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Abstract. Let X be a connected open Riemann surface. Let Y be an Oka domain

in the smooth locus of an analytic subvariety of Cn, n ≥ 1, such that the convex

hull of Y is all of Cn. Let O∗(X,Y ) be the space of nondegenerate holomorphic

maps X → Y . Take a holomorphic 1-form θ on X, not identically zero, and let

π : O∗(X,Y ) → H1(X,Cn) send a map g to the cohomology class of gθ. Our main

theorem states that π is a Serre fibration. This result subsumes the 1971 theorem of

Kusunoki and Sainouchi that both the periods and the divisor of a holomorphic form

on X can be prescribed arbitrarily. It also subsumes two parametric h-principles in

minimal surface theory proved by Forstnerič and Lárusson in 2016.

We start by recalling three theorems from the early decades of modern Riemann surface

theory. Behnke and Stein proved that the periods of a holomorphic form on an open

Riemann surfaceX can be prescribed arbitrarily [3, Satz 10] (see also [5, Theorem 28.6]).

In other words, every class in the cohomology group H1(X,C) contains a holomorphic

form. Gunning and Narasimhan showed that the zero class contains a holomorphic form

with no zeros [10]. In other words, there is a holomorphic immersion X → C. Kusunoki

and Sainouchi generalised these two theorems and proved that both the periods and

the divisor of a holomorphic form on X can be prescribed arbitrarily [11, Theorem 1].

Our main result subsumes the theorem of Kusunoki and Sainouchi as a very special

case. It also subsumes different and much more recent results from the theory of

minimal surfaces, which we shall now describe. Let M∗(X,Rn) denote the space (with

the compact-open topology) of conformal minimal immersions X → Rn, n ≥ 3, that

are nonflat in the sense that the image of X is not contained in any affine 2-plane in Rn.

Some such immersions are obtained as the real parts of holomorphic null curves, that

is, holomorphic immersions X → Cn directed by the null quadric A = {(z1, . . . , zn) ∈
Cn : z21 + · · ·+ z2n = 0}. We denote by N∗(X,Cn) the space of holomorphic null curves

that are nonflat, meaning that the image of X is not contained in any affine complex

line in Cn.
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Forstnerič and Lárusson determined the weak homotopy type of M∗(X,Rn) and

N∗(X,Cn) [7]. The two spaces turn out to have the same weak homotopy type, namely

the weak homotopy type of the space of continuous maps X → A∗ = A \ {0}, which we

understand. Key ingredients in the proof are two parametric h-principles [7, Theorems

4.1 and 5.3] that imply that the maps

p : M∗(X,Rn)→ O∗(X,A∗), u 7→ ∂u/θ,

q : N∗(X,Cn)→ O∗(X,A∗), F 7→ ∂F/θ,

are weak homotopy equivalences. Here, θ is a chosen holomorphic 1-form on X without

zeroes and O∗(X,A∗) is the space of holomorphic maps f : X → A∗ that are non-

degenerate in the sense that the tangent spaces Tf(x)A ⊂ Tf(x)Cn ∼= Cn, as x ranges

through X, span Cn. These parametric h-principles are proved using Gromov’s method

of convex integration and period-dominating sprays, a tool from Oka theory introduced

in [2]. Our main theorem implies that both p and q are weak homotopy equivalences.

We now proceed to the statement of our main result. Let X be an open Riemann

surface, always assumed connected. We view the cohomology group H1(X,C) as the de

Rham group of holomorphic 1-forms modulo exact forms, with the quotient topology

induced from the compact-open topology.

Let Y be an Oka domain in the smooth locus of an analytic subvariety of Cn, n ≥ 1,

such that the convex hull of Y is all of Cn. For example, Y could be A∗. Also, Y

could be a smooth algebraic subvariety of Cn that is Oka and not contained in any

hyperplane; then the convex hull of Y is Cn [2, Lemma 3.1]. (Here, a domain has the

usual meaning of a nonempty connected open subset. An Oka domain is a domain that

is Oka as a complex manifold. The monograph [6] is a comprehensive reference on Oka

theory. See also the survey [8].)

