PROPER HOLOMORPHIC IMMERSIONS
IN HOMOTOPY CLASSES OF MAPS FROM
FINITELY CONNECTED PLANAR DOMAINS INTO C x C*
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ABSTRACT. Gromov, in his seminal 1989 paper on the Oka principle, proved that ev-
ery continuous map from a Stein manifold into an elliptic manifold is homotopic to a
holomorphic map. Previously we have shown that, given a continuous map X — CxC*
from a finitely connected planar domain X without isolated boundary points, a stronger
Oka property holds, namely that the map is homotopic to a proper holomorphic em-
bedding. Here we show that every continuous map from a finitely connected planar
domain, possibly with punctures, into C x C* is homotopic to a proper immersion
that identifies at most countably many pairs of distinct points, and in most cases,
only finitely many pairs. By examining situations in which the immersion is injective,
we obtain a strong Oka property for embeddings of some classes of planar domains
with isolated boundary points. It is not yet clear whether a strong Oka property for
embeddings holds in general when the domain has isolated boundary points. We con-
clude with some observations on the existence of a null-homotopic proper holomorphic
embedding C* — C x C*.
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1. INTRODUCTION

The problem of which open Riemann surfaces can be embedded into C? is a long-standing
and difficult unsolved question in complex geometry. (In this paper the term embedding
will always refer to a holomorphic proper injective immersion.) For details of the progress
made towards solving this problem we refer the reader to the introductions of the papers
[4] and [9]. In particular, Globevnik and Stensgnes [5] proved that every bounded,
finitely connected planar domain in C without isolated boundary points embeds into C2.
By the Koebe uniformisation theorem [6, Ch. V, § 6, Thm. 2|, every finitely connected
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planar domain in C without isolated points in its boundary (when taken with respect
to P) is biholomorphic to such a domain. Moreover, Koebe’s theorem shows that such
domains are biholomorphic to what we call circular domains, namely those domains
given as the open unit disc from which a finite number of pairwise disjoint, closed discs
of positive radii have been removed. The result of Globevnik and Stensgnes was extended
by Wold [11], who introduced a powerful new technique for constructing embeddings of
open Riemann surfaces and used it to show that every finitely connected planar domain
in C embeds into C2.

In [9] the second author considered the related embedding problem for open Riemann
surfaces when the target space is the 2-dimensional elliptic Stein manifold C x C*. Since
the target is no longer contractible, the homotopy class of the embedding becomes of
interest. The main result in [9] is that, for every circular domain X, every homotopy
class of continuous maps X — C x C* contains an embedding. The author termed
this a strong Oka principle for embeddings of X into C x C*, as it can be viewed as
a special case strengthening of Gromov’s Oka principle [7], a deep result that states
every homotopy class of continuous maps from a Stein manifold to an elliptic manifold
contains a holomorphic map. For further background on the Oka principle, the reader
is referred to the survey [3] and the monograph [2].

In the current paper we investigate maps from arbitrary finitely connected planar
domains into C x C*. Allowing the planar domains to have boundary components
that are isolated points makes the problem more difficult since Wold’s technique, used
in [9], does not give properness at punctures in the domain. We have not yet been
able to determine whether a strong Oka principle always holds for embeddings in this
more general setting. If, however, we ask for proper holomorphic immersions that are
just short of being injective, we are able to prove a generalisation for arbitrary finitely
connected planar domains.

In Section 2 we show that every homotopy class of continuous maps from a finitely
punctured plane into C x C* contains a proper holomorphic immersion that identifies at
most either countably many or finitely many pairs of points in the domain, depending
on whether the homotopy class is null or not, respectively (Theorem 1). In many cases,
we in fact obtain an embedding of the given punctured plane (Theorem 2). In Section 3
we apply these results to show that every homotopy class of continuous maps from a
circular domain with finitely many punctures into C x C* contains a proper holomorphic
immersion that identifies at most finitely many pairs of points (Theorem 5). Again,
in many circumstances the immersion can be made an embedding, the consequence
being that a strong Oka principle holds for embeddings of certain punctured circular
domains into C x C* (Theorem 6, and Corollaries 8 and 9). It also follows, if we
disregard the homotopy class of the embedding, that every finitely connected planar
domain embeds into C x C* (Corollary 7). The final section contains some partial results
on the surprisingly difficult question of the existence of a null-homotopic embedding
Cr—=CxC.

The current paper, like the second author’s earlier paper [9], relies on the fundamental
embedding technique introduced by Wold in [11]. Later papers by Forstneri¢ and Wold
[4], and Kutzschebauch, Low, and Wold [8] have also been of use to us.



