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Abstract. We prove a parametric Oka principle for equivariant sections of a holo-

morphic fibre bundle E with a structure group bundle G on a reduced Stein space X,

such that the fibre of E is a homogeneous space of the fibre of G , with the complexi-

fication KC of a compact real Lie group K acting on X, G , and E. Our main result

is that the inclusion of the space of KC-equivariant holomorphic sections of E over X

into the space of K-equivariant continuous sections is a weak homotopy equivalence.

The result has a wide scope; we describe several diverse special cases. We use the

result to strengthen Heinzner and Kutzschebauch’s classification of equivariant princi-

pal bundles, and to strengthen an Oka principle for equivariant isomorphisms proved

by us in a previous paper.
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1. Introduction

Let X and E be complex spaces and E → X be a holomorphically locally trivial fibre

bundle with fibre F (in this paper, all complex spaces are assumed to be reduced).

Take the structure group of E to be a complex Lie subgroup G of the biholomorphism

group of F , so E is defined by a holomorphic cocycle with respect to some open cover

of X with values in G. We call E a holomorphic G-bundle. The same cocycle defines

a holomorphic principal G-bundle P such that E may be identified with the twisted

product P ×G F , where we take G to act on P from the right and on F from the left.

Let L be a complex Lie group. Our first main goal is to prove a parametric Oka

principle for equivariant sections of E, when L acts holomorphically on X and E, so

that the projection E → X is equivariant. For this to be possible, we need to add four

assumptions to the very general hypotheses that we have stated so far:

(1) X is Stein. This is a necessary assumption in Oka theory.

(2) G acts transitively on F (so F is a complex homogeneous space, in particu-

lar smooth). This assumption strengthens the relationship between E and P .

Namely, E may be identified with the quotient bundle P/H, where H is a closed

complex Lie subgroup of G, such that F is biholomorphic to the quotient G/H

of left cosets.

(3) L is reductive, that is, L is the complexification KC of a compact real Lie group

K. This assumption ensures a good structure theory for holomorphic actions of

L on X, similar to the structure theory of continuous actions of K.

(4) We need to suitably restrict the way that L acts on E, so as to take the G-

structure into account.

Assumption (4) requires some discussion. An action of a group on an object is a

homomorphism from the group into the automorphism group of the object. We want

to allow the largest possible group of automorphisms of E, so as to have the strongest

possible theorem. It is important to be able to use the theory of principal bundles, so

we want the action on E to lift to an action on P . Thus we ask: What is the biggest

group of automorphisms of P that we can reasonably work with?

The simplest and most commonly studied automorphisms of P
π→ X are the G-

bundle maps, that is, pairs of maps ϕ : P → P and f : X → X such that f ◦ π = π ◦ϕ
and ϕ is G-equivariant. So we could have a left action of L on P commuting with the

right action of G. Such an action descends to E. A more general action is obtained

by twisting by a homomorphism from L into the automorphism group of G. Such an

action descends to E if the automorphisms of G in the image of L preserve H.

An even more general action is obtained by considering P to have the trivial group

bundle G = X ×G→ X as its structure group bundle and twisting by an action of L

on G . More precisely, we choose a complex Lie subgroup A of the Lie automorphism

group of G as the structure group of G and allow L to act on G by automorphisms of

G that act on the fibres of G by elements of A. Now the allowable automorphisms of P

consist of compatible maps ϕ : P → P and f : X → X such that for all x ∈ X, p ∈ Px,
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and g ∈ G,

ϕ(p · g) = ϕ(p) · αx(g) ∈ Pf(x),

where αx : Gx → Gf(x) is a group isomorphism obtained by restricting an automorphism

of G . In other words, the right action map P × G = P ×X G → P is L-equivariant.

The action descends to E if A preserves H.

We want to allow such actions, so we might as well take P to be a generalised prin-

cipal bundle with an arbitrary structure group bundle G . Another reason to do so is

that our second main goal is to strengthen the classification theorem for principal

G -bundles with an L-action due to Heinzner and Kutzschebauch [HK95]. Generalised

principal bundles arise naturally, even if one is only interested in ordinary principal

bundles. If P1 and P2 are ordinary principal G-bundles, then the automorphism bundle

AutP2 is a group bundle with fibre G, typically nontrivial, and the bundle of isomor-

phisms Iso(P1, P2) is naturally viewed as a principal bundle with structure group bundle

AutP2. Therefore, if we are interested in the classification theory of ordinary principal

bundles, we need to study sections of generalised principal bundles, so we might as well

work in the context of generalised principal bundles from the outset.

Our setting, then, is as follows. Let X be a reduced Stein space. Let G be a complex

Lie group and G be a holomorphic group bundle on X with fibre G. By definition, G is

defined by a holomorphic cocycle with respect to some open cover of X with values in a

complex Lie subgroup A of the Lie automorphism group of G. We call A the structure

group of G and we call G a holomorphic group A-bundle. Let H be a holomorphic

group subbundle of G , whose fibre is a closed subgroup H of G, so G may in fact be

defined by a holomorphic cocycle with values in the group of Lie automorphisms of G

that preserve H. Thus we assume that A preserves H.

Let P be a holomorphic principal bundle on X with structure group bundle G acting

from the right—we call P a principal G -bundle—and let E be the quotient bundle P/H .

Then E is a holomorphic fibre bundle on X with fibre G/H (left cosets) and structure

group bundle G acting on the fibre from the left. Each fibre of G acts transitively on the

fibre of E. We call E a homogeneous G -bundle. The principal bundle P is defined by a

holomorphic G -valued cocycle, which tells us how to form P by glueing together pieces

of G over an open cover of X. The same cocycle encodes how E may be constructed

from the quotient bundle G /H (left cosets). Note that the action of G on P need not

descend to an action on E (right multiplication does not respect left cosets).

Recall that complexification defines a bijection from compact real Lie groups to

reductive complex Lie groups. Let K be a compact real Lie group with complexification

KC. Let KC act holomorphically on X, and holomorphically and compatibly on G by

group A-bundle maps (which preserve H ). This means that KC acts on the fibres of

G by elements of A, which makes sense because each fibre of G is canonically identified

with G modulo A. Let KC also act holomorphically and compatibly on P such that the

action map P ×X G → P is KC-equivariant. We call P with such an action a principal

KC-G -bundle. The action of KC on P descends to an action on E. We summarise all

the above data by referring to E as a homogeneous KC-G -bundle.
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Viewed as a holomorphic fibre bundle with fibre G, the bundle P can be taken to

have structure group AnG. Equivariance of the action map P ×X G → P is equivalent

to KC acting on P by A n G-bundle maps, meaning that KC acts on the fibres of P

by elements of A n G. If P ′ is another holomorphic principal KC-G -bundle, then the

holomorphic group bundle AutP with fibre G and the holomorphic principal bundle

Iso(P ′, P ) with fibre G and structure group bundle AutP have induced structure groups

that are complex Lie groups and they have induced KC-actions by elements of the

respective structure group that make the action map Iso(P ′, P )×X AutP → Iso(P ′, P )

equivariant.

The following equivariant parametric Oka principle is our main result.

Theorem 1.1. Let E be a homogeneous holomorphic KC-G -bundle on a reduced Stein

space X, where K is a compact real Lie group and G is a holomorphic group KC-bundle

on X. Then the inclusion of the space of KC-equivariant holomorphic sections of E over

X into the space of K-equivariant continuous sections is a weak homotopy equivalence.

