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Abstract. We survey recent work, published since 2015, on equivariant Oka theory.

The main results described in the survey are as follows. Homotopy principles for

equivariant isomorphisms of Stein manifolds on which a reductive complex Lie group

G acts. Applications to the linearisation problem. A parametric Oka principle for

sections of a bundle E of homogeneous spaces for a group bundle G , all over a reduced

Stein space X with compatible actions of a reductive complex group on E, G , and X.

Application to the classification of generalised principal bundles with a group action.

Finally, an equivariant version of Gromov’s Oka principle based on a new notion of a

G-manifold being G-Oka.

Contents

1. Introduction 1

2. Equivariant isomorphisms 6

3. The linearisation problem 11

4. Equivariant sections of bundles of homogeneous spaces 13

5. Equivariantly Oka manifolds 17

6. Open problems 20

References 21

1. Introduction

This is a survey of recent work, published since 2015, on equivariant Oka theory, mainly

from our papers [KLS15], [KLS17a], [KLS17b], [KLS18], and [KLS21]. Oka theory is

the subfield of complex geometry that deals with various homotopy principles, in this

context collectively known as the Oka principle, stating that the obstructions to solving

certain analytic problems on Stein spaces are purely topological. The work surveyed

here incorporates group actions – holomorphic actions of complex Lie groups – into
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such homotopy principles. This work can be also be viewed as part of holomorphic

geometric invariant theory.

Oka theory has its roots in the pioneering work of Kiyoshi Oka. The Oka principle

first appeared in his 1939 result that a holomorphic line bundle on a Stein manifold is

trivial if it is topologically trivial. Oka theory was developed much further in the late

1950s to early 1970s, starting with Grauert’s foundational papers [Gra57a], [Gra57b],

and [Gra58]. Other key contributors in this period were Cartan [Car58] and Forster and

Ramspott [FR66]. The focus was on complex Lie groups and, more generally, complex

homogeneous spaces, a typical result being that every continuous map from a Stein

space to a complex homogeneous space can be deformed to a holomorphic map. In a

seminal paper of 1989 [Gro89], Gromov initiated the modern development of Oka theory.

He discovered a way to generalise the results of the Grauert period beyond complex

homogeneous spaces to a larger class of manifolds that he named elliptic. They possess

a geometric structure called a dominating spray that mimics the exponential map of

a Lie group and makes it possible to solve various analytic problems by linearising

them. Over the past 20 years, modern Oka theory has been vigorously developed. In

particular, the optimal weakening of ellipticity for Oka principles to hold was identified

and the class of Oka manifolds defined in [Lár04] and [For09]. Forstnerič’s monograph

[For17] is a comprehensive up-to-date reference on Oka theory.

A very brief review of the geometric invariant theory relevant here starts with the

foundational 1973 paper of Luna [Lun73]. He studied the action of a reductive complex

algebraic group G on an affine variety X and proved his famous slice theorem. A

consequence is that the quotient variety X//G has a natural stratification, and if X is

smooth, the map of X to X//G is a G-fibre bundle over each stratum.

The holomorphic version of the theory, for a reductive complex Lie group acting

on a Stein space, was developed by Snow [Sno82] and Heinzner [Hei88], [Hei91]. A

reductive complex Lie group is automatically algebraic, so there is a strong connection

to the algebraic theory. Geometric invariant theory and Oka theory of the Grauert

period were first brought together in the 1995 paper of Heinzner and Kutzschebauch

[HK95]. The work surveyed here builds on and continues their work and, in our most

recent paper, brings Gromov’s Oka principle into geometric invariant theory.

Most of the work surveyed here can be summarised in seven main results, Theorems

A–G below. The following sections provide further details, relevant definitions, brief

sketches of proofs, and other related results. In the final section, we list some open

problems.

Let a complex reductive group G act holomorphically on a Stein manifold X. The

categorical quotient X//G is a normal Stein space that parametrises the closed G-orbits

in X. Let π : X → X//G be the quotient map (we sometimes write πX) and for

Z ⊂ X//G let XZ denote π−1(Z). If Z = {q} is a point, we write Xq instead of X{q}.

The G-finite holomorphic functions (Section 2) on Xq give Xq an algebraic structure

which may be neither reduced nor irreducible. The pullback by π of the sheaf of

holomorphic functions on X//G is the sheaf of G-invariant holomorphic functions on

X. The quotient has a locally finite stratification by locally closed smooth subvarieties,
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called the Luna stratification, such that points q, q′ ∈ X//G lie in the same stratum

if and only if the fibres Xq and Xq′ are G-biholomorphic (equivalently, the algebraic

structures on Xq and Xq′ are equivariantly algebraically isomorphic). If S is a stratum

of X//G, then π−1(S) → S is a holomorphic G-fibre bundle (whose fibre need not be

smooth).

In Sections 2 and 3 we consider the following problem. Let X and Y be Stein G-

manifolds. If X and Y are G-biholomorphic, then X//G and Y//G are biholomorphic,

preserving the stratifications. So let us assume that X and Y have a common stratified

quotient Q ' X//G ' Y//G. To have an Oka problem, let us also assume that there is

an open cover (Ui) of Q and G-biholomorphisms Ψi : XUi
→ YUi

inducing the identity

on Ui. We say that X and Y are locally G-biholomorphic over Q. Now our equivariant

Oka problem is to see what kind of continuous or smooth G-isomorphism of X and Y

implies that there is a G-biholomorphism.

A G-diffeomorphism X → Y inducing the identity map of the quotient Q is called

strict if it induces a biholomorphism between Xq and Yq, with their reduced structures,

for all q ∈ Q. The definition of a strong G-homeomorphism is somewhat involved and

will be given in Section 2. Roughly speaking, a strong G-homeomorphism restricts to

a G-biholomorphism Xq → Yq for each q ∈ Q that depends continuously on q. A strict

G-diffeomorphism is not necessarily a strong G-homeomorphism [KLS17a, Example

3.2].

Theorem A. Let G be a reductive complex Lie group. Let X and Y be Stein G-

manifolds locally G-biholomorphic over a common quotient.

(a) Any strict G-diffeomorphism X → Y is homotopic, through strict G-diffeo-

morphisms, to a G-biholomorphism.

(b) Any strong G-homeomorphism X → Y is homotopic, through strong G-homeo-

morphisms, to a G-biholomorphism.

It turns out that one can often deduce that X and Y are locally G-biholomorphic

over Q from the existence of strict or strong G-isomorphisms! See Section 2 for the

definitions of “infinitesimal lifting property” and “large” used in Theorems B and C.

Theorem B. Let G be a reductive complex Lie group. Let X and Y be Stein G-

manifolds with common quotient Q. If there is a strict G-diffeomorphism or a strong

G-homeomorphism X → Y and X has the infinitesimal lifting property, then X and Y

are locally G-biholomorphic over Q, hence G-biholomorphic.

The so-called linearisation problem has a long history (see [Huc90] and [Kra96]). It

asks whether the action of a reductive complex group G on affine space Cn must be

linearisable, that is, whether Cn with such an action is isomorphic to Cn with a linear G-

action. We call the latter an n-dimensional G-module. The first counterexamples in the

algebraic setting were constructed by Schwarz [Sch89] for n ≥ 4. These examples are,

however, holomorphically linearisable. The first counterexamples in the holomorphic

setting were given by Derksen and Kutzschebauch [DK98]. They showed that for every

nontrivial G, there is an integer NG such that for all n ≥ NG, there is a non-linearisable
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effective holomorphic action of G on Cn. The stratified quotients of the actions that

they constructed are not isomorphic to the stratified quotient of any G-module. The

next main theorem states that under mild assumptions, this is the only obstruction

to linearisability, that is, a holomorphic G-action on Cn is linearisable if its stratified

quotient is isomorphic to the stratified quotient of a G-module.