2. PROPER HOLOMORPHIC IMMERSIONS OF FINITELY PUNCTURED PLANES

We begin by considering the case of a finitely connected planar domain X C C for which
each boundary component is an isolated point. Such a domain is equal to the complex
plane C with n > 0 distinct points aq,...,a, removed. When n > 1, X is clearly
homotopy equivalent to a bouquet of n circles. Since C x C* is homotopy equivalent to
a single circle, if we ignore the trivial case n = 0, we see that each homotopy class of
continuous maps X — C x C* is completely determined by the assignment of a winding
number k; € Z to each puncture a;, j =1,...,n.

Theorem 1. Letay,...,a, € C,n >0, be distinct points, and let X = C\{ay,...,a,}.
Then:

(1) The null homotopy class of continuous maps X — C x C* contains a proper
holomorphic immersion that identifies at most countably many pairs of distinct
points in X.

(2) Every non-null homotopy class of continuous maps X — CxC* contains a proper
holomorphic immersion that identifies at most finitely many pairs of distinct
points i X.

Proof. In the case n = 0 the existence of an embedding X = C — C x C* is trivial, so
assume that n > 1. Let the homotopy class of maps X — C x C* be determined by the
winding numbers k; € Z about the punctures a;, j =1,...,n.

Suppose first that we have the null homotopy class, that is, k; = 0O forall j =1, ..., n.
Define

U(z)= (=) /(z—a) - (2= an), €7)

where ¢ € X is arbitrary. (Here, and throughout the paper, it is understood that
multiplication takes precedence over division.) Then, 1 : X — C x C* is a proper
holomorphic immersion of X into C x C*. Now ¢ factors through the null-homotopic
map C x C — C x C*, (wy,wy) — (wy, e*?), making ¢ null-homotopic. We now show
that ¥ (z) = ¢ (y) for at most countably many pairs of distinct points x,y € X.

We write

) = (== a) - (=~ a).

so that ¢(z) = (f(2),e*). The second component of 1) identifies the distinct points
z,y € X if and only if y = x + 2wik for some k € Z* = Z \ {0}. However, for each
k € Z*, the rational function f(z) — f(z + 2mik) is not identically zero (for otherwise
the fibres of f would be infinite, whereas f is not constant), and therefore the equation
f(2) = f(z 4 2mik) = 0 has only finitely many solutions z € X. Considering all k € Z*,
it follows that v identifies at most countably many pairs of distinct points in X.

Now suppose that the given homotopy class of maps is non-null. Order the punctures
a; so that for some r satisfying 1 < r < n, we have k; #0 for j =1,...,r, and k; =0
fori=r+1,...,n. Let

k1 kr

9(z) = (z=a))™ - (z — a)

When r = n, the map ¢(z) = (z,¢9(z)) is an embedding of X into C x C* in the given
homotopy class, so assume r < n. If we now let f = p/q, where

q(z) = (2 = ary1) - (2 — an)
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and p € C[z] is a polynomial with deg(p) > deg(q) > 1 that does not vanish at the zeros
of q, then ¢» = (f,g) : X — C x C* is a proper holomorphic map in the given homotopy
class. It remains to be shown that with ¢ fixed as above, p can be chosen so that v is
an immersion that identifies at most finitely many pairs of distinct points in X.

We first show that p can be chosen so that ¢ = (f,g9) = (p/q, g) is an immersion of
X. Let z1,. .., 2, be the critical points of g in X. We have f' = (p'q—pq')/q*, and since
q does not vanish on X we must ensure that p'(z;)q(z;) # p(z;)¢'(2;) for j =1,...,m.
We begin by choosing any p € C[z] with deg(p) > deg(q) such that p’ is non-zero at
each point z,...,2,. By adding a generic constant to p we can ensure both that p
and ¢ have no common zeros and that f’(z;) # 0 for all j = 1,...,m, so that ¢ is an
immersion of X.

We now show how to further choose p so that 1 (z) = 1(y) for at most finitely many
pairs of distinct points x,y € X. Begin by considering f and g as holomorphic maps
from P to P. Let 7, m : P x P — P denote the projection onto the first and second
component of P x P, respectively. Form Y] as the pullback of f by itself,

yli)[p
E
pt.p

so that Y; is the algebraic curve in P x P given by

Vi=A{(z,y) e PxP: f(x) = fy)}
Similarly, let Y5 be the algebraic curve in P x P given as the pullback of g by itself,

Yo={(z,y) ePxP:g(z) =gy}
Note that both Y] and Y5 share the diagonal A C P x P as an irreducible component.

Now suppose that (f(z),g(x)) = (f(y),g(y)) for infinitely many pairs of distinct
points x,y € P. This implies that Y; \ A intersects Y5 \ A in infinitely many points of
P x P. By the algebraicity of Y7 and Y5 it follows that the closures Y7 \ A and Y5 \ A in
P x IP have an irreducible component Z in common.

