
THE LIMITS OF PROOF

Finnur Lárusson

University of Adelaide

2008

Truth and provability

The job of the mathematician is to discover new truths about
mathematical objects and their relationships. Such truths are
established by proving them.

Fundamental question. Can every mathematical truth be proved
(by a sufficiently clever being) or are there truths that will forever
lie beyond the reach of proof?

Mathematics can be turned on itself to investigate this question.
The branch of mathematics that studies mathematical arguments
is called mathematical logic.

In this talk, we will see that under certain assumptions about
proofs, there are truths that cannot be proved. You must decide
for yourself whether you think these assumptions are valid!

Truth and provability

The job of the mathematician is to discover new truths about
mathematical objects and their relationships. Such truths are
established by proving them.

Fundamental question. Can every mathematical truth be proved
(by a sufficiently clever being) or are there truths that will forever
lie beyond the reach of proof?

Mathematics can be turned on itself to investigate this question.
The branch of mathematics that studies mathematical arguments
is called mathematical logic.

In this talk, we will see that under certain assumptions about
proofs, there are truths that cannot be proved. You must decide
for yourself whether you think these assumptions are valid!

Truth and provability

The job of the mathematician is to discover new truths about
mathematical objects and their relationships. Such truths are
established by proving them.

Fundamental question. Can every mathematical truth be proved
(by a sufficiently clever being) or are there truths that will forever
lie beyond the reach of proof?

Mathematics can be turned on itself to investigate this question.
The branch of mathematics that studies mathematical arguments
is called mathematical logic.

In this talk, we will see that under certain assumptions about
proofs, there are truths that cannot be proved. You must decide
for yourself whether you think these assumptions are valid!

Truth and provability

The job of the mathematician is to discover new truths about
mathematical objects and their relationships. Such truths are
established by proving them.

Fundamental question. Can every mathematical truth be proved
(by a sufficiently clever being) or are there truths that will forever
lie beyond the reach of proof?

Mathematics can be turned on itself to investigate this question.
The branch of mathematics that studies mathematical arguments
is called mathematical logic.

In this talk, we will see that under certain assumptions about
proofs, there are truths that cannot be proved. You must decide
for yourself whether you think these assumptions are valid!

First attempt: a countability argument

A proof is a finite piece of text. So the set of proofs is countable:
just list them alphabetically.

The set of subsets of N is not countable: no list contains them all.

Namely, if A1,A2,A3, . . . is a list of subsets of N, then the set

{n ∈ N : n /∈ An}

is not on the list (Cantor’s diagonal argument).

So there are uncountably many truths, such as

n ∈ X

for every subset X of N and every n ∈ X .

First attempt: a countability argument

A proof is a finite piece of text. So the set of proofs is countable:
just list them alphabetically.

The set of subsets of N is not countable: no list contains them all.

Namely, if A1,A2,A3, . . . is a list of subsets of N, then the set

{n ∈ N : n /∈ An}

is not on the list (Cantor’s diagonal argument).

So there are uncountably many truths, such as

n ∈ X

for every subset X of N and every n ∈ X .

First attempt: a countability argument

A proof is a finite piece of text. So the set of proofs is countable:
just list them alphabetically.

The set of subsets of N is not countable: no list contains them all.

Namely, if A1,A2,A3, . . . is a list of subsets of N, then the set

{n ∈ N : n /∈ An}

is not on the list (Cantor’s diagonal argument).

So there are uncountably many truths, such as

n ∈ X

for every subset X of N and every n ∈ X .

First attempt: a countability argument

A proof is a finite piece of text. So the set of proofs is countable:
just list them alphabetically.

The set of subsets of N is not countable: no list contains them all.

Namely, if A1,A2,A3, . . . is a list of subsets of N, then the set

{n ∈ N : n /∈ An}

is not on the list (Cantor’s diagonal argument).

So there are uncountably many truths, such as

n ∈ X

for every subset X of N and every n ∈ X .

We need a better approach

Problem 1. We can sometimes prove infinitely many truths in a
single proof. Think of induction!

Problem 2. Even if someone could convincingly argue that there is
a subset X of N and n ∈ X such that the true statement n ∈ X
cannot be proved, we would like an explicit example of such X .

We will define a particular subset B of N and show that for some
n ∈ B it cannot be proved that n ∈ B — under certain
commonly-made assumptions about proofs.

We need a better approach

Problem 1. We can sometimes prove infinitely many truths in a
single proof. Think of induction!

Problem 2. Even if someone could convincingly argue that there is
a subset X of N and n ∈ X such that the true statement n ∈ X
cannot be proved, we would like an explicit example of such X .

We will define a particular subset B of N and show that for some
n ∈ B it cannot be proved that n ∈ B — under certain
commonly-made assumptions about proofs.

We need a better approach

Problem 1. We can sometimes prove infinitely many truths in a
single proof. Think of induction!

