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1. Introduction

The goal of this course is to acquire familiarity with the concept of a smooth manifold.

Roughly speaking, a smooth manifold is a space on which we can do calculus. Manifolds

arise in various areas of mathematics; they have a rich and deep theory with many

applications, for example in physics.

The three main questions to be addressed in the course are:

(1) What is a smooth manifold?

(2) How (and what) can we differentiate and integrate on a manifold?

(3) What is this generalisation of calculus good for?

A preliminary answer to (1) is: a smooth manifoldX is a topological space that locally

looks enough like Euclidean space Rn (for some n) that we can “transport” calculus from

Rn to X. Globally, X may be very different from Rn.

Examples of manifolds include the 2-sphere

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}

and the 2-torus

T 2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 + 3 = 4
√
x2 + y2}.

We will make precise the sense in which S2 and T 2 “locally look like” the plane R2.

Question (2) is too technical to talk about now: the answer involves so-called differ-

ential forms.

As for question (3), here are a few sample applications of the theory of manifolds.

(a) It provides a unified framework for Green’s theorem, Gauss’ theorem (a.k.a. the

divergence theorem), and Stokes’ theorem from multivariable calculus. These theorems

turn out to be special cases of one vast generalisation of the fundamental theorem of

calculus.

(b) It provides a mathematical framework for general relativity.

(c) The sphere and the torus look “different”: it seems clear that they should not

be thought of as the same surface. We will be able to make this precise and prove it,

using a suitable notion of “sameness” for manifolds. In other words, we will be able to

express in a mathematically rigorous way the apparent fact that the torus has a hole in

the middle but the sphere does not.

(d) Let U ⊂ R2 be open and f = (f1, f2) : U → R2 be a smooth map (that is,

infinitely differentiable). Let us ask: Is f a gradient? In other words, is there a smooth

function u : U → R such that

f1 =
∂u

∂x1
, f2 =

∂u

∂x2
on U?

This is a system of partial differential equations. If u exists, then necessarily

∂f1
∂x2

=
∂2u

∂x2∂x1
=

∂2u

∂x1∂x2
=
∂f2
∂x1

.

It turns out that every smooth f satisfying this condition is a gradient on U if and

only if U satisfies a certain topological condition that we can define and study using the

tools to be developed in this course, in particular the powerful tool called cohomology.
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This is a prototypical example of the interplay between partial differential equations and

topology that has become a major theme in modern mathematics.

2. Differentiation

2.1. Review of the basics. We are familiar with the complete ordered field R of real

numbers. We let Rn denote the set of ordered n-tuples (x1, . . . , xn) of real numbers.

This set is a vector space over R in the familiar way, with an inner product

x · y = x1y1 + · · ·+ xnyn for x = (x1, . . . , xn), y = (y1, . . . , yn),

a norm

‖x‖ =
√
x · x =

√√√√ n∑
i=1

x2i

satisfying the triangle inequality

‖x+ y‖ ≤ ‖x‖+ ‖y‖

and the Cauchy-Schwarz inequality

|x · y| ≤ ‖x‖‖y‖,

and a metric

d(x, y) = ‖x− y‖

turning Rn into a complete metric space with a topology that has a basis consisting of

all open balls B(a, r) = {x ∈ Rn : ‖x− a‖ < r} centred at a ∈ Rn with radius r > 0. By

a function we always mean a map with target (codomain) R.

We will now briefly review the basics of differentiation, following chapter 2 of Spivak

(see the list of references at the end of these notes), which is an excellent source for the

details we have left out. So is Rudin, chapter 9.

Here is the fundamental definition of differential calculus. A function f : U → R,

where U is an open subset of R, is differentiable at a ∈ U with derivative c ∈ R if

lim
h→0

f(a+ h)− f(a)

h
= c. Equivalently, (f(a+h)−f(a)− ch)/h→ 0 as h→ 0. Viewing

h 7→ ch as a linear map R→ R, we generalise this definition as follows.

A map f : U → Rm, where U is an open subset of Rn, is differentiable at a ∈ U if

there is a linear map λ : Rn → Rm such that

‖f(a+ h)− f(a)− λ(h)‖
/
‖h‖ → 0 as h→ 0 in Rn.

Then λ is uniquely determined and is called the derivative of f at a, denoted Df(a)

or f ′(a). The m × n matrix of f ′(a) with respect to the standard bases of Rn and

Rm is called the Jacobian matrix of f at a. We often blur the distinction between the

derivative and the Jacobian matrix and also denote the latter by Df(a) or f ′(a).

It is easy to show that a constant map is differentiable at every point with derivative

zero and that a linear map is its own derivative at every point. Also, differentiability

implies continuity.

Differentiability is preserved by composition of maps and there is a simple formula

for the derivative of the composition.
3



Theorem 2.1 (Chain rule). If U is open in Rn, V is open in Rm, f : U → Rm is

differentiable at a ∈ U , f(U) ⊂ V , and g : V → Rk is differentiable at f(a), then

g ◦ f : U → Rk is differentiable at a and

(g ◦ f)′(a) = g′(f(a)) ◦ f ′(a).

We can now show that a map f = (f1, . . . , fm) : U → Rm, U ⊂ Rn, is differentiable at

a ∈ U if and only if each component function fi : U → R is, and f ′(a) is the m×n matrix

whose i-th row is f ′i(a). We can also prove the familiar formulas for the derivatives of a

sum, a product, and a quotient. It follows, in Spivak’s words, that we are now assured of

the differentiability of those maps whose component functions are obtained by addition,

multiplication, division, and composition from the projections πi : (x1, . . . , xn) 7→ xi
(which are linear transformations) and the functions that we can already differentiate

by elementary calculus.

Next we come to the problem of actually calculating derivatives of functions of more

than one variable. This is done using partial derivatives. If f : U → R, U ⊂ Rn,

and a ∈ U , then the derivative of the function t 7→ f(a1, . . . , ai−1, t, ai+1, . . . , an) at ai,

if it exists, is called the i-th partial derivative of f at a, denoted Dif(a). So partial

derivatives can be computed by elementary calculus. If Dif(x) exists for every x ∈ U ,

then we have a function Dif : U → R. The j-th partial derivative of this function at x,

that is Dj(Dif)(x), if it exists, is denoted Di,jf(x).

Theorem 2.2. If Di,jf and Dj,if are continuous on a neighbourhood of a, then Di,jf(a)

= Dj,if(a).

Higher-order partial derivatives are defined in the obvious way. A function U → R,

U ⊂ Rn, is called k times continuously differentiable, or simply Ck, k ≥ 1, if all its partial

derivatives up to and including order k exist and are continuous on U . It is called smooth

or C∞ or infinitely differentiable if it has partial derivatives of all orders at every point

of U (they are then continuous on U). When calculating partial derivatives of a smooth

function, the order of differentiation is immaterial.

Theorem 2.3. (1) If f : U → Rm, U ⊂ Rn, is differentiable at a ∈ U , then the partial

derivatives Djfi(a) exist for i = 1, . . . ,m, j = 1, . . . , n, and the Jacobian matrix f ′(a)

is the m× n matrix (Djfi(a)).

(2) If all Djfi(x) exist for all x in a neighbourhood of a and if each function Djfi is

continuous at a, then f is differentiable at a.

The converse of (1) fails. Even if Djfi(a) exists for all i and j, we cannot conclude

that f is differentiable at a: see exercise 2.1.

If f satisfies the hypothesis in (2), then f is said to be continuously differentiable at

a. This is stronger than differentiability at a, that is, the converse of (2) fails in general.

The function f : R→ R with f(x) = x2 sin(1/x) for x 6= 0 and f(0) = 0 is differentiable,

but f ′ is not continuous at 0.

