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Abstract. We study the dynamics of a generic automorphism f of a Stein manifold

with the density property. Such manifolds include almost all linear algebraic groups.

Even in the special case of Cn, n ≥ 2, most of our results are new. We study the

Julia set, non-wandering set, and chain-recurrent set of f . We show that the closure

of the set of saddle periodic points of f is the largest forward invariant set on which

f is chaotic. This subset of the Julia set of f is also characterised as the closure of

the set of transverse homoclinic points of f , and equals the Julia set if and only if a

certain closing lemma holds. Among the other results in the paper is a generalisation

of Buzzard’s holomorphic Kupka-Smale theorem to our setting.
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1. Introduction and main results

This paper continues the program of research, built on the groundbreaking work of

Fornæss and Sibony in [8], that began with our previous papers [2, 3, 4]. Here, we

investigate the dynamics of a generic automorphism of a Stein manifold X with the
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density property. Genericity, of course, is with respect to the compact-open topology

on the automorphism group AutX, which is separable and defined by a complete metric.

Roughly speaking, a Stein manifold has the density property if it has many complete

holomorphic vector fields and hence, by integrating such fields, many automorphisms.

For an overview of Andersén-Lempert theory, which is the theory of Stein manifolds

with the density property or one of its variants, see [10, Chapter 4] or [11]. The density

property turns out to naturally fit into dynamical arguments, allowing us to develop a

rich theory of reversible holomorphic dynamics. The prototypical example of a Stein

manifold with the density property is Cn, n ≥ 2. For more examples, see Remark 1(1)

below.

The ideal picture that we work towards, but do not conjecture because it may be

too simplistic, is that a generic automorphism f of X is chaotic on the complement of

the union of the basins of its attracting and repelling1 cycles. Using our previous work

on closing lemmas in [3], we identify the largest subset of X on which f is chaotic.

This subset is defined as the closure of the set of saddle periodic points of f . It is also

characterised as the closure of the set of transverse homoclinic points of f . We call it

the chaotic Julia set of f and denote it by J∗
f .

The following theorem contains the main results of this paper. Even in the special

case of Cn, n ≥ 2, the theorem is new, except for part (a), which is a generalisation of

Buzzard’s holomorphic Kupka-Smale theorem for Cn, n ≥ 2 [6]. A key ingredient in

the proof is Theorem 4, which builds on the work of Peters, Vivas, and Wold in [16].

The notation used below is explained at the end of the introduction.

Theorem 1. A generic automorphism f of a Stein manifold X with the density property

has the following properties.

(a) Every periodic point of f is hyperbolic and every homoclinic or heteroclinic point

is transverse.

(b) The forward Julia set J+
f is connected, has empty interior, is the boundary of

each connected component of the basin of attraction of every attracting cycle of

f , and is not an embedded topological manifold at any of its points. Also, f has

a saddle fixed point q such that J+
f is the closure of the stable manifold W s

f (q)

of f through q.

(c) The forward Fatou set F+
f = X \ J+

f equals the subset rne(f) on which f is

robustly non-expelling and is the union of the basins of attraction of the attracting

cycles of f and the non-recurrent Fatou components of f . Every connected

component of F+
f is Stein.

(d) The non-wandering set Ωf and the Julia set Jf are not compact (hence not

empty), have empty interior, and

Ωf = Jf ∪ att(f) ∪ rep(f).

(e) The set Cf of chain-recurrent points is the complement of the union of the proper

basins of the attracting and repelling cycles of f . The chain-recurrence classes

1By the basin of a repelling cycle we mean the basin of attraction of the inverse map.
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are the attracting cycles, the repelling cycles, and the set(
J+
f ∪ nrc(f)

)
∩
(
J−
f ∪ nrc(f−1)

)
,

where nrc(f) denotes the union of the non-recurrent Fatou components of f .

(f) The chaotic Julia set J∗
f = sad(f) ⊂ Jf is perfect and not compact, and f is

chaotic on J∗
f . In fact, J∗

f is the largest forward invariant subset of X on which

f is chaotic. Also, J∗
f is the closure of the set of transverse homoclinic points

of f .

Remark 1. (1) If X and Y are Stein manifolds with the density property, then so are

X × Y , X × C, and X × C∗. A Stein manifold with the density property is Oka and

homogeneous (in the sense that its automorphism group acts transitively on it). No

open Riemann surface has the density property. It is a long-standing open question

whether C∗n, n ≥ 2, has the density property.

Most known examples of Stein manifolds with the density property are captured

by the following theorem of Kaliman and Kutzschebauch [14, Theorem 1.3]. Let X

be a connected affine homogeneous space of a linear algebraic group (for example, a

connected linear algebraic group). If X is not isomorphic to C or C∗n for some n ≥ 1,

then X has the algebraic density property and therefore also the density property. For

the full list of known Stein manifolds with the density property, see [11, Section 2.1].

(2) A main goal of our work has been to reconcile the “attracted versus recurrent”

picture of general dynamics and the “calm versus wild” picture of holomorphic dynam-

ics. Theorem 1(d) says that the non-wandering set, a key feature of the former picture,

and the Julia set, a key feature of the latter picture, are essentially the same in the

generic case. The analogous result for endomorphisms of Oka-Stein manifolds (which

include all Stein manifolds with the density property) is [3, Theorem 1(d)].

(3) A recurrent Fatou component W of an automorphism f of a Stein manifold X

is a connected component of F+
f with a point that has an ω-limit point p in W . Then

W is periodic. If X has the density property and f is generic, then p, being a non-

wandering point in F+
f = rne(f), is an attracting periodic point [3, Theorem 2(a)]2 of

minimal period k, say. Hence, W is the basin of attraction of one of the points in the

cycle of p, viewed as an attracting fixed point of fk. (For automorphisms, as opposed

to endomorphisms in general, the basin of attraction of an attracting fixed point is

connected.) Thus,

F+
f = bas(f) ⊔ nrc(f),

so X = F+
f ⊔ J+

f is partitioned as

X = bas(f) ⊔ nrc(f) ⊔W s
f (q),

where q is a saddle fixed point of f as in Theorem 1(b).

2In the proof of [3, Theorem 2(a)], we only stated that a non-wandering point of f in rne(f) is

periodic. Since small perturbations of f , obtained using Andersén-Lempert theory, remain robustly

non-expelling near the point, it must be attracting.
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(4) We do not know whether a generic automorphism of a Stein manifold with

the density property can have non-recurrent Fatou components. A related question

is open for endomorphisms of an Oka-Stein manifold, see [4, Section 3]. If a generic

automorphism f has no non-recurrent Fatou components, then by Theorem 1,

Cf = Ωf = Jf ∪ att(f) ∪ rep(f).

(5) Another open question is whether saddle periodic points are dense in the Julia

set of a generic automorphism f , that is, whether J∗
f = Jf . In Section 8, we point out

that answering this question in the affirmative is tantamount to establishing a variant

of the closing lemma. By Theorem 9 below, the “generic large-cycles closing lemma”

(which is open) is equivalent to any, and hence all, of the following properties for a

generic automorphism f of X: J∗
f = Jf ; f is chaotic on Jf ; periodic points are dense

in Jf .