The spaces of sections are endowed with the compact-open topology.

Let us mention three special cases of the theorem. First, the theorem holds when

E is a holomorphic principal KC-G -bundle. This is in fact rather easy to prove from

known results (see Remark 3.2); the general case of a homogeneous bundle requires

much more work.

Next, we state the special case when the source and the target are “uncoupled”. This

is a parametric Oka principle for equivariant maps from a Stein KC-space to a complex

homogeneous space G/H with a holomorphic KC-action of a fairly general kind. Again,

let the complexification KC of a compact real Lie group K act holomorphically on a

reduced Stein space X. Let G be a complex Lie group and H be a closed complex

subgroup of G. Let KC act holomorphically on G in two ways: by Lie group automor-

phisms that preserve H (call G with this action G1), and by biholomorphisms (call G

with this action G2), such that the multiplication map G2 × G1 → G2 is equivariant.

Then the second action descends to G/H (left cosets). Equivariance of the multiplica-

tion map implies that each element of KC acts on G2 by a Lie group automorphism of

G that preserves H, followed by left multiplication by an element of G.

Corollary 1.2. The inclusion of the space of KC-equivariant holomorphic maps X →
G/H into the space of K-equivariant continuous maps is a weak homotopy equivalence.

There are many interesting special cases of this corollary. Let us mention a few.

• G is reductive and acts on itself by left multiplication (with H trivial).

• H is reductive and acts on G/H by left multiplication. The geometry of such

actions can be very complicated. This is an active area of study in its own right.

As an example, take H = SO(n,C) to be the subgroup of G = SL(n,C) fixed by

the holomorphic involution A 7→ (A−1)t. Then G/H is the space of symmetric

bilinear forms on Cn of discriminant 1.

• The first and second actions are the same. For example, G is reductive and acts

on itself by conjugation (with H trivial).
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• The first action is conjugation by elements of the normaliser NG(H), and the

second action is of the form k · gH = gk−1H = gHk−1.

Finally, we state the special case of no action.

Corollary 1.3. Let G be a holomorphic group bundle on a reduced Stein space X, and

let E be a homogeneous holomorphic G -bundle on X. Then the inclusion of the space

of holomorphic sections of E over X into the space of continuous sections is a weak

homotopy equivalence.

This corollary generalises a theorem of Ramspott [Ram65, Satz, p. 236], which states

that the inclusion induces a bijection of path components (for a bundle E with a trivial

structure group bundle). When E is a principal bundle (again, with a trivial structure

group bundle), the corollary is implicit in work of Forster and Ramspott [FR66], and

may perhaps be said to be implicit also in the earlier work of Grauert [Gra57] and Cartan

[Car58]. Today the corollary follows from more general results of modern Gromov-style

Oka theory, for example [For11, Corollary 5.4.8].

Arguing as in [Lár04, Section 16], we can prove the following purely homotopy-

theoretic consequence of Theorem 1.1 (conversely, the corollary obviously implies the

theorem). We denote the spaces of K-equivariant holomorphic and continuous sections

of E over X by ΓO(E)K and ΓC (E)K , respectively. Note that for holomorphic sections,

K-equivariance and KC-equivariance are equivalent.

Corollary 1.4. With the same assumptions as in Theorem 1.1, if A is a subcomplex

of a CW complex B, and f : A→ ΓO(E)K is continuous, then the inclusion

{extensions B → ΓO(E)Kof f} ↪→ {extensions B → ΓC (E)Kof f}

is a weak homotopy equivalence.

Equivariant Oka theory started with the 1995 paper of Heinzner and Kutzschebauch

[HK95]. The present paper and our previous paper [KLS15] rely heavily on [HK95].

As a corollary of Theorem 1.1, we obtain the following strengthening of Heinzner and

Kutzschebauch’s main result on the classification of principal bundles with a group

action (Theorem 2.3 below). We describe the relationship between Theorems 1.1 and

1.5 at the end of Section 2.

Theorem 1.5. Let the complexification KC of a compact real Lie group K act holo-

morphically on a reduced Stein space X and on a holomorphic group bundle G on X.

Let P1 and P2 be holomorphic principal KC-G -bundles on X.

Every continuous K-isomorphism P1 → P2 can be deformed through such isomor-

phisms to a holomorphic K-isomorphism. In fact, the inclusion of the space of holo-

morphic K-isomorphisms P1 → P2 into the space of continuous K-isomorphisms is a

weak homotopy equivalence.

In the next section, we present the basic results that we need on generalised principal

bundles: a topological equivariant local triviality theorem (Theorem 2.5) and a homo-

topy invariance theorem (Theorem 2.6). We also review the results that we need from
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[HK95]. Section 3 consists of proofs. In Section 4, we use Theorem 1.1 to strengthen

an Oka principle for equivariant isomorphisms from [KLS15].

Acknowledgement. We thank Michael Murray for help with the theory of generalised

principal bundles.

2. Preliminaries

As in the introduction, let X be a reduced Stein space and G be a holomorphic group

bundle on X, and let K be a compact Lie group with complexification KC that acts

holomorphically on X and G . Let π : X → X//KC denote the categorical quotient

map. (Here, the complexification XC in [HK95] is the same as X.)

To every real-analytic K-invariant strictly plurisubharmonic exhaustion function on

X (such functions exist) is associated a real-analytic subvariety R of X called a Kempf-

Ness set. It consists of precisely one K-orbit in every closed KC-orbit in X. Indeed,

the inclusion R ↪→ X induces a homeomorphism R/K → X//KC, where the orbit space

R/K carries the quotient topology. The following result, in its original form, is due to

Neeman [Nee85]; see also [Sch89] and [HH94].

Theorem 2.1. [HK95, p. 341] There is a real-analytic K-invariant strictly plurisubhar-

monic exhaustion function on X, whose Kempf-Ness set R is a K-equivariant contin-

uous strong deformation retract of X, such that the deformation preserves the closure

of each KC-orbit.

In the following, we take R to be a Kempf-Ness set as in this theorem.

Let C be a compact Hausdorff space and N ⊂ H be closed subsets of C, such that

N is a strong deformation retract of C. We define a sheaf Q(R) of topological groups

on X//KC as follows. For each open subset V of X//KC, the group Q(R)(V ) consists

of all K-equivariant NHC-sections of G over W = (π−1(V )×H)∪ ((π−1(V )∩R)×C).

By an NHC-section of G over W , we mean a continuous map s : W → G such that:

• for every c ∈ C, the map s(·, c) is a continuous section of G over π−1(V ) ∩R,

• for every c ∈ H, s(·, c) is a holomorphic section of G over π−1(V ),

• for every c ∈ N , s(·, c) is the identity section of G over π−1(V ).

The topology on Q(R)(V ) is the compact-open topology.

The main technical result of [HK95] is the following.

Theorem 2.2. [HK95, p. 324]

(a) The topological group Q(R)(X//KC) is path connected.

(b) If U is Runge in X//KC, then the image of Q(R)(X//KC) in Q(R)(U) is dense.

(c) H1(X//KC,Q(R)) = 0.