Let O∗(X, Y ) be the space of holomorphic maps f : X → Y that are nondegenerate

in the sense that the tangent spaces Tf(x)Y ⊂ Tf(x)Cn ∼= Cn, as x ranges through X,

span Cn. We note that O∗(X, Y ) is not empty. Indeed, since the convex hull of Y is

Cn, Y is not contained in any hyperplane, so the tangent spaces of Y at finitely many

points a1, . . . , am in Y span Cn. There is a continuous map X → Y with a1, . . . , am in

its image, and since Y is Oka, the map can be deformed to a holomorphic map keeping

it fixed at a preimage of each aj. This holomorphic map is then nondegenerate.

Take a holomorphic 1-form θ on X, not identically zero, and let the continuous map

π : O∗(X, Y )→ H1(X,Cn)

send a map g to the cohomology class of gθ. The map π is our central object of

interest. Our main result states that π is a Serre fibration. Here it is, in a more explicit

formulation (see Remark 3).

Theorem 1. Let X be an open Riemann surface, θ be a holomorphic 1-form on X, not

identically zero, and Y be an Oka domain in the smooth locus of an analytic subvariety

of Cn, n ≥ 1, such that the convex hull of Y is all of Cn. Let O∗(X, Y ) be the subspace

of O(X, Y ) of nondegenerate maps and π : O∗(X, Y ) → H1(X,Cn) be the projection

sending a map g to the cohomology class of gθ.
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Let Q ⊂ P be compact subsets of Rm for some m. Let f : P → O∗(X, Y ) and

φ : P → H1(X,Cn) be continuous maps such that π ◦ f = φ on Q. Then f can be

deformed, keeping f |Q fixed, to a continuous map f 1 : P → O∗(X, Y ) with π ◦ f 1 = φ

on P .

The spaces and maps in the theorem are shown in the following diagram.

Q //
� _

��

O∗(X, Y )

π
��

P
φ
//

f
::uuuuuuuuuu

H1(X,Cn)

The square and the upper triangle commute, whereas the lower triangle need not com-

mute. The theorem states that f can be deformed, keeping the upper triangle commut-

ing, until the lower triangle commutes.

We postpone the proof of the theorem until the end of the paper.

Corollary 2. Under the assumptions of Theorem 1,

(a) π : O∗(X, Y )→ H1(X,Cn) is a Serre fibration,

(b) π is surjective,

(c) for every α ∈ H1(X,Cn), the inclusion π−1(α) ↪→ O∗(X, Y ) is a weak homotopy

equivalence.

In the following, we will simply refer to a Serre fibration as a fibration. Also, a weak

homotopy equivalence will be called a weak equivalence.

Proof. (a) We need to show that π has the right lifting property with respect to every

inclusion ι : Ik ×{0} ↪→ Ik+1, k ≥ 0, where I = [0, 1]. Let P = Ik+1 and Q = Ik ×{0}.
Let g : Q→ O∗(X, Y ) and φ : P → H1(X,Cn) be continuous maps such that π◦g = φ◦ι.
Extend g to a continuous map f : P → O∗(X, Y ) that is constant in the (k+1)st variable.

Then π ◦ f = φ on Q, so by Theorem 1, f can be deformed, keeping f |Q fixed, to a

continuous map f 1 : P → O∗(X, Y ) with π ◦ f 1 = φ. Then also f 1 ◦ ι = g, and f 1

demonstrates the right lifting property.

(b) follows from (a) since H1(X,Cn) is path connected.

(c) The inclusion π−1(α) ↪→ O∗(X, Y ) is a weak equivalence because it is the pullback

by the fibration π of the inclusion {α} ↪→ H1(X,Cn), which is a weak equivalence since

H1(X,Cn) is contractible. �

Remark 3. If we restrict the conclusion of Theorem 1 to finite polyhedra, then it

is equivalent to π being a fibration. The equivalence relies on H1(X,Cn) being con-

tractible. (Fibrations are characterised by the right lifting property with respect to

several different classes of inclusions, so finite polyhedra are not the only possibility

here.)

To demonstrate the equivalence, suppose that π is a fibration. Let Q be a subpoly-

hedron of a finite polyhedron P , and let g : Q→ O∗(X, Y ) and φ : P → H1(X,Cn) be
3



continuous maps such that π ◦ g = φ|Q. Consider the following commuting diagram.