By (4) and (5) above, if the generic large-cycles closing lemma holds, and if a generic

automorphism has no non-recurrent Fatou components, then a generic automorphism

is chaotic on the complement of the union of the basins of its attracting and repelling

cycles.

We conclude the introduction with a list of notation, mostly the same as established

in [4], an exception being that the right definition of the Julia set of an automorphism

is different from the definition that is appropriate in the context of endomorphisms. In

what follows, let X be a complex manifold and let f be an automorphism of X.

• hyp(f) is the set of hyperbolic periodic points of f . A periodic point p of f

of period n is hyperbolic if the derivative dpf
n of the nth iterate fn at p has

no eigenvalue of absolute value 1. A periodic point p of minimal period n is

transverse if 1 is not an eigenvalue of dpf
n.

• att(f) is the set of attracting periodic points of f . The periodic point p is

attracting if all the eigenvalues of dpf
n have absolute value less than 1.

• rep(f) is the set of repelling periodic points of f . The periodic point p is repelling

if all the eigenvalues of dpf
n have absolute value greater than 1.

• sad(f) is the set of saddle periodic points of f . The periodic point p is a saddle

point if it is hyperbolic and some of the eigenvalues of dpf
n have absolute value

less than 1 and some have absolute value greater than 1.

• Ωf is the non-wandering set of f , that is, the set of points p ∈ X such that for

every neighbourhood U of p, there is k ≥ 1 such that U ∩fk(U) ̸= ∅. Note that

Ωf is a closed subset of X. Also, Ωf−1 = Ωf .

• F+
f is the forward Fatou set of f , the open set of normality of the forward

iterates of f . More explicitly, F+
f is the set of points in X with a neighbourhood

U such that every subsequence of the sequence of forward iterates of f has a

subsequence that converges locally uniformly on U to a holomorphic map into

X or to the point at infinity. The backward Fatou set of f is F−
f = F+

f−1 .

• J+
f = X \ F+

f is the forward Julia set of f and J−
f = X \ F−

f is the backward

Julia set of f .
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• Jf = J+
f ∩J−

f = X \(F+
f ∪F−

f ) is the Julia set of f . Since f is an automorphism,

the sets F+
f , F

−
f , J

+
f , J

−
f , Jf are all completely invariant, and coincide with the

corresponding sets of any iterate fn, n ̸= 0.

• rne(f) is the open set of points p ∈ X at which f is robustly non-expelling,

meaning that there are neighbourhoods U of p in X and V of f in AutX and

a compact subset K of X such that gj(U) ⊂ K for all g ∈ V and j ≥ 0. If X is

Stein, by Montel’s theorem, rne(f) ⊂ F+
f .

• bas(f) is the union of the basins of attraction of the attracting cycles of f .

• nrc(f) is the union of the non-recurrent Fatou components of f .

Acknowledgement. The authors thank John Erik Fornæss for helpful suggestions

concerning homoclinic points. We also thank an anonymous referee for comments that

helped us improve the exposition.

2. Preliminaries on stable manifolds

We briefly recall basic definitions and results on stable manifolds (see for example [15]).

Let X be a complex manifold of dimension n, let h be an automorphism of X, and let

p be a saddle fixed point of h. Let d be a distance inducing the topology on X. It is

well known that the saddle point moves continuously when h is perturbed.

Lemma 1. Let K ⊂ X be a compact subset containing p in its interior. Then there

exists a neighbourhood U of p and ϵ > 0 such that every h̃ ∈ AutX with dK(h, h̃) < ϵ has

a unique fixed point η(h̃) in U , which is a saddle point with the same stable and unstable

dimensions as p. Moreover, if (hj) is a sequence in AutX such that dK(hj, h) → 0,

then η(hj) → p.

Let Es ⊂ TpX (resp. Eu) be the vector subspace spanned by the generalised eigenvec-

tors corresponding to eigenvalues with absolute value stricly smaller (resp. larger) than

1. In suitable holomorphic coordinates centred at p, we have Es = span{e1, . . . , em}
and Eu = span{em+1, . . . , en}. Denote by ∆n(0, r) the polydisc of radius r > 0 in such

coordinates. The local stable and unstable manifolds of h at p are defined as

Γs
h(p, r) := {z ∈ ∆n(0, r) : hj(z) ∈ ∆n(0, r) for all j ≥ 0}

and

Γu
h(p, r) := {z ∈ ∆n(0, r) : h−j(z) ∈ ∆n(0, r) for all j ≥ 0}.

If r is sufficiently small, then Γs
h(p, r) is contained in the stable manifold

W s
h(p) := {z ∈ X : hj(z) → p as j → ∞},

and Γu
h(p, r) is contained in the unstable manifold

W u
h (p) := {z ∈ X : h−j(z) → p as j → ∞}.

Moreover, if r is sufficiently small, the local stable manifold is the graph of a holomorphic

map φ : ∆m(0, r) → ∆n−m(0, r) with d0φ = 0. Clearly, every orbit converging to p is
5



eventually contained in Γs
h(p, r), so⋃

j≥0

h−j(Γs
h(p, r)) = W s

h(p),

which shows that the stable manifold is an immersed complex submanifold biholomor-

phic to Cm and tangent to Es at p. Analogous considerations hold for the unstable

manifold. Next we consider how the stable manifold changes under small perturbations

of the automorphism h.

Lemma 2. If r > 0 is small enough, the following holds. Let K ⊂ X be compact and

contain ∆n(0, r) in its interior. Let (hj) be a sequence in AutX with dK(hj, h) → 0.

For j large enough, let pj := η(hj) be the saddle fixed point given by Lemma 1. Then

there is a holomorphic map φj : ∆
m(0, r) → ∆n−m(0, r), whose graph is contained in the

stable manifold W s
hj
(pj), such that φj converges to φ uniformly on ∆m(0, r) as j → ∞.

Take q ∈ W s
h(p), q ̸= p. Choose holomorphic coordinates centred at q such that

TqW
s
h(p) = span{e1, . . . , em}. By Lemma 2, pulling back by h, if r is sufficiently small,

the stable manifold W s
h(p) contains the graph of a holomorphic map ψ : ∆m(0, r) →

∆n−m(0, r) with d0ψ = 0. The following result now follows from the lemma.

Lemma 3. Let K ⊂ X be compact and contain {p} ∪ {hj(q) : j ≥ 0} in its interior.

If r > 0 is small enough, the following holds. Let (hj) be a sequence in AutX with

dK(hj, h) → 0. For j large enough, let pj := η(hj) be the saddle fixed point given by

Lemma 1. Then there is a holomorphic map ψj : ∆
m(0, r) → ∆n−m(0, r), whose graph

is contained in the stable manifold W s
hj
(pj), such that ψj converges to ψ uniformly on

∆m(0, r) as j → ∞.

Next we recall the following well-known result. For want of a reference we supply a

proof.

Lemma 4. Let f be an automorphism of a complex manifold X. Let p be a saddle fixed

point of f . Then W s
f (p) ⊂ J+

f and W u
f (p) ⊂ J−

f .

Proof. Let ∥ · ∥ be a hermitian metric on X. Suppose that there is x ∈ W s
f (p) ∩ F+

f .

