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Abstract. Oka theory has its roots in the classical Oka principle in complex analysis.

It has emerged as a subfield of complex geometry in its own right since the appearance

of a seminal paper of M. Gromov in 1989. Following a brief review of Stein manifolds,

we discuss the recently introduced category of Oka manifolds and Oka maps. We

consider geometric sufficient conditions for being Oka, the most important of which is

ellipticity, introduced by Gromov. We explain how Oka manifolds and maps naturally

fit into an abstract homotopy-theoretic framework. We describe recent applications

and some key open problems. This article is a much expanded version of the lecture

given by the first-named author at the conference RAFROT 2010 in Rincón, Puerto

Rico, on 22 March 2010, and of a recent survey article by the second-named author

[51].
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1. Introduction

The Oka principle first appeared in the pioneering work of K. Oka, who proved in 1939
that a second Cousin problem on a domain of holomorphy can be solved by holomorphic
functions if it can be solved by continuous functions [54]. It follows that in a holomorphic
fibre bundle with fibre C∗ over a domain of holomorphy, every continuous section can be

Date: 10 September 2010. Last minor change 19 December 2010.
2010 Mathematics Subject Classification. Primary 32E10. Secondary 18G55, 32E30, 32H02, 32Q28,

55U35.
Key words and phrases. Oka principle, Stein manifold, elliptic manifold, Oka manifold, Oka map,

subelliptic submersion, model category.
The first-named author was partially supported by grants P1-0291 and J1-2043-0101, ARRS, Re-

public of Slovenia, and by the conference RAFROT, Rincón, Puerto Rico, March 2010.
1
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continuously deformed to a holomorphic section. In the following decades further results
in a similar spirit were proved, notably by H. Grauert, who extended Oka’s theorem to
more general fibre bundles over Stein spaces [31]. The idea emerged of a general Oka
principle, saying that on Stein spaces, there are only topological obstructions to solving
holomorphic problems that can be cohomologically formulated.

The modern development of the Oka principle started with M. Gromov’s seminal pa-
per of 1989 [34], in which the emphasis moved from the cohomological to the homotopy-
theoretic aspect. As a result, Oka’s theorem was extended once again to more general
fibre bundles and even to certain maps that are not locally trivial. A major application,
the solution of Forster’s conjecture, appeared a few years later. Since 2000, there has
been an ongoing effort to further develop the theory and applications of Gromov’s Oka
principle.

Our goal is to survey the present state of Oka theory. Here is a brief summary of
where we stand as of August 2010, to be fleshed out in detail in the rest of the paper.

• There is a good definition of a complex manifold being Oka. This notion is, in a sense,
dual to being Stein and opposite to being Kobayashi hyperbolic. It naturally extends to
holomorphic maps and has many nontrivially equivalent formulations. Sections of Oka
maps satisfy a strong Oka principle.

• In essence, Gromov’s Oka principle is about sufficient geometric conditions for the Oka
property to hold. Gromov’s results in this direction have been strengthened considerably.

• There is a growing list of applications of Gromov’s Oka principle for which the older
theory does not suffice.

• There is an underlying model structure that shows that the Oka property is, in a
precise sense, homotopy-theoretic.

All this appears to us evidence that Oka theory has reached a certain maturity and
will play a future role as a subfield of complex geometry in its own right. Many problems
remain open; the ones that seem most important to us are listed at the end of the paper.

2. Stein manifolds

The basic theory of Stein manifolds was developed in the period 1950 to 1965. We
survey the highlights and mention a few more recent developments that are relevant
here.

The central concept of classical several complex variables is that of a domain of
holomorphy: a domain in complex affine space Cn with a holomorphic function that
does not extend holomorphically to any larger domain, even as a multivalued function.
Every domain in C is a domain of holomorphy. One of the discoveries that got several
complex variables started at the turn of the 20th century is that this is far from true in
higher dimensions.

The notion of a Stein manifold, introduced by K. Stein in 1951, generalizes domains of
holomorphy to the setting of complex manifolds (here always assumed second countable,
but not necessarily connected). Roughly speaking, Stein manifolds are the complex
manifolds whose function theory is similar to that of domains in C. There are at least
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four fundamentally different ways to precisely define the concept of a Stein manifold.
The equivalence of any two of these definitions is a nontrivial theorem.

First, Stein’s original definition, simplified by later developments, states that a com-
plex manifold S is Stein (or, as Stein put it, holomorphically complete) if it satisfies the
following two conditions.

(1) Holomorphic functions on S separate points, that is, if x, y ∈ S, x 6= y, then
there is f ∈ O(S) such that f(x) 6= f(y). Here, O(S) denotes the algebra of
holomorphic functions on S.

(2) S is holomorphically convex, that is, if K ⊂ S is compact, then its O(S)-hull

K̂O(S), consisting of all x ∈ S with |f(x)| ≤ maxK |f | for all f ∈ O(S), is
also compact. Equivalently, if E ⊂ S is not relatively compact, then there is
f ∈ O(S) such that f |E is unbounded.

A domain in Cn is Stein if and only if it is a domain of holomorphy. Every noncompact
Riemann surface is Stein.

Second, a connected complex manifold is Stein if and only if it is biholomorphic to a
closed complex submanifold of C

m for some m. Namely, submanifolds of C
m are clearly

Stein: the functions f in the definition above can be taken to be coordinate projections.
(More generally, it is easy to see that a closed complex submanifold of a Stein manifold
is itself Stein.) Conversely, R. Remmert proved in 1956 that every connected Stein
manifold S admits a proper holomorphic embedding into Cm for some m. In 1960–61,
E. Bishop and R. Narasimhan independently showed that if dimC S = n, then m can
be taken to be 2n + 1. The optimal embedding result is that if n ≥ 2, then m can
be taken to be [3n/2] + 1. This was a conjecture of O. Forster, who showed that for
each n, no smaller value of m works in general. Forster’s conjecture was proved in the
early 1990s by Y. Eliashberg and M. Gromov [8] (following their much earlier paper [7])
and J. Schürmann [58]. The proof relies on Gromov’s Oka principle discussed below.
This problem is still open in dimension 1. Every noncompact Riemann surface properly
embeds into C3, but relatively few are known to embed, even non-properly, into C2. For
recent results in this direction, see [26, 52].

Third, Stein manifolds are characterized by a cohomology vanishing property. The
famous Theorem B of H. Cartan, proved in his seminar in 1951–52 as the first triumph
of the sheaf-theoretic approach to complex analysis, states that if a complex manifold S
is Stein, then Hk(S, F ) = 0 for every coherent analytic sheaf F on S and every k ≥ 1.
The converse is easy.

