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1. Introduction and main results

The Gauss map of a minimal surface in R3, parametrised as a conformal minimal

immersion from an open Riemann surface M into R3, may be viewed as a

meromorphic function on M . Bonnet first observed this fact in 1860 [7] and

Christoffel proved in 1867 [8] that it characterises minimal surfaces in R3. Via

the Gauss map, complex-analytic methods have ever since played a major role in

the classical theory of minimal surfaces. The literature is vast. We refer to [18,

Chapter 12] and [4, Chapter 5] for historical background and further references.

It is a long-standing unsolved problem in the global theory of minimal surfaces

to usefully characterise those meromorphic functions that are the Gauss map of

a complete minimal surface. Several decades of research on Picard-type theorems

for Gauss maps of complete minimal surfaces culminated in the 1988 theorem of

Fujimoto that such a map can omit at most four values in the Riemann sphere

unless the surface is a plane [13]. This result is sharp. Some further restrictions

were given by Osserman [17] and by Weitsman and Xavier [22]. As an example in

the other direction, Su and Li recently produced a sufficient Nevanlinna-theoretic

condition for a meromorphic function on the plane or the disc to be the Gauss map

of a complete minimal surface [20, 21].

In this paper, we take a new approach to the problem. We investigate the space

of meromorphic functions on M that are the Gauss map of a complete minimal

surface from a homotopy-theoretic viewpoint. We determine the homotopy type of
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this space. One of our main results is that the inclusion of this space in the space

of all meromorphic functions on M is a weak homotopy equivalence and, when M

has finite topological type, even a genuine homotopy equivalence.

It was discovered only recently that every meromorphic function on M is the

Gauss map of a conformal minimal immersion M → R3 [3]. We show that the

Gauss map assignment is not only surjective: it is in fact a Serre fibration. This is a

key ingredient in the proof of the main result described above, along with the strong

parametric h-principle for complete minimal surfaces in our previous paper [5].

Our results extend to all higher dimensions. To more precisely present them, we

need to introduce some notation. Let M be an open Riemann surface, throughout

assumed connected, and let n ≥ 3. If u = (u1, . . . , un) : M → Rn is a conformal

minimal immersion, then the (1, 0)-differential ∂u of u determines the Kodaira-type

holomorphic map G (u) from M into the hyperquadric

Qn−2 =
{

[z1 : · · · : zn] ∈ CPn−1 : z2
1 + · · ·+ z2

n = 0
}

in CPn−1 given by

G (u)(p) = [∂u1(p) : · · · : ∂un(p)], p ∈M.

The map G (u) is called the generalised Gauss map of u, or, in this paper, simply

the Gauss map of u. A conformal immersion M → Rn is minimal if and only if its

Gauss map is holomorphic [15, Theorem 1.1].1

By [3, Theorem 1.1], the Gauss map assignment G : CMI(M,Rn)→ O(M,Qn−2)

is surjective. Here, CMI(M,Rn) and O(M,Qn−2) denote the spaces of all conformal

minimal immersions M → Rn and of all holomorphic maps M → Qn−2, respectively.

The key to this and other recent applications of Oka theory in the theory of minimal

surfaces is the fact that Qn−2 is an Oka manifold (see [1] or [9, Example 5.6.2]).

A holomorphic map M → CPn−1 is said to be full if its image is not contained

in any hyperplane; we denote by Ofull(M,Qn−2) the open subspace of O(M,Qn−2)

consisting of full maps. A conformal minimal immersion u ∈ CMI(M,Rn) is called

full if its Gauss map G (u) is full, and we denote by CMIfull(M,Rn) the open subspace

of CMI(M,Rn) consisting of all such immersions. We endow these spaces with the

compact-open topology.

The flux Flux(u) of an immersion u ∈ CMI(M,Rn) is the cohomology class of its

conjugate differential dcu = i(∂̄u−∂u) in H1(M,Rn). The flux is naturally identified

with the group homomorphism Flux(u) : H1(M,Z)→ Rn given by

Flux(u)([C]) =

∫
C
dcu = −2i

∫
C
∂u, [C] ∈ H1(M,Z).

We view the cohomology group H1(M,Cn) as the de Rham group of n-tuples of

holomorphic 1-forms on M modulo exact forms, endowed with the quotient topology

1The Gauss map defined in [15] is the conjugate of the Gauss map defined here.
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induced from the compact-open topology. The subgroup H1(M,Rn) carries the

subspace topology.

The first main result of this paper states that the Gauss map assignment for

full conformal minimal immersions G : CMIfull(M,Rn)→ Ofull(M,Qn−2) is a Serre

fibration, that is, satisfies the homotopy lifting property with respect to all CW-

complexes. In fact, we prove the following stronger result.

Theorem 1.1. If M is an open Riemann surface and n ≥ 3, then the map

(G ,Flux) : CMIfull(M,Rn)→ Ofull(M,Qn−2)×H1(M,Rn)

is a Serre fibration.

The fact that the flux map CMIfull(M,Rn) → H1(M,Rn) is a Serre fibration

was already known ([5, Theorem 6.1(a)] is stated for complete immersions, but in

its proof completeness may be ignored). We prove Theorem 1.1 in Section 3 as a

consequence of the main technical result of the paper, Theorem 2.1, which is stated

and proved in Section 2. Our proofs rely on the maps we are working with being

full. The key applications of fullness, in the proofs of Lemma 2.2 and Corollary 2.6,

have been highlighted for the reader’s convenience.

Our second main result is a contribution to the open problem of determining

which holomorphic maps M → Qn−2 are Gauss maps of complete conformal minimal

immersions. As already mentioned for n = 3, the study of the value distribution

properties of the Gauss map of complete minimal surfaces in Rn for n ≥ 3 has

been one of the main foci of interest in this theory. Some restrictions are known.

Ru proved that the Gaussian image of a complete nonflat minimal surface in Rn
cannot omit more than n(n + 1)/2 hyperplanes in CPn−1 in general position [19].

This is sharp whenever n is odd or at most 17 [12]. The same result for full minimal

surfaces was previously obtained by Fujimoto [11, 14]. Let CMIc
full(M,Rn) denote the

subspace of CMIfull(M,Rn) of complete conformal minimal immersions. It follows

from the parametric h-principle that is the main result of our paper [5] that the

inclusion CMIc
full(M,Rn) ↪→ CMIfull(M,Rn) is a weak homotopy equivalence with

dense image. Let Oc
full(M,Qn−2) = G (CMIc

full(M,Rn)).