By normality, for any tangent vector v ∈ TxX, the sequence (∥dxfn(v)∥) is bounded.
Let Cp be a homogeneous cone in TpX such that the tangent space to the unstable

manifold W u
f (p) is contained in the interior of Cp and the tangent space to the stable

manifold W s
f (p) is contained in the interior of TpX \ Cp. For k ≥ 0 large enough,

dpf
k(Cp) ⊂ int(Cp) and ∥dpfk(v)∥ > 2∥v∥ for all v ∈ Cp \ {0}. The cone Cp can be

extended to a cone field C• in a neighbourhood U of p such that

dzf
k(Cz) ⊂ int(Cf(z)) and ∥dzfk(v)∥ > 2∥v∥ for all v ∈ Cz \ {0}

for all z ∈ U ∩ f−1(U).

Since x ∈ W s
f (p), there exists an integer m such that fn(x) ∈ U for all n ≥ m.

Choose a nonzero v ∈ TxX such that dxf
m(v) ∈ Cfm(x) \ {0}. Then

∥dxfm+kj(v)∥ > 2k∥dxfm(v)∥

for all j ≥ 1, which contradicts the boundedness of the sequence (∥dxfn(v)∥). □
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3. The Kupka-Smale theorem

In this section we generalise the Kupka-Smale’s theorem to our setting. Here is the first

half.

Theorem 2. For a generic automorphism of a Stein manifold X with the density

property, every periodic point is hyperbolic.

Proof. The proof is so similar to the proof in [4] of the analogous result for endomor-

phisms of an Oka-Stein manifold [4, Theorem 1(a)] that we will only sketch it.

Given a compact subset K of X and an integer m ≥ 1, let T (m,K) ⊂ AutX be the

open set of automorphisms such that every periodic point in K of X of minimal period

at most m is transverse. Let H (m,K) ⊂ AutX be the open set of automorphisms of

X such that every period point in K of minimal period at most m is hyperbolic.

We prove, in three steps as in [4], that for all K and m, H (m,K) is dense in AutX.

We then exhaust X by compact sets Km and conclude that every periodic point of an

automorphism in the residual subset
⋂

m≥1

H (m,Km) of AutX is hyperbolic.

Step 1. For every compact K ⊂ X, T (1, K) is dense in AutX. This the analogue of

[4, Proposition 1]. Let f0 ∈ AutX. We will produce a perturbation of f0, that is, a

continuous map f : P → AutX, where the parameter space P is a neighbourhood of

the origin 0 in some Ck, with f(0) = f0, such that there are arbitrarily small t ∈ P with

ft = f(t) ∈ T (1, K). Equivalently, for arbitrarily small t ∈ P , the map X → X ×X,

x 7→ (x, ft(x)), is transverse to the diagonal ∆ ⊂ X × X on K. By the parametric

transversality theorem, this holds if the associated map F : X×P → X×X, F (x, t) =

(x, ft(x)), is holomorphic (or merely C1) and transverse to ∆ on K × P .

Take finitely many complete holomorphic vector fields v1, . . . , vr on X that span

each tangent space of X on a neighbourhood U of f0(K). Let ψj
• be the flow of vj and

let ft = ψr
tr ◦ · · · ◦ ψ1

t1
◦ f0 ∈ AutX, t ∈ Cr. Then

∂

∂tj
f(x, t)|(x,0) = vj(f0(x)) for all

x ∈ X, so the associated map F is transverse to the diagonal on f−1
0 (U) × {0} and

hence on K × P for a sufficiently small neighbourhood P of 0 in Ck.

Step 2. For every compact K ⊂ X and m ≥ 1, H (m,K) is dense in T (m,K). This

is the analogue of [4, Proposition 2] and the proof is verbatim the same, except with

EndX replaced by AutX. The proof of [4, Proposition 2] refers to the endomorphism

case of [3, Lemma 1]; here we need the automorphism case of the lemma.

Step 3. For every compact K ⊂ X and m ≥ 2, T (m,K) ∩ H (m − 1, K) is dense in

H (m−1, K). This is the analogue of [4, Proposition 3] and the proof is the same, except

the perturbation f : X × (Cr)ℓ → X of the given automorphism f0 ∈ H (m − 1, K)

needs to be defined differently. As in the proof of [4, Proposition 3], we define ft =

f(·, t1, . . . , tℓ) = ϕV1
t1 ◦ · · · ◦ ϕVℓ

tℓ
◦ f0, but now, ϕV1

• , . . . , ϕ
Vℓ
• are holomorphic families of

automorphisms, parametrised by Cr, of the kind ϕV
• described as follows.

In the notation of the proof of [4, Proposition 3], were it possible to find finitely

many complete holomorphic vector fields v1, . . . , vr on X that span each tangent space
7



of X on a neighbourhood of V and are as close to zero as we wish on L1 ∪ · · · ∪ Lm−1,

then we would take ϕV
t = ψr

tr ◦ · · · ◦ ψ
1
t1
, with ψj

• being the flow of vj (as in Step 1).

Without the completeness requirement, the fields v1, . . . , vr can be chosen as above.

Using the density property, then, we approximate vj uniformly on V ∪ L1 ∪ · · · ∪ Lm−1

by a sum v = u1 + · · ·+ us of complete holomorphic vector fields u1, . . . , us on X with

flows η1•, . . . , η
s
•. Then ητ = ηsτ ◦· · ·◦η1τ is an algorithm for v, meaning that η0 = idX and

∂

∂τ

∣∣∣∣
τ=0

ητ (x) = v(x) for all x ∈ X, and we take ψj
tj = ηtj and ϕV

t = ψr
tr ◦ · · · ◦ ψ

1
t1
. □

The following result can be used to slightly simplify the proof of Theorem 2. We

include it here for possible use elsewhere. Under the assumption that the manifold X

is Stein, the result is implicit in the proof of [13, Theorem 4].

Proposition 1. Let X be a connected complex manifold with a set of complete holo-

morphic vector fields that span each tangent space of X. Then there is a finite such

set.

Proof. Take finitely many complete vector fields v1, . . . , vm that span TpX for some

p ∈ X and hence for every p outside a proper closed analytic subset A of X. We

want to produce finitely many fields that span TqX for a point q in each irreducible

component of A and then induct on dimension. Let the countable set D consist of one

point from each component of A.

By [19, Corollary 8], there is an automorphism f of X with f(x) /∈ A for every

x ∈ D. (The corollary applies because by hypothesis, the orbits of AutX are open, so

there is only one orbit. Also, as for an arbitrary complex manifold, AutX is completely

metrisable, and hence Baire, and separable.) Then the inverse of f takes a point in

X \A into each component of A, so the fields f−1
∗ v1, . . . , f

−1
∗ vm span TqX for a point q

in each component of A. □

Here is the second half of the Kupka-Smale theorem. We will describe how Buzzard’s

proof for Cn, n ≥ 2, can be modified so as to work in our setting.

Theorem 3. For a generic automorphism of a Stein manifold X with the density

property, every homoclinic or heteroclinic point is transverse.