Consider the projection 7|z : Z — P. Note that m |z cannot be constant, as then
Z = {a} x P for some a € P, which in turn implies that f and g are constant. It follows
that 71|z must be surjective, and since Z N A is finite we see that for all but finitely
many points x € P there exists y € P, y # x, such that (f(x),g(z)) = (f(y),9(y)). By
considering Z N (X x X) it follows that for all but finitely many points x € X there
exists y € X, y # x, such that (f(z),g(z)) = (f(y), 9(y))-

Let a be a regular value of g such that the fibre g='(a) is contained in X. For ease
of exposition, we may also assume that f(x) is a regular value of f for all x € g7'(a).
Now suppose that f is injective on g~'(a) and let #; € g~*(a). Then for every point
x sufficiently close to z;, f remains injective on the fibre g~!(g(x)). It follows that
for infinitely many points x € X there is no y € X, y # x, such that (f(z),g(x)) =
(f(y),g(y)), and therefore that ¢ (z) = 1(y) for at most finitely many pairs of distinct
points z,y € X.

Finally, in the event that f is not injective on g~!(a), a small perturbation to the
coefficients of p will give the injectivity of f on g~'(a) without destroying any of the

existing properties of f. To see this, first note that for small perturbations, p continues
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to be non-vanishing at the zeros of ¢, so p and ¢ still have no common factors. Similarly,
it remains true that f’(z) # 0 at each critical point z of g. Since we do not perturb g,
the map ¥ = (p/q, g) continues to be a proper immersion of X into C x C*. Now let
r1, 79 € g~ (a), Ty # T, and suppose f(z1) # f(xs). This property is clearly preserved
for small perturbations of p. On the other hand, suppose that f(z1) = f(x2) = ¢, so
that z; and x, are simple zeros of the polynomial p — cq, since a was chosen earlier
to ensure c is a regular value of f. Now, the map from the zeros (yi,...,ym) of a
monic polynomial of degree m to its non-leading coefficients (given by the m elementary
symmetric polynomials in y1, ..., y,,) is continuous, so there exists a small perturbation
to the non-leading coefficients of p —cq that perturbs the zero previously at x; away from
that point by a small amount, while keeping x5 and all the other zeros of p — cq fixed.
Hence 7 is no longer a zero of p — ¢q and now f(z1) # f(x2). Since degp > degq, the
desired pertubation to the coefficients of p—cq can be done by perturbing the coefficients
of p while keeping ¢ fixed. Repeating this procedure a finite number of times ensures
that f is injective on g~*(a). O

Given a proper holomorphic immersion ¢ : X — C x C* of a finitely punctured plane
X provided by Theorem 1, the image (X)) is of course a closed analytic subvariety of
C x C* with at most either countably many or finitely many singular points, depending
on the homotopy class of 1. It seems likely that Theorem 1 could be improved to
give ¢ such that at each singular point of ¥(X) there are only two locally irreducible
components that meet transversally, but we do not pursue this development here.

We are able to produce an embedding in certain homotopy classes of maps X —

C x C*.

Theorem 2. Letay,...,a, € C,n > 1, be distinct points, and let X = C\{ay,...,a,}.
Let a homotopy class of continuous maps X — C x C* be given with associated winding
numbers k; about the punctures a;, 7 =1,...,n. Suppose one of the following holds.

(1) kj #0 forj=1,...,n.

(2) n>2, withk,=0,k; #0 forj=1,...,n—1, and ky + --- + k,—1 # 0.
(3) n>3, withk; =0 forj=3,...,n, ky =1, and ky = —1.

(4) n>3, withk; =0 for j=2,...,n, and ky = £1.

Then the given homotopy class contains an embedding X — C x C*.

Proof. Case (1) was already covered in the proof of Theorem 1 by taking
U(2) = (2, (z —a)™ - (2 — an)™) .

For case (2), we take

Y(2) = (1/(z = an), (z = a)™ -+ (2 = an1)™ ).

For case (3), we take

Y(z) = ((z =" /(z—ag) (2 — an), (2 — 1) /(2 — a2)),

where ¢ € X is arbitrary. Finally, in case (4) we take

Y(2) = (1/(z = az) -+ (2 = an), (2 — ar)™).

In each of these cases one component of the map v is an injective immersion of X, and

¥ is also proper, making ¢ an embedding with the required winding numbers. 0
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Given a finitely punctured plane, the general problem of finding an embedding into
C x C* within a given homotopy class separates into two quite different cases, depending
on whether the homotopy class is null. For example, note that obviously there is an
embedding in each non-null homotopy class of maps C* — C x C*, but the existence or
not of a null-homotopic embedding C* — C x C* is surprisingly difficult to establish.
We present some partial results on this topic in Section 4. More generally, apart from
the trivial case of C we do not know if there exists a finitely punctured plane that
null-homotopically embeds into C x C*.