Theorem 1.2. Let M be an open Riemann surface and n ≥ 3.

(a) The inclusion Oc
full(M,Qn−2) ↪→ Ofull(M,Qn−2) is a weak homotopy equi-

valence.

(b) If M has finite topological type,2 then the inclusion is a homotopy equivalence.

(c) The inclusion Oc
full(M,Qn−2) ↪→ C (M,Qn−2) is a weak homotopy equivalence,

and, if M has finite topological type, a homotopy equivalence.

2We recall the following equivalent definitions of finite topological type: the fundamental group

of M is finitely generated; M has the homotopy type of a finite bouquet of circles; M can be

obtained from a compact Riemann surface by removing a finite number of mutually disjoint points

and closed discs; M has a strictly subharmonic Morse exhaustion with finitely many critical points.
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Part (a) means that the inclusion induces a bijection of path components

π0(Oc
full(M,Qn−2))→ π0(Ofull(M,Qn−2)) and an isomorphism of homotopy groups

πk(O
c
full(M,Qn−2), g)→ πk(Ofull(M,Qn−2), g)

for every integer k ≥ 1 and every base point g = G (u) ∈ Oc
full(M,Qn−2), with

u ∈ CMIc
full(M,Rn). By (b), when M is of finite topological type, there is a

homotopy inverse ξ : Ofull(M,Qn−2) → Oc
full(M,Qn−2) to the inclusion. This

means that there is a way to associate to every map g ∈ Ofull(M,Qn−2) a map

ξ(g) ∈ Oc
full(M,Qn−2) that is homotopic to g. Moreover, if g ∈ Oc

full(M,Qn−2) to

begin with, then there is such a homotopy through maps in Oc
full(M,Qn−2). The

main point is that ξ(g) and the homotopies depend continuously on g. Finally, part

(c) reduces the determination of the homotopy type of Oc
full(M,Qn−2) to a purely

topological problem.

The main ingredients in the proof of the theorem, which is given in Section 3,

are the parametric h-principle in [5], the result that the Gauss map assignment is

a fibration (Theorem 1.1), and, for part (b), the theory of absolute neighbourhood

retracts (ANRs) in the category of metric spaces and [16, Theorem 9], which uses

Oka theory to show that certain spaces of holomorphic maps are ANRs.

We observe that since the space CMIc
full(M,Rn) is dense in CMIfull(M,Rn) ([2,

Theorem 7.1]; the case of n = 3 follows from [6, Theorem 5.6]) and the map

G : CMIfull(M,Rn)→ Ofull(M,Qn−2) is surjective [3, Theorem 1.1], Oc
full(M,Qn−2)

is dense in Ofull(M,Qn−2). As a consequence of Theorem 1.1, Oc
full(M,Qn−2) is

dense in Ofull(M,Qn−2) in the following stronger sense. See [5, Corollary 1.3] for an

analogous result for the subspace CMIc
full(M,Rn) of CMIfull(M,Rn).

Corollary 1.3. If M is an open Riemann surface, P is a contractible finite

CW-complex, and Q ⊂ P is a retract of P , then every continuous map Q →
Ofull(M,Qn−2), n ≥ 3, extends to a continuous map P → Ofull(M,Qn−2) that takes

P \Q into Oc
full(M,Qn−2).

Remark 1.4. Consider the commuting square

CMIc
full(M,Rn) �

� i //

G c

��

CMIfull(M,Rn)

G
��

Oc
full(M,Qn−2) �

� j // Ofull(M,Qn−2)

where G c is the restriction of G to CMIc
full(M,Rn), that is, the Gauss map assignment

for full complete conformal minimal immersions. We know that the inclusions i

and j are weak homotopy equivalences by [5, Theorem 6.1(c)] and Theorem 1.2(a),

respectively, while G is a fibration by Theorem 1.1. It remains an open question

whether G c is a fibration as well.

In the classical case of n = 3, a conformal minimal immersion u is full if and

only if it is nonflat, that is, its image does not lie in an affine 2-plane in R3.
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Equivalently, the Gauss map of u is not constant. Also, Q1 may be identified

with the Riemann sphere P = CP1 and the Gauss map of a conformal minimal

immersion u = (u1, u2, u3) : M → R3 viewed, via the stereographic projection, as

the holomorphic function M → P given by

G (u) =
∂u3

∂u1 − i∂u2
,

often called the complex Gauss map of u (see [4, Section 2.5] for more details). In

the following corollary, the subscript nf stands for nonflat and nc for nonconstant.

Corollary 1.5. Let M be an open Riemann surface.

(a) (G ,Flux) : CMInf(M,R3)→ Onc(M,P)×H1(M,R3) is a Serre fibration.

(b) The inclusion Oc
nc(M,P) ↪→ Onc(M,P) is a weak homotopy equivalence, whose

image is dense in the strong sense of Corollary 1.3. The inclusion Oc
nc(M,P) ↪→

C (M,P) is a weak homotopy equivalence. If M has finite topological type, then the

inclusions are homotopy equivalences.

Remark 1.6. Let us briefly indicate how our results can be adapted to null curves.

A conformal minimal immersion u : M → Rn has a harmonic conjugate v if and

only if its flux vanishes. Then the holomorphic map u+ iv : M → Cn is a so-called

null curve. The subspace of CMI(M,Rn) of immersions with vanishing flux, that

is, real parts of holomorphic null curves, is denoted <NC(M,Cn). By [3, Theorem

1.1], the Gauss map assignment G : <NCfull(M,Cn)→ Ofull(M,Qn−2) is surjective,

and Theorem 1.1 implies that it is a fibration (where the subscripts have the usual

meaning).

The proof of Theorem 1.2(a) is then easily adapted, using the control on the

flux provided by [5, Theorem 6.1(a)], to show that the inclusion into Ofull(M,Qn−2)

of the space G (<NCc
full(M,Rn)) of full holomorphic maps M → Qn−2 that are the

Gauss map of the real part of a complete holomorphic null curve is a weak homotopy

equivalence. Moreover, the inclusion has dense image (using the analogue for full

immersions of [5, Corollary 1.3], which is an immediate consequence of [5, Theorem

6.1(a)]). We also see that the inclusion G (<NCc
full(M,Rn)) ↪→ Oc

full(M,Qn−2) is a

weak homotopy equivalence. It is an open question whether the two spaces are in

fact the same.