{f ∈ C (P,O∗) : f |Q = g, π ◦ f = φ}
� _

��

� � // {f ∈ C (P,O∗) : f |Q = g}
� _

��
C (P,O∗)

(π∗,ι∗)
��

C (P,O∗)

ι∗

��
C (P,H1)×C (Q,H1) C (Q,O∗) // C (Q,O∗)

Here, ι∗ is the restriction map induced by the inclusion ι : Q ↪→ P , the left-hand top

space is the fibre of (π∗, ι
∗) over (φ, g), the right-hand top space is the fibre of ι∗ over

g, and we have abbreviated O∗(X, Y ) as O∗ and H1(X,Cn) as H1.

Since ι is a cofibration (in the strong sense that goes with Serre fibrations), ι∗ is a

fibration. Since also π is a fibration by assumption, (π∗, ι
∗) is a fibration by Quillen’s

axiom SM7 [9, II.3.1]. The bottom horizontal map is a weak equivalence, because it is

the pullback of a weak equivalence by a fibration, as shown by the following pullback

square.

C (P,H1)×C (Q,H1) C (Q,O∗) //

��

C (P,H1)

��
C (Q,O∗) π∗

// C (Q,H1)

Here, the restriction map C (P,H1) → C (Q,H1) is a weak equivalence because H1 is

contractible, and π∗ is a fibration because π is.

Finally, the coglueing lemma [9, Lemma II.8.10] implies that the top inclusion

{f ∈ C (P,O∗) : f |Q = g, π ◦ f = φ} � � // {f ∈ C (P,O∗) : f |Q = g}

is a weak equivalence (whereas all we wanted to show was that this inclusion induces a

surjection of path components).

The next result is our generalisation of [11, Theorem 1] for holomorphic forms.

Corollary 4. (a) Let X be an open Riemann surface. Let θ be a holomorphic 1-form

on X that does not vanish everywhere. Then the map O(X,C∗) → H1(X,C), sending

a function f to the cohomology class of fθ, is a Serre fibration.

(b) Let D be an effective divisor on X. Every cohomology class in H1(X,C) contains

a holomorphic 1-form with divisor D.

Proof. (a) Apply Corollary 2(a) with Y = C∗ ⊂ C and note that every holomorphic

function on X with no zeros is nondegenerate.

(b) Take Y = C∗ ⊂ C, let θ be a holomorphic 1-form on X with divisor D, and

apply Corollary 2(b). (The existence of such a form does not rely on [11]. It is an

immediate consequence of [4, Satz 4].) �

Now we derive the results from [7] mentioned above.
4



Corollary 5. Let X be an open Riemann surface, let θ be a holomorphic 1-form on X

with no zeroes, and let n ≥ 3. The maps

p : M∗(X,Rn)→ O∗(X,A∗), u 7→ ∂u/θ,

q : N∗(X,Cn)→ O∗(X,A∗), F 7→ ∂F/θ,

are weak equivalences.

Proof. We already noted that A∗ satisfies the assumptions on Y in Theorem 1. As be-

fore, let π : O∗(X,A∗)→ H1(X,Cn) send a map g to the cohomology class of gθ. Choose

a base point a in X. First, q is the composition of the inclusion π−1(0) ↪→ O∗(X,A∗),
which is a weak equivalence by Corollary 2(c), and the map N∗(X,Cn) → π−1(0) in-

duced by q, which in turn is the composition of the homeomorphism N∗(X,Cn) →
π−1(0)×C, F 7→ (∂F/θ, F (a)), and the projection π−1(0)×Cn → π−1(0), which clearly

is a weak equivalence.

As for p, it is the composition of the inclusion π−1(H1(X, iRn)) ↪→ O∗(X,A∗), which

is a weak equivalence because it is the pullback of the weak equivalence H1(X, iRn) ↪→
H1(X,Cn) by the fibration π, and the map M∗(X,Rn)→ π−1(H1(X, iRn)) induced by

p, which in turn is the composition of the homeomorphism

M∗(X,Rn)→ π−1(H1(X, iRn))× Rn, u 7→ (∂u/θ, u(a)),

and the projection π−1(H1(X, iRn))× Rn → π−1(H1(X, iRn)), which clearly is a weak

equivalence. �

Let us sketch a simplified approach to the main result of [7]. Consider the following

commuting diagram [7, (6.1)].