Finally, Stein manifolds can be defined in terms of plurisubharmonicity. This notion,
which is ordinary convexity (in some holomorphic coordinates) weakened just enough to
be preserved by biholomorphisms, was introduced independently by P. Lelong and by
K. Oka in 1942 and plays a diverse and fundamental role in higher-dimensional complex
analysis. H. Grauert proved in 1958 that a complex manifold S is Stein if and only if
there is a strictly plurisubharmonic function ρ : S → R (smooth if desired, or just upper
semicontinuous) that is an exhaustion in the sense that for every c ∈ R, the sublevel
set {x ∈ S : ρ(x) < c} is relatively compact in S. This result is the solution of the Levi
problem for manifolds.
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If S is a Stein manifold embedded as a closed complex submanifold of Cm, then the
restriction to S of the square ‖·‖2 of the Euclidean norm is a smooth strictly plurisub-

harmonic exhaustion (and the translate ‖· − a‖2, for a generic point a ∈ C
m, is in

addition a Morse function). The converse implication uses a deep result, proved by
Grauert and, using Hilbert space methods, by L. Hörmander in 1965, that the exis-
tence of a strictly plurisubharmonic exhaustion ρ on a complex manifold S implies the
solvability of all consistent ∂-equations on S. In particular, ρ−1(−∞, c1) is Runge in
ρ−1(−∞, c2) for all real numbers c1 < c2, from which the defining properties (1) and (2)
of a Stein manifold easily follow.

The definition of a complex space (not necessarily reduced) being Stein is the same
as for manifolds. Theorem B still holds. The property of having a continuous strictly
plurisubharmonic exhaustion is still equivalent to being Stein (Narasimhan 1962). And
a complex space is Stein and has a bound on the dimensions of its tangent spaces if and
only if it is biholomorphic to a complex subspace of Cm for some m (Narasimhan 1960).

Often the best way to show that a complex space is Stein is to produce a strictly
plurisubharmonic exhaustion on it. For example, this is how Y.-T. Siu proved in 1976
that a Stein subvariety of a reduced complex space has a basis of Stein open neighbour-
hoods [59]. Stein neighbourhood constructions sometimes allow us to transfer a problem
on a complex manifold to Euclidean space where it becomes tractable. A recent example
is the application of the Stein neighbourhood construction in [27] to the proof that the
basic Oka property implies the parametric Oka property for manifolds [17].

By Morse theory, the existence of a smooth strictly plurisubharmonic Morse ex-
haustion on a Stein manifold S of complex dimension n has the important topological
consequence that S has the homotopy type of a CW complex of real dimension at most
n. The reason is that the Morse index of a nondegenerate critical point of a plurisub-
harmonic function on S is at most n. This simple observation has a highly nontrivial
converse, Eliashberg’s topological characterization of Stein manifolds of dimension at
least 3 [6]: If (S, J) is an almost complex manifold of complex dimension n ≥ 3, which
admits a Morse exhaustion function ρ : S → R all of whose Morse indices are at most
n, then J is homotopic to an integrable complex structure J̃ on S in which ρ is strictly
plurisubharmonic, so (S, J̃) is Stein.

Eliashberg’s result fails in dimension 2. The simplest counterexample is the smooth
manifold S2 × R2, which satisfies the hypotheses of the theorem but carries no Stein
structure by Seiberg-Witten theory. Namely, S2 ×R2 contains embedded homologically
nontrivial spheres S2×{c}, c ∈ R2, with self-intersection number 0, while the adjunction
inequality shows that any homologically nontrivial sphere C in a Stein surface has C ·C ≤
−2. However, Gompf has shown that Eliashberg’s theorem holds up to homeomorphism
in dimension 2 [29, 30]. More precisely, a topological 4-manifold is homeomorphic to
a Stein surface if and only if it is oriented and is the interior of a (possibly infinite)
topological handlebody with only 0-, 1-, and 2-handles. It follows that there are Stein
surfaces homeomorphic to S2 × R2.

The monographs by Grauert and Remmert [32], by Gunning and Rossi [35], and by
Hörmander [37], now considered classics, are still excellent sources for the theory of
Stein manifolds and Stein spaces.
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3. Oka manifolds

Roughly speaking, Stein manifolds are characterized by carrying many holomorphic
functions, that is, by having many holomorphic maps into C. Dually, Oka manifolds
have many holomorphic maps from C, and more generally from Stein manifolds, into
them. To introduce the precise definition of an Oka manifold, we begin with two well
known theorems of 19th century complex analysis.

Runge Theorem. If K is a compact subset of C with no holes, that is, the comple-
ment C \ K is connected, then every holomorphic function on K can be approximated
uniformly on K by entire functions. (By a holomorphic function on K we mean a
holomorphic function on some open neighbourhood of K.)

Weierstrass Theorem. On a discrete subset of a domain Ω in C, we can prescribe
the values of a holomorphic function on Ω.

In the mid-20th century, these results were generalized to Stein manifolds.

Oka-Weil Approximation Theorem. If a compact subset K of a Stein manifold S

is holomorphically convex, that is, K = K̂O(S), then every holomorphic function on K
can be approximated uniformly on K by holomorphic functions on S.

A compact subset K of C is holomorphically convex if and only if it has no holes. In
higher dimensions, holomorphic convexity is much more subtle; in particular, it is not
a topological property.

Cartan Extension Theorem. If T is a closed complex subvariety of a Stein manifold
S, then every holomorphic function on T extends to a holomorphic function on S.

We usually consider these theorems as fundamental results about Stein manifolds, but
they can also be viewed as expressing properties of the target manifold, the complex
number field C. Replacing C by an arbitrary complex manifold X, we are led to the
following two properties that X may or may not have. To avoid topological obstructions,
which are not relevant here, we restrict ourselves to very special S, K, and T .

Convex Approximation Property (CAP). Every holomorphic map K → X from a convex
compact subset K of Cn can be approximated uniformly on K by holomorphic maps
Cn → X.

To be clear, the notion of convexity used here is the familiar, elementary one, meaning
that along with any two of its points, K contains the line segment joining them.

We can also consider convex domains in Ck embedded as closed complex submanifolds
of Cn, n > k, and ask for the following version of the Cartan extension theorem.

Convex Interpolation Property (CIP). If T is a closed complex submanifold of Cn which
is biholomorphic to a convex domain in some Ck, then every holomorphic map T → X
extends to a holomorphic map Cn → X.

CAP was introduced in [14, 16]. CIP, introduced in [50], is a restricted version of the
Oka property with interpolation (see below). It is easily seen that CIP implies CAP
(see [48]), but the converse implication only comes as part of the general theory and
no simple proof is known. It turns out that CIP is unchanged if T is allowed to be
any holomorphically contractible submanifold of Cn, or any topologically contractible
submanifold of Cn.
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Next we will formulate a similar property for maps from an arbitrary Stein manifold
S to X. This property implies both CAP and CIP. We must take account of the fact
that a holomorphic map from a closed complex submanifold T of S to X need not
admit a continuous extension S → X. A similar topological obstruction may appear
when trying to approximate maps K → X from a compact subset K in a Stein manifold
S by global maps S → X. By a Stein inclusion T →֒ S, we mean the inclusion into a
Stein manifold S of a closed complex submanifold T .

Basic Oka Property (BOP). For every Stein inclusion T →֒ S and every holomorphically
convex compact subset K of S, a continuous map f : S → X that is holomorphic on
K ∪ T can be deformed to a holomorphic map S → X. The deformation can be kept
fixed on T . Also, the intermediate maps can be kept holomorphic and arbitrarily close
to f on K.

We get the implication BOP ⇒ CAP by taking K to be a convex compact subset of
S = Cn and T = ∅, and we see that BOP ⇒ CIP by choosing K = ∅ and T →֒ S = Cn

as in the definition of CIP. In these situations there are no topological obstructions to
extending the map from a submanifold or approximately extending it from a convex set.