Next we state Heinzner and Kutzschebauch’s main result on the classification of

principal K-G -bundles (called G -principal K-bundles in [HK95]).
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Theorem 2.3. [HK95, p. 341, 345] (a) Every topological principal K-G -bundle on X

is topologically K-isomorphic to a holomorphic principal KC-G -bundle on X.

(b) Let P1 and P2 be holomorphic principal KC-G -bundles on X. Let c be a con-

tinuous K-equivariant section of Iso(P1, P2) over R. Then there exists a homotopy

of continuous K-equivariant sections γ(t), t ∈ [0, 1], of Iso(P1, P2) over R such that

γ(0) = c and γ(1) extends to a holomorphic K-equivariant isomorphism from P1 to P2.

In [HK95], part (a) is only proved in the case of the structure group bundle G being

a product bundle X × G → X with a diagonal action of KC. This is precisely the

special case of ordinary principal bundles. On the other hand, both parts (a) and (b)

are proved under the weaker assumption that only the compact group K acts on the

Stein space X, not the complexification KC. In this sense, part (b) is more general

in [HK95]. Concerning part (a), the reason for the the restriction to a product group

bundle with a diagonal K-action was that it was not known whether a general group

K-bundle on a Stein K-space must extend to a KC-bundle on XC. If one assumes, as

we do in the present paper, that the group bundle G lives on a Stein KC-space and has

a KC-action, then the proof of part (a) in [HK95] applies verbatim and yields part (a)

as stated here.

A key to the proof of Theorem 2.3(a), as well as the proof of our Theorem 1.1, is

a topological equivariant local triviality theorem, claimed in [HK95, Remark, p. 343].

Because of its importance we give a detailed proof in Section 3. Before stating the

theorem we briefly recall some basic notions of the theory of transformation groups.

Let a compact Lie group K act continuously on a topological space X. A slice at a

point x ∈ X with stabiliser Kx is a locally closed Kx-invariant subset S of X containing

x, such that the K-equivariant map K ×Kx S → X, [k, s] 7→ ks, is a homeomorphism

onto a K-invariant neighbourhood of the orbit Kx of x. The map or its image, the

neighbourhood KS ' K ×Kx S, is then called a tube about Kx.

The classical topological slice theorem states that if X is completely regular, then

there is a slice at each point of X. There is also a slice theorem in the smooth category

such that S is Kx-diffeomorphic to a Kx-module, namely TxX/TxKx. And in the

holomorphic category, there is a slice theorem for actions of a reductive complex Lie

group on a Stein space (see [Sno82], [Hei91, §5.5, §6.3], [HK95, p. 331]).

The setting of the holomorphic slice theorem is as follows. Let the complexification

KC of a compact Lie group K act holomorphically on a Stein space X with categorial

quotient π : X → X//KC. Let x be a point in a Kempf-Ness set R with stabiliser LC,

where L = Kx. Let V = TxX/TxK
Cx be the normal space to the orbit KCx at x. It is

an LC-module. With respect to the identification KC/LC ' KCx, the normal bundle

N of KCx in X is isomorphic to KC ×LC
V .

Theorem 2.4. There is a KC-invariant Stein neighbourhood U of the orbit KCx in X,

KC-equivariantly biholomorphic to a subvariety A of a neighbourhood of the zero section

of N . The embedding ι : U → N maps KCx biholomorphically onto the zero section of

N . Moreover, U can be chosen so that the following hold.
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(i) U is saturated with respect to π.

(ii) There are arbitrarily small L-invariant neighbourhoods D of the origin in V with

D ∩ A ⊂ ι(U), such that if we identify D ∩ A with a locally closed L-invariant

subvariety of X through x, then KC(D ∩ A) is saturated with respect to π.

(iii) Every L-equivariant holomorphic map from D ∩ A into a complex KC-space Y

extends uniquely to a KC-equivariant holomorphic map KC(D ∩ A)→ Y .

A locally closed L-invariant subvariety of X through x ∈ R with the above properties

of D∩A is called a slice at x in X, or a Luna slice (to acknowledge the earlier, algebraic

version of the theorem due to Luna [Lun73]; in the literature, this name is sometimes

attached to LC(D ∩ A)).

A K-bundle E on X with fibre F is equivariantly locally trivial if it has the simplest

local structure that we can reasonably expect, namely, locally over X, E is induced from

a trivial bundle with a diagonal action. More precisely, every point x in X has a slice S

such that the restriction of E to the tube KS is K-equivariantly homeomorphic to the

K-bundle K×Kx (S×F )→ K×Kx S, where Kx acts diagonally on S×F . Topological

equivariant local triviality does not always hold. In our theorem, the hypotheses that

make it true are complex-analytic. Note that in the parameter space Y , on which K

acts trivially, a slice at a point is simply a neighbourhood of the point.

Theorem 2.5. Let a compact Lie group K act continuously on a Stein space X by

biholomorphisms. (The action K ×X → X is then automatically real-analytic.) Let Y

be a topological space with a trivial K-action. Let E → X×Y be a locally trivial bundle,

whose fibre F is a complex manifold and whose structure group is a Lie subgroup B of

the biholomorphism group of F . Let K act continuously on E by B-bundle maps.

Then E is K-equivariantly locally trivial in the following sense. Let x ∈ X have

stabiliser L = Kx, let S be a slice for the K-action at x, and let y ∈ Y . There is a

neighbourhood V of y in Y such that after possibly shrinking S, the restriction of E to

the K-invariant neighbourhood KS × V of (x, y) is K-equivariantly homeomorphic to

the K-bundle

K ×L ((S × V )× F )→ K ×L (S × V ),

where L acts diagonally on (S × V )× F . If Y is a cube, then we can take V = Y .

Theorem 2.5 allows us to prove a homotopy invariance theorem. Such a theorem is

well known and fundamental in the theory of ordinary principal bundles, but, to our

knowledge, does not exist in the literature for generalised principal bundles. We give a

proof in Section 3.

Let X be a space and E be a bundle of some kind on X×I, where I = [0, 1]. We say

that E is isomorphic to a constant bundle if E is isomorphic, in the relevant category,

to the bundle p∗E, where p : X×I → X×I, (x, t) 7→ (x, 0). Then the bundles E|X×{t},
t ∈ I, viewed as bundles on X, are mutually isomorphic.

Theorem 2.6. Let a compact Lie group K act real-analytically on a Stein space X by

biholomorphisms, and trivially on I. Let G be a complex Lie group and G be a topological
8



group bundle on X × I with fibre G, whose structure group A is a Lie subgroup of the

Lie automorphism group of G. Let K act continuously on G by group A-bundle maps.

(a) Then G is isomorphic to a constant bundle.

(b) Let P be a topological principal K-G -bundle on X × I. (It is implicit that the

action map P×XG → P is K-equivariant.) By (a), we may take G to be constant. Then

P is isomorphic to a constant bundle. Hence, once we identify the bundles G |X×{t},
t ∈ I, with a topological group K-bundle G0 on X, the topological principal K-G0-

bundles P |X×{t}, t ∈ I, are mutually isomorphic.

Finally, we use the theorem to prove the following useful result.

Proposition 2.7. Let a compact Lie group K act real-analytically on a Stein space X

by biholomorphisms. Let G be a complex Lie group and G be a topological group bundle

on X with fibre G, whose structure group A is a Lie subgroup of the Lie automorphism

group of G. Let K act continuously on G by group A-bundle maps.