Proof. In Buzzard’s notation, let p1 and p2 be saddle periodic points of an automorphism

F of X and q0 ∈ W s
F (p1) ∩ W u

F (p2) be a homoclinic or heteroclinic point. We need

suitable replacements for his families Ψk, k ≥ 1, of automorphisms and family Ψ of

diffeomorphisms of X, defined in [6, page 501].

The total F -orbit of q0 accumulates only on the union of the cycles of p1 and p2,

which is a finite set. Let K be the compact closure of the orbit. Let U be a Runge

neighbourhood of K, consisting of finitely many coordinate balls with mutually disjoint

closures, such that q0 is the only point of K in the ball U0 that contains it. Let

U1 = U \ U0. Let V0 ⊂ U0 be a smaller ball containing q0 and let B be a closed ball in

Cn, n = dimX, centred at the origin, so that V 0 + z ⊂ U0 for all z ∈ B with respect to

the coordinates in U0. Write V = V0 ∪ U1.
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Define Φ : V ×B → X by the formula (x, z) 7→ x+ z on V0 ×B and by the formula

(x, z) 7→ x on U1×B. Extend Φ to a smooth family Ψ : X×B → X of diffeomorphisms.

Use the parametric Andersén-Lempert theorem [9, Theorem 1.1]3 to approximate Φ

locally uniformly on V × B by a sequence of smooth families Ψk : X × B → X of

automorphisms of X.

These families have the properties needed for Buzzard’s proof. The remainder of

the proof consists of local arguments and transversality and genericity arguments that

straightforwardly extend to our more general setting. □

4. Julia set and non-wandering set

Our next result is the technical heart of the paper.

Theorem 4. A generic automorphism f of a Stein manifold X with the density property

has a saddle fixed point q such that

X \ rne(f) = W s
f (q) and X \ rne(f−1) = W u

f (q).

Before proving the theorem we need a lemma.

Lemma 5. Let X be a Stein manifold with the density property and f be an auto-

morphism of X. Let K ⊂ X be a compact subset and let ϵ > 0. Then there is an

automorphism g of X such that dK(g, f) < ϵ, with a fixed point in X \K, which can be

chosen to be attracting, saddle, or repelling.

Proof. After enlarging K, we may assume that it is holomorphically convex. Let p /∈
f(K)∪K. By [18, Theorem 2], there is h ∈ AutX such that df(K)(h, id) < ϵ, h(f(p)) =

p, and df(p)h ◦ dpf is a saddle or attracting or repelling. Now take g = h ◦ f . □

Remark 2. It immediately follows from Lemma 5 that a generic automorphism of a

Stein manifold X with the density property has infinitely many attracting fixed points,

infinitely many repelling fixed points, and infinitely many saddle fixed points. Indeed,

given a compact K ⊂ X, the open set of automorphisms of X with an attracting fixed

point outside K is dense in AutX. The same argument works for repelling and saddle

fixed points. Note that this implies that for a generic automorphism f of X, the sets

J+
f , J

−
f , Jf , F

+
f , F

−
f ,Ωf are not relatively compact.

Proof of Theorem 4. By Remark 2, there is a countable dense subset {ψ̃1, ψ̃2, . . .} in

AutX such that each ψ̃j admits a saddle fixed point η(ψ̃j). After passing to a suitable

subsequence of (ψ̃j), which we call (ψj), we can construct by induction compact subsets

Hj ⊂ X and numbers γj > 0 such that

(1) η(ψj) ∈ H◦
j ,

(2) the open set Bj := {h ∈ AutX : dHj
(ψj, h) < γj} is disjoint from B1, . . . , Bj−1,

3The theorem is stated for Cn, n ≥ 2, but holds more generally for Stein manifolds with the density

property. The Runge domains in the theorem should then be taken to be Stein (as they are here), but

they need not be connected.
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(3) A :=
⋃
j≥1

Bj is dense in AutX since it contains {ψ̃1, ψ̃2, . . .},

(4) every automorphism h ∈ Bj has a unique saddle fixed point η(h) in the neigh-

bourhood of η(ψj) provided by Lemma 1, which we can assume to be contained

in H◦
j .

Let {Un : n ≥ 1} be a countable basis for the topology of X consisting of relatively

compact open sets, and define the sets

Sn := {f ∈ A : W s
f (η(f)) ∩ Un ̸= ∅}

and

Tn := {f ∈ A : W u
f (η(f)) ∩ Un ̸= ∅},

which are open by Lemma 3. Hence,

G :=
⋂
n

A \ ∂Sn ∩
⋂
n

A \ ∂Tn

is residual in AutX. We claim that for all f ∈ G, the stable manifold W s
f (η(f)) is

dense in X \ rne(f) and the unstable manifold W u
f (η(f)) is dense in X \ rne(f−1). By

Lemma 4, this proves the theorem.

Fix f ∈ G and Un intersecting X \ rne(f). We will show that f ∈ Sn. By the

definition of G, this follows if we show that f ∈ Sn. Let K ⊂ X be compact and

let ϵ > 0. We will show that there is g ∈ Sn such that dK(f, g) < ϵ. An analogous

argument shows that f ∈ Tn.

Find j ≥ 1 such that f ∈ Bj. Let H be a holomorphically convex compact set

containing K ∪ Hj. By definition of rne(f), there is x ∈ Un and an automorphism

f̃ ∈ Bj with dH(f, f̃) < ϵ/2, such that the orbit (f̃n(x)) is not contained in H. Let

n0 ≥ 0 be the smallest nonnegative integer such that f̃n0(x) ∈ X \ H. The stable

manifold W s
f̃
(η(f̃)) is not contained in H, so we may choose y ∈ W s

f̃
(η(f̃)) \ H such

that f̃n(y) ∈ H for all n ≥ 1.

Let W be a Runge4 neighbourhood of H containing neither f̃n0(x) nor y. Let V be

a neighbourhood of f̃n0(x) and let φ : [0, 1]× V → X be a C1 isotopy such that for all

t ∈ [0, 1],

(1) φt : V → X is holomorphic and injective,

(2) φt(V ) is disjoint from W ,

(3) W ∪ φt(V ) is Runge,

(4) φ0 is the inclusion of V into X,

(5) φ1(f̃
n0(x)) = y.

Findm0 ≥ 1 such that f̃m0(y) belongs to the local stable manifold Γs
f̃
(η(f̃), r), where

r is given by Lemma 2. There are relatively compact neighbourhoods U ⊂ Un of x and

Z of f̃m0(y) such that f̃n0(U) ⋐ V and Z ⋐ f̃m0 ◦ φ1 ◦ f̃n0(U).

4We take a Runge open set to be Stein by definition.
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By the Andersén-Lempert theorem [10, Theorem 4.10.5], there is a sequence (Φj)

in AutX such that Φj → id on W and Φj → φ1 on V , uniformly on compact subsets.

For j large enough, the automorphism g = f̃ ◦ Φj satisfies the following conditions:

(1) g ∈ Bj.

(2) dH(f̃ , g) < ϵ/2.

(3) Z ⋐ gm0+n0(U).

(4) W s
g (η(g)) ∩ Z ̸= ∅.

Hence Un intersects the stable manifold W s
g (η(g)). □

This result has several corollaries. The first follows immediately from Theorem 4

and Lemma 4.