More generally, if we fix α ∈ H1(M,Rn), the corresponding results hold for

conformal minimal immersions with flux α.

Theorem 1.1 implies that the space G−1(g) of full conformal minimal immersions

M → Rn with fixed Gauss map g has the same weak homotopy type for all

g ∈ Ofull(M,Qn−2). In Section 4 we determine this homotopy type.

Theorem 1.7. Let M be an open Riemann surface and n ≥ 3. The fibre of the

Gauss map assignment G : CMIfull(M,Rn) → Ofull(M,Qn−2) has the weak homo-

topy type of a countably infinite disjoint union of circles, unless M is the plane or

the disc, in which case the fibre has the weak homotopy type of a circle.
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Whether G : CMI(M,Rn) → O(M,Qn−2) is a fibration or whether there are

singularities of some sort over the non-full maps that prevent G from being a fibration

is an open question that is beyond our techniques at present. For n = 3, the fibre of

G over a constant map essentially consists of the holomorphic immersions M → C.

As determined in [10], the space of such maps has the weak homotopy type of

C (M,C∗). As shown in Section 4, the fibre of G over a full immersion has that same

homotopy type, suggesting that the question might have an affirmative answer.

2. The main technical theorem

According to [4, Definition 1.12.9], a compact subset S 6= ∅ of an open Riemann

surface M is admissible if it is O(M)-convex and of the form S = K ∪ Γ, where K

is the union of finitely many pairwise disjoint smoothly bounded compact domains

in M and Γ = S \ K is a finite union of pairwise disjoint smooth Jordan arcs

meeting K only at their endpoints (or not at all) and such that their intersections

with the boundary of K are transverse. Given such a set S = K ∪ Γ and a complex

submanifold Z ⊂ Cn, we denote by A (S,Z) the space of all continuous maps S → Z

that are holomorphic on S̊ = K̊. For simplicity, we write A (S) = A (S,C).

In this section we prove the following theorem, which is the technical heart of the

paper.

Theorem 2.1. Let M be an open Riemann surface, θ be a holomorphic 1-form

vanishing nowhere on M , S = K ∪ Γ ⊂ M be an admissible subset, k and n be

positive integers, and fp : M → Cn and Fp ∈ H1(M,Cn) (p ∈ [0, 1]k) be continuous

families of full holomorphic maps and cohomology classes. Then, every continuous

family of functions ϕp : S → C∗ = C \ {0} (p ∈ [0, 1]k) of class A (S) satisfying

(2.1)

∫
C
ϕpfpθ = Fp([C]) for all closed curves C ⊂ S and all p ∈ [0, 1]k

can be approximated uniformly on [0, 1]k × S by continuous families of holomorphic

functions ϕ̃p : M → C∗ (p ∈ [0, 1]k) such that∫
C
ϕ̃pfpθ = Fp([C]) for all closed curves C ⊂M and all p ∈ [0, 1]k.

Furthermore, if ϕp is holomorphic on M , vanishes nowhere on M , and satisfies∫
C
ϕpfpθ = Fp([C]) for all closed curves C ⊂M , for all p ∈ [0, 1]k−1 × {0},

then we can choose ϕ̃p = ϕp for all p ∈ [0, 1]k−1 × {0}.

The case k = 1 of Theorem 2.1 was proved in [3, Theorem 4.1]; the proof relies

in an essential way on the parameter space [0, 1] being 1-dimensional (see [3, proof

of Lemma 2.3]). The proof of Theorem 2.1 follows the scheme of the proof of [3,

Theorem 4.1], but with an additional idea that enables us to work with a parameter

space of arbitrary dimension. In particular, we shall make use of [3, Lemmas 3.2



The space of Gauss maps of complete minimal surfaces 7

and 4.2]. The main new technical ingredient in our proof is the following extension

of [3, Lemma 4.3] to the parameter space [0, 1]k for arbitrary k ≥ 1.

Lemma 2.2 (The critical case). Let M , θ, k, n, and fp (p ∈ [0, 1]k) be as in Theorem

2.1. Also let ρ : M → [0,+∞) be a smooth strongly subharmonic Morse exhaustion

function and let 0 < a < b be a pair of regular values of ρ such that ρ has a single

critical point in L \ K̊, where K = {ρ ≤ a} and L = {ρ ≤ b}. Assume that we

have continuous families of functions ϕp : K → C∗ of class A (K) and cohomology

classes Fp ∈ H1(M,C) (p ∈ [0, 1]k) such that∫
C
ϕpfpθ = Fp([C]) for all closed curves C ⊂ K and all p ∈ [0, 1]k.

Then, the family ϕp can be approximated uniformly on [0, 1]k × K by continuous

families of functions ϕ̃p : L→ C∗ (p ∈ [0, 1]k) of class A (L) such that∫
C
ϕ̃pfpθ = Fp([C]) for all closed curves C ⊂ L and all p ∈ [0, 1]k.

Furthermore, if ϕp is of class A (L), vanishes nowhere on L, and satisfies∫
C
ϕpfpθ = Fp([C]) for all closed curves C ⊂ L, for all p ∈ [0, 1]k−1 × {0},

then we can choose ϕ̃p = ϕp for all p ∈ [0, 1]k−1 × {0}.

We note that [3, Lemma 4.2] holds in our more general framework with the same

proof but replacing the parameter space [0, 1] by [0, 1]k for the given integer k ≥ 1.

We record this result for later reference.

Lemma 2.3 (The noncritical case). Let M , S = K∪Γ, θ, k, n, and fp (p ∈ [0, 1]k) be

as in Theorem 2.1. If L ⊂M is a smoothly bounded O(M)-convex compact domain

such that S ⊂ L̊ and S is a deformation retract of L, then every continuous family

of functions ϕp : S → C∗ (p ∈ [0, 1]k) of class A (S) can be uniformly approximated

on [0, 1]k × S by continuous families of functions ϕ̃p : L → C∗ (p ∈ [0, 1]k) of class

A (L) such that (ϕ̃p − ϕp)fpθ is exact on S for all p ∈ [0, 1]k.

Furthermore, if ϕp is of class A (L) and vanishes nowhere on L for all p ∈
[0, 1]k−1 × {0}, then we can choose ϕ̃p = ϕp for all p ∈ [0, 1]k−1 × {0}.