Let E be a topological K-G -bundle on X (not necessarily homogeneous). The re-

striction map from the space of continuous K-sections of E over X to the space of

continuous K-sections of E over R is a homotopy equivalence.

Proof. Let ρ : X → R be a strong deformation retraction and ι : R → X be the

inclusion. Let ϕ : X × I → X be a homotopy from idX to ι ◦ ρ relative to R. Let

P be the principal K-G -bundle associated to E. Theorem 2.6 applied to the principal

bundle ϕ∗P shows that the bundles P and ϕ∗ι∗P are K-isomorphic, so E and ϕ∗ι∗E

are K-isomorphic as well. Then we replace E by ϕ∗ι∗E, note that a section of the latter

is nothing but a lifting of ρ by the projection ι∗E → R, and use ϕ to show that the

maps ι∗ and ρ∗ between the space of liftings and the space of sections of ι∗E = E|R are

homotopy inverse to each other. �

The relationship between Theorems 1.1 and 1.5 is as follows. First we use Proposi-

tion 2.7 with E = Iso(P1, P2) to obtain the first statement of Theorem 1.5 from Theorem

2.3(b). This is used in the first part of the proof of Theorem 1.1. The second part of

the proof of Theorem 1.1 then yields the second statement of Theorem 1.5. Theorem

2.2 is a crucial ingredient in the second part of the proof of Theorem 1.1.

3. Proofs of the main theorems

This section contains the proofs of Theorems 1.1, 2.5, and 2.6.

3.1. Proof of the equivariant parametric Oka principle (Theorem 1.1). First

we prove that the inclusion ΓO(E)K ↪→ ΓC (E)K induces a surjection of path com-

ponents. Let P be the holomorphic principal KC-G -bundle associated to E. Take

a continuous K-section s of E over X. The preimage in P of its image in E is a

topological principal K-H -subbundle Q of P . We have a topological K-isomorphism

σ : Q×H G → P . By Theorem 2.3(a), Q is topologically K-isomorphic to a holomor-

phic principal KC-H -bundle Q′. Choose a topological K-isomorphism Q′ → Q and let

τ : Q′ ×H G → Q×H G be the induced isomorphism.
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By Theorem 2.3(b) and Proposition 2.7, the topological K-isomorphism σ ◦ τ :

Q′ ×H G → P can be deformed to a holomorphic K-isomorphism over X. Applying

the deformation to Q′, viewed as a subbundle of Q′ ×H G , gives a deformation of Q

through topological principal K-H -subbundles of P to a holomorphic principal KC-H -

subbundle. Pushing down to E yields a deformation of s through continuous K-sections

of E to a holomorphic section.

Now let B be the closed unit ball in Rk, k ≥ 1, and let α0 : B → ΓC (E)K be

a continuous map taking the boundary sphere ∂B into ΓO(E)K . Choose a base point

b0 ∈ ∂B. We shall prove that there is a deformation α : B×I → ΓC (E)K of α0 = α(·, 0)

with αt(b0) = α0(b0) and αt(∂B) ⊂ ΓO(E)K for all t ∈ I, and α1(B) ⊂ ΓO(E)K . This

implies that the inclusion ΓO(E)K ↪→ ΓC (E)K induces a πk−1-monomorphism and a

πk-epimorphism.

Consider the holomorphic group KC-bundle AutP of principal G -bundle automor-

phisms of P . We seek a global K-equivariant NHC-section γ0 of AutP (with C = B,

H = ∂B, N = {b0}) such that for every b ∈ B, γ0(b), by its left action on E, maps

α0(b0) to α0(b), over X if b ∈ ∂B but only over R if b ∈ B \ ∂B.

Claim. On a sufficiently small saturated neighbourhood of each point of X, that is,

locally over X//KC, such an NHC-section exists.

We will accept the claim for the moment, complete the proof of the theorem, and

then prove the claim.

On the intersection of two such saturated neighbourhoods, two such NHC-sections

differ by a K-equivariant NHC-section of the holomorphic group KC-bundle A of

principal G -bundle automorphisms of P that fix α0(b0). Gluing these local NHC-

sections together to produce γ0 amounts to splitting a cocycle, and the cocycle does

split by Theorem 2.2(c) applied to A .

By Theorem 2.2(a) applied to AutP , we can deform γ0 through K-equivariant

NHC-sections γt of AutP , t ∈ I, to the identity section. Let αt(b) be the section of

E obtained by letting γt(b) act on α0(b0). For b ∈ B \ ∂B and t ∈ (0, 1), αt(b) is only

defined over R. Thus we have a deformation α : B×I → ΓC (E|R)K , such that α factors

through ΓC (E)K on B ×{0} and through ΓO(E)K on ∂B × I ∪B ×{1}, in such a way

that αt(b0) is fixed and α1 takes all of B to α0(b0).

We could finish the proof by showing that the following commuting square has a

continuous lifting. We have renamed the spaces for convenience.

A0 = ∂B × I ∪B × {0, 1}
β //

j

��

ΓC (E)K = Y

p

��

A = B × I α //

44iiiiiiiii
ΓC (E|R)K = Z

In fact, it suffices to show that α can be deformed, keeping β fixed and the square

commuting, until a lifting exists.
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As the inclusion of a subpolyhedron in a polyhedron, j is a cofibration. The pre-

composition maps

j∗Y : C (A, Y )→ C (A0, Y ), j∗Z : C (A,Z)→ C (A0, Z)

are Hurewicz fibrations [Str68, Theorem 10]. Since the restriction map p is a homotopy

equivalence by Proposition 2.7, the postcomposition maps

p∗ : C (A, Y )→ C (A,Z), p∗ : C (A0, Y )→ C (A0, Z)

are homotopy equivalences. Consider the fibres FY = (j∗Y )−1(β) and FZ = (j∗Z)−1(p◦β).

By the long exact sequence of homotopy groups for a fibration, the map p∗ : FY → FZ is

a weak homotopy equivalence; in particular it induces a surjection of path components.

Hence, α ∈ FZ can be deformed within FZ to a map in p∗(FY ), q.e.d.

We now turn to the proof of the claim. We want a lifting in the following diagram

locally over each point in the categorical quotient Q = X//KC,

AutP

��
B ×X

α0

//

88pppppp
E = P/H

where the vertical map γ 7→ γα0(b0) uses the action of AutP on E. Since α0(b0) is a

holomorphic KC-equivariant section, the map is KC-equivariant. In fact, AutP → E

is a locally trivial holomorphic KC-bundle with fibre H.

Let us describe our aim more explicitly. Recall that we chose a real-analytic K-

invariant strictly plurisubharmonic exhaustion function on X, whose Kempf-Ness set R

is a K-equivariant continuous strong deformation retract of X, such that the deforma-

tion preserves the closure of each KC-orbit, so it preserves π−1(q) for each q ∈ Q. Here,

π : X → Q is the categorical quotient map. For each point in Q, we want a neighbour-

hood Ω with a K-equivariant continuous lifting (∂B×π−1(Ω))∪ (B× (π−1(Ω)∩R))→
AutP , which is holomorphic and thus KC-equivariant when restricted to sets of the

form {b}×π−1(Ω), b ∈ ∂B. On {b0}×X, we have a lifting given by the identity section

of AutP , which we wish to keep unchanged.

