X.

If X is connected and homotopically elliptic, then X is C-connected, meaning that
any two points in X can be joined by an entire curve. In fact, any finite subset of X
lies in a holomorphic image of C. On the other hand, if X is Brody hyperbolic, then
eX is discrete.

Theorem 1. An Oka manifold is homotopically elliptic.

Proof. Let Zn = {(z1, . . . , zn) ∈ Cn : zj = 0 for some j} be the union of the coordinate
hyperplanes in Cn, n ≥ 2. If X is an Oka manifold, every holomorphic map Zn → X
extends to a holomorphic map Cn → X, but this is precisely what it means for eX to
be fibrant.

The homotopy groups πm(K, ∗), m ≥ 1, of a Kan complex K with respect to a base
point ∗ ∈ K0 may be simply described as follows:

πm(K, ∗) = {a ∈ Km : dja = ∗ for j = 0, . . . ,m}/ ∼,

where dj : Km → Km−1 is the face map that in the case of sX and eX acts by
precomposition by the map

δj : (t0, . . . , tm−1) 7→ (t0, . . . , tj−1, 0, tj, . . . , tm−1),
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and ∼ is the equivalence relation with a ∼ b for a, b ∈ Km with all faces ∗ if there is
c ∈ Km+1 such that djc = a for some j, djc = b for another j, and djc = ∗ for the
remaining values of j. Identifying vertices a, b ∈ K0 if there is c ∈ K1 with d0c = a and
d1c = b (this is an equivalence relation) gives the set π0(K) of path components of K.
(See e.g. [1], Th. 2.4, or [17], Sec. 8.2—homotopy groups of non-fibrant simplicial sets
are not so easily dealt with.)

Since X is Oka, two points in the same path component of X can be joined by a
holomorphic image of C. Thus the inclusion eX ↪→ sX induces a bijection π0(eX) →
π0(sX).

By induction over m we obtain continuous retractions ρm : Am → Tm, m ≥ 0, such
that ρm+1 ◦ δj = δj ◦ ρm for j = 0, . . . ,m, so ρm retracts each face of Am onto the
corresponding face of Tm. The continuous surjection σm : Tm × I → Tm+1,

(t0, . . . , tm, s) 7→ (t0(1− s), t1, . . . , tm, t0s),

m ≥ 1, collapses each segment {x} × I, where x belongs to the face of Tm with t0 = 0,
and makes no other identifications.

Let m ≥ 1 and choose a base point ∗ ∈ X. To prove surjectivity of the induced
map πm(eX, ∗) → πm(sX, ∗), we need to show that if a ∈ smX has all faces ∗, then
there is b ∈ emX with all faces ∗ that is equivalent to a by some c ∈ sm+1X. Now
a0 = a ◦ ρm : Am → X is continuous with all faces ∗, so since X is Oka, there is a
continuous deformation at, t ∈ I, of a0, such that a1 is holomorphic and at has all faces
∗ for all t ∈ I. The restriction to Tm × I of the deformation factors through σm by
a map Tm+1 → X, which is continuous since σm is a quotient map, and which is the
desired c.

To prove injectivity of the induced map πm(eX, ∗) → πm(sX, ∗), we need to show
that if a, b ∈ emX with all faces ∗ are equivalent by c ∈ sm+1X, say dc = (a, b, ∗, . . . , ∗),
then a and b are also equivalent by some c′ ∈ em+1X. Continuously extend c to
Tm+1 ∪ Wm+1, where Wm+1 = {(t0, . . . , tm+1) ∈ Am+1 : tj = 0 for some j}, such that
dc is still (a, b, ∗, . . . , ∗). Use the acyclic cofibration Tm+1 ∪ Wm+1 ↪→ Am+1 to further
extend c to a continuous map c : Am+1 → X. Since X is Oka, c may be deformed to
c′ ∈ em+1X with dc′ = dc. �

The author has tried to directly construct a strong deformation retraction from sX
onto eX, but without success.

The proof shows that a complex manifold is homotopically elliptic if and only if it
satisfies the interpolation property with respect to the Stein inclusions Zn ↪→ Cn, n ≥ 2,
and a weak version of BOPI with respect to the Stein inclusions Wn ↪→ An

∼= Cn, n ≥ 1.

3. Generalisations

Theorem 1 is a special case of a more general result. Let f : X → Y be a holomorphic
map between complex manifolds and T ↪→ S be a Stein inclusion. Let

T //

��

X

��
S // Y

be a commuting square of holomorphic maps. Let LO be the space, with the compact-
open topology, of holomorphic liftings in the square, and LC be the space of continuous
liftings. Let eLO be the simplicial set whose n-simplices, n ≥ 0, are the holomorphic

4



maps λ : S × An → X such that λ(·, t) is a lifting in the square for every t ∈ An, and
whose maps taking m-simplices to n-simplices are given by precomposing in the second
variable by the holomorphic maps θ∗ : An → Am described above. There are inclusions

eLO ↪→i′ sLO ↪→i′′ sLC .

If f satisfies POPI, then i′′ is a weak equivalence (see [14], §16). Also, the proof of the
Theorem is easily generalised to show that if f satisfies BOPI, then eLO is fibrant and
i′′ ◦ i′ is a weak equivalence. Thus, if f satisfies POPI, i′ is a weak equivalence of Kan
complexes.

Theorem 1 is the case when T is empty and S and Y are points. A less special
case is when T is empty and Y is a point. Then liftings in the square are simply maps
S → X, so we write eO(S, X) for eLO and conclude that if X is Oka, then the inclusions
eO(S, X) ↪→ sO(S, X) ↪→ sC (S, X) are weak equivalences of Kan complexes.

Generalising this in a different direction, we can represent the the homotopy type
of the space C (M, X) of continuous maps from any smooth manifold M to an Oka
manifold X by a simplicial set whose simplices are holomorphic maps into X. Namely,
assuming as we may that M is real-analytic, by a well-known result of Grauert [11],
M can be real-analytically embedded into a Stein manifold S such that M is a strong
deformation retract of S. Then, if X is Oka, the homotopy type of C (M, X) is given
by the Kan complex eO(S, X).

For ease of reference, we summarise the above as a theorem.

Theorem 2. Let X be an Oka manifold.

(1) For every Stein manifold S, the inclusions

eO(S, X) ↪→ sO(S, X) ↪→ sC (S, X)

are weak equivalences of Kan complexes.
(2) For every smooth manifold M , there is a Stein manifold S such that the homo-

topy type of C (M, X) is given by the Kan complex eO(S, X).
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