Proof of Theorem 2.1 assuming Lemma 2.2. Choose a smooth strongly subhar-

monic Morse exhaustion function ρ : M → R and a divergent sequence of regular

values 0 < a1 < a2 < · · · of ρ such that, setting K0 = S and Kj = {ρ ≤ aj} for all

j ≥ 1, the following conditions are satisfied.

• K0 ⊂ K̊1 and K0 is a strong deformation retract of K1.

• ρ has at most a single critical point in Kj+1 \ K̊j (which lies in K̊j+1 \Kj)

for all j ≥ 1.
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It turns out that Kj is a smoothly bounded O(M)-convex compact domain for all

j ≥ 1, and

S = K0 b K1 b K2 · · · b
⋃
j≥0

Kj = M

is an exhaustion of M . Let ϕp : S → C∗ (p ∈ [0, 1]k) be a continuous family of

functions of class A (S) satisfying condition (2.1), and fix ε > 0. Call ϕ0
p = ϕp for

all p ∈ [0, 1]k. A standard recursive application of Lemmas 2.2 and 2.3 provides a

sequence of continuous families of functions ϕjp : Kj → C∗ (p ∈ [0, 1]k), j ≥ 1, of

class A (Kj) satisfying the following conditions for all j ≥ 1.

• ϕjp is as close as desired to ϕj−1
p uniformly on [0, 1]k ×Kj−1.

•
∫
C
ϕjpfpθ = Fp([C]) for all closed curves C ⊂ Kj and all p ∈ [0, 1]k.

• If ϕp is holomorphic on M , vanishes nowhere on M , and satisfies∫
C
ϕpfpθ = Fp([C]) for all closed curves C ⊂M , for all p ∈ [0, 1]k−1 × {0},

then we can choose ϕjp = ϕ0
p = ϕp for all p ∈ [0, 1]k−1 × {0}.

If we take ϕjp sufficiently close to ϕj−1
p on [0, 1]k ×Kj−1 at each step, we obtain in

the limit a continuous family of holomorphic functions

ϕ̃p := lim
j→∞

ϕjp : M → C∗ (p ∈ [0, 1]k)

which is ε-close to the family ϕp on [0, 1]k × S and satisfies the requirements in the

theorem. �

To complete the proof of Theorem 2.1 it remains to prove Lemma 2.2. We begin

with some preparations. Given an integer n ≥ 1, we shall say that a continuous map

f : [0, 1] → Rn is R-full if its image is contained in no real linear hyperplane, that

is, the real span of f([0, 1]) equals Rn. Likewise, a continuous map f : [0, 1] → Cn
is said to be C-full if the complex span of f([0, 1]) equals Cn. It is clear that every

R-full map [0, 1] → Cn = R2n is C-full, but the converse does not hold true in

general.

Lemma 2.4. Let k and n be positive integers, P = [0, 1]k, and f : P × [0, 1]→ Rn
and α : P → Rn be continuous maps. If the path fp := f(p, ·) : [0, 1] → Rn
is R-full for every p ∈ P , then for any ε > 0 there exists a continuous function

x : P × [0, 1]→ R such that x(p, s) = 0 for p ∈ P and s ∈ {0, 1} and∣∣∣∣∫ 1

0
x(p, s)f(p, s) ds− α(p)

∣∣∣∣ < ε for all p ∈ P.

If in addition α(p) = 0 for all p ∈ Q = [0, 1]k−1 × {0} ⊂ P , then we can choose x

with x(p, s) = 0 for all p ∈ Q and s ∈ [0, 1].

In case k = 1, we identify Q with {0} ⊂ P = [0, 1]. In the proof we shall use the

following observation, which corresponds to the case k = 0 in the lemma.
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Claim 2.5. If f : [0, 1] → Rn (n ≥ 1) is continuous and R-full, then for any

α ∈ Rn and any ε > 0 there exists a continuous function x : [0, 1] → R such that

x(0) = x(1) = 0 and ∣∣∣∣∫ 1

0
x(s)f(s) ds− α

∣∣∣∣ < ε.

Proof. If α = 0 ∈ Rn, then we simply choose x = 0. Assume that α 6= 0. By

R-fullness of f there are points 0 < s1 < s2 < · · · < sn < 1 in [0, 1] such that

(2.2) spanR{f(s1), . . . , f(sn)} = Rn.

Thus, there is a number σ > 0 so small that the intervals [sj − σ, sj + σ],

j ∈ {1, . . . , n}, lie in (0, 1) and are pairwise disjoint. Set

vj =

∫ sj+σ

sj−σ
f(s) ds ∈ Rn, j = 1, . . . , n,

and note that vj is close to 2σf(sj) provided that σ is small. We assume as we may

by (2.2) that σ > 0 is so small that spanR{v1, . . . , vn} = Rn, and write

α =

n∑
j=1

λjvj

for (unique) λ1, . . . , λn ∈ R. The step function x0 : [0, 1]→ R given by

x0(s) =

{
λj if s ∈ [sj − σ, sj + σ], j = 1, . . . , n,

0 if s ∈ [0, 1] \
⋃n
j=1[sj − σ, sj + σ],

satisfies x0(0) = x0(1) = 0 and
∫ 1

0 x0(s)f(s) = α. Suitably deforming x0 in a small

neighbourhood of the points sj ± σ, j = 1, . . . , n, to make it continuous, we obtain

a function x : [0, 1]→ R satisfying the required conditions. �

Proof of Lemma 2.4. We proceed by induction on the positive integer k. For the

base case when k = 1, we have Q = {0} ⊂ P = [0, 1] and a pair of continuous maps

f : P × [0, 1] → Rn and α : P → Rn. Since the map fp : [0, 1] → Rn is R-full for

every p ∈ P , Claim 2.5 gives a continuous function yp : [0, 1]→ R such that

(2.3) yp(0) = yp(1) = 0

and ∣∣∣∣∫ 1

0
yp(s)fp(s) ds− α(p)

∣∣∣∣ < ε for all p ∈ P.

If α(0) = 0 then we choose y0 = 0. The problem now is that yp does not depend

continuously on p ∈ P , so we have to do some more work. By continuity of f and α

and compactness of P , there is a partition 0 = p0 < p1 < · · · < pk = 1 of P = [0, 1]

such that

(2.4)

∣∣∣∣∫ 1

0
ypj (s)fp(s) ds− α(p)

∣∣∣∣ < ε for all p ∈ [pj−1, pj ], j = 1, . . . , k.
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The function x : P × [0, 1]→ R given by

x(p, ·) =
pj − p

pj − pj−1
ypj−1 +

p− pj−1

pj − pj−1
ypj for all p ∈ [pj−1, pj ], j = 1, . . . , k,

is continuous and, in view of (2.3), satisfies x(p, 0) = x(p, 1) = 0 for all p ∈ P .