By pulling back the bundle AutP → E by α0, our problem transforms to finding

a section, local in the above sense, of a topological K-bundle Z over B ×X, which is

a holomorphic KC-bundle when restricted to sets of the form {b} × X, b ∈ ∂B. We

proceed in three steps.

(1) Produce a continuous section σ0 over B × (π−1(Ω) ∩R).

(2) Deform σ0|∂B×(π−1(Ω)∩R) to a section that extends continuously to a section σ1

on ∂B × π−1(Ω) that is holomorphic in the second variable.

(3) Extend σ1 continuously across B × (π−1(Ω) ∩R).

Let q ∈ Q and x0 ∈ π−1(q) ∩ R. Let L = Kx0 be the stabiliser of x0. Let SR be a

topological slice for the K-action on X at x0, that is, SR is a locally closed L-invariant

subset of X containing x0, such that the K-invariant neighbourhood W = KSR of x0

in X is K-equivariantly homeomorphic to K ×L SR. By Theorem 2.5, noting that B
11



is homeomorphic to a cube, we can shrink SR so that the bundle Z is topologically

K-isomorphic to

B × (K ×L (SR × F(b0,x0)))→ B × (K ×L SR),

where the L-action on SR × F(b0,x0) is diagonal. Here, F(b0,x0) is the fibre of Z over

(b0, x0). By the above, we have a K-section over a set containing (b0, x0), which shows

that (b0, x0) is an L-fixed point. Therefore Z has an L-section representing the identity

of AutP in the coordinates given by the chosen trivialisation over B × SR, which by

slice theory can be extended to a continuous K-section σ0 over B×W ' B×(K×LSR).

Over {b0} ×W , σ0 represents the identity section of AutP .

Now [HK95, Corollary 1(i), (ii), p. 329] applied to the K-invariant subset Kx0 of

R provides a neighbourhood Ω of q in Q such that after replacing W by W ∩ π−1(Ω),

we have π−1(Ω) ∩ R = W ∩ R. Hence, W ∩ R is a Kempf-Ness set for π−1(Ω). This

concludes the first step of the proof of the claim.

For the second step we use the proposition below. Here we can replace ∂B by any

compact Hausdorff space T with a trivial KC-action, and assume that we have a topo-

logical KC-bundle Z → T × X that is a holomorphic KC-bundle when restricted to

sets of the form {t} × X. Now X stands for π−1(Ω). The fibre F of Z is a complex

manifold on which KC acts by elements of a complex Lie subgroup of the biholomor-

phism group of F . We have a K-invariant continuous section σ0 over T ×W , where

W is a K-invariant neighbourhood of R. For one point t0 ∈ T , σ0 extends to a global

holomorphic KC-equivariant section over {t0} ×X.

Proposition 3.1. Every point in Q has a neighbourhood Ω with a KC-equivariant

continuous section σ1 : T × π−1(Ω) → Z, holomorphic when restricted to sets of the

form {t} × π−1(Ω), along with a homotopy σs of K-equivariant continuous sections of

Z over T × (π−1(Ω) ∩ R) joining the restrictions of σ0 and σ1 to T × (π−1(Ω) ∩ R).

Moreover, σs = σ0 on {t0} ×X for all s ∈ I.

Proof. Let q ∈ Q and x0 ∈ π−1(q) ∩ R. Let L = Kx0 be the stabiliser of x0. Let SR be

a topological slice for the K-action on X at x0. We also have a Luna slice S at x0.

Note that σ0(t, x0) is an L-fixed point for each t ∈ T . By Proposition 3.4 below, for

each t ∈ T , there is a neighbourhood of σ0(t, x0) in Z, L-homeomorphic (over the bundle

projection) to T0 × V × O, such that the L-homeomorphism restricted to sets of the

form {t}× V is holomorphic. Here, O is an L-neighbourhood of 0 in the tangent space

Tσ0(t,x0)F(t,x0) to the fibre F(t,x0) of the bundle (the fibre is a complex L-manifold), T0

is a neighbourhood of t in T , and V is an L-invariant neighbourhood of x0. Now cover

T by finitely many such Ti occurring in such box coordinates Ti × Vi × Oi. Moreover,

let the first T1 contain our marked point t0 and use box coordinates around the point

t0 (for later keeping the section unaltered there).

By shrinking Vi, we can assume V = Vi to be the same for each box, and since T is

compact we can moreover assume that σ0(t, x) is contained in the box whenever t ∈ Ti
and x ∈ V . Also, we can arrange the finite cover (Ti) of T so that Ti and

⋃i−1
j=1 Tj

12



are separated for all i. (We say that sets A,B are separated if A \B and B \ A are

disjoint.) Moreover, arrange that t0 ∈ T1 \ T i for all i ≥ 2.

We now define a KC-equivariant section σ1, holomorphic in the second variable,

and an L-equivariant homotopy from σ0 to σ1 inductively over
⋃i
j=1 Tj × V (possibly

shrinking V in the process). The homotopy will have the additional property that

σs(t, x0) = σ0(t, x0). On T1, define in box coordinates σ̃1(t, x) = σ0(t0, x), t ∈ T1,

x ∈ V , which is L-equivariant and holomorphic where it should be (here we use the

fact that σ0(t, x) is contained in the box whenever t ∈ T1).

Since Luna slices can be shrunk, we may assume that S ⊂ V ∩W . We can extend

the restriction σ̃1|S to a continuous KC-equivariant section over T1 × KCS, which is

holomorphic when restricted to sets of the form {t}×π−1(Ω) and where KCS = π−1(Ω)

is a saturated neighbourhood of x0. Call the extension σ1. In the box coordinates

associated to T1, we can define a homotopy σs = sσ1 + (1 − s)σ0 over T1 × SR, which

consists of L-equivariant sections since the L-action on Oi is linear. This construction

gives σ̃s(t0, x) = σ0(t0, x) for x ∈ SR, s ∈ I, so the section over the marked point t0 is

not altered.

Assume that the homotopy (call it σi−1
s ) exists on

⋃i−1
j=1 Tj. On Ti, define in box

coordinates σ̃1(t, x) = σ0(t, x0), t ∈ Ti, x ∈ V , which is L-equivariant and holomorphic

where it should be. (Here we use the fact that σ0(t, x0) is contained in the box whenever

t ∈ Ti.) Again using the Luna slice S, we can extend the restriction σ̃1|S to a continuous

KC-equivariant section over Ti × KCS , which is holomorphic when restricted to sets

of the form {t} × π−1(Ω) and where KCS = π−1(Ω) is a saturated neighbourhood of

x0. Call the extension σ̃1. By K-equivariance and since x0 ∈ S, we have σ̃1(t, kx0) =

σ0(t, kx0) for k ∈ K. Moreover, in the box coordinates associated to Ti, we can define

a homotopy σ̃s = sσ̃1 + (1− s)σ0 over Ti × SR, which consists of L-equivariant sections

since the L-action on Oi is linear.

Shrinking V , we can furthermore assume that on Ti ∩
⋃i−1
j=1 Tj, the whole homotopy

σ̃s is in the box coordinates associated to Ti. By separation, there is a continuous

function ξ : T → [0, 1] that equals 1 on
⋃i−1
j=1 Tj \ Ti and equals 0 on Ti \

⋃i−1
j=1 Tj.