We are however aware of some finitely punctured planes X and non-null homotopy
classes of maps X — C x C* that contain an embedding with neither of its two com-
ponents injective. For example, take X = C\ {0,a,b}, where a,b € C* are distinct.
Then (1/(z — a)(z — 1), 2?) is an embedding into C x C*, unless a = —b, in which case
(1/(z — a)(z + a)?,2%) is. Given a punctured plane X and a homotopy class of maps
X — C x C*, the punctures with zero winding determine the location of the poles of
the first component of any rational embedding in the homotopy class, while the punc-
tures with non-zero winding essentially determine the second component. We therefore
have considerable freedom in choosing both the numerator and the order of the poles of
the first component, but it is unclear whether this is sufficient to permit in general the
construction of an embedding X — C x C*.

3. PROPER HOLOMORPHIC IMMERSIONS OF ALL OTHER FINITELY CONNECTED
PLANAR DOMAINS

We now suppose that X C C is a finitely connected planar domain with at least one
boundary component not an isolated point. As mentioned in the introduction, by the
Koebe uniformisation theorem, we may assume X is the open unit disc from which a
finite number of pairwise disjoint closed discs and isolated points have been removed. We
call such domains punctured circular domains, with the term circular domain reserved
for the case of no punctures.

Definition 1. A punctured circular domain is a domain X C C consisting of the
open unit disc D from which m > 0 closed, pairwise disjoint discs and n > 0 isolated
points have been removed. Let the deleted discs have centres ¢; € D and radii r; > 0,

m —_—

i=1,...,m, and let the deleted points be a4, ...,a, € D\ | (¢; + ;D). We have
i=1

m

X :]D)\(U(ci—{—riﬁ)u{al,...,an})

i=1

with constraints 7, +7; < |¢; —¢;| for 1 <i<j<m,andr; <1—|¢glfori=1,...,m.

Let m; and 7y denote the projection maps of C x C* onto the first and second
component, respectively. For > 0 define the open annulus

A ={2e€C :1/(r+1)<|z]| < (r+1)}.

We call P. =rD x A, the cylinder of radius r.
The nice projection property for a finite collection of smoothly embedded curves in
C x C* was given in [9], based on a definition introduced in [8]. The definition in [9]

concerns properties of the curves after they have been projected onto the C-component
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of C x C* using 7, and in this paper we refer to it as the C-nice projection property. If,
instead of projecting onto C, we use 7y to project the curves onto the C*-component,
we have the following definition.

Definition 2. Let 74, . .., 7, be pairwise disjoint, smoothly embedded curves in C x C*,
where each 7; has domain either [0, 00) or (—00,0). Fori=1,...,m,let I'; C C x C*
be the image of 7; and set I' = |J I';. We say that the collection ~v1,..., 7, has the

=1
C*-nice projection property if there is a holomorphic automorphism a € Aut(C x C*)

such that, if 5; = @ o~; and I'' = a(I"), the following conditions hold.

(1) For every compact subset K C C* and every i = 1,...,m, there exists s > 0
such that mo(5;(t)) ¢ K for |t| > s.
(2) There exists M > 0 such that for all r > M:
(a) C*\ (m(I") U A,) does not contain any relatively compact connected com-
ponents.
(b) 7y is injective on I \ 7, 1 (A,).

The following result is analogous to the main technical lemma in [9] (Lemma 4),
adapted to a family of curves with the C*-nice projection property instead of the C-nice
projection property.

Lemma 3. Equip Cx C* with a Riemannian distance function d. Let K C CxC* be an
O (C x C*)-convex compact set and let v, . .., Vm be pairwise disjoint, smoothly embedded
curves in C x C* satisfying the C*-nice projection property. Let I'; be the image of ~;,
i=1,...,m, and set ' = |J I';. Suppose thatT'NK = @&. Then, givenr >0 and ¢ > 0,

=1
there exists ¢ € Aut(C x C*) such that the following conditions are satisfied.

(a) g@d(aﬁ(o, () <e

(b) ¢(T) C C x C*\ P,.
(c) ¢ is homotopic to the identity map.

Proof. The proof is similar to that of [9, Lemma 4], the primary difference being that we
exchange the roles of C and C* in the construction of ¢. This entails numerous minor
modifications. We give the necessary details below, making reference to the proof in [9]
where expedient.

As in [9], we may assume the automorphism from Definition 2 has already been
applied, so that the conditions of the C*-nice projection property hold directly for the
curves 7;, ¢ = 1,...,m. The proof that condition (c) can be ensured is identical to the
argument in [9].

Let K’ C CxC* be aslightly larger €/(C xC*)-convex compact set containing K in its
interior such that K’NI" = @ still holds, and shrink € so that €/2 < d(K,CxC*\ K’). We
also assume that r > M, where M is determined by the C*-nice projection property for
Y1y -+ -y Ym, and if necessary we take r larger so that K’ C C x A,, and 7;(0) € C x A, for
i=1,...,m. Set T =T N(CxA,) = (m|r)"}(A,), which is compact by condition (1)
in Definition 2, and in fact has precisely m connected components fl, e ,fm, each
I; =T;N(C x 4,) a smoothly embedded compact curve. Following [9], we construct
an isotopy of injective holomorphic maps on a neighbourhood of K’ U T and use the

Andersen-Lempert theorem [9, Thm. 2] to obtain a € Aut(C x C*) satisfying:
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(a) sup d(e((),¢) < e€/2.
(b) a(l') € C x C*\ P,.