N∗(X,Cn)
q //

Re
��

O∗(X,A∗)
� � i // O(X,A∗)

� � j // C (X,A∗)

ReN∗(X,Cn) �
� // M∗(X,Rn)

2p

OO

(The factor of 2 is needed to make the square commute.) We have seen how π being

a fibration easily implies that 2p and q are weak equivalences. As explained in [7],

the real-part map on the left is a homotopy equivalence by continuity of the Hilbert

transform. It is then immediate that the inclusion ReN∗(X,Cn) ↪→ M∗(X,Rn) is a

weak equivalence: this is [7, Theorem 1.1]. A general position argument shows that i is

a weak equivalence [7, Theorem 5.4]. Finally, j is a weak equivalence by the standard

parametric Oka principle. Thus, the six spaces in the diagram all have the same weak

homotopy type.

We conclude the paper by proving our main result. The proof closely follows the

proofs of [7, Theorems 4.1 and 5.3].

Proof of Theorem 1. Choose a smooth strongly subharmonic Morse exhaustion function

ρ : X → R and an increasing sequence c1 < c2 < c3 < · · · of regular values of ρ such
5



that each interval [cj, cj+1] contains at most one critical value of ρ. Set

Dj = {x ∈ X : ρ(x) < cj}, j ≥ 1,

and note that

(1) D1 b D2 b D3 b · · · b
⋃
j≥1

Dj = X

is an exhaustion of X by smoothly bounded, relatively compact domains whose closures

are O(X)-convex. We may assume that D1 is simply connected. Denote by A the

analytic subvariety of Cn in which Y is a domain.

We claim that to prove the theorem it suffices to construct a sequence of homotopies

of nondegenerate holomorphic maps

f tp,j : Dj → Y, (p, t) ∈ P × [0, 1],

and a sequence of numbers εj > 0, j ≥ 1, such that the following properties are satisfied

for all j.

(1j) f
t
p,j = f(p)|Dj

for all (p, t) ∈ (P × {0}) ∪ (Q× [0, 1]).

(2j) ‖f tp,j − f tp,j−1‖Dj−1
< εj for all (p, t) ∈ P × [0, 1].

(3j)
∫
γ
f tp,jθ =

∫
γ
f tp,j−1θ for all loops γ in Dj−1 and all (p, t) ∈ P × [0, 1].

(4j)
∫
γ
f 1
p,jθ =

∫
γ
φ(p) for all loops γ in Dj and all p ∈ P .

(5j) 2εj < εj−1.

(6j) If h : X → A ⊂ Cn is a holomorphic map such that ‖h− f tp,j‖Dj
< 2εj for some

(p, t) ∈ P × [0, 1], then h|Dj
takes its values in Y and is nondegenerate.

Indeed, assume for a moment that such sequences exist. By (1), (2j), and (5j), there

is a limit homotopy of holomorphic maps

f tp = lim
j→∞

f tp,j : X → A, (p, t) ∈ P × [0, 1],

such that ‖f tp−f tp,j‖Dj
< 2εj for all (p, t) ∈ P×[0, 1] and all j ≥ 1. Thus, properties (6j)

ensure that f tp ∈ O∗(X, Y ) for all (p, t) ∈ P × [0, 1]; take into account (1). Moreover,

conditions (1j) imply that f tp = f(p) for all (p, t) ∈ (P × {0}) ∪ (Q × [0, 1]), so the

homotopy keeps f |Q fixed. Finally, in view of (4j) we have
∫
γ
f 1
p θ =

∫
γ
φ(p) for all loops

γ in X and all points p ∈ P , that is, π ◦ f 1
p = φ(p) for all p ∈ P . Setting f 1(p) = f 1

p ,

p ∈ P , we have π ◦ f 1 = φ on P . This completes the proof of the theorem under the

assumption that the above-mentioned sequences exist.

We shall construct the sequences f tp,j and εj, j ≥ 1, satisfying (1j)–(6j) inductively,

adapting the arguments of the proofs of [7, Theorems 4.1 and 5.3].

The basis of the induction is given by the homotopy

f tp,1 = f(p)|D1
, (p, t) ∈ P × [0, 1].

Choose ε1 > 0 small enough that (61) holds. Since Q ⊂ P , property (11) trivially holds.

Since D1 is simply connected, we have
∫
γ
f 1
p,1θ = 0 =

∫
γ
φ(p) for all loops γ in D1 and

all points p ∈ P , so (41) holds. The other properties are vacuous for j = 1.
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For the inductive step, suppose that for some j ≥ 2 we already have homotopies

f tp,i and numbers εi meeting the corresponding requirements for i = 1, . . . , j− 1. Let us

prove the existence of suitable f tp,j and εj.