Oka properties such as BOP express a certain holomorphic flexibility. They are oppo-
site to Kobayashi-Eisenman-Brody hyperbolicity, which expresses holomorphic rigidity.
Recall that an n-dimensional complex manifold X is k-hyperbolic in the sense of Brody
for an integer k ∈ {1, . . . , n} if every holomorphic map Ck → X is everywhere degener-
ate in the sense that its rank is smaller than k at each point of Ck. In particular, for
k = 1, Brody hyperbolicity means that every holomorphic map C → X is constant. If
X is compact, this coincides with the notion of Kobayashi hyperbolicity [3].

The theorems of Oka-Weil and of Cartan imply that C, and hence C
n, satisfies BOP.

Clearly, if X is Brody hyperbolic, or more generally Brody volume hyperbolic, that
is, Brody (dim X)-hyperbolic, then X does not satisfy BOP. Moreover, no compact
complex manifold X of general Kodaira type satisfies BOP. In fact, a holomorphic map
CdimX → X cannot have maximal rank at any point (easy consequence of Theorem 2
in [44]).

Now we introduce the parametric Oka property, which pertains to families of contin-
uous maps parametrized by compact sets in Euclidean space.

Parametric Oka Property (POP). Let T →֒ S and K ⊂ S be as in BOP, and let Q ⊂ P
be compact subsets of Rm. For every continuous map f : S × P → X such that

• f(·, x) : S → X is holomorphic for every x ∈ Q, and
• f(·, x) is holomorphic on K ∪ T for every x ∈ P ,

there is a continuous deformation ft : S × P → X, t ∈ [0, 1], of f = f0 such that

• the deformation is fixed on (S × Q) ∪ (T × P ),
• for every t ∈ [0, 1], ft(·, x) is holomorphic on K for every x ∈ P and ft is

uniformly close to f on K × P , and
• f1(·, x) : S → X is holomorphic for every x ∈ P .

Ignoring the approximation condition on K, POP is illustrated by the following
diagram. Every lifting in the big square can be deformed through such liftings to a
lifting in the left-hand square. The horizontal arrows in the right-hand square are the
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inclusions of the spaces of holomorphic maps into the spaces of continuous maps (these
spaces carry the compact-open topology), and the vertical arrows are the restriction
maps.

Q //

��

O(S, X) //

��

C (S, X)

��

P //

44j
j

j
j

j
j

j
j

j
j

j

;;

O(T, X) // C (T, X)

Clearly, BOP is the special case of POP obtained by taking P to be a singleton and
Q empty.

The following classical result, due to H. Grauert, is the basis of the Oka-Grauert
principle.

Theorem 3.1 (Grauert [31]). Every complex homogeneous manifold satisfies POP for
all pairs of finite polyhedra Q ⊂ P . The analogous result holds for sections of holomor-
phic G-bundles, for any complex Lie group G, over a Stein space.

Since an isomorphism between G-bundles is represented by a section of an associated
G-bundle, we get the following corollary.

Corollary 3.2 (The Oka-Grauert principle for vector bundles). The holomorphic and
topological classifications of such bundles over Stein spaces coincide. This holds in par-
ticular for complex vector bundles.

K. Oka, a pioneer of several complex variables after whom the Oka principle is named,
proved this result in 1939 for line bundles over domains of holomorphy [54]. He showed
that on a domain of holomorphy, the second Cousin problem is solvable by holomorphic
functions if it is solvable by continuous functions.

Among the Oka properties introduced above, CAP and CIP are ostensibly the weak-
est, and hence the easiest to verify for concrete examples, while POP is ostensibly the
strongest. It is surprising and far from obvious that these properties are in fact mutually
equivalent.

Theorem 3.3. For every complex manifold X, each Oka property implies the others:

CAP ⇔ CIP ⇔ BOP ⇔ POP.

These equivalences also hold if the inclusion T →֒ S in BOP and POP is allowed to be
the inclusion in a reduced Stein space of a closed analytic subvariety.

Definition 3.4. A complex manifold satisfying the equivalent properties CAP, CIP,
BOP, and POP is called an Oka manifold.

The question whether it is possible to characterize BOP and POP by a Runge approx-
imation property for maps Cn → X was raised by M. Gromov in [34]. The implication
CAP ⇒ BOP was established in [14, 16] (see [19] for singular Stein source spaces). In the
same papers it was shown that a certain parametric version of CAP implies POP. The
final implication BOP ⇒ POP was established in [17], where the class of Oka manifolds
was first formally introduced.
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Our definition of BOP corresponds to what has been called in the literature the basic
Oka property with approximation and interpolation (BOPAI). By removing the inter-
polation condition in BOP we get the basic Oka property with approximation (BOPA);
similarly, by removing the approximation condition we get the basic Oka property with
interpolation (BOPI). Analogous statements hold for the parametric Oka properties. It
was observed in [48] that BOPI ⇒ BOPA and POPI ⇒ POPA (not only for manifolds,
but also for holomorphic maps; see §6 below). This was the first nontrivial implication
to be noted between variants of the Oka property. We now know that all these variants
are equivalent.

Properties of Oka manifolds. It is clear from CAP that an Oka manifold X is strongly
dominable by Cn, n = dim X, in the sense that for every x ∈ X, there is a holomorphic
map f : Cn → X such that f(0) = x and f is a local biholomorphism at 0. Hence, the
Kobayashi pseudometric of X vanishes identically. Also, if a plurisubharmonic function
on a connected Oka manifold is bounded above, then it is constant. It follows that every
R-complete holomorphic vector field on a Stein Oka manifold is C-complete [10].

A deeper property of Oka manifolds is jet transversality for holomorphic maps from
Stein manifolds. If S is a Stein manifold, X is an Oka manifold, k ≥ 0, and B is
a closed complex submanifold of the complex manifold of k-jets of holomorphic maps
S → X, then the k-jet of a generic holomorphic map S → X is transverse to B. (This
is a simplified version of Theorem 4.2 in [15].) Here, a property that holds for all maps
in a countable intersection of open dense subsets of O(S, X) with the compact-open
topology is said to be generic. Without the Oka assumption on X, S. Kaliman and
M. Zaidenberg have shown that if f : S → X is holomorphic and K ⊂ S is compact,
then there is a holomorphic map K → X, uniformly approximating f |K as closely as
desired, whose k-jet is transverse to B [42].

The jet transversality theorem can be used to show that if S is a Stein manifold and
X is an Oka manifold, then a generic holomorphic map S → X is an immersion when
dim X ≥ 2 dim S, and an injective immersion when dim X ≥ 2 dim S +1 ([15], Corollary
1.5).

Applying POP with the parameter space pairs ∅ →֒ ∗, {0, 1} →֒ [0, 1], ∗ →֒ Sk and
Sk →֒ Bk+1 for k ≥ 1, where Bk+1 denotes the (k +1)-dimensional ball and Sk = ∂Bk+1

is the k-dimensional sphere, we obtain the following result.

Corollary 3.5. For a Stein manifold S and an Oka manifold X, the inclusion

O(S, X) →֒ C (S, X)

is a weak homotopy equivalence with respect to the compact-open topology, that is, it
induces a bijection of path components and isomorphisms of all homotopy groups.

The following functorial property of Oka manifolds was proved in [16, 17].

Theorem 3.6. If E and B are complex manifolds and E → B is a holomorphic fibre
bundle whose fibre is an Oka manifold, then B is an Oka manifold if and only if E is
an Oka manifold.