The automorphism « moves all of [ outside of P,., but may move parts of the set
P\ [ into P,. Welet T, = {¢ € T :a(¢) € P,} = Tna'(P,). By construction,
mo(T,) C ma(T')\ A,. Recall that r was chosen so that C*\ (m2(T") U A,) has no relatively
compact connected components and such that 7, is injective on I' outside of C x A,. We
construct 8 € Aut(C x C*) that approximates the identity on C x A, and moves I'\ T
so as to avoid a~!(P,). The automorphism will have the form 3(z,w) = (z + g(w), w),
where (z,w) € C x C* and g € €(C*). We first construct a continuous map 3(z, w) =
(z+ f(w),w) from C x (A, Umy(T)) to C x C*, where f : A, Umy(I') — C is continuous
on A, U mo(I") and holomorphic on A,, then approximate f uniformly on an appropriate
set by g € 0(C*).

Let s > r be chosen so that a~!(P,) C P,. If (z,w) € CxC* with w ¢ A,, we clearly
have B(z,w) ¢ o~ '(P,) and also 3(z,w) ¢ o~ (P,). We set f(w) = 0 for w € 4,, so
that 5 = id on C x A,. We now show how to define f on my(I') \ 4, so that 5 moves
the set I' =T'N (P, \ (C x A,)) so as to avoid a~'(P,).

We now assume each ~; has domain [0, 00) with 7;(0) € C x A, by breaking those
curves with domains (—o0, 00) into two components, as described in [9]. Let & > m be
the new total number of curves ;. For each v;(t) = (2;(t), w;(t)) we choose t}, > 0 such
that w;(t)) € OA,, with w;(t) € A, for t <t} and w;(t) € C*\ A, for t > ti. Note that
%i(ty) & o= H(Py).

,,,,,

L; = C x {w;(t))} and K; = L; N a~'(P,). By the injectivity of my on I' \ (C x A4,),
Li,..., Ly, and hence K ..., K}, are all distinct. As a~'(P,) is 0(C x C*)-convex, each
L;\ K; is connected and unbounded, so for each i = 1,. ..,k we may choose a continuous
path ¢; : [0,1] — L; \ K; satisfying ¢;(0) = 7;(t}) and ¢;(1) € L;\ (TD x {w;(t})}), where
T > s+ |z(t))| + B.

Now define ¢; : [0,1] — C by ¢&(t) = mi(ci(t)) — zi(th), so that ¢;(t) = (z:(th) +
&i(t), w;(th)). We have &(0) = 0 and z(t}) + & (1) ¢ TD. For sufficiently small § > 0,
the curve (z;(th + 6t) +&(t), w;(th + 6t)), t € [0, 1], remains within C x C*\ a~!(P,.) and
we still have z;(t) + ) + &(1) ¢ TD.

Define f : A, Umy(T') — C by

0 on A,,
=1 c(t/s) at w(ti+t)forte€0,0],i=1,...,k,
ci(l)  atwi(th+t)fort>4di=1,... k.

The choice of T made earlier ensures that for all ¢t > ¢ with w;(t) € A, we have
|2:(t) + ()] = [ei(D)] = |z:(t)] > s + B = [zi(t)] = s,

and therefore z;(t) 4 ¢;(1) ¢ sD for all such .
By the Mergelyan-Bishop theorem [1] there exists ¢ € O(C*) that approximates f
uniformly on (A, U my(I")) N A;. By making the approximation sufficiently close we

ensure that 3(I')Na~!(P,) = @, and ¢ = a o 3 is then the desired automorphism. [J
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By a bordered Riemann surface we mean a two-real-dimensional smooth manifold-
with-boundary X (not necessarily compact), equipped with a complex structure on the
interior compatible with the given smooth structure. Its boundary X is thus a smooth
one-dimensional manifold (again, not necessarily compact), namely a disjoint union of
circles and lines. In [9, Thm. 1], a so-called Wold embedding theorem was proved for
embeddings of certain bordered Riemann surfaces X into C x C* such that the images
of the boundary components satisfy the C-nice projection property. The corresponding
result also holds if the collection of boundary curve images instead satisfies the C*-nice
projection property. In addition, the argument remains valid if we weaken the input to
be only a proper holomorphic immersion of X satisfying certain properties as described
below.

Theorem 4. Let X be an open Riemann surface and K C X be a compact set. Suppose
that X is the interior of a bordered Riemann surface X whose boundary components
are non-compact and finite in number. Let 1) : X — C x C* be a proper holomorphic
immersion satisfying the following conditions.