Theorem C. Let G be a reductive complex Lie group. Let X be a Stein G-manifold

and V a G-module with common quotient Q. Suppose that V (or, equivalently, X)

is large or that X and V are locally G-biholomorphic over Q. Then X and V are

G-biholomorphic.

Note that this result does more than give a solution to the linearisation problem: it

provides a sufficient condition for a Stein manifold to be biholomorphic to affine space.

Let X be a reduced Stein space, G a complex Lie group, and A a complex Lie

subgroup of the automorphism group of G. Then given a cocycle on X with values

in A, we can produce a holomorphic group bundle G over X whose fibres are (non-

canonically) isomorphic to G. As usual, G is said to be trivial if it is isomorphic to

X × G. Let E be a homogeneous holomorphic G -bundle on X, so G acts on E over

X such that the action of each fibre of G on the corresponding fibre of E is transitive.

Ramspott proved that (when G is trivial) the inclusion of the space of holomorphic

sections of E over X into the space of continuous sections induces a bijection of path

components [Ram65]. These and similar spaces are always endowed with the compact-

open topology.

If K is a compact real Lie group, let KC denote its complexification, which is a

reductive complex Lie group. (Conversely, if H is a reductive complex Lie group, then

H is isomorphic to KC for any maximal compact real subgroup of H.) Assume that

KC acts on X, E, and G compatibly with the projections to X and action of G on

E. Then we say that G is a holomorphic group KC-bundle on X and that E is a

holomorphic KC-G -bundle on X. The next main theorem is an equivariant version of

Ramspott’s theorem, with the stronger conclusion that the inclusion is a weak homotopy

equivalence.

Theorem D. Let E be a homogeneous holomorphic KC-G -bundle on a reduced Stein

space X, where K is a compact real Lie group whose complexification KC acts on

X, and G is a holomorphic group KC-bundle on X. Then the inclusion of the space

of KC-equivariant holomorphic sections of E over X into the space of K-equivariant

continuous sections is a weak homotopy equivalence.

Note that for holomorphic sections, K-equivariance and KC-equivariance are equiva-

lent. In our context, K-equivariance is an appropriate condition on continuous sections;

KC-equivariance is too strong.

Two special cases of Theorem D are of particular interest. First, the theorem holds

when E is a holomorphic principal KC-G -bundle (the fibres of G act simply transitively

on the fibres of E). The other special case is the “uncoupled” case. It is a parametric

Oka principle for equivariant maps from a Stein KC-space to a complex homogeneous

KC-space G/H, where the KC-action on G/H can be quite general (see the introduction
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to [KLS18]). Namely, the theorem covers KC-actions on G/H by Lie automorphisms

of G that preserve H followed by left multiplication by elements of G. These are the

“obvious” or “natural” symmetries of G/H. For example, we could have H = KC

acting on G/H by left multiplication. The geometry of such an action can be quite

complicated, as when H = SO(n,C) is the subgroup of G = SL(n,C) fixed by the

holomorphic involution A 7→ (A−1)t and G/H is the space of symmetric bilinear forms

on Cn of discriminant 1.

Theorem D gives an equivariant parametric Oka principle for every action of a

reductive complex Lie group on the target that factors through a transitive action of

another group, not necessarily reductive. When the target is a compact homogeneous

space, this holds for every action, because the whole automorphism group of the space

is a complex Lie group. The following is the only unrestricted equivariant parametric

Oka principle known to the authors. It has not appeared before.

Theorem E. Let X be a reduced Stein space and Y be a compact complex homogeneous

space. Let K be a compact real Lie group whose complexification KC acts on X and

Y . Then the inclusion of the space of KC-equivariant holomorphic maps from X to

Y into the space of K-equivariant continuous maps from X to Y is a weak homotopy

equivalence.

For the basic theory of compact complex homogeneous spaces, we refer the reader

to [Akh95, Chapter 3]. We do not know whether every action on a non-compact homo-

geneous space factors through a transitive action.

Theorem D may be used to strengthen the main result of Heinzner and Kutzsche-

bauch [HK95] on the classification of principal bundles with a group action as follows.

The special case of no action is one of the central results of the Grauert era, proved by

Grauert himself and improved by Cartan.

Theorem F. Let K be a compact Lie group. Suppose that KC acts holomorphically on

a reduced Stein space X and on a holomorphic group bundle G on X.

(a) Every topological principal K-G -bundle on X is topologically K-isomorphic to a

holomorphic principal KC-G -bundle on X.

(b) Let P1 and P2 be holomorphic principal KC-G -bundles on X. Every continuous

K-isomorphism P1 → P2 can be deformed through such isomorphisms to a holomorphic

K-isomorphism. In fact, the inclusion of the space of holomorphic K-isomorphisms

P1 → P2 into the space of continuous K-isomorphisms is a weak homotopy equivalence.

The seventh and final main theorem is the first and so far only equivariant version

of Gromov’s Oka principle. The first part of the theorem is an equivariant version of

the result that every continuous map from a Stein manifold X to an Oka manifold Y

can be deformed to a holomorphic map. To adapt this result to actions of a reductive

group G on X and Y , we need to find the right notion of Y being G-Oka. We define

Y to be G-Oka if, for every reductive closed subgroup H of G, the submanifold Y H

of points fixed by H is Oka in the usual sense. (By Bochner’s linearisation theorem,

the subvariety Y H is indeed smooth, but of course not necessarily connected.) Taking
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H to be trivial, we see that a G-Oka manifold is Oka. The definition is motivated in

Section 5 and suffices for an equivariant Oka principle to hold, although so far not for

an arbitrary action. It turns out that a new notion of a G-Stein manifold is not required

– a G-Stein manifold should simply be a Stein G-manifold – but an Oka G-manifold

need not be G-Oka (Example 5.2).

Theorem G. Let G be a reductive complex Lie group and let K be a maximal compact

subgroup of G. Let X be a Stein G-manifold and Y a G-Oka manifold. Suppose that

all the stabilisers of the G-action on X are finite.

(a) Every K-equivariant continuous map f : X → Y is homotopic, through such

maps, to a G-equivariant holomorphic map.

(b) If f is holomorphic on a G-invariant subvariety Z of X, then the homotopy can

be chosen to be constant on Z.

(c) If f is holomorphic on a neighbourhood of a G-invariant subvariety Z of X and

on a neighbourhood of a K-invariant O(X)-convex compact subset A of X, and ` ≥ 0 is

an integer, then the homotopy can be chosen so that the intermediate maps agree with

f to order ` along Z and are uniformly close to f on A.

Two special cases of interest are when the group G is finite and when the G-action

on X is free, so X is a principal G-bundle. The first examples of G-Oka manifolds are

G-modules and G-homogeneous spaces. A small number of other examples are known,

such as any Hirzebruch surface with its natural GL(2,C)-action and, by very recent

work of Kusakabe [Kus20], every n-dimensional smooth toric variety with its action of

the torus (C∗)n. The class of G-Oka manifolds has all the good basic properties that one

would expect (see Propositions 5.3 and 5.4). It is straightforward to make the notion

of a dominating spray equivariant and thus define G-ellipticity, which also has all the

good basic properties that one would expect and implies the G-Oka property.