Corollary 1. For a generic automorphism f of a Stein manifold X with the density

property,

F+
f = rne(f), Jf = X \ (rne(f) ∪ rne(f−1)),

and f has a saddle fixed point q such that

Jf = W s
f (q) ∩W u

f (q).

Remark 3. The forward Fatou set F+
f is defined using the one-point compactification

of X. Different compactifications can be used, resulting in a forward Fatou set that is

in general strictly smaller than the set F+
f defined above, see for example [1, Example

2.6]. Surprisingly, for a generic f this ambiguity disappears. Indeed, Corollary 1 shows

that for a generic f the definition of the forward Fatou set is independent of the choice

of compactification, since every forward Fatou set contains rne(f).

The same holds for the definitions of F−
f , J+

f , J
−
f , and Jf .

Corollary 2. For a generic automorphism f of a Stein manifold X with the density

property the following holds. Let k ≥ 1. If U is a neighbourhood of a point in J+
f , W

is a neighbourhood of a point in J−
f , and V is a neighbourhood of the fixed saddle point

q given by Corollary 1, then there is a point in U whose forward fk-orbit enters V and

subsequently enters W . In particular there is n > 0 such that

fnk(U) ∩W ̸= ∅.

Proof. By Theorem 4, J+
f = W s

f (q) = W s
fk(q) and J

−
f = W u

f (q) = W u
fk(q). Let Ds be

a polydisc transverse to W s
fk(q) contained in U , and let Du be a polydisc transverse to

W u
fk(q) contained in W . By the lambda lemma applied to the map fk, there is a point

in Ds ⊂ U whose fk-orbit enters V and subsequently lands in Du ⊂ W . □

Corollary 3. For a generic automorphism f of a Stein manifold X with the density

property, the following hold.

(a) The forward Julia set J+
f is connected.

(b) J+
f is the boundary of each connected component of the basin of attraction of

every attracting cycle of f .

(c) J+
f and Jf have empty interior.

11



(d) If U is a neighbourhood of a point in J+
f , then U \ J+

f has infinitely many

connected components. Hence, J+
f is not an embedded topological manifold at

any of its points.

(e) Every connected component of F+
f is Stein.

Proof. (a) By Theorem 4, f has a saddle fixed point q such that J+
f is the closure of

the stable manifold W s
f (q), which is connected.

(b) Let B be the basin of attraction of an attracting cycle of f . (By Remark 2,

there are infinitely many such basins.) Let k denote the length of the cycle. Let B0 be

a connected component of B. Then B0 is the basin of attraction with respect to fk of

a point p in the cycle. We have p ∈ J−
f . Let U be a neighbourhood of a point in J+

f .

By Corollary 2, f jk(U) intersects B0 for some j ≥ 0, so U intersects B0. This shows

that J+
f ⊂ ∂B0. The opposite inclusion is evident.

(c) Being the boundary of an open set by (b), J+
f has empty interior. It follows that

Jf has empty interior too.

(d) By Remark 2, f has infinitely many attracting fixed points. Each basin of

attraction of f is a connected component of F+
f = X \ J+

f .

(e) Let W be a connected component of F+
f = rne(f). The characterisation of

pseudoconvex domains in Cn in terms of Hartogs figures extends to Stein manifolds.

Let H be a Hartogs figure in a polydisc P of dimension dimX and let ϕ : P → X be a

holomorphic map with ϕ(H) ⊂ W . The maximum principle shows that ϕ(P ) ⊂ rne(f),

so by connectedness, ϕ(P ) ⊂ W . □

Theorem 5. For a generic automorphism f of a Stein manifold X with the density

property,

Ωf = Jf ∪ att(f) ∪ rep(f).

Proof. Corollary 2 yields Jf ⊂ Ωf . Conversely, let x be a non-wandering point of an

automorphism f of X outside Jf . For generic f , by Corollary 1, x lies in rne(f) or

rne(f−1). If x ∈ rne(f), then x ∈ att(f), and if x ∈ rne(f−1), then x ∈ att(f−1) =

rep(f) by [3, Step 1 of the proof of Theorem 2]. □

Corollary 4. For a generic automorphism f of a Stein manifold X with the density

property, the non-wandering set Ωf has empty interior.

Proof. By Theorem 5, Ωf = Jf ∪att(f)∪ rep(f). By Corollary 3, Jf has empty interior.

Finally, att(f) ∪ rep(f) is discrete. □

5. Chain-recurrent set

Conley’s general theory of chain-recurrence for an endomorphism of a topological space

satisfying certain mild hypotheses was introduced in [7]. We consider the stronger

notion of chain-recurrence introduced by Hurley in [12], which is better suited to non-

compact spaces since it does not depend on the choice of a metric (see also [4, Section

4]). Let X be a locally compact second countable metric space and let f : X → X
12



be continuous. Choose a metric d on X compatible with the topology of X. Let

ϵ : X → (0,∞) be continuous. A finite sequence x0, x1, . . . , xn, n ≥ 1, of points in X is

an ϵ-chain or ϵ-pseudo-orbit of length n if d(f(xj), xj+1) < ϵ(f(xj)) for j = 0, . . . , n−1.

A point p in X is chain-recurrent for f if for every function ϵ, there is an ϵ-chain that

begins and ends at p. We denote by Cf the set of chain-recurrent points of f . An

equivalence relation is defined on Cf by declaring points p and q equivalent if for every

continuous ϵ : X → (0,∞), there is an ϵ-chain from p to q and an ϵ-chain from q to p.

The equivalence classes are called chain-recurrence classes. Note that Ωf ⊂ Cf . Also,

if f is a homeomorphism, then Cf = Cf−1 .

In [4, Section 3], we introduced the notion of a pre-recurrent Fatou component of an

endomorphism. For automorphisms, it coincides with the notion of a recurrent Fatou

component. By [4, Section 4], the chain-recurrent set of a generic endomorphism f of

an Oka-Stein manifold consists of the chain-recurrence class J+
f ∪ npr(f) along with

the attracting cycles of f . Here, npr(f) is the union of the non-pre-recurrent Fatou

components of f . It is an open question whether npr(f) is empty for generic f . Our

next theorem is the corresponding result for automorphisms. The proper basin of an

attracting cycle is the basin of attraction of the cycle with the cycle itself removed.

Theorem 6. For a generic automorphism f of a Stein manifold X with the density

property, the following hold.

(a) A point in X is chain-recurrent if and only if it does not lie in the proper basin

of an attracting or repelling cycle of f .

(b) The chain-recurrence classes are the following.

• The complement of the union of the basins of the attracting and repelling

cycles of f . This class may also be described as(
J+
f ∪ nrc(f)

)
∩
(
J−
f ∪ nrc(f−1)

)
.

• Each attracting cycle and each repelling cycle is a chain-recurrence class.

Proof. It is clear that a point in the proper basin of an attracting or repelling cycle is

not chain-recurrent. One cannot escape from an attracting cycle along an ϵ-pseudo-

orbit for f if ϵ is small enough. Likewise, one cannot reach a repelling cycle along an

ϵ-pseudo-orbit for f if ϵ is small enough. Thus, each attracting cycle and each repelling

cycle is a chain-recurrence class of its own.