(1) v identifies at most finitely many pairs of distinct points in X.
(2) ¥ is injective on X and Y(0X) NY(X) = 2.
(3) ¥(0X) has either the C- or the C*-nice projection property.

Then there exists a proper holomorphic immersion o : X — C x C* that identifies
precisely the same pairs of points in X as 1, that approximates v uniformly on K, and
such that o is homotopic to |x. Thus, if 1 is an embedding, then so is o.

Proof. If 1(0X) satisfies the C-nice projection property, then by scaling in the C*-
component we may assume that P, N 90X = @. If, on the other hand, ¥(0X) satisfies
the C*-nice projection property, then we apply a translation in the C-component to
ensure P, N 0X = @. Then, in the case that 1 is an embedding of X into C x C*,
the proof of Theorem 1 in [9] works without modification for both the C- and C*-nice
projection properties, since it only makes use of Lemma 4 in [9] and Lemma 3 in the
current paper that hold for each nice projection property, respectively.

Suppose now that ¢ : X — C x C* is a proper holomorphic immersion satisfying
properties (1)—(3). The image ¢ (X) is then a 1-dimensional closed analytic subvariety
of C x C*\ (0X) with finitely many singular points. The proof of Theorem 5.1 in
[4], which follows an argument detailed in [10, Prop. 3.1], continues to hold even in the
case when X has punctures, by virtue of the properness of ¢. That is, ¥/(X) admits an
exhaustion by €'(C x C*)-convex compact sets satisfying the conclusion of Lemma 5 in
[9]. The construction given in the proof of Theorem 1 in [9] therefore continues to work
without modification, the result being a proper holomorphic immersion X — C x C*
that identifies the same pairs of points in X as the given map .

The proof that o is homotopic to ¢ remains unchanged from [9, Lemma 6]. 0

Let X be a punctured circular domain. In [9] it was shown that when X has no
punctures, every homotopy class of maps X — C x C* contains an embedding, so we
assume that X has at least one puncture. Using the proper immersions constructed in
Section 2 we obtain the following main result of this section.
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Theorem 5. Let X =D\ (U (c; +mD)U{ay,...,an}), m >0, n > 1, be a punctured
i=1

circular domain. Then every homotopy class of continuous maps X — C x C* contains

a proper holomorphic immersion that identifies at most finitely many pairs of distinct

points in X.

Proof. As in the case of a finitely punctured plane, X is homotopy equivalent to a

bouquet of m 4 n circles, and therefore the homotopy class of a continuous map X —

C x C* is completely determined by the winding k; € Z about each puncture a;, j =

1,...,n, together with the winding s; € Z about each hole ¢; + D, i = 1,...,m. For

i=1,...,m,let v; = ¢; + 70D, and let b; = ¢; + 1;v/—1 € ;. We also set vy = 0D and
= V-1 €.

Define the punctured plane Y = C\ {ay,...,an,b0,b1,...,bm,c1,..., ¢} D X, and
consider the homotopy class of maps ¥ — C x C* with winding k; at each puncture
a;, 3 = 1,...,n, winding —1 at each puncture by, b1, ...,b,, and winding s; + 1 at
each puncture ¢;, i = 1,...,m. As there is non-zero winding at by, Theorem 1 gives a
proper holomorphic immersion ¥ = (f,g) : ¥ — C x C* with rational components that
identifies at most finitely many pairs of distinct points

Define the bordered Riemann surface X = X U U (7i \ {b:}) by taking X together

with each of its boundary curves ~;, with the dlstmgmshed points b; removed. Note
that each boundary component of X is non-compact. The map |+ ~ gives a proper
holomorphic immersion of X into C x C* that identifies at most finitely many pairs
of distinct points in X. Moreover, 9|y is in the given homotopy class. Assuming for
the moment that conditions (2) and (3) in Theorem 4 hold for |, the theorem gives
a proper holomorphic immersion o : X — C x C* in the given homotopy class that
identifies precisely the same pairs of points in X as .

To ensure that condition (3) holds, first note that g has a pole of order 1 at each of
the points by, ..., by, so g(z) = oo as z — b; along each curve 7;. For i =0,...,m, let

0; = liGm arg g(z) mod 7.
Z*)’}/)ZZ'
Then 6; € [0, 7) is well defined and, defining g;(2) = g(z)(z — b;), we in fact have
0; = arg g;(b;) mod 7

by the choice of b; € 7;. If 0, # 0; for all 0 < i < j < n, then, assuming the images ¥ (7;)
are pairwise disjoint, 1/(0X) satisfies the C*-nice projection property. Otherwise, choose
a point d € Y far away from D, and add an additional puncture in Y at d with winding
1. This has the effect of introducing a zero of order 1 at d into g. If |d| is sufficiently
large, we will still have 6; # 6, for any pairs ¢, j where this already held. Now suppose
that we previously had ; = 6, for some pair 7 # j. Provided that d is chosen to lie off
the real line containing b; and b;, equality will no longer hold for the modified g. Thus,
for a generic choice of large d, 1 (0X) now satisfies the C*-nice projection property.