We record separately the important special case when E → B is a covering map.
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Corollary 3.7. If E → B is a holomorphic covering map, then B is an Oka manifold
if and only if E is an Oka manifold.

Examples of Oka manifolds. We end this section by listing all the explicit examples
of Oka manifolds that are currently known.

• The Riemann surfaces that are Oka are C, C∗, the Riemann sphere, and all tori.
In other words, a Riemann surface is Oka if and only if it is not hyperbolic, that
is, not covered by the disc.

• Complex affine spaces Cn, complex projective spaces Pn for all n; Grassmannians.
• More generally, complex Lie groups and their homogeneous spaces.
• Cn\A, where A is an algebraic subvariety or a tame analytic subvariety of com-

plex codimension at least 2.
• Pn\A, where A is an algebraic subvariety of codimension at least 2.
• Hirzebruch surfaces (holomorphic P1-bundles over P1).
• Hopf manifolds (compact manifolds with universal covering space Cn\{0}, n ≥

2).
• Algebraic manifolds that are Zariski locally affine (every point has a Zariski

neighbourhood isomorphic to C
n); modifications of such obtained by blowing up

points or removing subvarieties of codimension at least 2.
• C

n blown up at all points of a tame discrete sequence.
• Complex tori of dimension at least 2 with finitely many points removed, or blown

up at finitely many points.

Most of these examples are elliptic complex manifolds (see §5 below); none are known
not to be elliptic. All are at least weakly subelliptic.

The most important method to produce new Oka manifolds from old, and thus expand
the collection of examples, is provided by the result (a generalization of Theorem 3.6)
that if E and B are complex manifolds and E → B is a surjective Oka map (see §6
below), then E is Oka if and only if B is Oka.

4. The proof that CAP implies POP

The proof of the main implication CAP ⇒ POP in Theorem 3.3 is broken down into two
steps, CAP ⇒ BOP and BOP ⇒ POP. The first implication was proved in [14, 16]; we
shall outline here the main steps. The second implication was established in [17] using
a recent theorem from [27] on the existence of Stein neighbourhood bases of certain
compact sets in Cn × Cm that are fibred over the real space Rn ⊂ Cn such that the
fibres are Stein compacts.

The scheme of the proof of CAP ⇒ BOP is essentially that used in the proof of
Cartan’s Theorems A and B or, more specifically, in the proof of the Oka-Grauert
principle given by Henkin and Leiterer [36]. Assume that π : Z → S is a holomorphic
fibre bundle over a Stein manifold S, whose fibre X satisfies CAP. We exhaust S by
an increasing sequence of compact strongly pseudoconvex domains Ak that are O(S)-
convex. The domain Ak+1 = Ak ∪ Bk is obtained by attaching to Ak either a convex
bump Bk or a special handle whose core is a totally real disc attached to ∂Ak along a
complex tangential sphere. (The sets Ak are obtained using a strictly plurisubharmonic
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exhaustion ρ : S → R. We may choose A0 to be a small neighbourhood of the compact

set K = K̂O(S) ⊂ S on which the initial continuous section f0 : S → Z is holomorphic.)
Each Bk can be chosen small enough that our fibre bundle Z → S is trivial over a
neighbourhood of it. A holomorphic section f : S → Z, homotopic to the initial
section f0, is found as a locally uniform limit f = lim

k→∞

fk of a sequence of continuous

sections fk : S → Z such that fk is holomorphic over a neighbourhood of Ak. In the
induction step, we find fk+1 that approximates fk uniformly on a neighbourhood of Ak

and is homotopic to it. We treat separately the extension across a convex bump (the
noncritial case) and the crossing of a critical level of an exhaustion function on X (the
critical case).

In the noncritical case (which is the more difficult of the two, and is the only one
where the CAP of the fibre X is used) the problem is divided in two substeps. First
we approximate fk on a neighbourhood of the set Ck = Ak ∩ Bk by a holomorphic
section gk defined on a neighbourhood of Bk. Since the bundle is trivial there, this is a
Runge approximation problem for maps to the fibre X, and here the CAP of the fibre
is invoked. We then glue fk and gk into a section fk+1 which is holomorphic over a
neighbourhood of Ak+1 = Ak ∪ Bk.

Let us describe this procedure a bit more carefully. In the classical case when fk

and gk are maps to a complex Lie group G (the fibre of a principal holomorphic bundle
Z → S) one has fk = gk · γk on Ck, where γk = g−1

k · fk : Ck → G is a holomorphic map
with values in G that is close to the constant map x 7→ 1 ∈ G (the identity element of
G). By the classical Cartan lemma we can split γk into a product γk = βk · α−1

k with
holomorphic maps αk : Ak → G, βk : Bk → G that are close to the constant map x 7→ 1,
and we take fk · αk = gk · βk as the next map fk+1.

In the general case we work with thick sections, also called local holomorphic sprays.
These are families of holomorphic sections, depending holomorphically on a parameter
in a neighbourhood of the origin in a Euclidean space, which are submersive with respect
to the parameter. Given a thick section fk over Ak, we approximate fk uniformly over
a neighbourhood of Ck by a thick section gk over Bk as described above, using the CAP
of the fibre X. We then find a fibre-preserving biholomorphic transition map γk, close
to the identity map and satisfying

fk = gk ◦ γk near Ck.

Next we split γk into a composition of the form

γk = βk ◦ α−1
k ,

where αk and βk are holomorphic maps over Ak and Bk, respectively. It follows as before
that

fk ◦ αk = gk ◦ βk over Ck,

and hence these two thick sections amalgamate into a thick section fk+1 that is holo-
morphic over a neighbourhood of Ak+1. The induction may proceed.

The critical case is treated by approximately extending the holomorphic section across
the stable manifold at the critical point p0, thereby reducing the problem to the non-
critical case for a different strictly plurisubharmonic function that is used only to cross
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the critical level ρ = ρ(p0); we then revert back to the original function ρ. The relevant
geometry near the critical level is illustrated in Fig. 1, where we assume that ρ(p0) = 0.

{ρ = −t0}

b

p0

{ρ < c − t1}{ρ < c − t1}

Figure 1. Passing a critical level of ρ.

In the case of a stratified fibre bundle over a possibly singular Stein space S, and
when interpolating a section on a subvariety T of S, essentially the same proof can be
accomplished by induction on the strata (see [19]).

Every step of the proof can also be carried out in the parametric case, and this shows
that a parametric version of CAP (called PCAP) for the fibres of Z → S implies the
parametric Oka principle for sections S → Z. The proof of Theorem 3.3 is completed
by showing that POP ⇒ PCAP (see [17]).

5. Elliptic and subelliptic manifolds

Grauert established the Oka principle for sections of a holomorphic fibre bundle over a
Stein manifold if the fibres are homogeneous spaces with respect to a complex Lie group
G and the bundle has a trivialization whose transition functions take values in G. The
key innovation in Gromov’s paper [34] is the generalization from homogeneous manifolds
to elliptic manifolds and the realization that the Oka principle holds for sections of a
holomorphic fibre bundle with elliptic fibres over a Stein manifold regardless of how the
bundle may be trivialized.