Moreover, (2.4) ensures that∣∣∣∣∫ 1

0
x(p, s)f(p, s) ds− α(p)

∣∣∣∣ < ε for all p ∈ P.

Finally, note that x(0, ·) = x(p0, ·) = y0; hence x(0, s) = 0 for all s ∈ [0, 1] provided

that α(0) = 0. This proves the base case.

For the inductive step, fix an integer k ≥ 2 and assume that the lemma holds for

P ′ = [0, 1]k−1 andQ′ = [0, 1]k−2×{0}. If k = 2, we identifyQ′ with {0} ⊂ P ′ = [0, 1].

We write P = [0, 1]k = P ′ × [0, 1] and Q = [0, 1]k−1 × {0} = P ′ × {0}. We use the

same argument as above. Fix t ∈ [0, 1]. The map f tq := f(q,t) : [0, 1] → Rn is R-full

for every q ∈ P ′, and hence the induction hypothesis provides a continuous function

yt : P ′ × [0, 1]→ R such that yt(q, 0) = yt(q, 1) = 0 for all q ∈ P ′, and∣∣∣∣∫ 1

0
yt(q, s)f

t
q(s) ds− α(q, t)

∣∣∣∣ < ε for all q ∈ P ′.

If α(q, 0) = 0 for all q ∈ P ′ then we choose y0 = 0. Again, the problem is that the

map yt does not depend continuously on t ∈ [0, 1]. To arrange this, take a partition

0 = t0 < t1 < · · · < tk = 1 of [0, 1] such that∣∣∣∣∫ 1

0
ytj (q, s)f

t
q(s) ds− α(q, t)

∣∣∣∣ < ε for all q ∈ P ′ and t ∈ [tj−1, tj ], j = 1, . . . , k.

The function x : P × [0, 1] = P ′ × [0, 1]× [0, 1]→ R given by

x(·, t, ·) =
tj − t

tj − tj−1
ytj−1 +

t− tj−1

tj − tj−1
ytj for all t ∈ [tj−1, tj ], j = 1, . . . , k,

satisfies the required conditions. This completes the induction. �

Corollary 2.6. Let k, n, P , and Q be as in Lemma 2.4, let f : P × [0, 1]→ Cn and

α : P → Cn be continuous maps, and assume that there is a pair of closed intervals

J and J ′ such that J∩J ′ = ∅, J∪J ′ ⊂ (0, 1), and the path fp := f(p, ·) : [0, 1]→ Cn
is C-full on J and R-full on J ′ for every p ∈ P . Then, there exists a continuous

function h : P × [0, 1]→ C∗ such that h(p, 0) = h(p, 1) = 1 for all p ∈ P and∫ 1

0
h(p, s)f(p, s) ds = α(p) for all p ∈ P.

If in addition α(p) =
∫ 1

0 f(p, s) ds for all p ∈ Q ⊂ P , then there is such a function

h with h(p, s) = 1 for all p ∈ Q and s ∈ [0, 1].

Furthermore, the function h can be chosen such that |<(h)− 1| < σ in P × [0, 1]

for any given number σ > 0; in particular, we can choose h so that <(h) > 0.

The final claim of the corollary is not needed here, but is included for possible

future applications.
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Proof. Consider the period map P : C ([0, 1],Cn)→ Cn given by

P(g) =

∫ 1

0
g(s) ds ∈ Cn, g ∈ C ([0, 1],Cn).

By [3, Lemma 2.1], there are continuous functions g1, . . . , gN : [0, 1] → C (N ≥ n),

supported on J , such that the function w : CN × [0, 1]→ C given by

w(ζ, s) :=

N∏
i=1

(
1 + ζigi(s)

)
, ζ = (ζ1, . . . , ζN ) ∈ CN , s ∈ [0, 1],

has

∂

∂ζ
P
(
w(ζ, ·)f(p, ·)

)∣∣
ζ=0

: T0CN ∼= CN → Cn surjective for every p ∈ P.

(Here we need the maps fp to be full.) In particular,

(2.5) w(·, s) = 1 for all s ∈ [0, 1] \ J ⊃ {0, 1}.

By virtue of the implicit function theorem, this implies that for every neighbourhood

U of 0 in CN , there is a number ε > 0 with the following property: if β : P → Cn is a

continuous map with |P(f(p, ·))−β(p)| < ε for all p ∈ P , then there is a continuous

map ζβ : P → U such that

P
(
w(ζβ(p), ·)f(p, ·)

)
= β(p) for all p ∈ P.

Furthermore, if P(f(p, ·)) = β(p) for all p ∈ Q, then we can choose the map ζβ such

that ζβ(p) = 0 (and hence w(ζβ(p), ·) = 1) for all p ∈ Q. Fix a number 0 < σ < 1,

let U be a neighbourhood of 0 ∈ CN so small that

(2.6) |<(w)− 1| < σ in U × [0, 1]

(hence <(w) > 0 there), and let ε > 0 be a number satisfying the above condition.

Consider the continuous map γ : P → Cn given by

(2.7) γ(p) = −i
(
α(p)−P(f(p, ·))

)
, p ∈ P.

Lemma 2.4 furnishes us with a continuous function x : P × [0, 1]→ R, supported on

P × J ′, such that ∣∣P(
x(p, ·)f(p, ·)

)
− γ(p)

∣∣ < ε for all p ∈ P,

and if γ(p) = 0 for all p ∈ Q, then x(p, ·) = 0 for all p ∈ Q. It turns out that the

continuous function h̃ = 1 + ix : P × [0, 1]→ 1 + iR ⊂ C∗ satisfies

(2.8) h̃ = 1 in P × ([0, 1] \ J ′) ⊃ P × (J ∪ {0, 1})

and, in view of (2.7),∣∣P(
h̃(p, ·)f(p, ·)

)
− α(p)

∣∣ < ε for all p ∈ P.