We consider two cases, depending on whether ρ has a critical value in [cj−1, cj] or

not. Recall that ρ has at most one critical value in that interval.

Case 1: The noncritical case. Assume that ρ has no critical value in [cj−1, cj], so Dj−1
is a strong deformation retract of Dj. Reasoning as in the proof of [7, Theorem 4.1],

we embed the homotopy f tp,j−1 as the core

(2) f tp,j−1 = htp,0

of a period-dominating spray of holomorphic maps

(3) htp,ζ : Dj−1 → Y, ζ ∈ B, (p, t) ∈ P × [0, 1].

Here, B is a sufficiently small open ball centred at the origin in CN for some N ≥ 1, and

ζ = (ζ1, . . . , ζN) is a parameter in B on which the maps htp,ζ depend holomorphically.

In the proof of [7, Theorem 4.1], the period-domination follows from [2, Lemma

5.1] (see also [1, Lemma 3.6]) with respect to a fixed basis of the first homology group

H1(Dj−1,Z). In our case, we use exactly the same argument but apply the following

generalisation of [2, Lemma 5.1].

Lemma 6. Let X, θ, and Y be as in Theorem 1 (except that Y need not be Oka).

Let M ⊂ X be a smoothly bounded O(X)-convex compact domain and let C1, . . . , Cl
be smooth embedded loops in M that form a basis of H1(M,Z) and only meet at a

common point p in M and are otherwise mutually disjoint, such that the compact set

C =
l⋃

j=1

Cj ⊂M is O(X)-convex.

Then for any holomorphic map ψ : M → Y , there are an open neighbourhood U of

the origin in some CN and a holomorphic map Φψ : U×M → Y , such that Φψ(0, ·) = ψ

and the period map

U → (Cn)l, ζ 7−→
(∫

Cj

Φψ(ζ, ·)θ
)l
j=1
,

has maximal rank equal to ln at ζ = 0.

Proof. In the statement of [2, Lemma 5.1], it is assumed that the holomorphic 1-form

θ has no zeroes in M and that Y = A \ {0}, where A is an irreducible closed conical

subvariety of Cn for some n ≥ 3 that is not contained in any hyperplane of Cn, such

that Y is smooth. We point out the changes that are required in the proof given in [2]

for it to work in our more general setting.

First, we slightly modify the smooth embedded loops C1, . . . , Cl in M so that they

avoid the zeroes of θ. This clearly is possible since the zero set of θ in M is finite.

(Alternatively, instead of worrying about the choice of the loops, we can choose the

points xi,1, . . . , xi,m ∈ Ci \ {p} in the proof of [2, Lemma 5.2], i = 1, . . . , l, to lie in

the complement in Ci \ {p} of the zero set of θ; again this is easy since the zero set of
7



θ in M is finite.) As in the proof of [2, Lemma 5.1], Cartan’s Theorem A applied on

A provides holomorphic tangent vector fields V1, . . . , Vm on Y that span TyY for each

y ∈ Y . We denote by φjt the flow of Vj for small complex values of time t and define,

for a small open neighbourhood U of the origin in (Cm)l, a smooth map

Ψ: U × C → Y, (ζ, x) 7−→ φ1
ζ1,1h1,1(x)

◦ · · · ◦ φmζl,mhl,m(x)

(
ψ(x)

)
,

where ζ =
(
ζj,1, . . . , ζj,m

)l
j=1
∈ U , hi,1, . . . , hi,m : C → C are smooth functions with

support in Ci, i = 1, . . . , l, and U is small enough that Ψ assumes values in Y (this

requires compactness of M). We complete the proof exactly as in [2], keeping U small

enough that all the maps in the proof take values in Y . �

By the parametric Oka property with approximation (see [6, Theorem 5.4.4]), we

may now approximate the spray htp,ζ , uniformly on Dj−1 and uniformly with respect to

p, t, and ζ, by a holomorphic spray of holomorphic maps

gtp,ζ : Dj → Y, ζ ∈ rB, (p, t) ∈ P × [0, 1],

for some number 0 < r < 1 as close to 1 as desired. If the approximation is close

enough, the implicit function theorem and the period-domination property of the spray

htp,ζ give a continuous map ζ : P × [0, 1]→ rB, vanishing on P × {0} and on Q× [0, 1],

such that

(4)