2.2. The inverse function theorem. It is an important and nontrivial fact that if

the derivative of a map f at a point a is invertible, then f itself is invertible on a

neighbourhood of a. We shall prove this using the contraction principle, which, as you

recall, can also be used to prove Picard’s existence theorem for ordinary differential

equations. Spivak gives a different proof.
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Recall that if (X, d) is a metric space, a map φ : X → X is called a contraction

if there is a number c < 1 such that d(φ(x), φ(y)) ≤ cd(x, y) for all x, y ∈ X. The

contraction principle states that a contraction φ of a complete metric space X has a

unique fixed point. In fact, for any a ∈ X, the iterates φn(a) converge to the fixed point

as n→∞.

Theorem 2.4 (Inverse function theorem). Let X ⊂ Rn be open and f : X → Rn

be Ck, 1 ≤ k ≤ ∞. Suppose a ∈ X and f ′(a) is invertible. Then there are open

neighbourhoods U of a and V of f(a) in Rn such that f : U → V is a bijection and the

inverse f−1 : V → U is Ck.

Note that invertibility of f ′(a) is not only sufficient but also necessary for the conclu-

sion of the theorem: if the conclusion holds, then f−1 ◦ f = idU implies (f−1)′(f(a)) ◦
f ′(a) = I by the chain rule, so f ′(a) is invertible.

Proof. (From Rudin, pp. 221–223.) Put A = f ′(a) and choose λ so that 2λ‖A−1‖ = 1.

Since f ′ is continuous at a (see Theorem 2.3), there is an open ball U ⊂ X, centred at

a, such that ‖f ′ −A‖ < λ on U .

Fix y ∈ Rn and define a map φ on X by φ(x) = x + A−1(y − f(x)). Note that

f(x) = y if and only if x is a fixed point of φ. Now φ′ = I − A−1f ′ = A−1(A − f ′),
so ‖φ′‖ < 1

2 on U . Hence, by the mean value theorem, ‖φ(x) − φ(x′)‖ ≤ 1
2‖x − x

′‖ for

x, x′ ∈ U , so φ has at most one fixed point in U , that is, f(x) = y for at most one x ∈ U .

This shows that f is injective on U .

Next let V = f(U) and pick y0 ∈ V . Then y0 = f(x0) for some x0 ∈ U . Let B be

an open ball with centre x0 and radius r > 0 so small that B ⊂ U . We will show that

y ∈ V whenever ‖y − y0‖ < λr, proving that V is open.

So take y with ‖y − y0‖ < λr. With φ as above,

‖φ(x0)− x0‖ = ‖A−1(y − y0)‖ < ‖A−1‖λr =
r

2
.

If x ∈ B, it follows that

‖φ(x)− x0‖ ≤ ‖φ(x)− φ(x0)‖+ ‖φ(x0)− x0‖ <
1

2
‖x− x0‖+

r

2
≤ r,

so φ(x) ∈ B. Thus φ is a contraction ofB. Being a closed subset of Rn, B is complete. By

the contraction principle, φ has a fixed point x ∈ B. Then y = f(x) ∈ f(B) ⊂ f(U) = V .

At this point we have shown that there are open neighbourhoods U of a and V of

f(a) such that f : U → V is a bijection. So far, we have only used differentiability of f

on X, invertibility of f ′(a), and continuity of f ′ at a.

Now let y, y + k ∈ V with preimages x, x+ h ∈ U . With φ as above,

φ(x+ h)− φ(x) = h+A−1(f(x)− f(x+ h)) = h−A−1k,

so ‖h − A−1k‖ ≤ 1
2‖h‖. Therefore ‖A−1k‖ ≥ 1

2‖h‖ and ‖h‖ ≤ 2‖A−1‖‖k‖ = λ−1‖k‖,
so as k → 0, h→ 0. Since f ′ is continuous at a, after shrinking U if necessary, we may

assume that f ′(x) is invertible for all x ∈ U . Let T = f ′(x)−1. Since

f−1(y + k)− f−1(y)− Tk = h− Tk = −T (f(x+ h)− f(x)− f ′(x)h),

we have

‖f−1(y + k)− f−1(y)− Tk‖
‖k‖

≤ ‖T‖
λ

‖f(x+ h)− f(x)− f ′(x)h‖
‖h‖

.
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As k → 0, the right hand side goes to zero, so the left hand side does as well, showing

that f−1 is differentiable at y with (f−1)′(y) = f ′(f−1(y))−1. If f is C1, this formula

shows that (f−1)′ is continuous on V , so f−1 is C1 as well. We can now prove by

induction that if f is Ck, then f−1 is Ck on V . Namely, suppose this holds for k−1 and

that f is Ck. Then f−1 is Ck−1 by the induction hypothesis. Also, f ′ is Ck−1, so, since

the entries of the inverse of an invertible matrix are smooth functions of the entries of

the matrix, (f ′)−1 is Ck−1. Hence our formula shows that (f−1)′ is Ck−1, so f−1 is Ck.

(Note the repeated application of the chain rule.) �

If U and V are open sets in Rn, then a Ck map U → V with a Ck inverse is called

a Ck diffeomorphism. By a diffeomorphism we will mean a C∞ diffeomorphism. A map

f : U → V is called a local diffeomorphism at a ∈ U if there are open neighbourhoods U ′

of a and V ′ of f(a) such that f : U ′ → V ′ is a diffeomorphism. So the inverse function

theorem implies that a smooth map with an invertible derivative at a point p is a local

diffeomorphism at p.

A smooth bijection need not have a differentiable inverse: consider R→ R, x 7→ x3.

The map f : R2 → R2, f(x, y) = (ex cos y, ex sin y), is smooth with invertible deriva-

tive at every point, so it is locally injective, but it is not (globally) injective. What is f

in terms of complex numbers?

The inverse function theorem has two equivalent formulations that are often used. It

is a good exercise to show that each of the three results implies the other two.

Theorem 2.5 (Implicit function theorem). Suppose f is a Ck map, 1 ≤ k ≤ ∞, from

a neighbourhood of (x0, y0) in Rn × Rm into Rm such that the derivative of the map

y 7→ f(x0, y) is invertible at y0. Write c = f(x0, y0). Then there are open neighbourhoods

U of x0 and V of y0 and a Ck map g : U → V such that for every (x, y) ∈ U × V , we

have f(x, y) = c if and only if y = g(x).

The theorem tells us that the level set of f through (x0, y0) is, near (x0, y0), the

graph of a Ck function of x. In other words, for x close to x0, there is a unique y close

to y0 such that f(x, y) = f(x0, y0), and, if f is Ck, this y depends Ck-differentiably on

x. The reader should draw a picture of this.

By the rank of a differentiable map f at a point a we mean the rank of the derivative

f ′(a) as a linear transformation, that is, the dimension of its image. By basic linear

algebra, this is the largest number r such that f ′(a) has an invertible r × r submatrix.

Theorem 2.6 (Rank theorem). Let f : X → Rm be a Ck map, 1 ≤ k ≤ ∞, where

X is open in Rn, with rank s at every point of X. For every a ∈ X, there are open

neighbourhoods U ⊂ X of a and V of f(a) with f(U) ⊂ V , and Ck diffeomorphisms

φ : U → U ′ and ψ : V → V ′, where U ′ is open in Rn and V ′ is open in Rm, such that

ψ ◦ f ◦ φ−1 has the simple form

ψ ◦ f ◦ φ−1(x1, . . . , xn) = (x1, . . . , xs, 0, . . . , 0) for all (x1, . . . , xn) ∈ U ′.

Clearly, the largest rank a map f as above can have is r = min{n,m}. If f has rank

r at a, then f has rank r at every point in a neighbourhood W of a (why?), so the

rank theorem applies. If n ≤ m, so r = n and f ′(a) is injective, then f is said to be

an immersion on W . Then the rank theorem shows that f is locally injective on W . If

n ≥ m, so r = m and f ′(a) is surjective, then f is said to be a submersion on W . Then

the rank theorem shows that f(W ) is open.
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If f ′(a) is surjective for a map f : X → Rm as above, that is, f has rank m at a, then

a is called a regular point of f . Otherwise, a is called a critical point of f . Note that

the set of critical points is closed. If b ∈ Rm and f−1(b) contains no critical points (for

example if b is not in the image of f), then b is called a regular value of f ; otherwise, b

is called a critical value. What does the rank theorem tell us about the local structure

of the preimage of a regular value?