By Remark 1(3),

X = J+
f ⊔ nrc(f) ⊔ bas(f) = J−

f ⊔ nrc(f−1) ⊔ bas(f−1),

so

X \ (bas(f) ∪ bas(f−1)) =
(
J+
f ∪ nrc(f)

)
∩
(
J−
f ∪ nrc(f−1)

)
.

It follows immediately from Corollary 2 that Jf lies in a single chain-recurrence

class.

Now take p ∈ nrc(f) ∩ J−
f . The forward orbit of p is relatively compact because

nrc(f) ⊂ F+
f = rne(f), so p has an ω-limit point s ∈ J+

f . By Corollary 2, arbitrarily

close to s is a point whose forward orbit comes arbitrarily close to a saddle fixed point
13



and subsequently comes arbitrarily close to p. This shows that p is chain-recurrent and

lies in the same chain-recurrence class as Jf . The case of p ∈ nrc(f−1)∩J+
f is analogous.

Finally, suppose that p ∈ nrc(f) ∩ nrc(f−1). Then p has an α-limit point r ∈ J−
f

and an ω-limit point s ∈ J+
f . By Corollary 2, arbitrarily close to s is a point whose

forward orbit comes arbitrarily close to a saddle fixed point and subsequently comes

arbitrarily close to r. Thus, p is chain-recurrent and lies in the same chain-recurrence

class as Jf . □

Remark 4. The first fundamental theorem of Conley, as adapted to the non-compact

case by Hurley, states that the chain-recurrent points are precisely those that lie in no

proper basin in the sense of Conley. This abstract notion of a basin (which we refer to

as a Conley basin for clarity) was introduced in [7] and [12] (see also [4, Section 4]); by

a proper Conley basin we mean a Conley basin with its attractor removed. Theorem 6

shows that for a generic automorphism f of a Stein manifold with the density property,

the proper Conley basins have the same union as the proper basins of the attracting

and repelling cycles of f .

The following result is now nearly evident.

Corollary 5. For a generic automorphism f of a Stein manifold with the density

property, the following are equivalent.

(i) Cf = Ωf .

(ii) Jf is a chain-recurrence class.

(iii) F+
f ∪ F−

f = bas(f) ∪ bas(f−1).

(iv) rne(f) ∪ rne(f−1) = bas(f) ∪ bas(f−1).

(v) nrc(f) ⊂ bas(f−1) and nrc(f−1) ⊂ bas(f).

(vi) nrc(f−1) ∪ (J−
f \ J+

f ) ⊂ bas(f).

Proof. To see that (v) and (vi) are equivalent, note that given nrc(f−1) ⊂ bas(f),

nrc(f) ⊂ bas(f−1) is equivalent to J−
f ⊂ J+

f ∪ bas(f), that is, J−
f \ J+

f ⊂ bas(f). □

6. Chaotic Julia set

We define the chaotic Julia set J∗
f of an automorphism f of a Stein manifold X to be

the closure of the set sad(f) of saddle periodic points of f and the non-chaotic Julia

set Mf = Jf \ J∗
f to be its complement in the Julia set Jf . Evidently, J

∗
f is completely

invariant. Also, J∗
fm = J∗

f for all integers m ̸= 0 because the saddle periodic points

of f and fm are the same. In Theorem 7 below we describe the main properties of

the chaotic and non-chaotic Julia sets. First we need to establish some properties of

the set tam(f) of tame points of f . This notion emerged in [3] from our efforts to

understand the proof of the closing lemma [8, Theorem 5.1] for automorphisms of Cn.

For a compact K ⊂ X, we define the following closed subsets of X × AutX:

T+
K = {(x, g) ∈ X × AutX : gj(x) ∈ K for all j ≥ 0},

T−
K = {(x, g) ∈ X × AutX : gj(x) ∈ K for all j ≤ 0}.
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We say that p ∈ X is tame for f ∈ AutX if whenever (p, f) ∈ (T+
K ∪ T−

K )◦ for a

compact K ⊂ X, we have (p, f) ∈
◦
T+
L ∪

◦
T−
L for some, possibly larger, compact L ⊂ X.

In particular, p is tame for f if (p, f) ̸∈ (T+
K ∪ T−

K )◦ for all compact K ⊂ X. For

example, saddle periodic points are tame. Note that p is tame for f if and only if p is

tame for f−1. We know that tame pairs are generic in X×AutX [3, Proposition 1(a)],

but we do not know whether or not non-tame points actually exist.

Remark 5. We note that x ∈ tam(f) \ (rne(f) ∪ rne(f−1)) if and only if there are

sequences xn → x in X, fn → f in AutX, and integers jn, kn ≥ 0, such that f jn
n (xn) →

∞X and f−kn
n (xn) → ∞X as n → ∞. Here ∞X denotes the point at infinity in the

one-point compactification of X.

Lemma 6. Let f be an automorphism of a Stein manifold X with the density prop-

erty. Let K ⊂ X be compact, let p ∈ tam(f) \ (rne(f) ∪ rne(f−1)), and let W be a

neighbourhood of f in Aut(X). Then:

(a) There is h ∈ W such that p ∈ att(h) and the h-orbit of p leaves K.

(b) There is h ∈ W such that p ∈ rep(h) and the h-orbit of p leaves K.

(c) There is h ∈ W such that p ∈ sad(h) and the h-orbit of p leaves K.

The analogue for endomorphisms of an Oka-Stein manifold of this result is [4, The-

orem 3].

Proof. We may assume that every automorphism close enough to f on K lies in W .

Choose a holomorphically convex compact set L such that p ∈ L◦ and f(K) ⊂ L◦, so

that g(K) ⊂ L for every automorphism g close enough to f on K.

By Remark 5, there are g ∈ AutX and q ∈ X arbitrarily close to f and p respec-

tively, such that the forward g-orbit of q is not contained in L, say gn(q) /∈ L, with

n ≥ 1 as small as possible, and the backward g-orbit of q is not contained in L, say

g−m(q) /∈ L, with m ≥ 1 as small as possible.

By [18, Theorem 2], there is ϕ ∈ AutX as close to the identity as we wish on L, such

that ϕ fixes g−m(q), . . . , gn−1(q), and ϕ(gn(q)) = g−m(q). Furthermore, we may take ϕ

to have any invertible derivative at gn(q). Then ϕ◦g has q as a periodic point and ϕ◦g
is as close to g as we wish on g−1(L) ⊃ K. Since X has the density property, it has

automorphisms arbitrarily close to the identity that interchange p and any sufficiently

nearby point. We conjugate ϕ ◦ g by such an automorphism to obtain the desired

automorphism h. □

Using Lemma 6, we prove the following analogue of [4, Theorem 2].

Lemma 7. For a generic automorphism f of a Stein manifold X with the density

property,

tam(f) \ (rne(f) ∪ rne(f−1)) ⊂ att(f) ∩ rep(f) ∩ sad(f).

Proof. Let {Un : n ≥ 1} be a countable basis for the topology of X. Let Sn be the

open set of all f ∈ AutX such that f has an attracting cycle intersecting Un. Then
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G =
⋂

AutX \ ∂Sn is a residual subset of AutX. We will show that if f ∈ G and

p ∈ tam(f) \ (rne(f) ∪ rne(f−1)), then p ∈ att(f).