2. Equivariant isomorphisms

Let G be a reductive complex group and let X and Y be Stein G-manifolds. When

is there a G-equivariant biholomorphism Φ: X → Y ? We try to reduce the question

to a problem in Oka theory. If Φ exists, then the induced map ϕ : X//G → Y//G is

a strata preserving biholomorphism. Given such a map ϕ, we can identify X//G and

Y//G and we call the common quotient Q with quotient morphisms denoted πX and πY .

For U ⊂ Q, let XU denote πX
−1(U) and similarly define YU . If Φ exists, then there is

certainly an open cover of Q by Stein open sets Ui and G-equivariant biholomorphisms

Φi : XUi
→ YUi

which induce the identity on Ui. We then say that X and Y are locally

G-biholomorphic over the common quotient Q. The existence of the biholomorphism ϕ

and Luna’s slice theorem guarantee that there are G-biholomorphisms Φi : XUi
→ YUi

,

but not that each Φi induces the identity map of Ui. For now we assume that X and

Y are locally G-biholomorphic over Q. Later we will look for sufficient conditions for

this to be true.

For an open subset U of Q, let A (U) = AutU(XU)G denote the group of G-

biholomorphic automorphisms of XU which induce the identity on U . There is an open
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cover (Ui) of Q and G-biholomorphisms Ψi : XUi
→ YUi

which induce the identity on

Ui. Let Φij = Ψi
−1 ◦Ψj ∈ A (Ui∩Uj). Then (Φij) is a cocycle, an element of Z1(Q,A ),

with corresponding class cY ∈ H1(Q,A ). If Y ′ is also locally G-biholomorphic to X

over Q, then cY = cY ′ if and only if there is a G-biholomorphism of Y and Y ′ inducing

the identity on Q. Conversely, given (Φ′ij) ∈ Z1(Q,A ), there is a G-manifold Y ′, locally

biholomorphic to X over Q, whose cocycle is precisely (Φ′ij). By [KLS17a, Theorem

5.11], Y ′ is Stein. Thus we have the following theorem.

Theorem 2.1. The isomorphism classes of Stein G-manifolds locally G-biholomorphic

to X over Q are in bijective correspondence with H1(Q,A ).

Now suppose that X → Q and Y → Q are principal G-bundles, that is, the actions

of G on X and Y are free. Then for U open in Q, A (U) is the group of holomorphic

maps of U to G. We also have C (U), the group of continuous maps of U to G. Then

H1(Q,C ) consists, essentially, of the isomorphism classes of topological principal G-

bundles on Q. Grauert’s Oka principle now has several consequences.

(G1) The natural map H1(Q,A )→ H1(Q,C ) is an isomorphism.

This implies that:

(G2) If E is a topological principal G-bundle over Q, then it has a holomorphic

structure.

(G3) If E and E ′ are holomorphic principal G-bundles which are continuously iso-

morphic, then they are holomorphically isomorphic.

In fact, more is true.

(G4) If Ψ: E → E ′ is a continuous isomorphism of holomorphic principal G-bundles

over Q, then there is a homotopy Ψt of continuous isomorphisms of principal

G-bundles with Ψ0 = Ψ and Ψ1 holomorphic.

Returning to our more general case where X and Y are not necessarily principal G-

bundles, we want to find some analogue of the sheaf of groups C for which we can prove

analogues of the results above. Most of our work has been concentrated on proving the

analogue of (G4).

Our problem here is more complicated than in Grauert’s case since X → Q and

Y → Q are only G-fibre bundles over the strata of Q and, moreover, the fibre of each

stratum S is not usually a group or even a homogeneous space.

Let U be open in Q. Then we have the G-finite functions Ofin(XU) on XU , which

are just the elements f of O(XU) such that {f ◦g−1 | g ∈ G} spans a finite-dimensional

G-module. On a fibre Xq, the G-finite functions Ofin(Xq) are a finitely generated com-

plex algebra. In fact, there is a finite dimensional G-submodule V ⊂ Ofin(Xq) which

generates Ofin(Xq). It follows that a G-biholomorphism X → Y , inducing the iden-

tity on Q, induces algebraic G-isomorphisms of the fibres Xq and Yq, q ∈ Q. Our

analogues of continuous isomorphisms of principal G-bundles are G-diffeomorphisms or

G-homeomorphisms which behave reasonably on G-finite functions or on fibres.

For q ∈ Q, let (Xq)red denote the reduced structure on Xq.
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Definition 2.2. Let Ψ: X → Y be a G-diffeomorphism inducing the identity on Q.

We say that Ψ is strict if for all q ∈ Q, the induced map Ψ: Xq → Yq induces an

(algebraic) isomorphism of (Xq)red and (Yq)red.

The definition is from [KLS17a]; in [KLS15] we required isomorphisms of Xq and Yq
which turns out not to be necessary. Here is part (a) of Theorem A.

Theorem 2.3. [KLS17a, Theorem 1.4(1)] Let X and Y be Stein G-manifolds lo-

cally G-biholomorphic over Q. Let Ψ: X → Y be a strict G-diffeomorphism. Then

there is a continuous deformation of Ψ, through strict G-diffeomorphisms, to a G-

biholomorphism.

Now we define strong homeomorphisms of X and Y (see [KLS17a, Section 3] for

details). They are G-homeomorphisms of X and Y , inducing the identity on Q, which

behave well with respect to G-finite functions (and induce isomorphisms of the fibres

Xq and Yq, q ∈ Q). We start with a G-homeomorphism Ψ: X → Y which induces

the identity on Q. Let V be a G-module. For a Stein neighbourhood U of q ∈ Q,

let O(XU)V denote the span of the G-submodules of Ofin(XU) which are isomorphic

to V . For U sufficiently small, O(XU)V is a finitely-generated O(U)-module, say with

generators f1, . . . , fm. By judiciously choosing U and V , we can assume that Ofin(XU)

is generated by O(U) and f1, . . . , fm. There are generators f ′1, . . . , f
′
m of O(YU)V which

generate Ofin(YU) as O(U)-module. We say that Ψ is strong over U if Ψ∗f ′i =
∑
aijfj,

where the aij are continuous functions on U (considered as G-invariant functions on

XU). We say that Ψ is a strong G-homeomorphism if it is strong over an open cover

of Q. It is not completely obvious, but the inverse of a strong G-homeomorphism is

strong. Here is part (b) of Theorem A.

Theorem 2.4. [KLS17a, Theorem 1.4(2)] Let X and Y be Stein G-manifolds locally G-

biholomorphic over Q. Let Ψ: X → Y be a strong G-homeomorphism. There is a con-

tinuous deformation of Ψ, through strong G-homeomorphisms, to a G-biholomorphism.

For U open in Q, let As(U) denote the strict G-diffeomorphisms of XU and let

Ac(U) denote the strong G-homeomorphisms of XU , inducing the identity on U in both

cases. Note that Theorems 2.3 and 2.4 are versions of Grauert’s (G4) above, where C
is replaced by the sheaves of groups As and Ac. In [Sch18] we actually show that (G1)

holds for A and Ac.

In [KLS15], we proved the analogues of (G3) for As and Ac, under the assumption

that the action of G on X (equivalently, on Y ) is generic (see below). It is useful here

to sketch the idea of the proof. We say that a G-diffeomorphism Φ of X is special if

it is of the form x 7→ γ(x) · x, where γ : X → G is smooth and G-equivariant, where

the G-action on G is by conjugation. If Φ is holomorphic, then it is special with γ

holomorphic [KLS15, Lemma 6]. Finally, if X and Y are locally G-biholomorphic over

Q and (Ui) is an open cover of Q with G-biholomorphisms Φi : XUi
→ YUi

over Ui, then

we say that Ψ: X → Y is special if Φi
−1 ◦Ψ: XUi

→ XUi
is special for all i.