3. Smooth manifolds

3.1. Charts and atlases. We now want to extend the preceding theory from the setting

of Rn to more general spaces X on which it still makes sense to talk about smooth

functions. Since differentiability is a local notion, we can transport it from Rn to X if

every point of X has a neighbourhood with an identification with an open subset of Rn.

We just need to make sure that two such identifications on overlapping neighbourhoods

define the same notion of smoothness. This leads to the following definitions.

A chart on a topological space X is a homeomorphism φ : U → U ′, where U is an

open subset of X and U ′ is an open subset of Rn for some n (which may depend on φ).

Here, n ≥ 0 and we interpret R0 as the trivial vector space {0}. We sometimes speak of

the chart (U, φ) and call U a coordinate neighbourhood in X. If a ∈ U , we may call φ a

chart at a.

An atlas A on X is a set of charts on X such that

(1) the domains of the charts in A cover X, and

(2) any two charts φ : U → U ′ and ψ : V → V ′ in A are compatible, meaning that

the composition ψ ◦ φ−1 : φ(U ∩ V )→ ψ(U ∩ V ) is smooth.

By (2) applied to ψ and φ in the opposite order, ψ ◦ φ−1 : φ(U ∩ V ) → ψ(U ∩ V ) is in

fact a diffeomorphism.

The set of atlases on a space X is partially ordered by inclusion. Every atlas A
is contained in a unique maximal atlas (an atlas contained in no strictly larger atlas),

namely the set of all charts compatible with every chart in A (exercise).

A smooth manifold (or, for us, simply a manifold) is a second countable Hausdorff

space X with a maximal atlas A. We also refer to a maximal atlas on X as a smooth

structure on X. Usually we do not describe a maximal atlas explicitly, but rather specify

it by a small, explicit atlas contained in it.

As an exercise, show that if X is connected, then the number n above is the same

for all charts (whose source and target are nonempty). It is called the dimension of X.

The connected components of a disconnected manifold can have different dimensions.

If all the connected components of a manifold X have the same dimension n, we write

dimX = n and sometimes refer to X as pure-dimensional. Note that a 0-dimensional

manifold is nothing but a countable set with the discrete topology.

The empty set X = ∅ with its unique topology and the empty atlas satisfies the

definition of a smooth manifold. We do not assign a dimension to the empty manifold

(although it would make some sense to set dim∅ = −∞).

Most of the theory in these notes, although valid for all manifolds, is only of inter-

est for manifolds of dimension at least 1. It is only in section 6.1 that 0-dimensional

manifolds start to play a role. Until then, to avoid tedious trivialities, we will implicitly

assume that our manifolds have dimension at least 1.
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The notion of a Ck manifold can be defined by an obvious modification of the above.

In this course, we will only be concerned with C∞ manifolds.

Here are some examples of manifolds.

(1) Rn with the atlas consisting of nothing but the identity map Rn → Rn. We call

this manifold n-dimensional Euclidean space.

(2) Any open subset of a given manifold X (called an open submanifold of X).

(3) The product space X × Y , where X and Y are manifolds. If φ : U → U ′ ⊂ Rn

is a chart on X and ψ : V → V ′ ⊂ Rm is a chart on Y , then we take the map

U × V → U ′ × V ′ ⊂ Rn × Rm ∼= Rn+m, (x, y) 7→ (φ(x), ψ(y)), to be a chart on

X × Y .

(4) The n-dimensional sphere Sn = {x ∈ Rn+1 : ‖x‖ = 1} (see exercise 3.2).

(5) The n-dimensional real projective space RPn (see Boothby, pp. 61–63).

Work out or look up the details! We shall view an open subset U of Rn as a manifold

with the atlas consisting of nothing but the identity map U → U (this is the standard

smooth structure on U).

Let X be a manifold. A function f : X → R is said to be smooth if for every chart

φ : U → U ′ on X, the composition f ◦ φ−1 : U ′ → R is smooth in the usual sense. Then

f is continuous. The set C∞(X) of smooth functions X → R is an algebra over R, a

subalgebra of the R-algebra C0(X) of continuous functions X → R.

More generally, if X and Y are manifolds, a continuous map f : X → Y is called

smooth if for every chart φ : U → U ′ on X and ψ : V → V ′ on Y , the composition

ψ ◦ f ◦φ−1 is smooth on φ(U ∩ f−1(V )) in the usual sense. If X and Y are open subsets

of Rn and Rm respectively, with the standard smooth structures, this definition agrees

with our original notion of smoothness (exercise). Clearly, the composition of smooth

maps is smooth. Thus, a smooth map f : X → Y induces a map f∗ : C∞(Y )→ C∞(X)

by precomposition: f∗(h) = h ◦ f . This map is a morphism of R-algebras.

Shortly (once you’ve learned Whitney’s embedding theorem, Theorem 3.4), you will

be able to show that if X and Y are manifolds and f : X → Y is a map (a priori not

necessarily continuous) such that h ◦ f is smooth on X for every smooth function h on

Y , then f is smooth. The following question is hard, but you might like to think about

it. Is every R-algebra morphism C∞(Y )→ C∞(X) given by precomposition with a map

X → Y (which then must be smooth)?

A smooth map between manifolds with a smooth inverse is called a diffeomorphism.

We think of diffeomorphic manifolds as the “same” manifold. Using charts, we can

extend the definitions of an immersion, submersion, regular and critical points and

values, rank, etc. to smooth maps between manifolds. Note that, trivially, a chart is a

diffeomorphism.

3.2. Submanifolds and embeddings. Let Y be a closed subset of an n-dimensional

manifold X. We say that Y is a k-dimensional (closed) submanifold of X if Y can be

covered by charts φ : U → U ′ such that

Y ∩ U = {x ∈ U : φi(x) = 0 for i = k + 1, . . . , n}.

This means that in suitable coordinates, Y lies in X the way the linear subspace Rk ×
{0}n−k lies in Rn. Then Y is a manifold in its own right with an atlas consisting of the

8



charts

(φ1, . . . , φk) : U ∩ Y → {x ∈ Rk : (x, 0) ∈ U ′},

and the inclusion Y ↪→ X is smooth (check!). This smooth structure on Y is called the

structure induced from X.

The following result provides many important examples of submanifolds.

Theorem 3.1. Let X and Y be manifolds and f : X → Y be a smooth map. If c ∈ Y
is a regular value of f , then f−1(c) is a submanifold of X.

As will be evident from the proof, if X and Y are pure-dimensional, then

dim f−1(c) = dimX − dimY,

unless f−1(c) is empty.

Proof. (Sketch.) First, since f is continuous, f−1(c) is closed in X. Take a ∈ f−1(c)

and let φ and ψ be charts at a and c respectively such that φ(a) = 0 and ψ(c) = 0.

Then g = ψ ◦f ◦φ−1 is a submersion at 0, so by the rank theorem, by possibly changing

the charts, g(x1, . . . , xn) = (x1, . . . , xm). Here, n denotes the dimension of X at a and

m the dimension of Y at c. Then, near a, f−1(c) consists of those points x for which

φi(x) = 0 for i = 1, . . . ,m. �

As an exercise, use this result to show that the sphere S2 and the torus T 2 from the

introduction are smooth submanifolds of R3.

An embedding of a manifold X into a manifold Y is a map f : X → Y whose image

f(X) is a submanifold of Y such that f : X → f(X) is a diffeomorphism (then f is

smooth as a map into Y ). The next result gives what is usually the easiest way to verify

that a given map is an embedding.