Problem 2. Even if someone could convincingly argue that there is
a subset X of N and n ∈ X such that the true statement n ∈ X
cannot be proved, we would like an explicit example of such X .

We will define a particular subset B of N and show that for some
n ∈ B it cannot be proved that n ∈ B — under certain
commonly-made assumptions about proofs.

Programs

A program (algorithm, Turing machine, mechanical procedure, . . .)
• can be written in any programming language
• has finite length
• runs on a physical computer not subject to malfunction or
limitations of memory or time

We can list all programs in a sequence P1,P2,P3, . . . , for example
in alphabetical order.

We can take the input of a program to be a natural number.
As it runs, the program may, from time to time, output a natural
number.
Depending on the input, the program halts after finitely many
steps, or runs forever.

Programs

A program (algorithm, Turing machine, mechanical procedure, . . .)
• can be written in any programming language
• has finite length
• runs on a physical computer not subject to malfunction or
limitations of memory or time

We can list all programs in a sequence P1,P2,P3, . . . , for example
in alphabetical order.

We can take the input of a program to be a natural number.
As it runs, the program may, from time to time, output a natural
number.
Depending on the input, the program halts after finitely many
steps, or runs forever.

Programs

A program (algorithm, Turing machine, mechanical procedure, . . .)
• can be written in any programming language
• has finite length
• runs on a physical computer not subject to malfunction or
limitations of memory or time

We can list all programs in a sequence P1,P2,P3, . . . , for example
in alphabetical order.

We can take the input of a program to be a natural number.
As it runs, the program may, from time to time, output a natural
number.
Depending on the input, the program halts after finitely many
steps, or runs forever.

The Halting Problem

Does Pn halt on input m?

In 1936, Alan Turing showed that the Halting Problem is not
algorithmically solvable.

Proof. (Cantor again!) Suppose there was a program Q such that

Q(n) =

{
1 if Pn halts on input n,
0 otherwise.

Define a program P as follows:

P(n) =

{
Pn(n) + 1 if Q(n) = 1,
0 if Q(n) = 0.

Then P is not on the list P1,P2,P3,

The Halting Problem

Does Pn halt on input m?

In 1936, Alan Turing showed that the Halting Problem is not
algorithmically solvable.

Proof. (Cantor again!) Suppose there was a program Q such that

Q(n) =

{
1 if Pn halts on input n,
0 otherwise.

Define a program P as follows:

P(n) =

{
Pn(n) + 1 if Q(n) = 1,
0 if Q(n) = 0.

Then P is not on the list P1,P2,P3,

The Halting Problem

Does Pn halt on input m?

In 1936, Alan Turing showed that the Halting Problem is not
algorithmically solvable.

Proof. (Cantor again!) Suppose there was a program Q such that

Q(n) =

{
1 if Pn halts on input n,
0 otherwise.

Define a program P as follows:

P(n) =

{
Pn(n) + 1 if Q(n) = 1,
0 if Q(n) = 0.

Then P is not on the list P1,P2,P3,

The Halting Problem

Does Pn halt on input m?

In 1936, Alan Turing showed that the Halting Problem is not
algorithmically solvable.

Proof. (Cantor again!) Suppose there was a program Q such that

Q(n) =

{
1 if Pn halts on input n,
0 otherwise.

Define a program P as follows:

P(n) =

{
Pn(n) + 1 if Q(n) = 1,
0 if Q(n) = 0.

Then P is not on the list P1,P2,P3,

The Halting Problem

Does Pn halt on input m?

In 1936, Alan Turing showed that the Halting Problem is not
algorithmically solvable.

Proof. (Cantor again!) Suppose there was a program Q such that

Q(n) =

{
1 if Pn halts on input n,
0 otherwise.

Define a program P as follows:

P(n) =

{
Pn(n) + 1 if Q(n) = 1,
0 if Q(n) = 0.

Then P is not on the list P1,P2,P3,

A remarkable subset of N

Let
A = {n ∈ N : Pn halts on input n}.

By Turing’s result, A is not computable (recursive): there is no
program Q such that

Q(n) =

{
1 if n ∈ A,
0 if n /∈ A.

However, A is listable (recursively enumerable): there is a program
that spits out all the numbers in A (in some order) and no others.

It follows that B = N \ A is not listable.

A remarkable subset of N

Let
A = {n ∈ N : Pn halts on input n}.

By Turing’s result, A is not computable (recursive): there is no
program Q such that

Q(n) =

{
1 if n ∈ A,
0 if n /∈ A.

However, A is listable (recursively enumerable): there is a program
that spits out all the numbers in A (in some order) and no others.

It follows that B = N \ A is not listable.

A remarkable subset of N

Let
A = {n ∈ N : Pn halts on input n}.