Theorem 2.5. Let Ψ: X → Y be a strict G-diffeomorphism or strong G-homeo-

morphism, where X is generic. Then Ψ is homotopic, through G-isomorphisms of

the same type, to a special G-diffeomorphism of X and Y .
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The proof of this theorem is by induction over the strata of Q using local deforma-

tions of Ψ to special G-diffeomorphisms. Once we only need to deal with Ψ special,

we can use a (somewhat complicated) bundle construction to reduce proving (G3) to

the equivariant Oka-Grauert principle of Heinzner-Kutzschebauch [HK95]. So the plan

was to deform our given isomorphism of X and Y to a “nicer” one (not using an Oka

principle) and then to apply an Oka principle to deform the nice isomorphism to one

that is holomorphic.

The same recipe is followed in [KLS17a], where we define the G-diffeomorphisms

of type F of X and Y (see below). Let F also denote the corresponding sheaf of

G-automorphisms of X over Q. Then A ⊂ F ⊂ Ac and A ⊂ F ⊂ As and we show,

as in [KLS15], the following.

Theorem 2.6. [KLS17a, Theorems 8.7, 8.8] Let Ψ: X → Y be a strict G-diffeo-

morphism or strong G-homeomorphism. Then Ψ is homotopic, through maps of the

same type, to a G-diffeomorphism of type F .

Now we are able to use the Oka-Grauert machine, as presented in [Car58] (see

Section 4), to prove the following.

Theorem 2.7. Let X and Y be locally G-biholomorphic over Q.

(1) The inclusion A ↪→ F induces an isomorphism H1(Q,A )→ H1(Q,F ).

(2) If Ψ: X → Y is a G-diffeomorphism of type F , then Ψ is homotopic, through

G-diffeomorphisms of type F , to a G-biholomorphism.

Before defining G-diffeomorphisms of type F , we define the corresponding Lie al-

gebra of vector fields of type L F . For U open in Q, let Der∞Q (XU) (resp. DerQ(XU))

denote the smooth (resp. holomorphic) vector fields on XU which annihilate O(XU)G.

A vector field D ∈ Der∞Q (X) is of type L F if every q ∈ Q has a neighbourhood U

such that D|XU
=

∑
aiAi where ai ∈ C∞(XU)G and Ai ∈ DerQ(XU) for all i. We let

L F denote the corresponding sheaf on Q. If D ∈ L F (U) is
∑
ai(x)Ai(x) where

ai ∈ O(U) and Ai ∈ DerQ(XU)G, then D(x, x′) :=
∑
ai(x)Ai(x

′) is a family of smooth

vector fields which are holomorphic for fixed x and G-invariant in x′. Then we have the

following similar definition.

Definition 2.8. Let Φ: X → X be a G-diffeomorphism inducing the identity on Q.

We say that Φ is of type F if for every q ∈ Q there is a neighbourhood U of q and a

map Ψ: XU ×XU → X such that:

(1) For x ∈ XU fixed, Ψ(x, y) is a G-equivariant biholomorphism {x} ×XU → X,

inducing the identity on the quotient.

(2) Ψ is smooth in x and y and G-invariant in y.

(3) Φ(x) = Ψ(x, x), x ∈ XU .

We call Ψ a local holomorphic extension of Φ.

Note that if Φ is holomorphic, then it is of type F by setting Ψ(x, y) = Φ(y). The

G-diffeomorphisms of type F are strict and strong.
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If one wants to prove Theorem 2.7 using the approach of [Car58], one needs some

very basic topological properties of the sheaves F and L F . See [KLS17a, §6]. We list

a few of them. Let U be open and Stein in Q.

(1) L F (U) consists of complete vector fields and is closed in the space of C∞ vector

fields on XU , hence is a Fréchet space.

(2) F (U) is closed in Diff(XU)G.

(3) If D ∈ L F (U), then exp(D) ∈ F (U).

(4) Let K ⊂ U ′ ⊂ U , where K is compact and U ′ has compact closure in U . Then

there is a neighbourhood Ω of the identity in F (U) such that any Φ ∈ F (U)

admits a unique logarithm D in L F (U ′). Moreover, log : Ω → L F (U ′) is

continuous.

We now turn to the question of when X and Y are locally G-biholomorphic over Q.

Let Der(Q) denote the derivations of O(Q) which preserve the strata of Q. That

is, if f ∈ O(Q) vanishes on the closure of a stratum S of Q, then so does P (f) for any

P ∈ Der(Q). If P ∈ Der(X)G and f ∈ O(Q) ' O(X)G, then P (f) ∈ O(X)G ' O(Q).

It is not difficult to see that the resulting derivation (πX)∗(P ) of O(Q) lies in Der(Q).

We say that πX (or just X) has the infinitesimal lifting property (abbreviated ILP), if

(πX)∗ maps onto Der(Q).

The ILP is a consequence of various more geometric conditions. Assuming that Q

is connected, there is a unique open and dense stratum Qpr, the principal stratum. Let

Xpr denote πX
−1(Qpr). We say that X is k-principal if X \Xpr has codimension at least

k in X. We say that the G-action is stable if Xpr consists of closed orbits. If X is stable

and k-principal, k ≥ 2, then one can reduce all our G-isomorphism problems to the case

that Xpr consists of (closed) G-orbits with trivial stabilizer [KLS15, Proposition 3], in

which case we say that X has TPIG (“trivial principal isotropy groups”). Finally, if

X is 3-principal with FPIG (“finite principal isotropy groups”), then πX has the ILP

[Sch95, Theorem 8.9]. We will see another condition implying the ILP below. Finally,

X is generic if X is 2-principal with TPIG.

In [KLS17a, §5] some local analysis establishes Theorem B.

Theorem 2.9. Let X and Y have common quotient Q. Suppose that Ψ: X → Y is a

strict diffeomorphism or Ψ is a strong G-homeomorphism and X has the ILP. Then X

and Y are locally G-biholomorphic over Q. Hence there is a homotopy Ψt of strict or

strong G-isomorphisms Ψt with Ψ1 biholomorphic.

In our earlier work [KLS15], we assume that X and Y are locally G-biholomorphic

over the common quotient Q and generic. In that case we prove the following somewhat

provocative result (which does not require X and Y to be smooth). It relies on the

equivariant Oka-principle of [HK95].

Theorem 2.10. Let G act holomorphically and generically on normal Stein spaces

X and Y which are locally G-biholomorphic over a common quotient Q. Then the ob-

struction to X and Y being G-equivariantly biholomorphic is purely topological. Namely,

there is a bundle arising from the data whose topological triviality is equivalent to X

and Y being G-biholomorphic.
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In [KLS15], we provided sufficient conditions for the topological obstruction to van-

ish. It vanishes when X is K-contractible, where K is a maximal compact subgroup of

G [KLS15, Theorem 13]. When G is abelian and X and Y are smooth, it suffices that

X be Z-acyclic [KLS15, Theorem 10].

3. The linearisation problem

Let the complex reductive group G act holomorphically on X = Cn. We say that the G-

action is holomorphically linearisable if there is a G-biholomorphism Φ: X → V , where

V is an n-dimensional G-module. Then Φ induces a strata preserving biholomorphism

ϕ : X//G→ V//G. Thus linearisability implies that X//G is isomorphic to the quotient

of a linear G-action. So we have the following special case of the problem we have

considered above.