Recall that a continuous map f : X → Y between topological spaces is called proper if

f−1(K) is compact for every compact subset K of Y . For “nice” (how nice?) topological

spaces, such as manifolds, an equivalent condition that is often easy to check is that

if (xn) is a sequence in X converging to ∞X , the point at infinity in the one-point

compactification of X (this simply means that (xn) eventually leaves every compact

subset of X), then f(xn)→∞Y . A homeomorphism is always proper.

Theorem 3.2. A map f : X → Y between manifolds is an embedding if and only if it

is a proper injective immersion.

Find an example of an injective immersion R→ R2 with a closed image, which is not

proper and not an embedding.

Proof. ⇒: Suppose f is an embedding. Being a diffeomorphism onto a submanifold

of Y , it is an injective immersion. Also, f is the composition of a homeomorphism

X → f(X) and the inclusion f(X) ↪→ Y , which is proper because f(X) is closed in Y ,

so f is proper.

⇐: Being proper, f is closed, that is, if E ⊂ X is closed, then f(E) is closed in Y

(exercise). In particular, the image f(X) is closed in Y . This shows that the continuous

bijection f : X → f(X) is in fact a homeomorphism, where f(X) is given the subspace

topology induced from Y .
9



Let b ∈ f(X), say b = f(a). Since f is an immersion, by the rank theorem, there

are charts φ on a neighbourhood U of a and ψ on a neighbourhood V of b such that

f(U) ⊂ V and ψ ◦ f ◦ φ−1(x1, . . . , xn) = (x1, . . . , xn, 0, . . . ). Since f : X → f(X) is a

homeomorphism, by shrinking U and V if need be, we may assume that f(U) = V ∩f(X).

We see, then, that f(X) is a submanifold of Y , given in the chart ψ by the equations

xk = 0 for k > n, and that f and its inverse are smooth. �

Corollary 3.1. If f : X → Y is an injective immersion and X is compact, then f is

an embedding.

Proof. We need to verify that f is proper. If K is compact in Y , then K is closed in Y

since Y is Hausdorff. Hence f−1(K) is closed in X since f is continuous, and therefore

compact since X is compact. �

3.3. Partitions of unity and Whitney’s embedding theorem. Partitions of unity

are a powerful and much-used tool for a variety of constructions involving manifolds.

Loosely speaking, they allow us to form global objects by gluing together local objects

or, alternatively, decompose a global object into a sum of locally supported pieces.

Let X be a manifold with an open cover U = (Ui)i∈I . A partition of unity subordinate

to U is a family (ρj)j∈J of smooth functions ρj : X → [0, 1] with compact supports such

that

(1) for each j ∈ J , there is i ∈ I such that supp ρj ⊂ Ui,
(2) for every compact subset K ⊂ X, we have K ∩ supp ρj 6= ∅ for only finitely

many j ∈ J , and

(3)
∑
j∈J

ρj = 1 on X.

Recall that the support of a function f : X → R is the closure of the set of x ∈ X
with f(x) 6= 0. Note that the sum in (3) is well defined in that all but finitely many of

its terms are zero when restricted to any compact set.

Theorem 3.3. If U is an open cover of a manifold X, then there is a partition of unity

subordinate to U .

Assuming this result, as an exercise, show that if we do not require the functions ρi
to have compact supports, then there is a partition of unity with J = I and supp ρi ⊂ Ui
for each i ∈ I.

The proof of the theorem proceeds through a number of steps.1 We first recall the

function f : R → R defined by setting f(x) = e−1/x for x > 0 and f(x) = 0 for

x ≤ 0. This is an example of an infinitely differentiable function which is not real-

analytic (it does not equal the sum of its Taylor series at 0). From this function, we

can construct many other useful functions, for instance so-called bump functions g(x) =

c1f(x − a)f(b − x), for a < b with c1 = e4/(b−a), and cutoff functions h(x) = c2
∫ x
−∞ g,

where c−12 =
∫ b
a
g. These functions are smooth. Draw their graphs!

Now let (Ui)i∈I be an open cover of a manifold X. Let K ⊂ X be compact and

B ⊂ X be closed (possibly empty) with K ∩ B = ∅. Let x0 ∈ K, say x0 ∈ Ui. Let

φ be a chart on an open neighbourhood V ⊂ Ui ∩ X \ B of x0, and find ε > 0 such

that B(φ(x0), ε) ⊂ φ(V ). Let h be a smooth cutoff function as constructed above with

1This exposition is borrowed from notes of Nicholas Buchdahl.
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h(t) = 0 for t < ε2/4 and h(t) = 1 for t > ε2 and set hx0
(x) = 1 − h(‖φ(x) − φ(x0)‖2)

for x ∈ V , so hx0 is identically 1 in a neighbourhood of x0 and identically 0 outside a

larger neighbourhood. Smoothly extend hx0 to all of X by setting it equal to 0 outside

V . Note that supphx0
is compact and contained in Ui.

Repeat this construction for each x ∈ K and obtain a family (hx)x∈K of smooth

functions on X. Let Wx = h−1x (1)◦ (the circle means interior): this is an open neigh-

bourhood of x. Then (Wx)x∈K is an open cover of K, so there is a finite subcover

consisting of, say, Wx1
, . . . ,Wxm

.

If X is compact, do the above with K = X and B = ∅ and set ρj = hxj
/h for

j = 1, . . . ,m, where h = hx1
+ · · ·+ hxm

. Theorem 3.3 is thereby proved. We leave the

rest of the proof for X noncompact as an exercise.

The following application of partitions of unity is one of the earliest and most fun-

damental results in the theory of smooth manifolds. It says that the manifolds we have

defined in an abstract fashion are in fact no more general than submanifolds of Euclidean

space. It should be emphasised, though, that a manifold may not come to us equipped

with any natural embedding into Euclidean space. The fact that an embedding into

Euclidean space exists is often not really relevant.

Theorem 3.4 (Whitney’s embedding theorem). An n-dimensional smooth manifold can

be embedded as a submanifold of R2n.

The rough idea of the proof is this: A manifold comes equipped with diffeomorphisms

of small open subsets onto open subsets of Euclidean space. We can use a partition of

unity to piece these together to form an embedding of the whole manifold into Euclidean

space of higher dimension.

Proof. We will only prove that a compact n-dimensional manifold X embeds in Rm for

some m. As above, find a finite cover of X by charts (Ui, φi), i = 1, . . . , k, and smooth

functions hi : X → [0, 1] such that supphi ⊂ Ui and the interiors of the sets h−1i (1),

i = 1, . . . , k, cover X. Define smooth maps ψi = hi ·φi : X → Rn (defined as zero outside

of supphi) and f = (h1, . . . , hk, ψ1, . . . , ψk) : X → Rk(n+1). Then f is an immersion

because at each point x of X, at least one of the maps hi equals 1 on a neighbourhood

of x, so on that neighbourhood, ψi = φi is an immersion. Also, f is injective. Namely,

if x 6= x′ are points in X, then hi(x) = 1 for some i. If also hi(x
′) = 1, so x, x′ ∈ Ui,

then ψi(x) = φi(x) 6= φi(x
′) = ψi(x

′), so f(x) 6= f(x′). On the other hand, if hi(x
′) 6= 1,

then clearly f(x) 6= f(x′). �

Another famous result of Whitney’s using a similar technique is the fact that every

closed subset of a manifold is the zero set of a nonnegative smooth function on the

manifold (see Madsen-Tornehave, p. 224).

4. Tangent spaces

4.1. Germs, derivations, and equivalence classes of paths. We have defined what

it means for a function f : X → R defined on a manifold X to be smooth, but we

have said nothing about how to actually differentiate it. Our next task is to start the

development of differential calculus on manifolds. If X is an open subset of Rn, then

we differentiate f at a point a ∈ X by calculating the partial derivatives of f at a. In

other words, we compute the rate of change of f in each of the coordinate directions
11



at a, that is, we take the derivatives (f ◦ γi)′(0) for the paths γi(t) = a + tei through

a, where ei ∈ Rn is the i-th standard basis vector with 1 as its i-th coordinate and all

other coordinates 0. On a manifold we have no preferred directions or paths. What

we can do is simply look at the rate of change (f ◦ γ)′(0) of f along all smooth paths

γ : (−ε, ε)→ X with γ(0) = a.