∫
γ

gtp,ζ(p,t)θ =

∫
γ

htp,0θ
(2)
=

∫
γ

f tp,j−1θ

for all loops γ in Dj−1 and all (p, t) ∈ P × [0, 1]. Thus, the homotopy of holomorphic

maps

f tp,j = gtp,ζ(p,t) : Dj → Y, (p, t) ∈ P × [0, 1],

satisfies conditions (3j) and (4j) in view of (4), since we are assuming (3j−1) by the

induction hypothesis and Dj−1 is a strong deformation retract of Dj. Moreover, (2),

(1j−1), the fact that ζ(p, t) = 0 for all (p, t) ∈ (P × {0}) ∪ (Q× [0, 1]), and the identity

principle guarantee condition (1j). Furthermore, if the approximation of htp,ζ by gtp,ζ
is close enough, condition (2j) trivially holds and all the maps in the homotopy f tp,j
are nondegenerate since the maps in f tp,j−1 are. Therefore, to complete the inductive

step, it only remains to choose a number εj > 0 such that conditions (5j) and (6j) are

satisfied.

Case 2: The critical case. Now assume that there is a critical value of ρ in (cj−1, cj).

By our assumptions, there is exactly one critical value of ρ in the interval. This implies

the existence of an embedded real analytic arc E in Dj \ Dj−1, attached to Dj−1 at

both ends, meeting the boundary of Dj−1 transversely there, and otherwise disjoint

from Dj−1, such that the set

S = Dj−1 ∪ E ⊂ Dj

is a strong deformation retract of Dj. We choose the arc E to contain no zeroes of θ.

We consider two cases, depending on whether the two endpoints of E lie in the same

connected component of Dj−1 or not.
8



Case 2.1. Assume that the two endpoints of E lie in the same connected component

of Dj−1. Then there is an embedded closed real analytic curve C in S which contains

E and whose homology class belongs to H1(Dj,Z) but not to H1(Dj−1,Z). We may

assume that C contains no zeroes of θ.

Observe that the set S = Dj−1 ∪ E = Dj−1 ∪ C ⊂ X is O(X)-convex. We split C

into three subarcs C = C1 ∪ C2 ∪ C3, lying end to end and being otherwise mutually

disjoint, such that C3 = C ∩Dj−1; hence C1 ∪ C2 = E. Also for i = 1, 2, we choose a

closed subarc C ′i of Ci that lies in the relative interior of Ci.

Following the proof of [7, Theorem 4.1], we extend the homotopy f tp,j−1 : Dj−1 → Y ,

with the same name, to a continuous family of continuous maps S = Dj−1∪C1∪C2 → Y

such that

(5) f tp,j−1 = f(p)|S for all (p, t) ∈ (P × {0}) ∪ (Q× [0, 1]).

Such an extension exists in view of (1j−1).

For the next step we wish to use [7, Lemma 3.1]. It remains true with the punctured

null quadric A∗ ⊂ A ⊂ Cn replaced by the more general target Y ⊂ A ⊂ Cn. We shall

indicate the necessary changes to the proof in [7]. Since the convex hull Co(Y ) of Y is

Cn, in the notation of [7], there is a number r1 > 0 large enough that

(6) σ(P × [0, 1]) ⊂ Y ∩ r1B and {αtp : (p, t) ∈ P × [0, 1]} ⊂ Co(Y ∩ r1B),

where B denotes the open unit ball in Cn. Now we come to the main change to the

proof of [7, Lemma 3.1]. Let δ > 0 be so small that there is a continuous function

aδ : Y ∩ r1B→ (0, δ] with the following properties.

• If for each z ∈ Y ∩ r1B, we denote by Bz the ball centered at z with radius aδ(z)

in the complex affine subspace of dimension n − dimY that passes through z

and is orthogonal to Y at z, then Bz ∩A = {z} for all z ∈ Y ∩ r1B. If A = Cn,

we set Bz = {z}.
• The balls Bz, z ∈ Y ∩ r1B, are mutually disjoint.

Now let

Ωδ =
⋃

z∈Y ∩r1B

Bz.

Since Y ∩ r1B ⊂ Ωδ, by (6),

σ(P × [0, 1]) ⊂ Ωδ and {αtp : (p, t) ∈ P × [0, 1]} ⊂ Co(Ωδ).