The extended homotopy on
⋃i
j=1 Tj is defined by ξ(t)σi−1

s (t, x) + (1− ξ(t))σ̃s(t, x),

where we use the box coordinates associated to Ti, that is, we look at sections as maps

to Oi. Since the action on Oi is linear, the defined homotopy consists of L-equivariant

sections. The same formula defines σ1(t, x) = ξ(t)σi−1
1 (t, x) + (1 − ξ(t))σ̃1(t, x) on⋃i

j=1 Tj × π−1(Ω). We have σ1(t, kx0) = σ0(t, kx0) for k ∈ K. By the additional

assumption on t0, we have ξ(t0) = 1. Therefore the homotopy is still not changed over

t0. After finitely many steps the construction is complete.

The K-invariant neighbourhood π−1(Ω) ∩ W of x0 equals K(π−1(Ω) ∩ SR). By

shrinking Ω, we can therefore assume that the whole homotopy σs(t, z) from σ0(t, z) to

σ1(t, z) is defined for all t ∈ T and z ∈ π−1(Ω) ∩ SR.

This homotopy extends to a K-equivariant homotopy between the restrictions of σ0

and σ1 to π−1(Ω)∩W . Now [HK95, Corollary 1(i), (ii), p. 329] applied to theK-invariant

subset Kx0 of R allows us to shrink W and Ω further, so that π−1(Ω) ∩ R = W ∩ R.

13



In other words, W ∩ R is a Kempf-Ness set for π−1(Ω). Thus we have constructed σ1

as desired, together with a homotopy of K-equivariant continuous sections defined over

T × (W ∩R) connecting the restrictions of σ0 and σ1. �

We now turn to the third and final step of the proof of the claim. We have a contin-

uous section σ1 of the bundle Z over ∂B × π−1(Ω). We wish to extend it continuously

across B× (π−1(Ω)∩R). We know that σ1|∂B×(π−1(Ω)∩R) is homotopic to a section that

extends continuously to B × (π−1(Ω) ∩ R). We need a K-equivariant version of the

deformation-invariance of extendability. For convenience, set M = B × (π−1(Ω) ∩ R)

and N = ∂B×(π−1(Ω)∩R). We need a K-equivariant continuous lifting in the following

square,

(N × I) ∪ (M × {0}) //

j

��

Z|M
p

��
M × I

66mmmmmmm
// M

so we need to show that the inclusion j is an acyclic cofibration and the bundle projec-

tion p is a fibration in the appropriate model structure. By basic equivariant homotopy

theory [MM02, Section III.1], it suffices to observe the following.

• For every closed subgroup L of K,(
(N × I) ∪ (M × {0})

)L
=
(
(∂B × I) ∪ (B × {0})

)
× (π−1(Ω) ∩R)Lyj

(M × I)L = (B × I)× (π−1(Ω) ∩R)L

is a homotopy equivalence. This is obvious.

• j is a relative K-cell complex. Indeed, as a K-invariant real-analytic subvariety

of the complex K-space π−1(Ω), π−1(Ω) ∩ R has a K-equivariant triangulation

[Ill00, Theorem B].

• For every closed subgroup L of K,

(Z|M)L
p−→ML = B × (π−1(Ω) ∩R)L

is locally trivial. Namely, K acts on the fibre of the bundle AutP → E through

a structure group of biholomorphisms. Applying Proposition 3.6 below with T

a singleton and L in place of K, we see that near each point in EL, AutP →
E is L-homeomorphic to a trivial bundle with a diagonal L-action. Hence,

(AutP )L → EL is locally trivial.

The proof of Theorem 1.1 is now complete.

Remark 3.2. The proof of Theorem 1.1 simplifies drastically when E = P is a principal

KC-G -bundle. The first part of the proof of Theorem 1.1 is the same (with H trivial)

and shows that the inclusion ι : ΓO(P )K ↪→ ΓC (P )K induces a surjection of path

components. Let r : ΓC (P )K → ΓC (P |R)K be the restriction map. By Proposition

2.7, r is a homotopy equivalence. Thus it suffices to show that r ◦ ι induces a πk−1-

monomorphism and a πk-epimorphism for every k ≥ 1, for every base point in ΓO(P )K .
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Let B be the closed unit ball in Rk, k ≥ 1, and let α0 : B → ΓC (P |R)K be a

continuous map taking the boundary sphere ∂B into ΓO(P )K (more precisely, α0|∂B
factors through r ◦ ι). Choose a base point b0 ∈ ∂B. It suffices to prove that there is a

deformation α : B × I → ΓC (P |R)K of α0 = α(·, 0), keeping αt(b0) fixed and αt(∂B) in

ΓO(P )K , such that α1 takes all of B into ΓO(P )K .

For every b ∈ B, let γ0(b) be the section of G with

α0(b)(x) = α0(b0)(x) · γ0(b)(x)

for all x ∈ X if b ∈ ∂B, but only for x ∈ R if c ∈ B \ ∂B. Then γ0 is a global

K-equivariant NHC-section of G (with C = B, H = ∂B, N = {b0}). By Theorem

2.2(a), we can deform γ0 through K-equivariant NHC-sections γt of G , t ∈ I, to the

identity section. Now let αt(b) = α0(b0) · γt(b). Then α is as desired; α1 even takes all

of B to α0(b0).

3.2. Proof of the equivariant local triviality theorem (Theorem 2.5). Let K be

a compact Lie group. Let Y be a completely regular space with a continuous K-action,

so the topological slice theorem applies. Let p : E → Y be a topological K-bundle

with a complex manifold F as its fibre. Assume that the structure group A of E is

a complex Lie subgroup of the biholomorphism group of F , and that K acts through

A. Let v0 ∈ E be a K-fixed point. Then y0 = p(v0) ∈ Y is a K-fixed point and

Fy0 = p−1(y0) is a complex K-manifold.

Proposition 3.3. There exists a K-neighbourhood U of v0 in E and a K-neighbourhood

W of v0 in Fy0 such that the K-map p|U : U → p(U) is topologically K-isomorphic to

the K-product bundle p(U)×W → p(U).

Proof. Since the statement is local around v0, we may assume that the bundle E is

topologically trivial, that is, a product bundle U0 × F (but not necessarily with a

diagonal action). Now K acts by a representation ρ : K → GL(V ) on V = Tv0Fy0 , and

there is a K-neighbourhood W of v0 in Fy0 that is K-equivariantly biholomorphic to a

K-neighbourhood D of the origin 0 in V by a biholomorphism α : W → D. Thus in a

K-neighbourhood U of v0 in E, we can consider the map ϕ : U → V with ϕ(v0) = 0

given by

U ↪→ U0 ×W
π2→ W

α→ D ↪→ V.

Since K acts linearly on V , we can average ϕ over the compact group K:

ϕ̃(y, w) =

∫
K

ρ(k)ϕ(k−1(y, w)) dk.

This map is continuous, and when restricted to a fibre {y}×W , it is a holomorphic map

to V . Indeed, by assumption, each k ∈ K maps the fibre over y biholomorphically to

the fibre over ky, so the restriction of the integrand ρ(k)ϕ(k−1(y, w)) is a holomorphic

map from a fibre {y} × W to V . Since holomorphic maps to a vector space form

a Fréchet space, the average ϕ̃ is a holomorphic map from the fibre {y} × W to V .