These rates of change only depend on the restriction of f to any neighbourhood of a,

however small. This observation prompts us to define an equivalence relation on the set⋃
C∞(U), where U runs through all open neighbourhoods of a in X, by setting g ∼ h

for g ∈ C∞(U) and h ∈ C∞(V ) if there is a neighbourhood W ⊂ U ∩ V of a with g = h

on W . An equivalence class is called a germ of a smooth function at a. We sometimes

write fa for the germ at a of a smooth function f on an open neighbourhood of a. In a

natural way the set of germs at a is an R-algebra (exercise). It is denoted C∞a or, if X

needs to be mentioned, C∞X,a. Note that the value at a of a germ at a is well defined.

Thus, every smooth path γ : (−ε, ε) → X with γ(0) = a gives a well-defined map

Dγ : C∞a → R, [f ] 7→ (f ◦ γ)′(0). This map has two important properties that you

should check:

(1) Dγ is linear (as a map of real vector spaces).

(2) Dγ satisfies the Leibniz rule: for all germs f, g ∈ C∞a ,

Dγ(fg) = Dγ(f)g(a) + f(a)Dγ(g).

Such a map is called a derivation on the R-algebra C∞a . The derivations of C∞a naturally

form a vector space (exercise) denoted DerC∞a . A derivation always takes a constant

function to zero (why?).

The next thing to note is that although there is a vast number of smooth paths

through a in X, they do not give all that many derivations. More precisely, smooth

paths γ1 and γ2 with γ1(0) = γ2(0) = a give the same derivation if there is a chart φ

at a with (φ ◦ γ1)′(0) = (φ ◦ γ2)′(0) (exercise: this is then true for every chart at a).

Namely, if f ∈ C∞a , then, by the chain rule,

Dγk(f) = (f ◦ γk)′(0) =
(
(f ◦ φ−1) ◦ (φ ◦ γk)

)′
(0) = (f ◦ φ−1)′(φ(a)) (φ ◦ γk)′(0),

and these are the same for k = 1, 2. (Here, as often, we denote by the same symbol a

germ at a and a representative for it on an unspecified open neighbourhood of a.) So

we are led to declaring two smooth paths γk : (−εk, εk) → X with γk(0) = a, k = 1, 2,

equivalent if (φ ◦ γ1)′(0) = (φ ◦ γ2)′(0) for some (or every) chart φ at a. We would like

this condition to mean that γ1 and γ2 have the same velocity or the same tangent vector

at a. Since the notion of a tangent vector to a manifold has not been defined yet, we

have the opportunity to make this true by fiat! So we define the tangent space to X at

a, denoted TaX, to be the set of equivalence classes of smooth paths through a with

respect to the equivalence relation just defined.

The fundamental result that ties the above definitions together is as follows.

Theorem 4.1. The map TaX → DerC∞a , [γ] 7→ Dγ , is a bijection.

We equip TaX with the unique vector space structure that makes the map linear and

refer to elements of TaX as tangent vectors to X at a.

Before proceeding to the proof of the theorem, we need a lemma.
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Lemma 4.1. Let f be a smooth function on an open ball B centred at the origin 0 in

Rn. Then there are smooth functions f1, . . . , fn on B such that fi(0) = Dif(0) and

f(x) = f(0) + x1f1(x) + · · ·+ xnfn(x) for x ∈ B.

Proof. By the fundamental theorem of calculus and the chain rule,

f(x)− f(0) =

∫ 1

0

d

dt
f(tx1, . . . , txn) dt =

n∑
i=1

xi

∫ 1

0

Dif(tx1, . . . , txn) dt,

so we simply let

fi(x) =

∫ 1

0

Dif(tx1, . . . , txn) dt.

We need to invoke a suitable result about differentiability of integrals; see for instance

Rudin, Theorem 9.42. �

Proof of Theorem 4.1. We have already seen that the map is well defined: equivalent

paths give the same derivation. To check injectivity, suppose [γ1] and [γ2] are distinct

tangent vectors at a. This means that for any chart (U, φ) at a, (φ◦γ1)′(0) 6= (φ◦γ2)′(0),

so for at least one of the component functions φi : U → R of φ, we have

Dγ1(φi) = (φi ◦ γ1)′(0) 6= (φi ◦ γ2)′(0) = Dγ2(φi).

This shows that Dγ1 6= Dγ2 .

Surjectivity is the main part of the proof. Suppose D is a derivation on C∞a . Let

(U, φ) be a chart at a. Let f be a smooth function on an open neighbourhood V of a (or

the germ at a thereof). By shrinking U and V if need be, we may assume that U = V

and that B = φ(U) is an open ball centred at the origin 0 in Rn with φ(a) = 0.

By Lemma 4.1 applied to the smooth function g = f ◦ φ−1 on B, there are smooth

functions g1, . . . , gn on B with gi(0) = Dig(0) and

g(x) = g(0) + x1g1(x) + · · ·+ xngn(x) for x ∈ B.

Thus, since D takes constants to zero and φi(a) = 0,

D(f) = D(g ◦ φ) = D
(
f(a) +

∑
i

φi(gi ◦ φ)
)

=
∑
i

D(φi)gi(0)

=
∑
i

D(φi)Di(f ◦ φ−1)(0) = Dγ(f),

where γ(t) = φ−1(c1t, . . . , cnt), ci = D(φi) (go through this calculation yourself). Thus,

D is in the image of TaX. �

More can be learned from this proof. We have just expressed the arbitrary derivation

D on C∞a as a linear combination of the derivations f 7→ Di(f ◦ φ−1)(0), i = 1, . . . , n,

where φ is any chart at a. We denote these derivations by
∂

∂φi

∣∣∣∣
a

. They are linearly

independent — taking f = φj , we get Di(φj ◦ φ−1)(0) = δij , because φj ◦ φ−1 is simply

the projection x 7→ xj — so they form a basis for DerC∞a . In particular, the dimension

of TaX equals the dimension of X at a. For the record,

D =
∑
i

D(φi)
∂

∂φi

∣∣∣∣
a

for every D ∈ TaX.

13



Let us consider the case where X = Rn, as always with the standard smooth struc-

ture, so we can take the chart φ to be the identity map Rn → Rn, or a translation

thereof if we want it to take a particular point a to the origin. The basis for DerC∞a
just described consists of the derivations f 7→ Di(f ◦ φ−1)(0) = Dif(a), that is, of the

partial derivatives D1, . . . , Dn. Also, two smooth paths γ1 and γ2 through a are equiv-

alent if and only if γ′1(0) = γ′2(0). Since there clearly is a path γ with γ(0) = a and

γ′(0) = v for every v ∈ Rn (say γ(t) = tv+a), we obtain an isomorphism ι : TaRn → Rn,

[γ] 7→ γ′(0). In other words, TaRn naturally corresponds to the tangent space to Rn at

a as you may have previously envisaged it as the n-dimensional vector space of velocity

vectors of paths in Rn through a.

Finally, then, here is how we differentiate a smooth function f : X → R at a point

a ∈ X. We define the derivative (some say differential) of f at a to be the linear map

daf : TaX → R that simply evaluates a derivation on the germ of f at a. In other words,

if γ is a smooth path in X with γ(0) = a, then daf([γ]) = (f ◦γ)′(0). Roughly speaking,

the rates of change of f along all paths through a are built into the linear map daf .

Let us express daf in terms of a basis for the dual space T ∗aX of linear maps (or

functionals) TaX → R (we call T ∗aX the cotangent space to X at a). A natural choice

of basis for T ∗aX is the basis dual to the basis {∂/∂φ1, . . . , ∂/∂φn} for TaX given by a

chart φ at a. The dual basis consists of covectors dφ1, . . . , dφn (more properly dφi(a))

defined by the condition dφi(∂/∂φj) = δij for i, j = 1, . . . , n. We have

daf =

n∑
i=1

daf
( ∂

∂φi

)
dφi(a) =

n∑
i=1

∂f

∂φi

∣∣∣∣
a

dφi(a).