Moreover, if P(f(p, ·)) = α(p) for all p ∈ Q, then h̃(p, ·) = 1 for all p ∈ Q. Since

h̃f = f in P × J and the functions g1, . . . , gN are supported on J , the period

dominating property of w provides a continuous map ζα : P → U such that

(2.9) P
(
w(ζα(p), ·)h̃(p, ·)f(p, ·)

)
= α(p) for all p ∈ P,
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and if P(f(p, ·)) = α(p) for all p ∈ Q, then ζα(p) = 0 for all p ∈ Q. The

continuous function h : P × [0, 1] → C∗ given by h(p, ·) = w(ζα(p), ·)h̃(p, ·) satisfies

the conclusion of the corollary. Indeed, conditions (2.5) and (2.8) ensure that

h(·, 0) = h(·, 1) = 1. By (2.9), we have∫ 1

0
h(p, s)f(p, s) ds = P

(
w(ζα(p), ·)h̃(p, ·)f(p, ·)

)
= α(p) for all p ∈ P.

Moreover, if α(p) =
∫ 1

0 f(p, s) ds
(

= P(f(p, ·))
)

for all p ∈ Q, then it is ensured

that h̃(p, ·) = 1 and ζα(p) = 0 for all p ∈ Q, and hence h(p, ·) = 1 for all p ∈ Q.

Finally, (2.5), (2.6), (2.8), and the facts that ζα(P ) ⊂ U and <(h̃) = 1 in P × [0, 1]

guarantee that |<(h)− 1| < σ in P × [0, 1]. �

Proof of Lemma 2.2. Let v denote the only critical point of ρ in L \ K̊, and note

that v ∈ L̊ \K. We distinguish cases depending on the Morse index of ρ at v.

Assume first that the Morse index of ρ at v equals 0. We then proceed as in the

proof of [3, Lemma 4.3]. In this case a new connected component of the sublevel

set {ρ ≤ s} appears when s passes the value ρ(v), and hence a new connected

and simply connected component K ′ of L appears. In particular, K is a strong

deformation retract of L \ K ′. Thus, Lemma 2.3 provides a continuous family of

functions ϕ̃p : L \K ′ → C∗ (p ∈ [0, 1]k) of class A (L \K ′) which is as close to the

family ϕp as desired in [0, 1]k×K and has (ϕ̃p−ϕp)fpθ exact on K for all p ∈ [0, 1]k.

Moreover, we can choose ϕ̃p = ϕp for all p ∈ [0, 1]k−1 × {0} provided that ϕp is of

class A (L) and nowhere vanishing on L for every p ∈ [0, 1]k−1×{0}. (Here we need

the maps fp to be full.) To finish it suffices to extend the family ϕ̃p (p ∈ [0, 1]k) to

K ′ as a continuous family of nowhere vanishing functions of class A (K ′), choosing

ϕ̃p|K′ = ϕp|K′ for all p ∈ [0, 1]k−1×{0} if for every p ∈ [0, 1]k−1×{0} the map ϕp is

of class A (L), vanishes nowhere on L, and satisfies
∫
C ϕpfpθ = Fp([C]) for all closed

curves C ⊂ L.

Assume that, on the contrary, the Morse index of ρ at v equals 1. In this case

there is a smooth Jordan arc γ in L̊\ K̊, with its two endpoints in bK and otherwise

disjoint from K, such that S = K ∪ γ ⊂ L̊ is an admissible subset of M and a

strong deformation retract of L. Denote by Ω the connected component of L̊ \ K
intersecting γ. Note that Ω contains γ except for its endpoints.

Fix p ∈ [0, 1]k. We claim that

(2.10) the real span of fp(Ω) equals Cn = R2n.

Indeed, since the map fp : M → Cn is holomorphic and full, fp|Ω : Ω→ Cn is full as

well, and hence if λ : Cn → C is a C-linear functional and λ ◦ fp|Ω = 0, then λ = 0.

Let µ : Cn → R be an R-linear functional with µ ◦ fp|Ω = 0. Now, µ is the real part

of a C-linear functional λ : Cn → C. Since f is holomorphic and <λ ◦ fp|Ω = 0, we

have λ ◦ fp|Ω = 0, so λ = 0 and hence µ = 0. This guarantees (2.10), and thus there

are points x1, . . . , x2n ∈ Ω such that

spanR{fp(x1), . . . , fp(x2n)} = Cn.
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(Here, again, we need the maps fp to be full.) Since fp depends continuously on

p ∈ [0, 1]k, the same holds if we replace p by any point p′ in a small neighbourhood

of p in [0, 1]k. Thus, compactness of [0, 1]k ensures the existence of a finite set

Λ ⊂ Ω ⊂ L̊ \K such that

(2.11) spanR{fp(x) : x ∈ Λ} = Cn for all p ∈ [0, 1]k.

Since Ω is connected, we may deform the arc γ outside a neighbourhood of its

endpoints so that Λ ⊂ γ. Since Λ ∩ K = ∅, we have that Λ lies in the relative

interior of γ, and since Λ is finite there is a (closed) sub-arc γ′ in the relative interior

of γ such that Λ ⊂ γ′. Condition (2.11) then ensures that the map fp is R-full

on γ′ for all p ∈ [0, 1]k. On the other hand, the fullness of the holomorphic map

fp : M → Cn implies that fp is C-full on every sub-arc of γ for all p ∈ [0, 1]k.

(Here, once again, we need the maps fp to be full.) Corollary 2.6 then enables us

to extend the family of functions ϕp : K → C∗ to a continuous family of functions

φp : S = K ∪ γ → C∗ (p ∈ [0, 1]k) of class A (S) such that∫
C
φpfpθ = Fp([C]) for all closed curves C ⊂ S and all p ∈ [0, 1]k.

Furthermore, if ϕp is of class A (L), vanishes nowhere on L, and satisfies∫
C
ϕpfpθ = Fp([C]) for all closed curves C ⊂ L, for all p ∈ [0, 1]k−1 × {0},

then we can choose φp = ϕp|S for all p ∈ [0, 1]k−1 × {0}. Since S is a strong

deformation retract of L, this reduces the proof to the noncritical case granted in

Lemma 2.3. �

Theorem 2.1 is thus proved.

3. Proofs

In this section, we prove the two main Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Fix an integer k ≥ 1 and let P = [0, 1]k−1. For k = 1, we

identify P and P × {0} with {0} ⊂ [0, 1] and P × [0, 1] with [0, 1]. Assume that we

have continuous maps u : P×{0} → CMIfull(M,Rn), G : P×[0, 1]→ Ofull(M,Qn−2),

and F : P × [0, 1]→ H1(M,Rn) such that

G|P×{0} = G ◦ u and F |P×{0} = Flux ◦ u;

that is, the following square commutes.