Moreover the restriction of ϕ̃ to {y0} × W equals the biholomorphism α. Since the

Taylor coefficients of ϕ̃|{y}×W at (y, v0) depend continuously on y, the restriction of ϕ̃
15



to {y} ×W is a local biholomorphism when restricted to fibres in a K-neighbourhood

of v0. After shrinking if necessary, the map (p, ϕ̃) : U → U0×W is a continuous, open,

and injective K-equivariant map, that is, a K-equivariant homeomorphism onto its

image ϕ̃(U) ⊂ U0×D. Going back with α−1 from D to W (and shrinking if necessary)

completes the proof. �

The holomorphic version of Proposition 3.3 is [HK95, Proposition 2, p. 332]. What

we need here is a holomorphic version with continuous dependence on a parameter. Let

X be a Stein space with an action of K by biholomorphisms. Let T be a topological

space with a trivial K-action. Let E
p→ Y = T ×X be a topological K-bundle with a

complex manifold F as its fibre, such that p is a holomorphic K-bundle when restricted

to sets of the form {t}×X. In other words, we have a continuous family of holomorphic

K-bundles over the Stein space X. Here K acts through a complex Lie subgroup A

of the biholomorphism group of F , and E is defined by a cocycle of continuous maps,

each defined on a set of the form T0×V → A, where T0 ⊂ T and V ⊂ X are open, and

holomorphic when restricted to sets of the form {t} × V .

Let v0 ∈ E be a K-fixed point. Then (t0, x0) = p(v0) ∈ Y is a K-fixed point and

F(t0,x0) is a complex K-manifold.

Proposition 3.4. There is a K-neighbourhood U of v0 in E and a K-neighbourhood

W of v0 in F(t0,x0) such that the K-map p|U : U → p(U) = T0 × V is topologically

K-isomorphic to the K-product bundle p(U) × W → p(U), in such a way that the

K-isomorphism restricted to sets of form {t} × V is holomorphic. Here, W is a K-

neighbourhood of 0 in the tangent space Tσ(t0,x0)F(t0,x0), T0 is a neighbourhood of t0 in

T , and V is a K-invariant neighbourhood of x0.

Proof. The proof is similar to the proof of Proposition 3.3. The bundle E is topologically

trivial over a set of the form U0 = T0 × V , that is, it is topologically isomorphic to a

product bundle U0×F , such that the isomorphism is holomorphic over sets of the form

{t}× V . The restriction of ϕ in the earlier proof, not only to a fibre {x}×W , but also

to a set of the form {t} × V ×W is holomorphic. This implies that the averaged map

ϕ̃ on a set of the form V ×W is holomorphic. �

Note that Proposition 3.4 includes [HK95, Proposition 2, p. 332] as the special case

when T is a point.

Corollary 3.5. Let p : E → Y be a topological K-bundle as in Proposition 3.3 and let

v0 ∈ E be a K-fixed point. Then there is a K-invariant neighbourhood U0 of y0 = p(v0)

in X and a K-equivariant continuous section s : U0 → E with s(y0) = v0.

Proof. Take s to be the constant section y 7→ (y, v0) in the local coordinates Ω ×W
provided by Proposition 3.4. �

We turn again to a parametric situation. Let X be a completely regular space with

a continuous K-action (for example a Stein space with a K-action by biholomorphisms)

and let T be a topological space with a trivial K-action. Let E
p→ T×X be a topological
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K-bundle on T ×X with a complex manifold F as its fibre, such that E is defined by

a cocycle of continuous maps into a complex Lie subgroup A of the biholomorphism

group of F , and K acts by elements of A.

Let x ∈ X, let L = Kx be the stabiliser of x, and let S be a local topological slice for

the K-action on X at x. Thus S is an L-invariant subset of X containing x, together

with a K-equivariant homeomorphism U → K×L S from a K-neighbourhood U = KS

of x in X. Then, for each t ∈ T , T × S is a topological slice for the K-action on

T ×X at (t, x). If X is a Stein K-space, a real-analytic slice S can be constructed by

locally K-equivariantly embedding X into a K-module and intersecting a slice for the

linear K-action with X. For each t ∈ T , the fibre F(t,x) is by assumption a complex

L-manifold.

Proposition 3.6. The bundle E is equivariantly locally trivial, that is, each t0 ∈ T

has a neighbourhood T0 in T such that after possibly shrinking S, the restriction of E

to the K-neighbourhood T0 × U of (t0, x), where U = KS, is K-homeomorphic to the

K-bundle

T0 × (K ×L (S × F(t0,x)))→ T0 × (K ×L S),

where the L-action on S × F(t0,x) is diagonal.

Proof. After shrinking S and choosing T0 small enough, we can assume that E is trivial

over T0 × S. The L-action on E|T0×S is given by

L× (T0 × S)× F → (T0 × S)× F, (l, t, s, f) 7→ (t, ls, g(l, t, s)(f)),

where g : L × T0 × S → A is a continuous map satisfying the functional equations

for an action. As already mentioned, F(t0,x) is an L-manifold with the action (l, f) 7→
g(l, t0, x)(f), where g(l, t0, x) defines a group homomorphism L→ A.

Consider the locally trivial bundle of isomorphisms from E|T0×S (with the L-action

already described) to T0 × S × F(t0,x). Both bundles are trivial (but have different L-

actions as described above). The isomorphism bundle is a trivial bundle of the form

(T0 × S)× A and carries an L-action by pre- and postcomposition

l(t, s, z) = (t, ls, g(l, t, s)zg(l−1, t0, x)).

Since ((t0, x), e) is a fixed point (e being the identity element of A), Corollary 3.5

implies that there is a continuous L-section σ(t, s) of the isomorphism bundle, which,

after shrinking, can be assumed to be defined over T0 × S. This section extends to

a continuous K-equivariant section of the K-bundle of isomorphisms from E|T0×U to

T0 × (K ×L (S × F(t0,x))). The extended section gives the desired K-homeomorphism

from E|T0×U to T0 × (K ×L (S × F(t0,x))). �

If T is a cube [0, 1]n, then we can prove local triviality over all of T .

Proposition 3.7. Let x ∈ X and t0 ∈ T = [0, 1]n. After possibly shrinking S, the

restriction of E to the K-neighbourhood T ×KS of (t0, x) is K-homeomorphic to the

K-bundle

T × (K ×L (S × F(t0,x)))→ T × (K ×L S),
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where the L-action on S × F(t0,x) is diagonal.

Proof. We use induction and apply the same argument as in the proof of Lemma 3.9

below. �

Propositions 3.6 and 3.7 now imply Theorem 2.5.

3.3. Proof of the homotopy invariance theorem (Theorem 2.6). Let K be a

compact Lie group which acts continuously on the paracompact Hausdorff space X.

By the topological slice theorem, there is a slice at each point of X. Let G be a group

bundle over X with fibre G and structure group A such that K acts on G by group

A-bundle maps. Recall the definition of equivariant local triviality from Section 2. We

assume that the K-action on G is equivariantly locally trivial. Let K act trivially on

I and let p : P → X × I be a principal K-(G × I)-bundle which is equivariantly locally

trivial. Of course, the action map P ×X×I (G × I)→ P is K-equivariant. Let Pt denote

the restriction of P to X × {t}, t ∈ I. Then Pt is naturally a principal K-G -bundle.