If X = Rn and we identify TaRn with Rn by the isomorphism ι above, then the

composition daf ◦ ι−1 : Rn → TaRn → R,

v 7→ daf(ι−1(v)) = (f ◦ ι−1(v))′(0) =
d

dt
f(tv + a)

∣∣
t=0

= Daf(v),

identifies daf with the derivative Daf of f at a as defined in multivariable calculus.

When φ is the identity map of Rn, it is customary to write x1, . . . , xn for the component

functions of φ and write ∂/∂xi for ∂/∂φi and dxi for dφi.

4.2. The derivative of a smooth map. Now let f : X → Y be a smooth map between

manifolds. We define the derivative (sometimes we say differential or tangent map) of f

at a point a ∈ X to be the linear map daf : TaX → Tf(a)Y that takes a derivation D in

TaX to the derivation h 7→ D(h ◦ f) in Tf(a)Y . Equivalently, daf takes an equivalence

class [γ] of smooth paths through a to the class [f ◦ γ] (check!). Sometimes we write

Taf or f∗ for daf (if suppressing a does not lead to confusion) and f∗h for h ◦ f . Then

the defining formula takes the appealing form

f∗D(h) = D(f∗h).

In other words, the derivative acts by precomposing derivations on C∞a by the precom-

position map f∗ : C∞f(a) → C∞a , h 7→ h ◦ f .

There are a few things that need to be checked here (roll up your sleeves!). First, if

h is the germ at f(a) of a smooth function h̃ on an open neighbourhood V of f(a), then

h̃ ◦ f is a smooth function on the open neighbourhood f−1(V ) of a and its germ f∗(h)

at a only depends on h and not on the choice of the representative h̃. Hence, the map

f∗ : C∞f(a) → C∞a is well defined. Second, f∗ is linear (in fact a morphism of R-algebras),
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so if D is a derivation in TaX, then D ◦ f∗ : C∞f(a) → R is linear. Third, D ◦ f∗ satisfies

the Leibniz rule, so it is a derivation. Finally, daf : D 7→ D ◦ f∗ is linear. You should

also verify that in case Y = R, our definition agrees with the one given at the end of the

previous section, using the natural identification Tf(a)R→ R.

The next question is how to compute the derivative daf . What does it mean to

“compute” a linear map? It means to calculate its matrix with respect to given bases

for its source and target. We shall use the bases given by a chart φ at a and a chart ψ

at f(a). Say X is n-dimensional at a and Y is m-dimensional at f(a). For j = 1, . . . , n,

we need to expand the tangent vector daf(∂/∂φj) in terms of the basis vectors ∂/∂ψi,

i = 1, . . . ,m, for Tf(a)Y . The coefficient of ∂/∂ψi in that expansion is

daf(∂/∂φj)(ψi) = ∂/∂φj(ψi ◦ f) = Dj(ψi ◦ f ◦ φ−1)(φ(a)).

This is nothing but the (i, j)-entry in the m× n Jacobian matrix of ψ ◦ f ◦ φ−1 at φ(a).

In particular, when X = Rn and Y = Rm with the standard structures, so we can take

φ and ψ to be the identity maps, our new definition of the derivative coincides with the

old one from multivariable calculus. More explicitly, the tangent map of a smooth map

f : Rn → Rm is given by the formula

df
( n∑
j=1

cj
∂

∂xj

)
=

n∑
j=1

cjdf
( ∂

∂xj

)
=

m∑
i=1

n∑
j=1

cj
∂fi
∂xj

∂

∂xi
.

We now have a quick proof of the chain rule. If f : X → Y and g : Y → Z are

smooth maps between manifolds and a ∈ X, then

da(g ◦ f) = df(a)g ◦ daf,

or more elegantly

(g ◦ f)∗ = g∗ ◦ f∗.
The proof goes like this. Precomposition maps acting on germs satisfy (g ◦f)∗ = f∗ ◦g∗,
simply because for a germ h,

(g ◦ f)∗h = h ◦ (g ◦ f) = (h ◦ g) ◦ f = (g∗h) ◦ f = f∗(g∗h) = (f∗ ◦ g∗)h.

Hence, for every derivation D in TaX,

(g ◦ f)∗D = D ◦ (g ◦ f)∗ = D ◦ f∗ ◦ g∗ = (f∗D) ◦ g∗ = g∗(f∗D) = (g∗ ◦ f∗)D.

This makes the chain rule look trivial! Still, it generalises and must be based on the

old chain rule from multivariable calculus, which was not trivial to prove. Can you see

where the old chain rule is hidden in the proof of the new one?

We conclude this section by looking at the special case where Y is a closed subman-

ifold of X and the map under consideration is the inclusion i : Y ↪→ X. Let a ∈ Y and

let φ : U → U ′ ⊂ Rn be a chart on a neighbourhood U of a in X such that Y ∩U = {x ∈
U : φi(x) = 0 for i = k+ 1, . . . , n}, so φ̃ = (φ1, . . . , φk) : U ∩ Y → {x ∈ Rk : (x, 0) ∈ U ′}
is a chart on Y . The n × k matrix of the derivative dai : TaY → TaX with respect to

the bases given by these charts is the Jacobian matrix of the map φ ◦ i ◦ φ̃−1. This map

simply takes (x1, . . . , xk) to (x1, . . . , xk, 0, . . . , 0), so its Jacobian matrix is the k × k

identity matrix on top of the (n− k)× k zero matrix. In other words,

dai
( ∂

∂φ̃i

)
=

∂

∂φi
, i = 1, . . . , k.

In particular, dai is injective, so it identifies TaY with a k-dimensional linear subspace

of TaX.
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More generally, a smooth map f : X → Y is an immersion if and only if daf :

TaX → Tf(a)Y is injective for all a ∈ X. Similarly, f is a submersion if and only if daf

is surjective for all a ∈ X, and f is a local diffeomorphism if and only if daf is bijective

for all a ∈ X.

5. Differential forms and integration on manifolds

5.1. Introduction. We have seen how to differentiate a smooth real-valued function f

on a manifold X and obtain a map df : X →
⋃
a∈X

T ∗aX, a 7→ daf , called the derivative

or differential of f . This map is an example of a smooth differential form of degree 1, or

simply a 1-form, on X, which is defined as a map ω : X →
⋃
a∈X

T ∗aX taking each a ∈ X

to an element of T ∗aX, which is smooth in the sense that if φ is a chart on X and we

write ω =
∑
ωidφi, then the functions ωi are smooth on the domain of φ. (Exercise:

this smoothness condition only needs to be verified for a single chart at each point of

X; then it holds for every chart.) We denote the vector space of smooth 1-forms on

X by Ω1(X). We will refer to smooth functions as 0-forms and from now on often

write Ω0(X) for C∞(X). Differentiation yields a linear operator d : Ω0(X) → Ω1(X),

called the exterior derivative (the word “exterior” distinguishing it from various other

differentiation operators that exist in mathematics), satisfying the Leibniz rule

d(fg) = fdg + gdf.

To continue our generalisation of calculus to manifolds, we would now like know how

to sensibly differentiate smooth 1-forms. Perhaps the derivative of a 1-form
∑
ωidφi

should be something called a 2-form, involving the partial derivatives of the coefficients

ωi in a way that does not depend on the choice of a chart φ. It should then be possible

to differentiate a smooth 2-form to get a 3-form, and so on. A fair bit of linear algebra is

necessary in order to set up a formalism that accomplishes this in a natural and useful

manner.