Definition 5.1 (Gromov [34]). A spray on a complex manifold X is a holomorphic map
s : E → X defined on the total space of a holomorphic vector bundle E over X such
that s(0x) = x for all x ∈ X. The spray s is said to be dominating at x ∈ X if s|Ex → X
is a submersion at 0x, and s is said to be dominating if it is dominating at every point
of X. Finally, X is said to be elliptic if it admits a dominating spray.

The following ostensibly more general notion, defined in [12], is sometimes easier to
verify.

Definition 5.2. A complex manifold X is said to be subelliptic if it admits finitely
many sprays sj : Ej → X that together dominate at every x ∈ X, that is, the images
(dsj)0j,x

(Ej,x) together span the tangent space TxX (here, we identify the vector space
Ej,x with its tangent space at the zero element 0j,x).
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A further weakening of ellipticity, called weak subellipticity, requires the existence of
countably many sprays that together dominate at each point.

b

b

b

s

X
x

Ex

Figure 2. The fibre Ex of a spray on the manifold X.

Examples. Here are the most familiar examples of elliptic and subelliptic manifolds.
The first three appeared in [34].

• A homogeneous space of a complex Lie group G, that is, a complex manifold X on
which G acts holomorphically and transitively, is elliptic. The map s : X × g → X,
(x, v) 7→ exp(v) · x, where g is the Lie algebra of G, is a dominating spray defined on a
trivial vector bundle over X. In particular, a complex Lie group is elliptic.

• More generally, if X admits finitely many C-complete holomorphic vector fields
v1, . . . , vk that span TxX at every point x ∈ X, then the map s : X × Ck → X,

s(x, t1, . . . , tk) = φ1
t1
◦ · · · ◦ φk

tk
(x),

where φj
t is the flow of vj, is a dominating spray on X.

• A spray of this type exists on X = Cn\A where A is an algebraic subvariety of
codimension at least 2. We take the fields v1, . . . , vk to be of the form v(z) = f(π(z))b,
where b ∈ Cn \ {0}, π : Cn → Cn−1 is a linear projection with π(b) = 0 such that π|A
is proper, and f : Cn−1 → C is a polynomial that vanishes on the subvariety π(A). The
flow of v, given by φt(z) = z + tf(π(z))b, fixes A and thus restricts to a complete flow
on C

n \ A.

• If A is a subvariety of Pn of codimension at least 2, then Pn \ A is subelliptic ([12],
Proposition 1.2). It is unknown whether these manifolds are elliptic.

The product of elliptic manifolds is elliptic. The only other known method to obtain
new elliptic manifolds from old is provided by the simple observation that if X → Y
is an unbranched holomorphic covering map and Y is elliptic, then X is elliptic. The
same is true of subellipticity. By contrast, the Oka property is known to pass up and
down along much more general maps.

The central results in Gromov’s 1989 paper are the following.

Theorem 5.3 (Gromov [34]). The parametric Oka property holds, in order of increasing
generality, for:

(i) maps from a Stein manifold to an elliptic manifold (so an elliptic manifold is
Oka),

(ii) sections of holomorphic fibre bundles with elliptic fibres over a Stein manifold,
and
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(iii) sections of elliptic submersions over a Stein manifold.

The definition of the parametric Oka property for sections is analogous to that given
in §3 for maps. A holomorphic submersion h : Z → X between reduced complex spaces
is said to be elliptic if every point of X has an open neighbourhood U such that the
restriction h−1(U) → U admits a dominating fibre spray. A fibre spray for a holomorphic
submersion h : Z → X is a holomorphic vector bundle π : E → Z with a holomorphic
map s : E → Z such that h◦π = h◦s and s(0z) = z for each z ∈ Z. We say that the fibre
spray is dominating at z ∈ Z if the derivative of s at 0z maps the subspace Ez of T0z

E
onto the vertical subspace ker dhz of TzZ. We say that the fibre spray is dominating if
it is dominating at every point. A subelliptic submersion is defined similarly. Clearly, a
holomorphic fibre bundle with (sub)elliptic fibres is a (sub)elliptic submersion.

Detailed proofs of Gromov’s theorem were given by J. Prezelj and the first-named
author in [21, 22, 23]. Gromov’s theorem was generalized to subelliptic submersions in
[12].

Example. Let π : E → S be a holomorphic vector bundle with fibre Ck over a Stein

space S. Let Ê → S be the associated bundle with fibre Pk. Let Σ ⊂ E be a subvariety
with fibres of codimension at least 2 over each point of S, such that the closure of Σ in

Ê does not contain the hyperplane at infinity over any point of S. Then E \ Σ → S is
an elliptic submersion. Thus, sections S → E of π avoiding Σ satisfy the parametric
Oka property.

Gromov’s theorem has been generalized to stratified maps as follows.

Theorem 5.4 ([19]). The parametric Oka property holds for sections of stratified holo-
morphic fibre bundles with Oka fibres and for sections of stratified subelliptic submersions
over reduced Stein spaces.

A stratification of a complex space X is a descending chain X = X0 ⊃ X1 ⊃ · · · ⊃
Xm = ∅ of closed subvarieties such that for k = 1, . . . , m, each connected component S
of Xk−1\Xk (that is, each stratum) is smooth and S\S ⊂ Xk. A holomorphic submersion
π : Z → X is a stratified holomorphic fibre bundle if X admits a stratification such that
for every stratum S, the restriction π−1(S) → S is a holomorphic fibre bundle over
S. The fibres over different strata may be different. Also, π is a stratified (sub)elliptic
submersion if X admits a stratification such that for every stratum S, the restriction
π−1(S) → S is (sub)elliptic.

The strongest available version of Gromov’s theorem is Theorem 6.5 below.

Applications. The following are some of the applications of Gromov’s Oka principle.

• The proof of Forster’s conjecture was mentioned in §2.

• The following homotopy principle for holomorphic immersions is due to Eliashberg
and Gromov (see [7] and [33], §2.1.5). If X is a Stein manifold whose complex cotangent
bundle T ∗X is generated by (1, 0)-forms θ1, . . . , θq where q > dim X, then the q-tuple
(θ1, . . . , θq) can be continuously deformed through q-tuples generating T ∗X to a q-tuple
(df1, . . . , dfq), where (f1, . . . , fq) : X → Cq is a holomorphic immersion. Consequently,
every n-dimensional Stein manifold admits a holomorphic immersion into C[3n/2]. D.
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Kolarič has given a complete exposition of Eliashberg and Gromov’s result, as well as a
1-parametric version of it [45].

• There is also a homotopy principle for holomorphic submersions [13]. While not ac-
tually an application of Gromov’s Oka principle, it relies on methods that have emerged
in the course of its development. Let X be a Stein manifold and 1 ≤ q < dim X. By a
q-coframe on X we mean a q-tuple of continuous (1, 0)-forms on X that are linearly in-
dependent at each point. Every q-coframe on X can be continuously deformed through
q-coframes to a q-coframe (df1, . . . , dfq), where (f1, . . . , fq) : X → Cq is a holomorphic
submersion. Consequently, every n-dimensional Stein manifold admits a holomorphic
submersion into Ck, where k = [(n + 1)/2]. This value of k is sharp for every n. Also,
an n-dimensional parallelizable Stein manifold, n ≥ 2, has a submersion into Cn−1.
Whether Cn−1 can be replaced by Cn is an open problem of great interest.