It remains to be shown that we can ensure that condition (2) in Theorem 4 holds.
The only way in which condition (2) may fail is if for at least one point x € dX there
exists y € X, y # x, such that 1(y) = ¥(x). Note that there are at most finitely many
points z € C with this property. Suppose there is a single such point z € 9X (the

case when several such points exist is handled by a straightforward generalisation of the
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following argument). Let (x;),en be a sequence of points in X converging to x. For each
j € N, let v; € 0(C) be the unique polynomial with a simple zero at each puncture of Y’
and no other zeros, such that v;(x;) = x — x;. Fix a compact set K containing D in its
interior, and let € > 0. Then ||v;||x < € for sufficiently large j € N. Let p(z) = z +v;(2)
for some such j. For e sufficiently small, p is injective on D and hence restricts to a
biholomorphism of X onto p(X). Thus p(X) is a bordered Riemann surface such that
z ¢ p(0X) = d(p(X)), since p(z;) = z and z; € X. For small ¢, p(0X) will not
contain any of the finitely many points y € C for which there exists z # y satisfying
Y(2) = 9¥(y), and the C*-nice projection property will still be satisfied for ¢(p(9X)).
Thus the conditions of Theorem 4 are satisfied for X with the map 1 o p. OJ

As for finitely punctured planes, for many choices of a punctured circular domain X
and a homotopy class of maps X — C x C* we are able to obtain an embedding in the
given homotopy class.

Theorem 6. Let X =D\ (U (¢ +mD)U{ay,...,an}), m >0, n > 1, be a punctured
i=1
circular domain, and suppose a homotopy class of maps X — C x C* is given with

winding k; about each puncture a;, j = 1,...,n, and winding s; about each hole c; +r;D,
it =1,...,m. Suppose that one of the following holds.

(1) kj #0 forj=1,...,n.

(2) kj #0 forj=1,...,n—1, and k, = 0.

B)n>3, k=1, k=—-1,k;=0forj=3,...,n, ands; =0 fori=1,...,m.
4)n>3, kh==x1,kj=0forj=2,....,n,ands; =0 fori=1,...,m.
B)n>2,kj=0forj=1,...,n,ands; =0 fori=1,...,m.

(6)

6) n>2,m=1,k;=0forj=1,...,n, and s; = £1.

Then the given homotopy class contains an embedding X — C x C*.

Proof. Let Y = C\{ay,...,an,bo,b1,...,by,c1,...,Cn}, where the points b; are defined
as in the proof of Theorem 5. We also define X as in the proof of Theorem 5.

In case (1), Theorem 2 gives an embedding ¢ = (id |y, g) : ¥ — C x C* with winding
k; # 0 at each a;, 7 = 1,...,n, winding —1 at by, ...,b,,, and winding s; + 1 at each
¢i, i =1,...,m. By the same procedure as in the proof of Theorem 5 we can modify g
to ensure that ¢(0X) satisfies the C*-nice projection property. Applying Theorem 4 to
Y| gives the desired embedding X — C x C*. Case (2) follows analogously.

For case (3), let ¢ : X — C x C* be given by

(z) = ((z =d)/(z —az) -+ (z = an)(z = bo) -+ (2 = b), (2 — 1) /(2 — a2)) ,

where d € C\ D. The second component of 1 is an injective immersion, and 1) is an
embedding of the bordered Riemann surface X in the given homotopy class. As in the
proof of Theorem 5, we choose d to lie off the real lines joining each pair b; # b;, and
with |d| large. Then 1(0X) has the C-nice projection property, and Theorem 4 gives
the desired embedding X — C x C*. Case (4) is handled similarly, taking

W(z) = ((z = d)/(z = az) - (2 = @) (z = bo) -+ (2 = bua), (2 — ) ™),

while in case (5) we take

(z) = ((z =d)/(z = a1) -~ (z = an)(z = bo) -+ (2 = bmn), 2 = 2).
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In each case, a generic choice of large d ensures that 1)(9.X) satisfies the C-nice projection
property.
Finally, in case (6), let

Y(z)=(1/(z—a1) (2 — an), (2 — bl)il(z - bo)qﬂ) :
Then ¢ : X — C x C* is an embedding in the given homotopy class, and (90X ) satisfies
the C*-nice projection property, with one boundary curve going to 0 while the other goes
to oo. [

If we temporarily ignore the homotopy classes of our embeddings, we have the fol-
lowing immediate corollary of Theorems 2 and 6.

Corollary 7. Fvery finitely connected planar domain embeds into C x C*.