Another fundamental question gets answered at the same time: how do we gener-

alise integration to manifolds? We are used to integrating functions over open sets in

Euclidean space. Say we have a smooth function f on an n-dimensional manifold X and

we want to integrate it, in the first instance, over the domain of a chart φ : U → V ⊂ Rn

on X. Following our rule of thumb that charts are to be used to transfer calculus from

Rn to X, we might try to define
∫
U
f as

∫
V
f ◦φ−1, the latter integral being an ordinary

Riemann or, if you like, Lebesgue integral. We could then define
∫
X
f as

∑∫
ρif , where

(ρi) is a partition of unity subordinate to a cover of X by charts.

The integral should not depend on the choice of chart. If we take another chart

ψ : U → W , how do
∫
V
f ◦ φ−1 and

∫
W
f ◦ ψ−1 compare? The answer is provided by a

change of variables, familiar from multivariable calculus. The map ψ ◦ φ−1 : V → W is

a diffeomorphism and∫
W

f ◦ ψ−1 =

∫
V

(f ◦ φ−1) |detD(ψ ◦ φ−1)|.

We cannot expect the second factor in the right-hand integral to be identically 1, so our

naive definition is inadequate. What we see, though, is that we can sensibly define the

integral over X of an object that to each chart φ with domain U associates a smooth
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function fφ on U such that if ψ is another chart with domain V , then

fφ = fψ detD(ψ ◦ φ−1) ◦ φ = fψ det

(
∂ψj
∂φi

)
on U ∩ V , provided the Jacobian determinant is everywhere positive: then∫

φ(U∩V )

fφ ◦ φ−1 =

∫
ψ(U∩V )

fψ ◦ ψ−1.

It turns out that in the formalism alluded to above, this sort of object is nothing but

a smooth differential form of degree n on X. The n-forms are the objects that can

be integrated on an n-dimensional manifold, provided the manifold can be covered by

charts with positive Jacobian determinants on all overlaps: such a manifold is said to

be orientable.

In this chapter, we will define differential forms after briefly introducing the necessary

linear algebra, and discuss how to differentiate and integrate them. In the next chapter

we will tie the two operations together in Stokes’ theorem, a vast generalisation of the

fundamental theorem of calculus.

5.2. A little multilinear algebra. Let V be a real vector space. A map ω : V × · · · ×
V → R, where there are k copies of V , is called multilinear or k-linear if it is linear in

each factor, that is,

ω(v1, . . . , vi−1, av + bw, vi+1, . . . , vk) = aω(v1, . . . , vi−1, v, vi+1, . . . , vk)

+ bω(v1, . . . , vi−1, w, vi+1, . . . , vk).

We call ω alternating or anti-symmetric if ω(v1, . . . , vk) = 0 whenever there are i 6= j

with vi = vj . Equivalently, ω changes sign if we interchange any two of its arguments,

or, again equivalently,

ω(vπ(1), . . . , vπ(k)) = sgn(π)ω(v1, . . . , vk)

for every permutation π of {1, . . . , k} (exercise). Recall that the sign of π is 1 if π is the

composition of an even number of transpositions and −1 if π is the composition of an

odd number of transpositions. An alternating k-linear map V × · · · × V → R is called a

k-form on V . The k-forms on V make up a vector space usually denoted Λk(V ∗). Note

that Λ1(V ∗) is simply the dual space V ∗ of all linear functionals on V . By convention,

Λ0(V ∗) = R.

Suppose V is n-dimensional with basis vectors e1, . . . , en. If we have k vectors vi =
n∑
j=1

aijej , i = 1, . . . , k, and we plug them into a k-form ω on V , then, by linearity in

each variable, we get

ω(v1, . . . , vk) =

n∑
j1,...,jk=1

a1j1 . . . akjkω(ej1 , . . . , ejk).

If k > n, then the same basis vector must occur at least twice in each term on the right

hand side. Hence, Λk(V ∗) = 0 if k > dimV .

There is a product on alternating forms that turns the direct sum
n⊕
k=0

Λk(V ∗), n =

dimV , into an associative algebra, called the exterior algebra or alternating algebra of
17



V ∗, denoted Λ(V ∗). If ω ∈ Λp(V ∗) and η ∈ Λq(V ∗), then we define the wedge product

or exterior product ω ∧ η ∈ Λp+q(V ∗) by the formula

ω ∧ η(v1, . . . , vp+q) =
1

p!q!

∑
π

sgn(π)ω(vπ(1), . . . , vπ(p)) η(vπ(p+1), . . . , vπ(p+q)),

where π runs through all permutations of {1, . . . , p+ q}. The verification that Λ(V ∗) is

an associative algebra is lengthy and will be omitted. The wedge product is not quite

commutative, but satisfies

ω ∧ η = (−1)pq η ∧ ω.
In particular, if p = q = 1, so ω and η are 1-forms, that is, linear functionals on V , then

ω ∧ η(v, w) = ω(v)η(w)− ω(w)η(v).

The basis {e1, . . . , en} for V gives a dual basis {α1, . . . , αn} for V ∗, where αi(ej) =

δij . It may be shown that the k-forms αi1 ∧ · · · ∧αik , where 1 ≤ i1 < · · · < ik ≤ n, form

a basis for Λk(V ∗). It follows that

dim Λk(V ∗) =

(
n

k

)
for 0 ≤ k ≤ n, and dim Λ(V ∗) = 2n.

For the details we have omitted, see e.g. Madsen-Tornehave, chapter 2.

5.3. Differential forms and the exterior derivative. We can apply the previous

section to the tangent space TaX to an n-dimensional manifold X at a point a ∈ X.

Let φ be a chart at a. We have discussed the basis {∂/∂φ1, . . . , ∂/∂φn} for TaX and

the dual basis {dφ1, . . . , dφn} for the cotangent space T ∗aX (see section 4.1).

Generalising our definition of a 1-form in section 5.1, we define a smooth differential

form of degree k, or simply a k-form, on X to be a map ω : X →
⋃
a∈X

Λk(T ∗aX) taking

each a ∈ X to an element of Λk(T ∗aX), such that if φ is a chart on X and we write

ω =
∑

1≤i1<···<ik≤n

ωi1...ikdφi1 ∧ · · · ∧ dφik ,

then the functions ωi1...ik are smooth on the domain on φ. (As before, this smoothness

condition only needs to be verified for a single chart at each point of X; then it holds

for every chart.) We denote by Ωk(X) the vector space of all k-forms on X. The wedge

product applied pointwise to differential forms turns the direct sum Ω(X) =
n⊕
k=0

Ωk(X)

into an associative algebra called the exterior algebra or alternating algebra of X.

A smooth map f : X → Y has a derivative Taf : TaX → Tf(a)Y at each a ∈ X,

which induces a dual map, called the cotangent map T ∗a f : T ∗f(a)Y → T ∗aX, defined by

precomposing linear functionals on Tf(a)Y by Taf . In other words,

T ∗a f(ω)(v) = ω((Taf)(v))

for ω ∈ T ∗f(a)Y and v ∈ TaX. This yields a linear map f∗ : Ω(Y ) → Ω(X) defined by

taking ω ∈ Ωk(Y ) to f∗ω ∈ Ωk(X) with

f∗ω(a)(v1, . . . , vk) = ω(f(a))(Taf(v1), . . . , Taf(vk)) for v1, . . . , vk ∈ TaX

if k ≥ 1; for a 0-form h, that is, a function, f∗h = h ◦ f . We call f∗ω the pullback of ω

by f . As an exercise, check that f∗ is in fact a morphism of algebras, that is,

f∗(ω ∧ η) = f∗ω ∧ f∗η.
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If g is a smooth function on Y , then

f∗dg = d(f∗g) = d(g ◦ f),

since for a ∈ X and v ∈ TaX,

(f∗dg)(a)(v) = df(a)g(daf(v)) = da(g ◦ f)(v)

by the chain rule. In particular, when X = Rn and Y = Rm, we have

f∗dxi = dfi,

so the pullback by f of an arbitrary k-form on Rm is given by the formula

f∗
∑

1≤i1<···<ik≤m

ωi1...ikdxi1 ∧ · · · ∧ dxik =
∑

1≤i1<···<ik≤m

(ωi1...ik ◦ f) dfi1 ∧ · · · ∧ dfik .