Let X be a Stein G-manifold and V a G-module with common quotient Q. When

are X and V equivariantly biholomorphic?

Let X(n) = {x ∈ X : dimGx = n}. We say that X is large if X is generic and

codimXX(n) ≥ n+ 2 for all n ≥ 1. Largeness holds for “most” X and V . See [KLS17b,

Remark 2.1]. If X//G and V//G are strata preserving biholomorphic, then X is large if

and only if V is large.

Below we need to distinguish between X//G and Q = V//G even though they are

assumed to be stratified biholomorphic. The following implies Theorem C.

Theorem 3.1. Let X be a Stein G-manifold and V a G-module with a strata preserving

biholomorphism ϕ : X//G→ Q = V//G.

(1) If X and V are locally G-biholomorphic over Q, then they are G-biholomorphic

[KLS17b, Theorem 1.1].

(2) If V is large, then by perhaps changing ϕ by an element of Aut(Q), one can ar-

range that X and V are locally G-biholomorphic over Q, hence G-biholomorphic

[KLS17b, Theorem 1.4].

The largeness of V in (2) is only important because it implies other properties of V .

Let p1, . . . , pd be homogeneous generators of C[V ]G of degrees e1, . . . , ed. Let t ∈ C∗
act on Cd by (y1, . . . , yd) 7→ (te1y1, . . . , t

edyd). The C∗-action preserves Q ' p(V ), where

p = (p1, . . . , pd) : V → Cd. We say that V has the deformation property (DP) if for

any θ ∈ Aut(Q) fixing 0, the limit θt = t−1 ◦ θ ◦ t exists as t → 0. The limit θ0 is in

Autql(Q), the set of quasilinear elements of Aut(Q), that is, those that commute with

the C∗-action. We say that V has the lifting property (LP) if any θ ∈ Aut(Q) has a

holomorphic lift Θ: V → V . The lift need not be G-equivariant, but it has to map Vq
to Vθ(q) for all q ∈ Q.

Proposition 3.2. Suppose that V is large. Then:

(1) V has the ILP [Sch95, Theorem 0.4]. In fact, any holomorphic differential

operator on Q lifts.

(2) V has the DP [Sch14, Theorem 2.2]. (The condition that V be admissible in the

cited theorem is implied by V being large.)
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For any V , LP implies DP.

Here are some results of [KLS17b], which point out the inner workings of the proof

of Theorem 3.1.

Theorem 3.3. Let X be a Stein G-manifold and V a G-module with a strata preserving

biholomorphism ϕ : X//G→ Q = V//G.

(1) Let E be the Euler vector field on V . Then (πV )∗(E) ∈ Der(Q) can be considered

as an element of Der(X//G) via ϕ−1. Suppose that it has a lift B ∈ Der(X)G and

that we have a G-biholomorphic lift Φ of ϕ over a neighbourhood of ϕ−1(0) ∈
X//G. Then ϕ lifts to a G-biholomorphism of X and V [KLS17b, Remark 3.6].

(2) If V has the ILP and DP, then by perhaps changing ϕ by an automorphism of

Q, ϕ lifts to a G-biholomorphism of X and V [KLS17b, Section 5].

The largeness condition of Theorem 3.1(2) applies to most G-modules. The remain-

ing G-modules are “small”. For small modules, we have applied the criteria of Theorem

3.3 in the following cases.

Theorem 3.4. Let X be a Stein G-manifold and V a G-module with stratified biholo-

morphism ϕ : X//G → Q = V//G. In each of the following cases, by perhaps changing

ϕ by an automorphism of Q, ϕ lifts to a G-biholomorphism of X and V .

(1) dimQ ≤ 1.

(2) G = SL2 or SO3.

(3) G is finite.

(4) G0 = C∗.

Parts (1) and (2) are in [KLS17b] and it is rather easy to show that the relevant

G-modules V are large or have the ILP and DP. Part (3) is easy and is [KS21, Theorem

3.8] (and should have been noted well before!). Part (4) is much more difficult and is

established in [KS21]. So let us suppose that G0 = C∗. There are three “easy cases”

where all the nonzero weights of C∗ acting on V have the same sign, there are at least

two weights of each sign, or dimV = 2. We are then able to reduce to the techniques

and theorems above. The hard part is if there is, say, only one strictly positive weight

and at least two strictly negative weights.

Note that XG and V G are strata of X//G and Q. It is not hard to reduce to the

case that ϕ : XG → V G is the identity. Then one establishes the following proposition.

Proposition 3.5. Let θ ∈ Aut(U) where U is a connected neighbourhood of V G ⊂ Q

(resp. V G0
/G ⊂ Q) and θ is the identity on V G (resp. V G0

/G). Then, modulo Aut(Q),

θ has a G-equivariant lift Θ to πV
−1(U).

Using the proposition we are able to lift ϕ (after changing by some elements of

Aut(Q)) to a G-biholomorphism Φ over a neighbourhood U0 of XG0
/G ⊂ X//G. Let B

denote (πV )∗(E) considered as an element of Der(X//G) via ϕ−1. Via Φ−1 applied to E

we have a holomorphic G-invariant vector field on XU0 which lifts B. Away from XU0 ,

the isotropy groups of closed orbits in X are finite and we can find local G-invariant
12



holomorphic lifts of B. Since X//G is Stein, there is a G-invariant holomorphic lift of

B to X. Now apply Theorem 3.3(1).

4. Equivariant sections of bundles of homogeneous spaces

In [KLS18], we combined many of the results on the Oka principle from the Grauert

era into a single theorem in the homotopy-theoretic language of modern Oka theory.

Moreover, we generalised these results to an equivariant setting, with respect to a holo-

morphic action of a reductive complex Lie group. Recall that complexification defines

an equivalence of categories from compact real Lie groups to reductive complex Lie

groups. Throughout this section, K denotes a compact real Lie group with complexifi-

cation KC.

A special case of this equivariant setting had been considered before by Heinzner

and Kutzschebauch [HK95], motivated by the negative solution of the algebraic lin-

earisation problem by Schwarz [Sch89]. He constructed algebraic KC-vector bundles

of representation spaces which are not KC-trivial and thus obtained non-linearisable

algebraic actions on their total spaces. These total spaces are isomorphic to affine

spaces. The relevant corollary of Heinzner and Kutzschebauch’s work is that, unlike

the algebraic situation, holomorphic KC-bundles over representation spaces are always

KC-trivial, so the action on the total space is holomorphically linearisable.

Our setting is as follows. Let X be a reduced Stein space. Let G be a complex Lie

group and G be a holomorphic group bundle on X with fibre G. By definition, G is

defined by a holomorphic cocycle with respect to some open cover of X with values in a

complex Lie subgroup A of the Lie automorphism group of G. We call A the structure

group of G and we call G a holomorphic group A-bundle. Let H be a holomorphic

group subbundle of G , whose fibre is a closed subgroup H of G, so G may in fact be

defined by a holomorphic cocycle with values in the group of Lie automorphisms of G

that preserve H. Thus we assume that A preserves H.

Let P be a holomorphic principal bundle on X with structure group bundle G acting

from the right – we call P a principal G -bundle – and let E be the quotient bundle

P/H . Then E is a holomorphic fibre bundle on X with fibre G/H (left cosets) and

structure group bundle G acting from the left. Each fibre of G acts transitively on the

corresponding fibre of E. We call E a homogeneous G -bundle. The principal bundle P

is defined by a holomorphic G -valued cocycle, which tells us how to form P by glueing

together pieces of G over an open cover of X. The same cocycle encodes how E may

be constructed from the quotient bundle G /H (left cosets). Note that the action of

G on P need not descend to an action on E (right multiplication does not respect left

cosets).