By Turing’s result, A is not computable (recursive): there is no
program Q such that

Q(n) =

{
1 if n ∈ A,
0 if n /∈ A.

However, A is listable (recursively enumerable): there is a program
that spits out all the numbers in A (in some order) and no others.

It follows that B = N \ A is not listable.

A remarkable subset of N

Let
A = {n ∈ N : Pn halts on input n}.

By Turing’s result, A is not computable (recursive): there is no
program Q such that

Q(n) =

{
1 if n ∈ A,
0 if n /∈ A.

However, A is listable (recursively enumerable): there is a program
that spits out all the numbers in A (in some order) and no others.

It follows that B = N \ A is not listable.

A truth that cannot be proved

We can now exhibit a true statement that cannot be proved if . . .

. . . we assume that proofs are like programs.

Namely, suppose that we can codify our axioms and rules of
inference in a formal language so that a computer can generate all
possible proofs, one after another, . . .
. . . in such a way that only true statements have proofs.

Then there is n ∈ B such that it is not provable that n ∈ B.

Otherwise, we could mechanically list B as follows:
Look through all proofs, one after another, and each time you find
a proof, for some n ∈ N, that n ∈ B, output n.

But B is not listable!

This proves Gödel’s First Incompleteness Theorem (1931).

A truth that cannot be proved

We can now exhibit a true statement that cannot be proved if . . .
. . . we assume that proofs are like programs.

Namely, suppose that we can codify our axioms and rules of
inference in a formal language so that a computer can generate all
possible proofs, one after another, . . .
. . . in such a way that only true statements have proofs.

Then there is n ∈ B such that it is not provable that n ∈ B.

Otherwise, we could mechanically list B as follows:
Look through all proofs, one after another, and each time you find
a proof, for some n ∈ N, that n ∈ B, output n.

But B is not listable!

This proves Gödel’s First Incompleteness Theorem (1931).

A truth that cannot be proved

We can now exhibit a true statement that cannot be proved if . . .
. . . we assume that proofs are like programs.

Namely, suppose that we can codify our axioms and rules of
inference in a formal language so that a computer can generate all
possible proofs, one after another, . . .

. . . in such a way that only true statements have proofs.

Then there is n ∈ B such that it is not provable that n ∈ B.

Otherwise, we could mechanically list B as follows:
Look through all proofs, one after another, and each time you find
a proof, for some n ∈ N, that n ∈ B, output n.

But B is not listable!

This proves Gödel’s First Incompleteness Theorem (1931).

A truth that cannot be proved

We can now exhibit a true statement that cannot be proved if . . .
. . . we assume that proofs are like programs.

Namely, suppose that we can codify our axioms and rules of
inference in a formal language so that a computer can generate all
possible proofs, one after another, . . .
. . . in such a way that only true statements have proofs.

Then there is n ∈ B such that it is not provable that n ∈ B.

Otherwise, we could mechanically list B as follows:
Look through all proofs, one after another, and each time you find
a proof, for some n ∈ N, that n ∈ B, output n.

But B is not listable!

This proves Gödel’s First Incompleteness Theorem (1931).

A truth that cannot be proved

We can now exhibit a true statement that cannot be proved if . . .
. . . we assume that proofs are like programs.

Namely, suppose that we can codify our axioms and rules of
inference in a formal language so that a computer can generate all
possible proofs, one after another, . . .
. . . in such a way that only true statements have proofs.

Then there is n ∈ B such that it is not provable that n ∈ B.

Otherwise, we could mechanically list B as follows:
Look through all proofs, one after another, and each time you find
a proof, for some n ∈ N, that n ∈ B, output n.

But B is not listable!

This proves Gödel’s First Incompleteness Theorem (1931).

A truth that cannot be proved

We can now exhibit a true statement that cannot be proved if . . .
. . . we assume that proofs are like programs.

Namely, suppose that we can codify our axioms and rules of
inference in a formal language so that a computer can generate all
possible proofs, one after another, . . .
. . . in such a way that only true statements have proofs.

Then there is n ∈ B such that it is not provable that n ∈ B.

Otherwise, we could mechanically list B as follows:
Look through all proofs, one after another, and each time you find
a proof, for some n ∈ N, that n ∈ B, output n.

But B is not listable!

This proves Gödel’s First Incompleteness Theorem (1931).

A truth that cannot be proved

We can now exhibit a true statement that cannot be proved if . . .
. . . we assume that proofs are like programs.

Namely, suppose that we can codify our axioms and rules of
inference in a formal language so that a computer can generate all
possible proofs, one after another, . . .
. . . in such a way that only true statements have proofs.

Then there is n ∈ B such that it is not provable that n ∈ B.

Otherwise, we could mechanically list B as follows:
Look through all proofs, one after another, and each time you find
a proof, for some n ∈ N, that n ∈ B, output n.

But B is not listable!