(3.1) P × {0}
� _

��

u // CMIfull(M,Rn)

(G ,Flux)

��
P × [0, 1]

(G,F )
//

φ

77nnnnnnnnnnnnn
Ofull(M,Qn−2)×H1(M,Rn)
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To complete the proof it suffices to show that the map (G,F ) lifts to a continuous

map φ : P × [0, 1]→ CMIfull(M,Rn) such that

(3.2) u = φ|P×{0}, G = G ◦ φ, and F = Flux ◦ φ;

that is, the two triangles in (3.1) commute. Write

u(p, 0) = u0
p, G(p, t) = Gtp, and F (p, t) = F tp for all (p, t) ∈ P × [0, 1].

Since the square (3.1) commutes, we have

(3.3) G (u0
p) = G0

p and Flux(u0
p) = F 0

p for all p ∈ P.

Fix a holomorphic 1-form θ vanishing nowhere on M . The Gauss map assignment

G : CMIfull(M,Rn)→ Ofull(M,Qn−2) is naturally factored as

CMIfull(M,Rn)
ψ // Ofull(M,A∗)

π∗ // Ofull(M,Qn−2),

where ψ(u) = 2∂u/θ and π : A∗ = {z ∈ Cn∗ : z2
1 + · · · + z2

n = 0} → Qn−2 is

the restriction of the canonical projection π : Cn∗ = Cn \ {0} → CPn−1. Here,

Ofull(M,A∗) denotes the space of all holomorphic maps f : M → A∗ ⊂ Cn that

are full in the sense that the C-linear span of f(M) is all of Cn. Recall that

every holomorphic map g : M → CPn−1 lifts to a holomorphic map f : M → Cn∗
such that g = π ◦ f = π∗(f); moreover, g is full if and only if f is full, while

g(M) ⊂ Qn−2 if and only if f(M) ⊂ A∗. Also recall that a conformal minimal

immersion u ∈ CMI(M,Rn) is recovered from ψ(u) by the integral formula

u(x) = u(x0) + <
∫ x

x0

ψ(u)θ, x ∈M,

for any base point x0 ∈M , while

Flux(u)([C]) = =
∫
C
ψ(u)θ, [C] ∈ H1(M,Z).

Since G = π∗ ◦ ψ, the first condition in (3.3) ensures that the following square of

continuous maps commutes.

(3.4) P × {0}
� _

��

ψ◦u // Ofull(M,A∗)

π∗

��
P × [0, 1]

G //

%

99s
s

s
s

s
s

s
s

s
s

s
Ofull(M,Qn−2)

Since π∗ : Ofull(M,A∗)→ Ofull(M,Qn−2) is a fibration (see [3, Lemma 5.1]), the

map G lifts to a continuous map % : P × [0, 1] → Ofull(M,A∗) such that the two

triangles in (3.4) commute:

(3.5) ψ ◦ u = %|P×{0} and G = π∗ ◦ %.
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Write %(p, t) = %tp for all (p, t) ∈ P×[0, 1]. Theorem 2.1 provides a continuous family

of holomorphic functions ϕtp : M → C∗, (p, t) ∈ P × [0, 1], such that

(3.6)

∫
C
ϕtp%

t
pθ = iF tp([C]) ∈ iRn for all closed curves C ⊂M , (p, t) ∈ P × [0, 1].

Furthermore, since %0
p = 2∂u0

p/θ by the first condition in (3.5) and F 0
p = Flux(u0

p)

by the second condition in (3.3) for all p ∈ P , we have that∫
C
%0
pθ = iF 0

p ([C]) for all closed curves C ⊂M and all p ∈ P ,

so we can choose the family of maps ϕtp so that

(3.7) ϕ0
p = 1 for all p ∈ P.

Fix a point x0 ∈M . It follows from (3.6) that the map φtp : M → Rn defined by

φtp(x) = u0
p(x0) + <

∫ x

x0

ϕtp%
t
pθ, x ∈M,

is a well-defined full conformal minimal immersion (note that ϕtp%
t
p : M → A∗ ⊂ Cn

is holomorphic and full, and <(ϕtp%
t
pθ) is exact). We claim that the continuous map

φ : P × [0, 1]→ CMIfull(M,Rn) given by φ(p, t) = φtp for all (p, t) ∈ P × [0, 1] satisfies

the conditions in (3.2). Indeed, in view of (3.7) and the first condition in (3.5), we

have

φ0
p(x) = u0

p(x) + <
∫ x

x0

%0
pθ = u0

p(x) + <
∫ x

x0

2∂u0
p = u0

p(x), x ∈M, p ∈ P,

so u = φ|P×{0}. On the other hand,

G (φtp) = π∗(2∂φ
t
p/θ) = π∗(ϕ

t
p%
t
p) = π∗(%

t
p) = Gtp, (p, t) ∈ P × [0, 1],

where we have used that G = π∗ ◦ ψ, the fact that ϕtp takes values in C∗, and the

second condition in (3.5). Therefore, G = G ◦ φ. Finally, (3.6) directly implies that

Flux(φtp) = F tp for all (p, t) ∈ P × [0, 1], that is, F = Flux ◦ φ. �

We now turn to the proof of Theorem 1.2. First we need the following h-principle,

which easily implies Corollary 1.3.

Theorem 3.1. Let M be an open Riemann surface, n ≥ 3, Q be a closed subset of a

contractible finite CW-complex P , and G : M×P → Qn−2 be a continuous map such

that Gp := G(·, p) ∈ Ofull(M,Qn−2) for all p ∈ P . For any O(M)-convex compact

set K ⊂ M and any ε > 0 there is a homotopy Gt : M × P → Qn−2, t ∈ [0, 1],

satisfying the following conditions.

(i) Gtp := Gt(·, p) : M → Qn−2 lies in Ofull(M,Qn−2) for all (p, t) ∈ P × [0, 1].

(ii) Gtp = Gp for all (p, t) ∈ (P × {0}) ∪ (Q× [0, 1]).

(iii) |Gtp(x)−Gp(x)| < ε for all x ∈ K and (p, t) ∈ P × [0, 1].