Now we describe the KC-actions in our setting. Let KC act holomorphically on X,

and holomorphically and compatibly on G by group A-bundle maps (which preserve

H ). This means that KC acts on the fibres of G by elements of A, which makes sense

because each fibre of G is canonically identified with G modulo A. Let KC also act

holomorphically and compatibly on P such that the action map P ×X G → P is KC-

equivariant. We call P with such an action a principal KC-G -bundle. The action of
13



KC on P descends to an action on E. We summarise all the above data by referring to

E as a homogeneous KC-G -bundle.

Viewed as a holomorphic fibre bundle with fibre G, the bundle P can be taken to

have the semidirect product A n G as its structure group. Equivariance of the action

map P ×X G → P is equivalent to KC acting on P by A n G-bundle maps, meaning

that KC acts on the fibres of P by elements of A n G. If P ′ is another holomorphic

principal KC-G -bundle, then the holomorphic group bundle AutP with fibre G and the

holomorphic principal bundle Iso(P ′, P ) with fibre G and structure group bundle AutP

have induced structure groups that are complex Lie groups and they have induced

KC-actions by elements of the respective structure group that make the action map

Iso(P ′, P )×X AutP → Iso(P ′, P ) equivariant. All spaces of sections are endowed with

the compact-open topology.

The main result of [KLS18] is Theorem D from the introduction. As described above,

we have a homogeneous holomorphic KC-G -bundle E on the reduced Stein space X,

where K is a compact real Lie group and G is a holomorphic group KC-bundle on

X. The theorem states that the inclusion of the space of KC-equivariant holomorphic

sections of E over X into the space of K-equivariant continuous sections is a weak

homotopy equivalence.

The proof of Theorem D follows the approach of the Grauert era, clearly and ele-

gantly described by Cartan in [Car58]. This approach has the advantage that we can

apply results from Heinzner and Kutzschebauch’s paper [HK95]. Let us review some

notions central to this approach, adapted to the equivariant setting. First we need the

Kempf-Ness set.

To every real-analytic K-invariant strictly plurisubharmonic exhaustion function on

X (such functions exist) is associated a real-analytic subvariety R of X called a Kempf-

Ness set. It consists of precisely one K-orbit in every closed KC-orbit in X. The

inclusion R ↪→ X induces a homeomorphism R/K → X//KC, where the orbit space

R/K carries the quotient topology. Informally speaking, the Kempf-Ness set is where

K-equivariant continuous information can be related to holomorphic KC-equivariant

information. This is underlined by the following result, which in its original form is due

to Neeman [Nee85]; see also [Sch89] and [HH94].

Theorem 4.1. [HK95, p. 341] There is a real-analytic K-invariant strictly plurisubhar-

monic exhaustion function on X, whose Kempf-Ness set R is a K-equivariant contin-

uous strong deformation retract of X, such that the deformation preserves the closure

of each KC-orbit.

The following equivariant version of the covering homotopy theorem is used to prove

an important fact about the Kempf-Ness set (Proposition 4.3 below).

Theorem 4.2. [KLS18, Theorem 2.6] Let a compact Lie group K act real-analytically

on a Stein space X by biholomorphisms, and trivially on I = [0, 1]. Let G be a complex

Lie group and G be a topological group bundle on X × I with fibre G, whose structure

group A is a Lie subgroup of the Lie automorphism group of G. Let K act continuously

on G by group A-bundle maps.
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(a) Then G is isomorphic to a constant bundle (depends trivially on t ∈ I).

(b) Let P be a topological principal K-G -bundle on X × I. (It is implicit that the

action map P×XG → P is K-equivariant.) By (a), we may take G to be constant. Then

P is isomorphic to a constant bundle. Hence, once we identify the bundles G |X×{t},
t ∈ I, with a topological group K-bundle G0 on X, the topological principal K-G0-

bundles P |X×{t}, t ∈ I, are mutually isomorphic.

As a consequence we have the following result.

Proposition 4.3. [KLS18, Proposition 2.7] Suppose that a compact Lie group K acts

real-analytically on a Stein space X by biholomorphisms. Let G be a complex Lie group

and G be a topological group bundle on X with fibre G, whose structure group A is a

Lie subgroup of the Lie automorphism group of G. Let K act continuously on G by

group A-bundle maps.

Let E be a topological K-G -bundle on X (not necessarily homogeneous). The re-

striction map from the space of continuous K-sections of E over X to the space of

continuous K-sections of E over R is a homotopy equivalence.

In the following, we take R to be a Kempf-Ness set as defined above. Next comes

the central notion of an NHC-section.

Let C be a compact Hausdorff space and N ⊂ H be closed subsets of C, such that

N is a strong deformation retract of C. We define a sheaf Q(R) of topological groups

on X//KC as follows. For each open subset V of X//KC, the group Q(R)(V ) consists

of all K-equivariant NHC-sections of G over W = (π−1(V )×H)∪ ((π−1(V )∩R)×C).

By an NHC-section of G over W , we mean a continuous map s : W → G such that:

• for every c ∈ C, the map s(·, c) is a continuous section of G over π−1(V ) ∩R,

• for every c ∈ H, s(·, c) is a holomorphic section of G over π−1(V ),

• for every c ∈ N , s(·, c) is the identity section of G over π−1(V ).

The topology on Q(R)(V ) is the compact-open topology.

Now we formulate the relevant results from [HK95], first the equivariant analogue

of the classical théorème principal [Car58, p. 105].

Theorem 4.4. [HK95, p. 324]

(a) The topological group Q(R)(X//KC) is path connected.

(b) If U is Runge in X//KC, then the image of Q(R)(X//KC) in Q(R)(U) is dense.

(c) H1(X//KC,Q(R)) = 0.

Next we state Heinzner and Kutzschebauch’s main result on the classification of

principal K-G -bundles (called G -principal K-bundles in [HK95]).

Theorem 4.5. [HK95, p. 341, 345] (a) Every topological principal K-G -bundle on X

is topologically K-isomorphic to a holomorphic principal KC-G -bundle on X.

(b) Let P1 and P2 be holomorphic principal KC-G -bundles on X. Let c be a continu-

ous K-equivariant section of Iso(P1, P2) over R. Then there is a homotopy of continuous

K-equivariant sections γ(t), t ∈ [0, 1], of Iso(P1, P2) over R, such that γ(0) = c and

γ(1) extends to a holomorphic K-equivariant isomorphism from P1 to P2.
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Sketch of proof of Theorem D. First we prove that the inclusion ΓO(E)K ↪→ ΓC (E)K

induces a surjection of path components. Let P be the holomorphic principal KC-G -

bundle associated to E. Take a continuous K-section s of E over X. The preimage

in P of its image in E is a topological principal K-H -subbundle Q of P . We have a

topological K-isomorphism σ : Q ×H G → P . By Theorem 4.5(a), Q is topologically

K-isomorphic to a holomorphic principal KC-H -bundle Q′. Choose a topological K-

isomorphism Q′ → Q and let τ : Q′ ×H G → Q×H G be the induced isomorphism.

By Theorem 4.5(b) and Proposition 4.3, the topological K-isomorphism σ ◦ τ :

Q′ ×H G → P can be deformed to a holomorphic K-isomorphism over X. Applying

the deformation to Q′, viewed as a subbundle of Q′ ×H G , gives a deformation of Q

through topological principal K-H -subbundles of P to a holomorphic principal KC-H -

subbundle. Pushing down to E yields a deformation of s through continuous K-sections

of E to a holomorphic section.