We consider the continuous retraction τ : Ωδ → Y ∩ r1B given by

τ |Bz = z, z ∈ Y ∩ r1B,

and assume that δ is so small that∣∣∣∣∫ 1

0

γ(s) ds−
∫ 1

0

τ(γ(s)) ds

∣∣∣∣ < ε/4 for all paths γ : [0, 1]→ Ωδ.

Here ε > 0 is the number given in the statement of [7, Lemma 3.1]. Using the domain

Ωδ and the retraction τ , the rest of the proof is exactly the same as the proof of [7,
9



Lemma 3.1] and we omit the details. This concludes the proof of the generalisation of

[7, Lemma 3.1] to our setting.

We now continue the proof of the theorem.

Given a number µ > 0, which will be specified later, [7, Lemma 3.1] provides a

continuous family of continuous maps

gt,sp : C → Y, (p, t) ∈ P × [0, 1], s ∈ [0, 1],

satisfying the following conditions.

(i) gt,sp = f(p)|C for all (p, t) ∈ (P × {0}) ∪ (Q× [0, 1]) and all s ∈ [0, 1].

(ii) gt,0p = f tp,j−1|C for all (p, t) ∈ P × [0, 1].

(iii) gt,sp = f tp,j−1 on C \ C ′1 for all (p, t) ∈ P × [0, 1] and all s ∈ [0, 1].

(iv)
∣∣ ∫

C
gt,1p θ −

∫
C
φ(p)

∣∣ < µ for all p ∈ P .

Since θ has no zeroes on C, θ has no zeroes in a small open neighbourhood of C. This

enables us to apply the generalised [7, Lemma 3.1] to obtain the maps gt,sp exactly as

in the proof of [7, Theorem 4.1], but replacing the open Riemann surface X (called M

in [7]) by an open neighbourhood of C in X in which θ vanishes nowhere.

Next, using Lemma 6, we embed f tp,j−1|C2 as the core

(7) f tp,j−1|C2 = htp,0

of a period-dominating spray of continuous maps

htp,ζ : C2 → Y, (p, t) ∈ P × [0, 1], ζ ∈ B,

where, as in the noncritical case, B is an open ball containing the origin in CN for some

N ≥ 1 and ζ is a parameter in B, such that

(8) htp,ζ = f tp,j−1 on C2 \ C ′2 for all (p, t) ∈ P × [0, 1].

When applying Lemma 6, we use the fact that θ has no zeroes on C and hence none

on C2.

Assuming that µ > 0 is small enough, condition (iv), the implicit function theorem,

and the period-domination property of the spray htp,ζ give a continuous map ζ : P ×
[0, 1]→ B, vanishing on P × {0} and on Q× [0, 1], such that the family of maps

utp : S → Y, (p, t) ∈ P × [0, 1],

given by

utp|Dj−1
= f tp,j−1, utp|C1 = gt,1p |C1 , utp|C2 = htp,ζ(p,t) for all (p, t) ∈ P × [0, 1]

satisfies the following properties.

(a) utp is a continuous map for all (p, t) ∈ P × [0, 1].

(b) utp = f(p)|S for all (p, t) ∈ (P × {0}) ∪ (Q× [0, 1]).

(c)
∫
γ
utpθ =

∫
γ
φ(p) for all loops γ in S and all p ∈ P .

10



Indeed, condition (a) follows from (iii) and (8), while (b) follows from (i), (7), and the

fact that ζ(p, t) = 0 for all (p, t) ∈ (P ×{0})∪ (Q× [0, 1]). To ensure (c), we use (4j−1)

and (iv), and exploit the period-domination property of htp,ζ , assuming that µ > 0 has

been chosen sufficiently small.

To finish the proof we apply the same argument as in the noncritical case but

replacing f tp,j−1 by the homotopy utp. This is possible in view of conditions (a), (b), and

(c), and the facts that utp|Dj−1
= f tp,j−1 and S is O(X)-convex.

Case 2.2. Now assume that the endpoints of E lie in different connected components

of Dj−1. Then E does not close to an embedded loop in Dj−1 ∪ E and hence no new

element of the homology basis appears. In this case, just extending f tp,j−1 : Dj−1 → Y

to a continuous family of continuous maps S = Dj−1 ∪E → Y satisfying (5) enables us

to apply the argument that we used in the noncritical case.

This completes the inductive step and concludes the proof of the theorem. �
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