• The following theorem is a special case of the results of [11] on the elimination of
intersections. Let A be an algebraic subvariety of Cd of codimension at least 2. Let X
be a Stein manifold, f : X → Cd be holomorphic, and Y ⊂ X be a (possibly empty)

union of connected components of f−1(A). If there is a continuous map f̃ : X → C
d

which equals f in a neighbourhood of Y and satisfies f̃−1(A) = Y , then for each r ∈ N,
there is a holomorphic map g : X → Cd such that g−1(A) = Y and g − f vanishes
to order r along Y . Such a map g always exists if dim X < 2(d − dim A), or if X is
contractible and dim Y ≤ 2(d − dim A − 1).

• The final application we shall describe is the recent solution of the Gromov-Vaserstein
problem by B. Ivarsson and F. Kutzschebauch. The problem of factoring a matrix in
SL(m, R), where R is a commutative ring, into a product of elementary matrices has
been studied for many rings. For the ring of complex numbers, it is of course a basic
result of linear algebra that this is always possible. For more sophisticated rings, such
as rings of polynomials or continuous functions, the problem has been considered by a
number of mathematicians, including A. A. Suslin, W. Thurston, and L. Vaserstein. A
holomorphic version of the problem was posed by Gromov in [34], 3.5.G, and solved as
follows.

Theorem 5.5 (Ivarsson and Kutzschebauch [39]). Let f : S → SL(m, C) be a null-
homotopic holomorphic map from a Stein manifold S. Then there are holomorphic
maps G1, . . . , Gk : S → Cm(m−1)/2 such that

f =

[
1 0

G1 1

] [
1 G2

0 1

] [
1 0

G3 1

]
· · · .

The algebraic case was considered much earlier. In 1966, P. M. Cohn showed that
the matrix

[
1 − zw z2

−w2 1 + zw

]
∈ SL(2, C[z, w])

does not factor as a finite product of unipotent matrices. Yet, by Theorem 5.5, it is a
product of unipotent matrices over the larger ring O(C2). In 1977, Suslin proved that
for m ≥ 3 (and any n), every matrix in SL(m, C[z1, . . . , zn]) is a product of unipotent
matrices.
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Idea of proof of Theorem 5.5: Define Ψk : (Cm(m−1)/2)k → SL(m, C) by

Ψk(g1, . . . , gk) =

[
1 0
g1 1

] [
1 g2

0 1

] [
1 0
g3 1

]
· · · .

We want to find a holomorphic map G : S → (Cm(m−1)/2)k such that the following
diagram commutes:

(Cm(m−1)/2)k

Ψk

��

S
f

//

G
99

t
t

t
t

t
t

t
t

t
t

t

SL(m, C)

A theorem of Vaserstein gives a continuous lifting of f . Unfortunately, the map Ψk is
not a submersion and its fibres are hard to analyze. Still, the continuous lifting may be
deformed to a holomorphic lifting by applying the Oka principle to certain related maps
that are stratified elliptic submersions. The version of Gromov’s Oka principle proved
in [19] is required. �

Ivarsson and Kutzschebauch point out that as a consequence of their theorem, the
inclusion of the ring of holomorphic functions on a contractible Stein manifold into the
ring of continuous functions does not induce an isomorphism of K1-groups, whereas
by Grauert’s Oka principle it does induce an isomorphism of K0-groups. Thus, here,
Gromov’s Oka principle reveals a limitation of a more general (and vague) Oka principle.

Variants of Gromov’s Oka principle. • It is possible to push the Oka principle
beyond the realm of Stein spaces. J. Prezelj has proved a version of Gromov’s Oka
principle for sections of certain holomorphic submersions over reduced 1-convex spaces
[55]. Recall that a complex space is 1-convex if it contains a largest compact subvariety
that can be blown down so as to make a Stein space.

• As mentioned above, a holomorphic function on a subvariety A of a Stein manifold
X extends to all of X. In the absence of topological obstructions, the analogous result
holds for holomorphic maps to an Oka manifold Y , but fails for arbitrary Y (for example,
let X = C with a two-point subvariety and Y be a disc). M. Slapar and the first-
named author have shown that, unless dim X = 2, a version of Cartan’s theorem can be
obtained for arbitrary Y if we are permitted to deform the Stein structure on X away
from A [24, 25]. When dim X = 2, this still holds if we are allowed to deform not only
the complex structure but also the smooth structure of X away from A.

6. From manifolds to maps

Once a new property has been defined for objects, we should extend it to arrows (or at
least try). For the Oka property, this was first done in [47]. The following definition
is stronger than the one in [47] in that it includes approximation, but in fact the two
definitions can be shown to be equivalent.

Definition 6.1. A holomorphic map π : E → B between complex manifolds has the
parametric Oka property if whenever

• S is a Stein manifold,
• T is a closed complex submanifold of S,
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• K is a holomorphically convex compact subset of S,
• P is a finite polyhedron with a subpolyhedron Q,
• f : S × P → B is continuous and holomorphic along S,
• g0 : S ×P → E is a continuous lifting of f by π (so π ◦ g0 = f) such that g0(·, x)

is holomorphic on S for all x ∈ Q and holomorphic on K ∪ T for all x ∈ P ,

there is a continuous deformation gt : S × P → E of g0 such that for all t ∈ [0, 1],

• π ◦ gt = f ,
• gt = g0 on S × Q and on T × P ,
• gt|K × P is holomorphic along K and uniformly close to g0|K × P , and
• g1 : S × P → E is holomorphic along S.

If the above holds when P is a singleton and Q is empty, then π is said to have the basic
Oka property.

Theorem 6.2 ([18], Theorem 1.1). For holomorphic submersions, the basic Oka prop-
erty implies the parametric Oka property.

As the definition is somewhat complicated, it may help to consider the very simplest
case when P is a singleton and Q, T , and K are empty. Then the Oka property of π
simply says that if S is Stein and f : S → B is holomorphic, then every continuous lifting
S → E of f by π can be continuously deformed through such liftings to a holomorphic
lifting. In particular, if B is Stein, every continuous section of π can be continuously
deformed to a holomorphic section.

The class of maps with the parametric Oka property is not closed under composition,
as shown by the simple example D = {z ∈ C : |z| < 1} →֒ C → ∗. The following notion,
motivated by homotopy-theoretic considerations (see §7), is more natural.

Definition 6.3. A holomorphic map π : E → B between complex manifolds is an Oka
map if it is a topological fibration and satisfies the parametric Oka property.

Remarks. • By a topological fibration we mean a Serre fibration or a Hurewicz
fibration: the two notions are equivalent for continuous maps between locally finite
simplicial complexes ([2], Theorem 4.4), such as complex manifolds or complex spaces.

• A complex manifold X is Oka if and only if the constant map X → ∗ is Oka.

• The class of Oka maps is closed under composition. The pullback of an Oka map by
an arbitrary holomorphic map is Oka. A retract of an Oka map is Oka.

• An Oka map π : E → B is a holomorphic submersion. Namely, since π is a topological
fibration, the image of π is a union of path components of B and π has a continuous
section on a neighbourhood, say biholomorphic to a ball, of each point q of the image,
taking q to any point p in its preimage. The Oka property of π implies that such a
section can be deformed to a holomorphic section still mapping q to p. Thus, by the
holomorphic rank theorem, π is a holomorphic submersion.