Theorem 3.8. Let K, G , and p : P → X × I be as above. Then the principal K-

(G × I)-bundles P and P1× I are isomorphic. In particular, the principal K-G -bundles

Pt, t ∈ I, are mutually isomorphic.

We say that P is isomorphic to a product on X×[a, b] if P is isomorphic to Q×[a, b],

where Q is a principal K-G -bundle on X.

Lemma 3.9. Suppose that P is isomorphic to a product on X × [0, 1
2
] and X × [1

2
, 1].

Then P is isomorphic to a product on X × I.

Proof. Let Q and Q′ be the bundles on X corresponding to the two product structures.

Then Q and Q′ are isomorphic via a K-equivariant isomorphism ϕ of principal K-G -

bundles. Changing the trivialisation of P on X × [1
2
, 1] by ϕ−1 we can glue the two

product structures to give a product structure for P on X × [0, 1]. �

Proof of Theorem 3.8. Let (x, t) ∈ X × I. Then a slice at (x, t) has the form St × It
where St ⊂ X is an H = Kx-stable neighbourhood of x and It is a neighbourhood of t in

I. Since P is equivariantly locally trivial, we may assume that P |St×It ' P |St×{t} × It.
It follows that P |Ut×It ' P |Ut×{t} × It, where Ut = K ×H St. Now we can cover I

by finitely many Itj such that P is isomorphic to a product on S × Itj for all j, where

S =
⋂
Stj . Using Lemma 3.9, we see that P is isomorphic to a product on (K×HS)×I.

We may also assume that P |S×I ' G |S × I.

We can find a locally finite cover (Uj)j∈J of X by K-invariant open sets of the form

K ×Hj Sj such that we have Hj-isomorphisms P |Sj×I ' G |Sj
× I. Let ρj : X → I be

continuous and K-invariant with support in Uj = KSj and supj ρj(x) = 1 for all x ∈ X.

For each j ∈ J , define fj : G (Sj)×I → G (Sj)×I by fj(g(x), t) = (g(x),max{ρj(x), t}).
Here g(x) is in the fibre of G at x. Then each fj induces an automorphism of G (Sj)×I,

hence an automorphism of P |Sj
× I and an automorphism hj of P |Uj×I .

Pick a total ordering on J and for each y ∈ P define h(y) ∈ P by composing, in

order, the maps hj for the finitely many j such that the first component of p(y) lies
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in Uj. Then h : P → P is continuous since the open cover (Uj) is locally finite. By

construction, the image of h lies in p−1(X × {1}) and h gives the isomorphism of P

with P1 × I. �

Now let G be a group K-bundle over X × I. Then Gt depends upon t ∈ I. Using

the same techniques as above one proves the following result.

Theorem 3.10. Let G be a group K-bundle over X × I. Then G ' G1 × I.

Theorem 2.6 is now a consequence of Theorems 2.5, 3.8, and 3.10.

4. Equivariant isomorphisms

Theorem 1.1 can be used to strengthen one of the main results of our previous paper

[KLS15]. There, we considered generic Stein G-manifolds X and Y that are locally G-

biholomorphic over a common categorical quotient Q, where G is a reductive complex

Lie group. Genericity is defined in [KLS15, p. 194]; as explained in [KLS15, Remark 5],

generic actions really are generic in a reasonable sense. We showed that the obstruction

to X and Y being globally G-biholomorphic over Q is topological and established several

sufficient conditions for it to vanish.

We defined a G-homeomorphism X → X to be special if it is of the form x 7→ γ(x)·x
for some continuous G-map γ : X → G, where G acts on the target G by conjugation;

γ is then unique. We called a G-homeomorphism ψ : X → Y special if for some open

cover (Ui) of Q and G-biholomorphisms ϕi : π−1
X (Ui)→ π−1

Y (Ui) over Ui (meaning that

they descend to the identity map of Ui), the G-homeomorphisms ϕ−1
i ◦ψ of π−1

X (Ui) are

special. Here, πX : X → Q and πY : Y → Q are the quotient maps. Genericity implies

that every G-biholomorphism X → Y over Q is special. In fact, for each open subset

U of Q, there is a bijective correspondence between G-biholomorphisms ψ of π−1
X (U)

over U and holomorphic G-maps γ : π−1
X (U) → G, where G acts on the target G by

conjugation, given by ψ(x) = γ(x) · x [KLS15, Lemma 6]. The definition of a special

K-homeomorphism X → Y , where K is a maximal compact subgroup of G, is evident.

We defined strong G-homeomorphisms in [KLS15, p. 210]. They are holomorphic

and hence algebraic on each fibre. The full definition is somewhat involved, so we shall

not recall it, but it is natural, whereas special G-homeomorphisms only play an auxil-

iary role. One of our Oka principles for equivariant isomorphisms [KLS15, Theorem 22]

states that every strong G-homeomorphism X → Y can be deformed, through strong

G-homeomorphisms, to a special strong G-homeomorphism. We then argued that the

existence of a special G-homeomorphism, or merely a special K-homeomorphism, im-

plies the existence of a G-biholomorphism, without establishing that the former can be

deformed to the latter.

Let G be the holomorphic group G-bundle X×G over X, with G acting on the fibre

G by conjugation. Continuous K-sections and holomorphic G-sections of G correspond

to special K-homeomorphisms and G-biholomorphisms X → X over Q, respectively.

Special K-homeomorphisms and G-biholomorphisms X → Y over Q correspond to
19



continuous K-sections and holomorphic G-sections, respectively, of a certain princi-

pal G-G -bundle that is locally isomorphic to G over Q. Theorem 1.1 now yields the

following result.

Theorem 4.1. Let G be a reductive complex Lie group. Let K be a maximal compact

subgroup of G. Let X and Y be generic Stein G-manifolds, locally G-biholomorphic

over a common quotient Q. Every strong G-homeomorphism X → Y over Q can be

deformed, through K-homeomorphisms over Q, to a G-biholomorphism.

The deformation starts through strong G-homeomorphisms and continues through

special K-homeomorphisms. It is reasonable to conjecture that the inclusion of the

space of G-biholomorphisms into the space of strong G-homeomorphisms is a weak

homotopy equivalence. We leave the consideration of this question for another day.
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[For11] Franc Forstnerič, Stein manifolds and holomorphic mappings, Ergebnisse der Mathematik

und ihrer Grenzgebiete, 3. Folge, vol. 56, Springer, Heidelberg, 2011. MR 2975791

[FR66] Otto Forster and Karl Josef Ramspott, Okasche Paare von Garben nicht-abelscher Gruppen,

Invent. Math. 1 (1966), 260–286. MR 0212211

[Gra57] Hans Grauert, Holomorphe Funktionen mit Werten in komplexen Lieschen Gruppen, Math.

Ann. 133 (1957), 450–472. MR 0098198

[Hei91] Peter Heinzner, Geometric invariant theory on Stein spaces, Math. Ann. 289 (1991), no. 4,

631–662. MR 1103041

[HH94] Peter Heinzner and Alan Huckleberry, Invariant plurisubharmonic exhaustions and retrac-

tions, Manuscripta Math. 83 (1994), no. 1, 19–29. MR 1265915

[HK95] Peter Heinzner and Frank Kutzschebauch, An equivariant version of Grauert’s Oka principle,

Invent. Math. 119 (1995), no. 2, 317–346. MR 1312503
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