Now let B be the closed unit ball in Rk, k ≥ 1, and let α0 : B → ΓC (E)K be

a continuous map taking the boundary sphere ∂B into ΓO(E)K . Choose a base point

b0 ∈ ∂B. We shall prove that there is a deformation α : B×I → ΓC (E)K of α0 = α(·, 0)

with αt(b0) = α0(b0) and αt(∂B) ⊂ ΓO(E)K for all t ∈ I, and α1(B) ⊂ ΓO(E)K . This

implies that the inclusion ΓO(E)K ↪→ ΓC (E)K induces a πk−1-monomorphism and a

πk-epimorphism.

Consider the holomorphic group KC-bundle AutP of principal G -bundle automor-

phisms of P . We seek a global K-equivariant NHC-section γ0 of AutP (with C = B,

H = ∂B, N = {b0}) such that for every b ∈ B, γ0(b), by its left action on E, maps

α0(b0) to α0(b), over X if b ∈ ∂B but only over R if b ∈ B \ ∂B.

Claim. On a sufficiently small saturated neighbourhood of each point of X, that is,

locally over X//KC, such an NHC-section exists.

The proof of the claim is quite involved. It requires a detailed analysis of the

equivariant local structure of the bundles involved. We will not attempt a summary,

but refer the reader to [KLS18].

On the intersection of two such saturated neighbourhoods, two such NHC-sections

differ by a K-equivariant NHC-section of the holomorphic group KC-bundle A of

principal G -bundle automorphisms of P that fix α0(b0). Gluing these local NHC-

sections together to produce γ0 amounts to splitting a cocycle, and the cocycle does

split by Theorem 4.4(c) applied to A .

By Theorem 4.4(a) applied to AutP , we can deform γ0 through K-equivariant

NHC-sections γt of AutP , t ∈ I, to the identity section. Let αt(b) be the section of

E obtained by letting γt(b) act on α0(b0). For b ∈ B \ ∂B and t ∈ (0, 1), αt(b) is only

defined over R. Thus we have a deformation α : B×I → ΓC (E|R)K , such that α factors

through ΓC (E)K on B ×{0} and through ΓO(E)K on ∂B × I ∪B ×{1}, in such a way

that αt(b0) is fixed and α1 takes all of B to α0(b0).

At this stage the continuous sections are defined over the Kempf-Ness set only,

whereas the holomorphic sections are defined over all of X. The problem is that the

extension of continuous sections using the strong deformation retraction of X onto R

does not give back the holomorphic sections for parameters in ∂B.
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The proof would now be done if we could show that the following commuting square

has a continuous lifting.

∂B × I ∪B × {0, 1}
β //

j

��

ΓC (E)K

p

��

B × I α //

66llllllll
ΓC (E|R)K

In fact, it suffices to show that α can be deformed, keeping β fixed and the square com-

muting, until a lifting exists. This can be deduced by homotopy-theoretic considerations

from Proposition 4.3. �

5. Equivariantly Oka manifolds

We begin by motivating the definition of a G-Oka manifold. Here G is a reductive

complex Lie group. Let K be a maximal compact subgroup of G. It is natural to say

that a G-manifold Y has the basic G-Oka property (G-BOP) if every continuous K-map

from a Stein G-manifold X to Y can be deformed through such maps to a holomorphic

map.

Consider the following consequences of Y satisfying G-BOP. First, if the G-action

on X is trivial, then a K-map X → Y is nothing but a plain map from X to the

submanifold Y K = Y G. Hence, every continuous map X → Y G can be deformed to a

holomorphic map, so Y G has the basic Oka property (BOP).

Second, let L be a closed subgroup of K. The complexification of L is a reductive

closed subgroup H of G. Let X be a Stein H-manifold and consider the adjunction

homG(indGH X, Y ) ∼= homH(X, resGH Y ).

Here, the subscripts denote equivariance, hom refers to either continuous or holomorphic

maps, resGH Y is Y viewed as an H-manifold, indGH X is the Stein G-manifold G ×H X
(the geometric quotient of G×X by the H-action h·(g, x) = (gh−1, hx)), and ∼= denotes

a homeomorphism that is natural in X and Y . We conclude that if Y satisfies G-BOP,

then Y also satisfies H-BOP, so by the above, Y H satisfies BOP.

Approximation and interpolation can easily be included in the above and we are led

to the following definition.

Definition 5.1. Let a reductive complex Lie groupG act holomorphically on a manifold

Y . We say that Y is G-Oka if the fixed-point manifold Y H is Oka for all reductive closed

subgroups H of G.

Taking H to be the trivial subgroup, we see that a G-Oka manifold is Oka. On the

other hand, the following example shows that an Oka G-manifold need not be G-Oka,

even for G = Z2.

Example 5.2. [KLS21, Example 2.7] If f ∈ O(Cn), n ≥ 2, is a polynomial such that df

vanishes nowhere on f−1(0), then the affine algebraic manifold X = {(u, v, z) ∈ Cn+2 :

uv = f(z)} has the algebraic density property and is therefore Oka [KK08]. The fixed

point set W of the involution u ↔ v of X is smooth, given by the formula u2 = f(z),
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and is a double branched covering of Cn with branch locus f−1(0). Choose f such that

f−1(0) is not Oka; this is easy. If W is Oka, then our promised example is Y = W and

Y G = f−1(0). If it is not, then the example is Y = X and Y G = W . (There is no

particular f for which we have determined whether W is Oka or not.)

The expected basic properties of the equivariant Oka property are easily established

straight from the definition or from basic properties of Oka manifolds.

Proposition 5.3. [KLS21, Proposition 2.1] Let a complex reductive group G act holo-

morphically on a complex manifold Y .

(1) If G acts trivially on Y , then Y is G-Oka if and only if Y is Oka.

(2) If Y is G-Oka and H is a reductive closed subgroup of G, then Y is H-Oka with

respect to the restriction of the action to H.

(3) If Yj is Gj-Oka, j = 1, 2, then Y1 × Y2 is G1 ×G2-Oka.

(4) If Y1 and Y2 are G-Oka, then Y1 × Y2 is G-Oka with respect to the diagonal

action.

(5) A holomorphic G-retract of a G-Oka manifold is G-Oka.

(6) If Y is the increasing union of G-Oka G-invariant domains, then Y is G-Oka.

Here are three ways to construct new equivariantly Oka manifolds from old. The

first two are from [KLS21]. The localisation principle in (c) is due to Kusakabe [Kus20,

Theorem A.5].

Proposition 5.4. Let G be a complex reductive group and let H be a reductive closed

subgroup of G.

(a) If Y is an H-manifold, then G×H Y with its natural G-action is G-Oka if and

only if Y is H-Oka.

(b) Let π : Y → Z be a holomorphic fibre bundle with fibre F . Assume that Y , Z,

and F are G-manifolds and π is G-equivariant. Further assume that Z is Stein and F

is G-Oka. Then Y is G-Oka if and only if Z is G-Oka.

(c) If Y is covered by G-Oka G-invariant Zariski-open subsets, then Y is G-Oka.

(Zariski-open means that the complement is a closed analytic subvariety.)

The first main theorem of [KLS21] is Theorem G for the case when G = K is a finite

group. Let us give a rough sketch of the proof of part (a). Parts (b) and (c) then follow

by equivariant adaptations of standard methods. The proof of Theorem G is completed

in [KLS21, Section 5].