• The fibres of an Oka map are Oka manifolds. However, a holomorphic submersion
with Oka fibres need not be an Oka map, even if it is smoothly locally trivial (see
Example 6.6 below).

• In Definition 6.1, Q →֒ P may be taken to be any cofibration between cofibrant
topological spaces ([47], §16), such as arbitrary CW-complexes, not necessarily compact.
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Here, the notion of cofibrancy for topological spaces and continuous maps is the stronger
one that goes with Serre fibrations rather than Hurewicz fibrations.

• The theory of Oka maps can to a large extent be formulated for holomorphic submer-
sions between reduced complex spaces. Also, for some purposes, P and Q in Definition
6.1 may be taken to be arbitrary compact subsets of Rm or even arbitrary compact
Hausdorff spaces, and S and T may be taken to be reduced Stein spaces (see [18, 20]).

The following theorem is pleasantly analogous to a basic property of Hurewicz fibra-
tions.

Theorem 6.4 ([20], Theorem 4.7). A holomorphic map π : E → B between complex
manifolds is Oka if every point of B has an open neighbourhood U such that the restric-
tion π : π−1(U) → U is Oka.

It follows immediately that a holomorphic fibre bundle whose fibres are Oka manifolds
is an Oka map. The next result gives the weakest currently known geometric sufficient
conditions for a holomorphic map to be Oka. It is the strongest available statement of
Gromov’s Oka principle.

Theorem 6.5 ([18], Corollary 1.2). (i) A stratified holomorphic fibre bundle with Oka
fibres has the parametric Oka property.

(ii) A stratified subelliptic submersion has the parametric Oka property.

Thus, a holomorphic submersion of one of these two types is Oka if and only if it is
a topological fibration.

Example 6.6. There exists a holomorphic submersion π : E → B that is a smooth
fibre bundle such that the fibre π−1(b) is an Oka manifold for every b ∈ B, but π is
not an Oka map. Here is a simple example. Let g : D → C be a smooth function. Let
π : Eg = D×C\Γg → D be the projection, where Γg denotes the graph of g. Clearly, π is
smoothly trivial and each fibre π−1(z) ∼= C \ {g(z)} ∼= C∗ is an Oka manifold. However,
if π is an Oka map, then g is holomorphic. Indeed, if π is Oka, then the smooth lifting
f : D × C∗ → Eg, (z, w) 7→ (z, w + g(z)), of the projection p : D × C∗ → D by π can be
deformed to a holomorphic lifting h : D × C∗ → Eg.

Eg

π

��
D × C

∗

f
;;

w
w

w
w

w
w

w
w

w h

;;
w

w
w

w
w

w
w

w
w

p
// D

For each z ∈ D, g(z) is the missing value in the range of the holomorphic map h(z, ·) :
C∗ → C. A theorem of A. Eremenko [9] now implies that g is holomorphic.

7. The homotopy-theoretic viewpoint

Gromov’s Oka principle has a natural home in structures provided by abstract homotopy
theory. This point of view was developed in the papers [46, 47, 48, 50]. The Oka property
of holomorphic maps (and in particular of complex manifolds) turns out to have a natural
and rigorous homotopy-theoretic interpretation.
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Abstract homotopy theory, also known as homotopical algebra, was founded by D.
Quillen in his 1967 monograph [56]. The fundamental notion of the theory is the concept
of a model category, or a model structure on a category. Roughly speaking, a model
structure is an abstraction of the essential features of the category of topological spaces
that make ordinary homotopy theory possible. We can only very briefly review the basic
notions of abstract homotopy theory that are relevant here. For more information we
refer the reader to [5, 38].

A model category is a category with all small limits and colimits and three dis-
tinguished classes of maps, called weak equivalences or acyclic maps, fibrations, and
cofibrations, such that the following axioms hold.

• If f and g are composable maps, and two of f , g, f ◦g are acyclic, so is the third.
• The classes of weak equivalences, fibrations, and cofibrations are closed under

retraction. (Also, it follows from the axioms that the composition of fibrations
is a fibration, and the pullback of a fibration by an arbitrary map is a fibration.)

• A lifting B → X exists in every square

A //

cofibration
��

X

fibration
��

B //

>>
~

~

~

~

Y

if one of the vertical maps is acyclic.
• Every map can be functorially factored as

acyclic fibration ◦ cofibration

and as

fibration ◦ acyclic cofibration.

There are many examples of model categories. A fundamental example, closely re-
lated to the category of topological spaces, is the category of simplicial sets. Simplicial
sets are combinatorial objects that have a homotopy theory equivalent to that of topo-
logical spaces, but tend to be more useful or at least more convenient than topological
spaces for various homotopy-theoretic purposes. In homotopy-theoretic parlance, the
distinction between topological spaces and simplical sets is blurred and the latter are
often referred to as spaces. For an introduction to simplicial sets, we refer the reader to
[28, 53].

The following key observations vastly expand the scope of abstract homotopy theory.

• Not only can we do homotopy theory with individual spaces, but also with
diagrams or sheaves of them.

• Manifolds and varieties can be thought of as sheaves of spaces, so we can do ho-
motopy theory with them too (the general idea is known as the Yoneda lemma).

This line of thought has found a spectacular application in V. Voevodsky’s homotopy
theory of schemes and the resulting proof of the Milnor conjecture [61].

We wish to embed the category M of complex manifolds and holomorphic maps into
a suitable model category. Every complex manifold X defines a presheaf O(·, X) on
the full subcategory S of Stein manifolds. The presheaf consists of the set O(S, X) of
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holomorphic maps S → X for each Stein manifold S, along with the precomposition
map O(S2, X) → O(S1, X) induced by each holomorphic map S1 → S2 between Stein
manifolds. The presheaf O(·, X) determines X, so we have an embedding, in fact a full
embedding, of M into the category of presheaves of sets on S .

Each set O(S, X) carries the compact-open topology. A map between such sets de-
fined by pre- or postcomposition by a holomorphic map is continuous. We may therefore
consider a complex manifold X as a presheaf of topological spaces on S . This presheaf
has the property that as a holomorphic map S1 → S2 between Stein manifolds is var-
ied continuously in O(S1, S2), the induced precomposition map O(S2, X) → O(S1, X)
varies continuously as well. We would like to do homotopy theory with complex mani-
folds viewed as presheaves with this property.

Somewhat unexpectedly, as explained in [47], §3, there are solid reasons, beyond
mere convenience, to rephrase the above entirely in terms of simplicial sets. For the
technical terms that follow, we refer the reader to [47] and the references cited there.
To summarize, we turn S into a simplicial site and obtain an embedding of M into the
category S of prestacks on S . The basic homotopy theory of prestacks on a simplicial
site was developed by B. Toën and G. Vezzosi for use in algebraic geometry [60]. A
new model structure on S, called the intermediate structure and based on ideas of J.
F. Jardine, later published in [40], was constructed in [47]. It is in this model structure
that Gromov’s Oka principle finds a natural home.

The main results of [47] along with Theorem 6 of [48] can be summarized as follows.

Theorem 7.1. The category of complex manifolds and holomorphic maps can be em-
bedded into a model category such that:

• a holomorphic map is acyclic when viewed as a map in the ambient model cate-
gory if and only if it is a homotopy equivalence in the usual topological sense.

• a holomorphic map is a fibration if and only if it is an Oka map. In particular,
a complex manifold is fibrant if and only if it is Oka.