Let f ∈ G. If we show that for all n such that p ∈ Un we have f ∈ Sn, it immediately

follows that p ∈ att(f). By definition of G, it suffices to show that f ∈ Sn, which is

immediate from Lemma 6. The proofs for rep(f) and sad(f) are analogous. □

Let Λ be a subset of a topological manifold and let f : Λ → Λ be continuous.

The map f is said to be chaotic (in the sense of Touhey) if for every two nonempty

open subsets of Λ, there is a cycle that visits both of them. We say that the map is

Devaney-chaotic on Λ if the periodic points of f are dense in Λ and there is a point in

Λ whose forward orbit is dense. See [5] and [17]. In general, if f is chaotic, then f is

Devaney-chaotic, and if Λ is perfect, then the two notions are equivalent.

Theorem 7. For a generic automorphism f of a Stein manifold X with the density

property, the following hold.

(a) J∗
f is not compact.

(b) J∗
f = Jf ∩ tam(f).

(c) J∗
f ⊂ att(f) ∩ rep(f).

(d) f is chaotic on J∗
f .

(e) J∗
f is the largest forward invariant subset of X on which f is chaotic.

(f) J∗
f is perfect.

(g) The non-chaotic Julia set Mf is completely invariant, contains no periodic

points, and the total orbit of every point in Mf is relatively compact.

Note that by (a), J∗
f is not empty. We do not know whether or not Mf is empty for

a generic automorphism f .

Proof. (a) That J∗
f is not compact for generic f is immediate from Remark 2.

(b) By Lemma 7, Jf ∩ tam(f) ⊂ sad(f). Conversely, we clearly have sad(f) ⊂ Jf .

We will sketch a proof that sad(f) ⊂ tam(f). Let x ∈ sad(f) and take q ∈ sad(f) close

to x. Choose y ∈ W s
f (q) and z ∈ W u

f (q) outside a big compact set. By the lambda

lemma, there are points y′ close to y, x′ close to q, and z′ close to z such that the

forward f -orbit of y′ contains x′ and z′ (in this order). With such points x′ we can form

a sequence (xn) with xn → x such that there are integers jn, kn ≥ 0 with f jn(xn) → ∞X

and f−kn(xn) → ∞X . This shows that x ∈ tam(f) (see Remark 5).

(c) Lemma 7 together with (b) imply that J∗
f ⊂ att(f) ∩ rep(f).

(d) Take a countable basis {Un : n ≥ 1} for the topology of X. Let Sm,n be the

open subset of AutX of automorphisms with a saddle cycle through Um and Un. Then

G =
⋂

AutX \ ∂Sm,n is a residual subset of AutX and we claim that every f ∈ G

is chaotic on J∗
f . So let f ∈ G and take Um and Un both intersecting J∗

f . We need

f ∈ Sm,n, that is, we need a saddle cycle for f through Um and Un (notice that the

saddle cycle is necessarily contained in J∗
f ). By the definition of G, it suffices to show

that f ∈ Sm,n, which follows as in [2, Section 5].
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(e) By Theorem 2, every periodic point of f is hyperbolic. Let Λ be a forward

invariant subset of X on which f is chaotic. Then Λ lies in the closure of the set of

periodic points of f . If there is an attracting cycle in Λ, then clearly f cannot be chaotic

on Λ. Since f is invertible, the same is true if there is a repelling cycle in Λ. Thus

Λ ⊂ sad(f).

(f) If J∗
f = sad(f) had an isolated point, it would be a saddle point. Being non-

compact, J∗
f could not consist of the cycle of that saddle point alone. But then f would

not be chaotic on J∗
f .

(g) Since Jf and J∗
f are completely invariant, so is Mf . Attracting and repelling

periodic points lie outside Jf and saddle periodic points lie in J∗
f , so none lie in Mf

by Theorem 2. Suppose that the total orbit of x ∈ Jf is not relatively compact. Say

the forward orbit of x is not relatively compact. Let U be a neighbourhood of x and

K ⊂ X be compact. We will show that there is y ∈ U such that neither the forward

nor the backward orbit of y is contained in K. This implies that x is tame. Find

m ≥ 1 such that fm(x) /∈ K and choose a neighbourhood V ⊂ U of x such that

fm(V ) ∩K = ∅. Since x /∈ F−
f , by Montel’s theorem there is y ∈ V whose backward

orbit is not contained in K; neither is the forward orbit of y. □

7. Homoclinic points

First of all, note that homoclinic and heteroclinic points of saddle periodic points lie in

the Julia set.

Proposition 2. Transverse homoclinic and heteroclinic points of an automorphism f

of a Stein manifold X are tame.

Proof. Let x and y be saddle periodic points, take p ∈ W s
f (x)∩W u

f (y), and let K ⊂ X

be compact. We show that there are orbits of f that come arbitrarily close to p and

leave K in forward and backward time. (The definition of tameness would allow us to

perturb f , but it is not necessary.) By passing to an iterate of f , we can assume that

x and y are fixed.

Take z ∈ W s
f (y) \ K and a small polydisc D1 transverse to W s

f (y) centred at z.

As a polydisc D2 transverse to W u
f (y) centred at p, choose simply a small portion of

W s
f (x) around p. By the lambda lemma, there is an orbit starting in D1 and ending in

a point p′ ∈ D2 ⊂ W s
f (x). Choose a small polydisc D3 transverse to W s

f (x) centred at

p′. Choose also w ∈ W u
f (x) \K and a small polydisc D4 transverse to W u

f (x) centred

at w. By the lambda lemma, there is an orbit starting at a point p′′ ∈ D3 and ending

in D4. If D3 is small enough, p′′ will be close enough to p′ that the backward orbit of

p′′ leaves K. □

The following result is an immediate consequence of the proposition, Lemma 4, and

Theorem 7.
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Corollary 6. For a generic automorphism f of a Stein manifold X with the density

property, all transverse homoclinic and heteroclinic points of saddle periodic points of

f lie in the chaotic Julia set J∗
f of f .

In the proof of the next result, we produce transverse homoclinic points.

Theorem 8. Let X be a Stein manifold with the density property. Let p be a saddle

periodic point of f ∈ AutX. Then every neighbourhood W of f in AutX contains an

automorphism with p as a saddle periodic point with a transverse homoclinic point.

Proof. We prove the theorem for a saddle fixed point. The case of a periodic point is

similar. Let d be a distance inducing the topology on X. Find ϵ > 0 and a compact

subset K ⊂ X such that

{g ∈ Aut(X) : dK(f, g) < ϵ} ⊂ W.

We may assume that the local stable and unstable manifolds Γs
f (p, r) and Γu

f (p, r)

are contained in a coordinate ball centred at p. Let r > 0 be given by Lemma 2. By

enlarging K if necessary, we may assume that K is holomorphically convex and contains

the polydisc ∆n(0, r) in its interior.