Sketch of proof of part (a) of Theorem G. Since G is finite, the Luna strata in Q =

X/G are finite in number. Let π : X → Q be the quotient map. We have a filtration

Q = Qm ⊃ Qm−1 ⊃ · · · ⊃ Q0 ⊃ Q−1 = ∅ of Q, where the subvariety Qk is the union of

the strata of dimension at most k. Each difference Qk \Qk−1, k = 0, . . . ,m, is smooth

and each of its connected components is contained in a Luna stratum. We will produce

a homotopy of continuous G-maps from a given map f : X → Y to a holomorphic map.

We let f0 = f on π−1(Q0) and proceed by induction in two steps for each k = 1, . . . ,m.
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Step 1. Suppose that we have a homotopy of f |π−1(Qk−1), through continuous G-maps,

to a holomorphic G-map fk−1 : π−1(Qk−1) → Y . Then fk−1 and the homotopy extend

to a G-invariant neighbourhood of π−1(Qk−1) in X.

For k = 1, we start with the constant homotopy. For k ≥ 2, the input is Step 2 for

k− 1. Using Siu’s Stein neighbourhood theorem and Heinzner’s equivariant embedding

theorem, we move the problem into a G-module. The holomorphic map extends by

Cartan’s extension theorem followed by averaging. Finally, the homotopy extends since

Y is an absolute neighbourhood retract in the category of metrisable G-spaces.

Step 2. There is a homotopy of f |π−1(Qk), through continuous G-maps, to a holomorphic

G-map fk : π−1(Qk)→ Y .

This step may be reduced to an application of Forstnerič’s Oka principle for sections

of branched holomorphic maps ([For03, Theorem 2.1]; see also [For17, Theorem 6.14.6]).

Forstnerič’s result is the only known Oka principle in modern Oka theory that does not

require the map in question to be a submersion. A parametric version of the result is

not available and appears difficult to prove. �

The remarkable fact that Oka manifolds can be defined in many nontrivially equi-

valent ways points to the concept being natural and important. The same has been

proved to some extent in the equivariant setting. Above we defined the basic G-Oka

property. It is the property ascribed to the G-Oka manifold Y in part (a) of Theorem G.

The stronger property ascribed to Y in part (b) is called the basic G-Oka property with

interpolation (G-BOPI), and the property ascribed to Y in part (c) is called the basic

G-Oka property with approximation and jet interpolation (G-BOPAJI). The definition

of the basic G-Oka property with approximation (G-BOPA) should be obvious. The

following result combines [KLS21, Corollary 4.2] and [Kus20, Corollary A.4]. The

property G-Ell1 is defined below.

Theorem 5.5. For a complex manifold with an action of a finite group G, the follow-

ing properties are equivalent: G-BOPA, G-BOPI, G-BOPAJI, G-Ell1, and the G-Oka

property.

We believe that generalising Theorem G to arbitrary reductive groups will require

new methods. In [KLS21, Section 5] we took the following step towards this goal.

Theorem 5.6. Let G be a complex reductive group and K a maximal compact subgroup

of G. Let X be a Stein G-manifold and Y be a G-Oka manifold. Assume that X has a

single slice type, that is, the quotient map X → X//G is a holomorphic G-fibre bundle.

Then every K-equivariant continuous map X → Y is homotopic, through such maps,

to a G-equivariant holomorphic map.

We now turn to the equivariant versions of two fundamental properties in Oka theory.

A manifold Y is said to be elliptic – Gromov’s definition [Gro89] marked the beginning

of modern Oka theory – if it carries a dominating spray, that is, there is a holomorphic

map s : E → Y , called a spray, defined on the total space of a holomorphic vector

bundle E on Y , such that s(0y) = y for all y ∈ Y , which is dominating in the sense that

s|Ey : Ey → Y is a submersion at 0y for all y ∈ Y . If a complex Lie group G acts on
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Y , then we say that s is a G-spray if the action on Y lifts to an action on E by vector

bundle isomorphisms such that both s and the projection E → Y are equivariant. We

say that Y is G-elliptic if it carries a dominating G-spray.

The weaker notion of relative G-ellipticity, also known as G-Ell1 and mentioned

above, is defined as follows. The manifold Y satisfies G-Ell1 if for every holomorphic

G-map f from a Stein G-manifold X to Y , there is a holomorphic G-vector bundle E

over X and a dominating G-spray s : E → Y over f . This means that s(0x) = f(x) for

every x ∈ X, where 0x is the zero vector in the fibre Ex of E over x, and s|Ex : Ex → Y

is a submersion at 0x.

We say that Y is G-Runge if for every Stein G-manifold X and every G-invariant

Runge domain Ω in X, the closure of the image of the restriction map OG(X, Y ) →
OG(Ω, Y ) is a union of path components (perhaps empty). (To say that Ω is Runge

means that Ω is Stein and the restriction map O(X) → O(Ω) has dense image.) In

other words, approximability of holomorphic G-maps Ω → Y by holomorphic G-maps

X → Y is deformation-invariant. When G is the trivial group, the G-Runge property

of Y is one of the equivalent formulations of the Oka property. When G is reductive,

the property of a domain Ω in X being G-invariant and Runge can be described in

several equivalent ways [KLS21, Section 6]. For example, it is equivalent to say that Ω

is the preimage of a Runge domain in X//G.

Analogues of the basic results about the G-Oka property hold for both G-ellipticity

and the G-Runge property [KLS21, Sections 3 and 6], except we do not know a simple

proof that a G-homogeneous space is G-Runge. This is what we know about the

relationships between the three properties.

Theorem 5.7. Let G be a reductive complex group and Y a G-manifold.

(a) If Y is G-elliptic, then Y is G-Runge.

(b) If Y is G-Runge, then Y is G-Oka.

(c) If G is finite and Y is Stein and G-Oka, then Y is G-elliptic.

The proof of (a) is somewhat involved: it is an equivariant version of Gromov’s

linearisation method, sketched in [Gro89, Section 1.4]. It uses some equivariant Stein

theory, most importantly the equivariant version of Theorem B of Cartan and Serre,

due to Roberts [Rob86]. The proof of (b) is a quick reduction to the fact that a

manifold satisfying the Runge property for trivial actions is Oka. The proof of (c) is a

straightforward adaptation of the well-known proof in the case of no action.

Now let Y be a G-homogeneous space and take the trivial G-vector bundle Y ×g→
Y , where G acts on its Lie algebra g by the adjoint representation. Then Y × g→ Y ,

(y, v) 7→ exp(v) · y, is a dominating G-spray, so Y is G-elliptic. By Theorem 5.7(a), Y

is G-Runge.

6. Open problems

(1) Does the parametric version of Theorem A hold? That is, in the setting of the

theorem, is the inclusion of the space of G-biholomorphisms X → Y into the
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space of strict G-diffeomorphisms a weak homotopy equivalence with respect to

the appropriate topology? The same question for strong G-homeomorphisms.

(2) Is there a counterexample to Theorem B if X does not have the infinitesimal

lifting property?

(3) Does Theorem 3.4 hold if G0 is a torus (C∗)n of dimension n ≥ 2?

(4) Build approximation and interpolation into Theorem D.

(5) Show that the weak homotopy equivalence in Theorem D is a genuine homotopy

equivalence under suitable conditions. There are, by now, several such results

in the literature, the first in [Lár15]. The same question for Theorem F.

(6) Does Theorem G hold for arbitrary actions of a reductive group G? Does it

hold for actions for which all the G-orbits are closed?

(7) Does the parametric version of Theorem G hold?

(8) Let G be a reductive group and Y be a G-Oka manifold. Is Y G-Runge?
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