• a complex manifold is cofibrant if and only if it is Stein.
• a Stein inclusion is a cofibration.

A characterization of those holomorphic maps that are cofibrations is missing from
this result. It may be that Stein inclusions and biholomorphisms are the only ones.

Knowing that Oka maps are fibrations in a model structure helps us understand and
predict their behaviour. For example, by abstract nonsense, in any model category, the
source of a fibration with a fibrant target is fibrant. It follows that the source of an
Oka map with an Oka target is Oka. On the other hand, the fact that the image of an
Oka map with an Oka source is Oka is a somewhat surprising feature of Oka theory not
predicted by abstract nonsense, the reason being that the Oka property can be detected
using Stein inclusions of the special kind T →֒ C

n with T contractible.

Further connections between Oka theory and homotopy theory were pursued in [49].
The singular set sX of a topological space X is a simplicial set whose n-simplices for
each n ≥ 0 are the continuous maps into X from the standard n-simplex

Tn = {(t0, . . . , tn) ∈ R
n+1 : t0 + · · ·+ tn = 1, t0, . . . , tn ≥ 0}.

The singular set carries the homotopy type of X.
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The affine singular set eX of a complex manifold X was defined in [49] as a simplicial
set whose n-simplices for each n ≥ 0 are the holomorphic maps into X from the affine
n-simplex

An = {(t0, . . . , tn) ∈ C
n+1 : t0 + · · · + tn = 1},

viewed as a complex manifold biholomorphic to Cn. If X is Brody hyperbolic, then eX
is discrete and carries no topological information about X.

A holomorphic map An → X is determined by its restriction to Tn ⊂ An, so we have
a monomorphism, that is, a cofibration eX →֒ sX of simplical sets. When X is Oka,
eX, which is of course much smaller than sX, carries the homotopy type of X. More
precisely, the cofibration eX →֒ sX is the inclusion of a strong deformation retract
([49], Theorem 1). Even for complex Lie groups, this result appears not to have been
previously known.

8. Open problems

Oka theory is a young field with many basic problems still open. A major theme is to
clarify the boundaries of the class of Oka manifolds. We start with two frustratingly
simple-looking questions.

A. Let B be a closed ball in Cn, n ≥ 2 (or more generally a compact convex set). Is
the complement Cn \ B Oka? What makes this problem particularly intriguing is the
absence of any obvious obstructions. Indeed, Cn \ B is a union of Fatou-Bieberbach
domains [57].

B. Is the complement of a smooth cubic curve in P2 Oka? The complement is known
to be dominable by C2 [4].

The following are broader questions in a similar vein.

C. Which complex surfaces of non-general type are Oka? In particular, how about
Kummer surfaces and, more generally, K3 surfaces? Kummer surfaces are dominable
by C2 and they are dense in the moduli space of all K3 surfaces.

A Kummer surface X admits a finite branched covering Y → X where Y is a complex

two-dimensional torus blown up at 16 points. The universal covering space Ỹ of Y is
C

2 (the universal covering of the torus) blown up along a tame discrete sequence (the

preimage points of the 16 points in X), so Ỹ is weakly subelliptic. Hence, Ỹ is Oka, so
by Corollary 3.7, Y is also Oka. It remains to be seen whether the Oka property passes
down from Y to its ramified quotient space X.

D. If X is a complex manifold, p ∈ X, and X \ {p} is Oka, is X Oka? Conversely, if
X is Oka and dim X ≥ 2, is X \ {p} Oka?

Continuing in the same vein, we inquire about possible counterparts in Oka theory
to well-known statements in hyperbolic geometry.

E. S. Kobayashi conjectured that if X is a very general hypersurface in Pn of sufficiently
high degree, then X and Pn\X are hyperbolic. There has been considerable progress on
this conjecture, which we shall not review here, but as far as we know a complete proof
has not appeared. Is a smooth hypersurface in Pn of sufficiently low degree (greater
than 1) Oka? Is the complement of a generic hypersurface in Pn of sufficiently low
degree Oka?



SURVEY OF OKA THEORY 21

F. It is known that hyperbolicity of compact complex manifolds is stable under small
deformations ([43], Theorem 3.11.1). How does the Oka property of compact complex
manifolds behave with respect to deformations?

The next two problems concern a geometric characterization of the Oka property
(for manifolds for now; later, one would want to generalize to maps). The essence of
Gromov’s Oka principle is the implication elliptic ⇒ Oka. Gromov proved the converse
for Stein manifolds ([34], 3.2.A; see also [48], Theorem 2). For manifolds in general, this
is a fundamental open question.

G. Is every Oka manifold elliptic (or subelliptic or weakly subelliptic)?

Gromov’s result that ellipticity is equivalent to the Oka property for Stein manifolds
has been generalized to a much larger class of manifolds using a geometric structure
somewhat more involved than a dominating spray ([48]; see also [50], §3).

A complex manifold is said to be good if it is the image of an Oka map from a Stein
manifold, and very good if it carries a holomorphic affine bundle whose total space is
Stein (these definitions are slightly different from those in [48]).

The simplest examples of good manifolds that are not Stein are the projective spaces.
Namely, let Qn be the complement in Pn × Pn of the hypersurface

{
([z0, . . . , zn], [w0, . . . , wn]) : z0w0 + · · ·+ znwn = 0

}
.

This hypersurface is the preimage of a hyperplane by the Segre embedding Pn × Pn →
Pn2+2n, so Qn is Stein. Let π be the projection Qn → Pn onto the first component. It is
easily seen that π has the structure of a holomorphic affine bundle with fibre Cn. Thus,
Pn is very good. (This observation is called the Jouanolou trick in algebraic geometry.)

The class of good manifolds contains all Stein manifolds and all quasi-projective
manifolds and is closed under taking submanifolds, products, covering spaces, finite
branched covering spaces, and complements of analytic hypersurfaces. The same is true
of the class of very good manifolds.

A good manifold is Oka if and only if it is the image of an Oka map from an elliptic
manifold. A very good manifold is Oka if and only if it carries an affine bundle whose
total space is elliptic: this is a purely geometric characterization of the Oka property
that holds, for example, for all quasi-projective manifolds.

H. Is every complex manifold good, or even very good?

We conclude with an assortment of further problems.

I. Are the affine spaces Cn the only contractible Stein Oka manifolds? S. Kaliman
and F. Kutzschebauch have produced many smooth affine algebraic varieties that are
diffeomorphic to affine space and have the algebraic density property, so they are Oka
[41]. It is not known whether these manifolds are biholomorphic to affine space.

J. If we restrict the convex compact subset K in CAP to be a ball, is the resulting
property equivalent to CAP? This question was posed by Gromov ([34], p. 881).

K. Let E → B be a holomorphic fibre bundle with fibre Y . If E is Oka, does it follow
that B and Y are Oka as well? It would be surprising if the answer was affirmative, but
no counterexample is known.
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L. Is there a reasonable way to extend the Oka property from complex manifolds to
reduced complex spaces? The authors have tried and found it problematic.

M. Are there any restrictions on the homotopy type of a compact Oka manifold? It
would be amusing if simply connected compact Oka manifolds turned out to have elliptic
homotopy type in the sense of rational homotopy theory. This would imply, for example,
that K3 surfaces are not Oka [1].
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