Let x0 ∈ W s
f (p) \K such that fn(x0) ∈ K for all n ≥ 1. Let y0 ∈ W u

f (p) \K such

that f−n(y0) ∈ K for all n ≥ 1. Find ns ≥ 1 such that fns(x0) ∈ Γs
f (p, r) and nu ≥ 1

such that f−nu(y0) ∈ Γu
f (p, r).

Let U be a Runge neighbourhood of K containing neither x0 nor y0. Let V be

a neighbourhood of y0 and let φ : [0, 1] × V → X be a C1 isotopy such that for all

t ∈ [0, 1],

(1) φt : V → X is holomorphic and injective,

(2) φt(V ) is disjoint from U ,

(3) U ∪ φt(V ) is Runge,

(4) φ0 is the inclusion of V into X,

(5) φ1(y0) = x0 and dy0φ1(Ty0W
u
f (p)) is transverse to Tx0W

s
f (p).

By the Andersén-Lempert theorem [10, Theorem 4.10.5], there is a sequence (Φj) in

AutX such that Φj → id on U and Φj → φ1 on V , uniformly on compact subsets. Let

fj := f ◦ Φj.

Let ψ : D → Γu
f (p, r) be a holomorphic graph parametrisation of the local unstable

manifold Γu
f (p, r) near f

−nu(y0), defined on a small polydisc D. If D is small enough,

then (fnu ◦ψ)(D) is a holomorphically embedded piece of the unstable manifold W u
f (p)

containing y0 and contained in the neighbourhood V . Then (φ1 ◦ fnu ◦ ψ)(D) is an

embedded complex submanifold which intersects the stable manifold W u
f (p) transver-

sally at x0. Finally, (f
ns ◦φ1 ◦ fnu ◦ψ)(D) is an embedded complex submanifold which

intersects the local stable manifold Γs
f (p, r) transversally at fns(x0).

For large j, let pj := η(fj) be the saddle fixed point near p given by Lemma 1. Then

by Lemma 2, there is a holomorphic graph parametrisation ψj : D → Γu
fj
(pj, r) which

converges uniformly to ψ as j → ∞. It follows that the holomorphic map fns+nu
j ◦ ψj
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converges uniformly to fns ◦φ1 ◦ fnu ◦ψ, so if j is large enough, the embedded complex

submanifold (fns+nu
j ◦ψ)(D) intersects the local stable manifold Γs

fj
(pj, r) transversally

in a homoclinic point for fj. Conjugation by a small perturbation of the identity makes

the point pj coincide with p. □

Corollary 7. For a generic automorphism f of a Stein manifold X with the density

property, the chaotic Julia set J∗
f is the closure of the subset of transverse homoclinic

points.

Proof. Let {Un : n ≥ 1} be a countable basis for the topology on X. Let Sn ⊂ AutX

be the set of automorphisms that have a saddle periodic point in Un whose stable

and unstable manifolds intersect transversely. By Lemma 3, Sn is open, so the subset

G :=
⋂

AutX \ ∂Sn of AutX is residual.

Let f ∈ G and take n ≥ 0 with Un∩J∗
f ̸= ∅. By the definition of J∗

f , f has a saddle

periodic point in Un, so by Theorem 8, f ∈ Sn. Also, by the definition of G, f ̸∈ ∂Sn,

so f ∈ Sn. Let p ∈ Un be a saddle periodic point of f with a transverse homoclinic

point q. Then, if m ≥ 0 is large enough, fm(q) is also a transverse homoclinic point

and is contained in Un. □

By Theorem 3, the corollary holds with the word “transverse” removed.

8. Closing lemmas: Open problems

As before, we take X to be a Stein manifold with the density property. We say that the

closing lemma holds for automorphisms of X if, whenever p ∈ X is a non-wandering

point of an automorphism f of X, every neighbourhood of f in AutX contains an

automorphism of which p is a periodic point. Requiring p to be hyperbolic results in

an equivalent statement by the perturbation lemma [3, Lemma 1]. The generic closing

lemma requires this to hold for automorphisms f in a suitable residual subset of AutX.

The generic density theorem states that hyperbolic periodic points are dense in the non-

wandering set of a generic automorphism of X. It is usually proved as a consequence of

the closing lemma, but an inspection of the standard proof (as in [3]) easily shows that

the generic closing lemma suffices. Conversely, conjugation by a suitable perturbation

of the identity (provided by [18, Lemma 3.2]; see also [2, Proposition 1]) shows that

the generic density theorem implies the generic closing lemma. It is an open question

whether the three statements are true, but with the non-wandering set replaced by the

tame non-wandering set, they were proved in [3]. The closing lemma is only in question

when p /∈ rne(f) ∪ rne(f−1), because otherwise p is an attracting or repelling periodic

point of f itself (see Step 1 of the proof of [3, Theorem 2]).

We introduce a variant of the closing lemma and say that the large-cycles closing

lemma holds for automorphisms of X if, whenever p ∈ X is a non-wandering point of

an automorphism f of X with p /∈ rne(f) ∪ rne(f−1) and K is a compact subset of X,

every neighbourhood of f in AutX contains an automorphism of which p is a periodic

point such that the orbit of p does not lie in K. Clearly the large-cycles closing lemma

implies the closing lemma. The generic large-cycles closing lemma requires this to hold
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for automorphisms f in a suitable residual subset of AutX (recall that generically

Ωf \
(
rne(f) ∪ rne(f−1)

)
= Jf ). It is equivalent to the large-cycles generic density

theorem, which states that for a generic automorphism f of X and any compact subset

K of X, periodic points whose orbits do not lie in K are dense in Jf .

Theorem 9. Let X be a Stein manifold with the density property. The following are

equivalent.

(i) The generic large-cycles closing lemma for automorphisms of X.

(ii) The large-cycles generic density theorem.

(iii) Every non-wandering point of a generic automorphism of X is tame.

(iv) J∗
f = Jf for a generic automorphism f of X.

(v) f is chaotic on Jf for a generic automorphism f of X.

(vi) Periodic points are dense in Jf for a generic automorphism f of X.

Proof. It is easy to see that (i) and (ii) are equivalent and that (iii)–(vi) are equivalent.

Also (ii) implies (iii). It remains to show that (v) implies (ii). Since Jf is not compact,

there is y ∈ Jf \K. Let x ∈ Jf . Since f is chaotic on Jf , there is a cycle visiting both

an arbitrary neighbourhood of x and an arbitrary neighbourhood of y. □

Remark 6. There is more structure inside the Julia set. For an automorphism f of X,

let If = att(f)\att(f) and I ′f = If−1 = rep(f)\rep(f). Clearly, If and I ′f are closed and

completely invariant. Also, If ∪ I ′f ⊂ Jf for generic f . Indeed, att(f) ⊂ Ωf since Ωf is

closed, and by Theorem 5, Ωf = Jf ∪ att(f)∪ rep(f), so If ⊂ Jf . (Note that attracting

periodic points of an automorphism cannot accumulate on a repelling periodic point.)

Similarly, I ′f ⊂ Jf . Moreover, by Theorem 7, J∗
f ⊂ att(f)∩ rep(f) = If ∩ I ′f for generic

f . The generic closing lemma says precisely that Jf = If ∪I ′f for generic f . The generic

large-cycles closing lemma says precisely that all six completely invariant sets are the

same.
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