(iv) Gtp ∈ Oc
full(M,Qn−2) for all (p, t) ∈ (P \Q)× (0, 1].
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In particular, if in addition Gp ∈ Oc
full(M,Qn−2) for all p ∈ Q, then we have

Gtp ∈ Oc
full(M,Qn−2) for all (p, t) ∈ P × (0, 1].

Proof. Since G : CMIfull(M,Rn) → Ofull(M,Qn−2) is a fibration by Theorem 1.1

and P is contractible, we can lift the given map G : M × P → Qn−2 by G to a

map u : M × P → Rn such that up = u(·, p) ∈ CMIfull(M,Rn) for all p ∈ P . By

the parametric h-principle [5, Theorem 6.1(a)], for any δ > 0, there is a homotopy

ut : M × P → Rn, t ∈ [0, 1], with the following properties.

(a) utp := ut(·, p) : M → Rn lies in CMIfull(M,Rn) for all (p, t) ∈ P × [0, 1].

(b) utp = up for all (p, t) ∈ (P × {0}) ∪ (Q× [0, 1]).

(c) |utp(x)− up(x)| < δ for all x ∈ K and (p, t) ∈ P × [0, 1].

(d) utp ∈ CMIc
full(M,Rn) for all p ∈ (P \Q)× (0, 1].

Setting Gtp = G (utp) with δ > 0 small enough defines a homotopy as desired. Note

in particular that if Gp ∈ Oc
full(M,Qn−2) for all p ∈ Q, then we cannot assert that

up is complete for p ∈ Q, but we have G (up) = Gp ∈ Oc
full(M,Qn−2) for all p ∈ Q,

and hence (b) and (d) ensure that Gtp ∈ Oc
full(M,Qn−2) for all (p, t) ∈ P × (0, 1]. �

Proof of Theorem 1.2. (a) Applying Theorem 3.1 with P a singleton and Q empty

shows that the inclusion j : Oc
full(M,Qn−2) ↪→ Ofull(M,Qn−2) induces a surjection

of path components. Applying Theorem 3.1 with P a closed ball of dimension k ≥ 1

and Q the boundary sphere of P shows that j induces a monomorphism at the level

of πk−1 and an epimorphism at the level of πk.

(b) It suffices to show that the spaces Oc
full(M,Qn−2) and Ofull(M,Qn−2) are

ANRs. First, Ofull(M,Qn−2) is an ANR, being open in O(M,Qn−2), which is ANR

by [16, Theorem 9] since Qn−2 is an Oka manifold. Second, since Ofull(M,Qn−2)

is an ANR, Theorem 3.1 and [5, Proposition 5.2] imply that Oc
full(M,Qn−2) is an

ANR.

(c) It is not difficult to adapt the general position theorem [10, Theorem 5.4] for

maps into A∗ to maps into Qn−2 using the fact that if P is a contractible finite

CW-complex, then every continuous map P → O(M,Qn−2) lifts by the projection

π : A∗ → Qn−2, whose fibre C∗ is Oka, to a continuous map P → O(M,A∗),

and conclude that the inclusion Ofull(M,Qn−2) ↪→ O(M,Qn−2) is a weak homotopy

equivalence.3 By the basic Oka principle, the inclusion O(M,Qn−2) ↪→ C (M,Qn−2)

is also a weak homotopy equivalence. Finally, if M has finite topological type, then

C (M,Qn−2) is an ANR (see [16, Proposition 7] and the references in its proof). �

3For the hyperquadric A (as opposed to a more general cone A as in [10, Theorem 5.4]), the

notion of nondegeneracy in [1] and [10] is equivalent to nonflatness by [2, Lemma 2.3]. To adapt

[10, Theorem 5.4] to full maps in place of nonflat maps, in its proof, simply invoke the proof of

[2, Theorem 3.1(a)] instead of the proof of [1, Theorem 2.3(a)] (the latter theorem is incorrectly

referred to as Theorem 3.2(a) in [10]). Beware that fullness is called nondegeneracy in [2].
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4. The fibre of the Gauss map assignment

As before, we let M be an open Riemann surface and n ≥ 3. By Theorem 1.1, the

Gauss map assignment G : CMIfull(M,Rn) → Ofull(M,Qn−2) is a Serre fibration.

As shown already, Ofull(M,Qn−2) has the weak homotopy type of C (M,Qn−2).

Moreover, Qn−2 is simply connected: for n = 3, Qn−2 is isomorphic to the Riemann

sphere; for n ≥ 4, we invoke the fact that a smooth hypersurface in CPn−1 is

simply connected. It follows that Ofull(M,Qn−2) is path connected, so the fibres of

G : CMIfull(M,Rn) → Ofull(M,Qn−2) all have the same weak homotopy type. In

this section, we shall determine this homotopy type.

Recall the factorisation

CMIfull(M,Rn)
ψ // Ofull(M,A∗)

π∗ // Ofull(M,Qn−2),

of G used in Section 3 in the proof of Theorem 1.1, where ψ(u) = 2∂u/θ, with

θ being a nowhere-vanishing holomorphic 1-form on M , and π∗ is induced by the

projection π from the punctured null quadric A∗ in Cn∗ onto the hyperquadric Qn−2

in CPn−1. The projection π : A∗ → Qn−2 is a fibre bundle with fibre C∗. Note that

G and π∗ are canonically defined, whereas ψ depends on the choice of θ.

In the proof of Theorem 1.1, we used the result that π∗ is a fibration [3, Lemma

5.1]. In fact, the lemma shows that π∗ : O(M,A∗)→ O(M,Qn−2) is a fibration. Its

fibre F0, well defined up to weak homotopy equivalence, is O(M,C∗) or, by the basic

Oka principle, C (M,C∗). Hence, F0 has the weak homotopy type of a countably

infinite disjoint union of circles, unless M is the plane or the disc, in which case F0

has the weak homotopy type of a circle. We also need the result that ψ is a weak

homotopy equivalence. This follows, by an argument similar to the proof of [10,

Theorem 5.6], from the parametric h-principle [10, Theorem 5.3] (the version with

vanishing real periods) adapted to full maps in place of nonflat maps.

Let F be the fibre of G and consider the following commuting diagram.

F �
� //

ψ

��

CMIfull(M,Rn)
G //

ψ

��

Ofull(M,Qn−2)

F0
� � // Ofull(M,A∗)

π∗ // Ofull(M,Qn−2)

The associated long exact sequences of homotopy groups show that ψ induces a weak

homotopy equivalence F → F0, so Theorem 1.7 is proved.
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