Using the procedure in the proof of Theorem 4 it is clear that a general solution to
the embedding problem for finitely punctured planes would give a strong Oka principle
for embeddings of every finitely connected planar domain into C x C*. While such a
result is currently out of reach, we have the following corollaries of Theorem 6 giving
new situations in which a strong Oka principle for embeddings does indeed hold.

Corollary 8. Let X be an open disc with either one or two punctures. Then every
homotopy class of continuous maps X — C x C* contains an embedding.

Corollary 9. Let X be a punctured circular domain with a single puncture. Then every
homotopy class of continuous maps X — C x C* contains an embedding.

4. ON A NULL-HOMOTOPIC EMBEDDING OF C* INTO C x C*

As discussed in Section 2, while it is trivial to find an embedding C* — C x C* in any
non-null homotopy class, the question of the existence of a null-homotopic embedding
C* — C x C* is surprisingly difficult. We present here some partial results towards
answering this question.

We begin by presenting a few explicitly defined maps that have some, but not all,
of the properties of a null-homotopic embedding of C* into C x C*. Note that a map
C* — C x C* is null-homotopic if and only if it factors through the map id x exp :
C x C — C x C*, that is, if it has the form (f,e9) for some f,g € O(C*).

Example. (a) The map C* — C x C*, z + (2 + 1/z,€™), is a null-homotopic proper
immersion that identifies the points

—k—Vk*+1 and k—VEk?2+1
and the points

—k+Vk?+1 and E+VE2+1

for each k € N, and is otherwise injective. It induces a null-homotopic embedding of C*
into C x C* with each point of an infinite discrete set blown up.

(b) The map C* — C x C*, z — (€7, ¢%*), is a null-homotopic injective immersion
that fails to be proper both at 0 and co. The same formula defines an embedding of C
into C* x C*.

(c) The map C* — C x C*, z + (z,e'/?), is a null-homotopic injective immersion
that is proper at oo but not at 0. The same formula defines an embedding of C* into
Cr x C~.
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The following results show that the first component of a null-homotopic holomorphic
injection of C* into C x C* cannot have any symmetries and cannot be proper, that is,
cannot have a pole at both 0 and oc.

Theorem 10. Let (f,e9) : C* — C x C* be a holomorphic injection. If o : C* — C* is
holomorphic and f oo = f, then o = idc-.

Proof. If z € C*, then f(0(2)) = f(2), so if 0(2) # z, then e9(7¢) £ ¢9() 50 g(o(2)) —
g(z) € C\ 2miZ. Hence the holomorphic function z — g(o(z)) — g(2) on C* takes values
in C\ 2miZ*, so it is constant, say c. If ¢ =0, then o = id¢+. So suppose ¢ € C \ 27miZ.
Then ¢ has no fixed points.

If 0(2) = o(w), then

and

9(z) + c=g(0(2)) = g(o(w)) = g(w) + ¢,
so g(2) = g(w), and z = w. Thus o is injective. Since o is also surjective by Picard’s
little theorem, o is an automorphism of C*. Since ¢ has no fixed points, o(z) = az for
some a € C*, a # 1.

If |a| # 1, then f is constant by Liouville’s theorem. If |a| = 1 and «a is not a root of
unity, so {a" : n € Z} is dense in the circle, then f is constant by the identity theorem.
But then €9 : C* — C* is injective, which is absurd.

It follows that a is a k-th root of unity for some k£ > 1, so

9(2) = g(a*z) = g(0"(2)) = g(2) + ke
and ¢ = 0, contradicting the assumption that ¢ € C\ 2miZ. Thus ¢ = idc-. O

Theorem 11. Let (f,e9) : C* — C x C* be a holomorphic injection. Then f is not
proper.

Proof. Since e? is not injective, f is not constant. Let X be the pullback of f by itself,
that is, the 1-dimensional subvariety of C* x C* defined by the equation f(x) = f(y).
Consider the holomorphic function G : X — C\ 2miZ*, (x,y) — g(x) — g(y). It is zero
only on the diagonal A C X.

Suppose f is proper. Then f is rational, so X is an affine algebraic curve and G is
constant on each connected component of X. Hence, A is a connected component of
X. We have X # A, for otherwise f would be injective and therefore could not have a
pole at both 0 and oc.

Let Y be a connected component of X \ A. Since Y N A = &, Y is not the line
C* x {a} or {a} x C* for any a € C*, so each of the two projections Y — C* has cofinite
image. Thus there are points (x,y) and (2/,¢') in Y with y = 2/. Then (z,9') € X and
G(z,y') = G(x,y) + G(2',y'). This shows that the finite set G(X \ A) C C* is closed
under multiplication by 2, which is absurd. |

The following corollary is immediate.

Corollary 12. Let (f,e?) : C* — C x C* be a proper holomorphic injection. Then f
has an essential singularity at O or oco.
13
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