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A funny way of writing numbers

Take a natural number n ≥ 2 as a base.

Given any natural number, write it as a sum of powers of n, do the
same for all the exponents in that expression, and so on.

Examples with base 2:

33 = 25 + 1 = 222+1 + 1

266 = 28 + 23 + 2 = 223
+ 22+1 + 2 = 222+1

+ 22+1 + 2
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Goodstein sequences

Pick a natural number k . Produce a sequence of numbers
k2, k3, k4, . . . as follows.

The first term k2 is k itself.

For n ≥ 2, given the number kn, if kn = 0, then stop. Otherwise,

• write kn using base n,

• replace every n in that expression by n + 1,

• and subtract 1.

This produces kn+1.
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Example: k = 3

32 = 3 = 2 + 1

33 = 3 + 1− 1 = 3

34 = 4− 1 = 3

35 = 3− 1 = 2

36 = 2− 1 = 1

37 = 1− 1 = 0



Example: k = 4

42 = 4 = 22

43 = 33 − 1 = 26 = 2 · 32 + 2 · 3 + 2

44 = 2 · 42 + 2 · 4 + 2− 1 = 41 = 2 · 42 + 2 · 4 + 1

45 = 2 · 52 + 2 · 5 + 1− 1 = 60 = 2 · 52 + 2 · 5
46 = 2 · 62 + 2 · 6− 1 = 83 = 2 · 62 + 6 + 5

. . . and so on.

It can be shown that this sequence eventually reaches zero after . . .

3 · 2402,653,211 − 3 steps!

This number is of the order of 10121,210,700.

The age of the universe is about 4 · 1017 seconds.
The number of atoms in the universe is about 1080.
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Example: k = 266

2662 = 266 = 222+1
+ 22+1 + 2

2663 = 333+1
+ 33+1 + 3− 1 ≈ 1038

2664 = 444+1
+ 44+1 + 2− 1 ≈ 10616

2665 = 555+1
+ 55+1 + 1− 1 ≈ 1010,000

I give up!

But Goodstein did not give up!

Theorem (Goodstein 1944). For every natural number k , the
Goodstein sequence k2, k3, k4, . . . eventually reaches zero.

Goodstein proved his theorem using infinite numbers called
ordinals.
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Reuben Louis Goodstein (1912–1985)



New, infinite numbers

Let’s start adding “numbers” to the sequence of natural numbers:

0 1 2 3 · · · • • • · · · • • • · · · · · · • • • · · ·

How can we make sense of these new “numbers”?

Let’s turn to set theory and try to realise the new numbers as sets.

Start by thinking of a natural number n as a set with n elements.
Obvious choice: the set of numbers smaller than n.

0 = ∅ (no natural numbers are smaller than 0)
1 = {0} = {∅}
2 = {0, 1} = {∅, {∅}}
3 = {0, 1, 2} = {∅, {∅}, {∅, {∅}}}
4 = {0, 1, 2, 3} = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}
...
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Ordinals

The first infinite number should be the set of numbers smaller than
it, namely

{0, 1, 2, 3, . . . } = N (also called ω).

The second infinite number is the set of numbers smaller than it,
namely

{0, 1, 2, 3, . . . , ω} = ω ∪ {ω}.

In general, if α is a number, then the next number is α ∪ {α}.

In the 1920s, John von Neumann identified the crucial properties
of these sets and turned them into the definition of an ordinal.

• They are well-ordered: every nonempty subset has a smallest
element.

• Every element equals the set of elements smaller than it.
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John von Neumann (1903–1957)
The first computer of the Institute for Advanced Study, Princeton



Well-ordered sets

Recall: A partially ordered set is a set A with a relation (a subset
of A× A) denoted ≤, such that:

• a ≤ a for all a ∈ A (reflexivity).

• If a ≤ b and b ≤ a, then a = b (anti-symmetry).

• If a ≤ b and b ≤ c , then a ≤ c (transitivity).

A is well-ordered if every nonempty subset of A has a smallest
element. Equivalently, there is no infinite strictly decreasing
sequence in A.

Principle of Induction = N is well-ordered.

Axiom of Choice = Every set can be well-ordered.

Definition. An ordinal is a well-ordered set α such that
{η ∈ α : η < ξ} = ξ for all ξ ∈ α.

Thus, α is ordered by ∈ or, equivalently, ⊂.
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Ordinal arithmetic

We can add and multiply ordinals:

α + β α followed by β
α · β replace each element of β by α

Clearly, α + 0 = 0 + α = α and α · 1 = 1 · α = α.

We can also define exponentiation.

Many of the usual laws of arithmetic hold, but commutativity fails.

1 + ω 6= ω + 1 • 0 1 2 · · · 6= 0 1 2 · · · • in fact, 1 + ω = ω

2ω 6= ω2 • • • • • • · · · 6= • · · · • · · · in fact, 2ω = ω

Write α < β if α ∈ β or, equivalently, α ⊂ β.
Any two ordinals are comparable.

Theorem. Every well-ordered set is isomorphic to a unique ordinal.
So there are “enough” ordinals.
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Goodstein’s proof

Start with k ∈ N. Why must the Goodstein sequence k2, k3, k4, . . .
terminate?

In kn, written using base n, substitute ω for n. For example:

42 = 22 ωω

43 = 2 · 32 + 2 · 3 + 2 ω2 · 2 + ω · 2 + 2
44 = 2 · 42 + 2 · 4 + 1 ω2 · 2 + ω · 2 + 1
45 = 2 · 52 + 2 · 5 ω2 · 2 + ω · 2
46 = 2 · 62 + 6 + 5 ω2 · 2 + ω + 5

Raising the base changes nothing on the right hand side.
Subtracting 1 means we have a strictly decreasing sequence of
ordinals dominating the Goodstein sequence.

By well-ordering, the sequence of ordinals must terminate, so the
Goodstein sequence must terminate, q.e.d.
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Peano’s axioms

Did Goodstein have to use infinite numbers?

The usual foundation for the theory of the natural numbers is:

Peano’s axioms (1890s). 1. 0 is a natural number.
2. Every natural number n has a successor n+, which is also a
natural number.
3. 0 is not the successor of any natural number.
4. Distinct numbers have distinct successors.
5. If P(0) is true, and whenever P(k) is true, P(k+) is also true,
then P(n) is true for all natural numbers n.

Using these axioms, we can develop virtually all mathematics that
does not involve infinite sets in an essential way, for example most
of number theory, including the Prime Number Theorem.

There is even a serious claim that Wiles’s proof of Fermat’s Last
Theorem can be carried out in Peano arithmetic.
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Kirby and Paris

Theorem (Kirby and Paris 1982). Goodstein’s theorem cannot be
proved (or disproved) in Peano arithmetic.

This is a theorem of mathematical logic, proved using
mathematical models of mathematical reasoning (under the
assumption that standard set theory is consistent).

We conclude that Peano’s axioms do not capture all truths about
natural numbers—if we regard the axioms of set theory as “true”.

Some true statements about the natural numbers cannot be
proved without the use of infinite numbers.
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