This proves Gödel’s First Incompleteness Theorem (1931).

A truth that cannot be proved

We can now exhibit a true statement that cannot be proved if . . .
. . . we assume that proofs are like programs.

Namely, suppose that we can codify our axioms and rules of
inference in a formal language so that a computer can generate all
possible proofs, one after another, . . .
. . . in such a way that only true statements have proofs.

Then there is n ∈ B such that it is not provable that n ∈ B.

Otherwise, we could mechanically list B as follows:
Look through all proofs, one after another, and each time you find
a proof, for some n ∈ N, that n ∈ B, output n.

But B is not listable!

This proves Gödel’s First Incompleteness Theorem (1931).

Hilbert’s 10th problem

Amazing fact. There is a polynomial P(x0, . . . , xm) with integer
coefficients such that

A = {n ∈ N : ∃ x1, . . . , xm ∈ N s.t. P(n, x1, . . . , xm) = 0}.

DPRM Theorem (1949–1970). A subset of N is listable if and only
if it is diophantine (given by a polynomial as above).

Since A is not computable, there is no algorithm that takes n ∈ N
as input and tells us whether or not the equation
P(n, x1, . . . , xm) = 0 can be solved with x1, . . . , xm ∈ N.

This gives a negative solution to Hilbert’s 10th problem.

Hilbert’s 10th problem

Amazing fact. There is a polynomial P(x0, . . . , xm) with integer
coefficients such that

A = {n ∈ N : ∃ x1, . . . , xm ∈ N s.t. P(n, x1, . . . , xm) = 0}.

DPRM Theorem (1949–1970). A subset of N is listable if and only
if it is diophantine (given by a polynomial as above).

Since A is not computable, there is no algorithm that takes n ∈ N
as input and tells us whether or not the equation
P(n, x1, . . . , xm) = 0 can be solved with x1, . . . , xm ∈ N.

This gives a negative solution to Hilbert’s 10th problem.

Hilbert’s 10th problem

Amazing fact. There is a polynomial P(x0, . . . , xm) with integer
coefficients such that

A = {n ∈ N : ∃ x1, . . . , xm ∈ N s.t. P(n, x1, . . . , xm) = 0}.

DPRM Theorem (1949–1970). A subset of N is listable if and only
if it is diophantine (given by a polynomial as above).

Since A is not computable, there is no algorithm that takes n ∈ N
as input and tells us whether or not the equation
P(n, x1, . . . , xm) = 0 can be solved with x1, . . . , xm ∈ N.

This gives a negative solution to Hilbert’s 10th problem.

Hilbert’s 10th problem

Amazing fact. There is a polynomial P(x0, . . . , xm) with integer
coefficients such that

A = {n ∈ N : ∃ x1, . . . , xm ∈ N s.t. P(n, x1, . . . , xm) = 0}.

DPRM Theorem (1949–1970). A subset of N is listable if and only
if it is diophantine (given by a polynomial as above).

Since A is not computable, there is no algorithm that takes n ∈ N
as input and tells us whether or not the equation
P(n, x1, . . . , xm) = 0 can be solved with x1, . . . , xm ∈ N.

This gives a negative solution to Hilbert’s 10th problem.

Should we be depressed . . .

. . . about these results?

Not at all. They show that mathematics is even more interesting
and more challenging than we might have expected!

References for further reading.

Robert S. Wolf. A tour through mathematical logic. The
Mathematical Association of America, 2005.

Martin Davis. The incompleteness theorem. Notices of the
American Mathematical Society 53 (2006), no. 4, 414–418.

Bjorn Poonen. Undecidability in number theory. Notices of the
American Mathematical Society 55 (2008), no. 3, 344–350.

Notices of the American Mathematical Society are freely available
at www.ams.org

Should we be depressed . . .

. . . about these results?

Not at all. They show that mathematics is even more interesting
and more challenging than we might have expected!

References for further reading.

Robert S. Wolf. A tour through mathematical logic. The
Mathematical Association of America, 2005.

Martin Davis. The incompleteness theorem. Notices of the
American Mathematical Society 53 (2006), no. 4, 414–418.

Bjorn Poonen. Undecidability in number theory. Notices of the
American Mathematical Society 55 (2008), no. 3, 344–350.

Notices of the American Mathematical Society are freely available
at www.ams.org

Should we be depressed . . .

. . . about these results?

Not at all. They show that mathematics is even more interesting
and more challenging than we might have expected!

References for further reading.

Robert S. Wolf. A tour through mathematical logic. The
Mathematical Association of America, 2005.

Martin Davis. The incompleteness theorem. Notices of the
American Mathematical Society 53 (2006), no. 4, 414–418.

Bjorn Poonen. Undecidability in number theory. Notices of the
American Mathematical Society 55 (2008), no. 3, 344–350.

Notices of the American Mathematical Society are freely available
at www.ams.org