Now we shall extend the exterior derivative d : Ω0(X) → Ω1(X) to all differential

forms. We do this first for forms on open sets X in Euclidean space. For a smooth

function f on X and k ≥ 1, we define

d(fdxi1 ∧ · · · ∧ dxik) = df ∧ dxi1 ∧ · · · ∧ dxik
and then extend linearly to get d : Ωk(X) → Ωk+1(X). It is a good exercise to verify

the following properties.

(1) If ω is a p-form and η is a q-form, then

d(ω ∧ η) = dω ∧ η + (−1)pω ∧ dη.

(2) For every form ω, we have d(dω) = 0. Briefly, d2 = 0.

(3) If U is open in Rn, V is open in Rm, f : U → V is smooth, and ω is a differential

form on V , then

f∗(dω) = d(f∗ω).

If ω is a k-form on a manifold X and (U, φ) is a chart on X, we define dω on U by moving

it to φ(U), taking the exterior derivative there as already defined, and then moving back

to U . More precisely, we set

dω|U = φ∗d(φ−1)∗(ω|U).

By property (3) above, this definition is independent of φ, so we have a well-defined

(k + 1)-form dω on X. It is another good exercise to verify that the map d : Ωk(X)→
Ωk+1(X) thus defined is linear, satisfies (1) and (2) above, and is equal to the exterior

derivative as previously defined for k = 0. (These properties can in fact be shown to

determine d uniquely.) Furthermore,

f∗(dω) = d(f∗ω)

whenever ω is a differential form on the target of the smooth map f .

To conclude this section, let us verify that d2 = 0 in the simplest nontrivial case,

that is, for 0-forms on R2. We know that the 1-forms dx and dy form a basis for

the C∞(R2)-module Ω1(R2), and the 2-form dx ∧ dy spans the 1-dimensional module

Ω2(R2) over C∞(R2). Here, x and y denote the projections R2 → R onto the first and

second coordinate, respectively; that is, they denote the component functions of the

chart idR2 that by itself constitutes the atlas that defines the standard smooth structure

on R2. What we need from algebra are the fact that Ω(R2) with addition and the wedge
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product is an associative algebra, and the basic identities dx ∧ dx = dy ∧ dy = 0 and

dx ∧ dy = −dy ∧ dx. For a smooth function f on R2, writing fx for ∂f/∂x etc., we get

d(df) = d(fxdx+ fydy) = d(fxdx) + d(fydy) = dfx ∧ dx+ dfy ∧ dy
= (fxxdx+ fxydy) ∧ dx+ (fyxdx+ fyydy) ∧ dy
= fxydy ∧ dx+ fyxdx ∧ dy = (fyx − fxy)dx ∧ dy = 0,

by the equality of mixed partials.

5.4. Integration of differential forms on oriented manifolds. Let ω be an n-form

on an open set V in Rn. Then ω = fdx1 ∧ · · · ∧ dxn for a uniquely determined smooth

function f on V . In fact, f = ω(∂/∂x1, . . . , ∂/∂xn) (check!). We define∫
V

ω =

∫
V

f(x1, . . . , xn) dx1 . . . dxn,

if the Riemann or, if you like, Lebesgue integral on the right exists.

Let U be another open set in Rn and ψ : U → V be a diffeomorphism. As an exercise,

show that

ψ∗(dx1 ∧ · · · ∧ dxn) = det(Dψ) dx1 ∧ · · · ∧ dxn.
On the other hand, the formula for a change of variables from multivariable calculus

tells us that if g is a function on V , say continuous with compact support, then∫
U

(g ◦ ψ)

∣∣∣∣det

(
∂ψi
∂xj

)∣∣∣∣ =

∫
V

g.

If you are familiar with the Lebesgue measure λ on Rn, you will recognise that this

formula says that

ψ∗λ = (ψ−1)∗λ = |det(Dψ)|λ.
Thus, we can only conclude that∫

U

ψ∗ω =

∫
U

(f ◦ ψ)ψ∗(dx1 ∧ · · · ∧ dxn) =

∫
U

(f ◦ ψ) det

(
∂ψi
∂xj

)
dx1 ∧ · · · ∧ dxn

=

∫
U

(f ◦ ψ)

∣∣∣∣det

(
∂ψi
∂xj

)∣∣∣∣ =

∫
V

f =

∫
V

ω

if ψ preserves orientation in the sense that its Jacobian determinant is positive at every

point of U .

The fact that the form dx1 ∧ · · · ∧ dxn transforms by the Jacobian determinant

and Lebesgue measure transforms by the absolute value of the Jacobian determinant

complicates integration theory a little. It means that in order to be able to integrate

n-forms over an n-dimensional manifold in a coordinate-independent way, we need an

extra structure on the manifold, called an orientation.

An atlas A on a manifold X is said to be oriented if for every pair of charts (U, φ),

(V, ψ) in A, the diffeomorphism ψ ◦ φ−1 : φ(U ∩ V ) → ψ(U ∩ V ) preserves orientation,

that is, has positive Jacobian determinant at every point of its domain. We say that

X is orientable if it has an oriented atlas, belonging, of course, to the given smooth

structure on X. Define an equivalence relation on the set of oriented atlases on X by

declaring two such to be equivalent if their union is oriented; an equivalence class for

this relation is called an orientation on X. Every equivalence class contains a unique

maximal oriented atlas, namely the union of all the atlases in the class. An oriented

manifold is a manifold with a choice of orientation.
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A diffeomorphism f : X → Y between oriented manifolds is said to preserve orien-

tation if for some (or, equivalently, every) oriented atlas A for Y belonging to the given

orientation on Y , the atlas {φ ◦ f : φ ∈ A} for X, which is oriented, belongs to the

given orientation on X. This generalises the definition given above for a diffeomorphism

between open subsets of Rn, if we endow such a set with the standard orientation given

by the atlas consisting of nothing but the identity map.

We will look at these concepts more closely in a minute, but first let us see how to

integrate an n-form ω over an n-dimensional oriented manifold X. To avoid convergence

issues, let us assume that ω has compact support. Take an oriented atlas (φi : Ui →
U ′i)i∈I for X (belonging to the given orientation). Let (ρi) be a partition of unity

subordinate to the open cover (Ui) of X (recall from section 3.3 that if we do not require

the functions ρi to have compact supports, then we can index them by I itself). Then

ω =
∑
i∈I

ρiω

and ρiω has support in Ui for each i ∈ I. We define∫
X

ω =
∑
i∈I

∫
U ′i

(φ−1i )∗(ρiω).

It is immediate that the map Ωn(X)→ R, ω →
∫
X
ω, is linear.

Suppose we have another oriented atlas (ψj : Vj → V ′j )j∈J (belonging to the same

orientation) and a partition of unity (σj) subordinate to (Vj). For each i ∈ I and j ∈ J ,

the form ρiσjω has support in Ui∩Vj . Since the diffeomorphism ψj ◦φ−1i : φi(Ui∩Vj)→
ψj(Ui ∩ Vj) preserves orientation, we have∫

U ′i

(φ−1i )∗(ρiσjω) =

∫
V ′j

(ψ−1j )∗(ρiσjω),

so ∑
i∈I

∫
U ′i

(φ−1i )∗(ρiω) =
∑
i∈I

∑
j∈J

∫
U ′i

(φ−1i )∗(ρiσjω) =
∑
i∈I

∑
j∈J

∫
V ′j

(ψ−1j )∗(ρiσjω)

=
∑
j∈J

∫
V ′j

(ψ−1j )∗(σjω).

This shows that the definition of
∫
X
ω only depends on the orientation of X, but is

independent of the choice of atlas and partition of unity.

As an exercise, show directly from the defining formula above that if X and Y are n-

dimensional oriented manifolds, f : X → Y is a diffeomorphism preserving orientation,

and ω is an n-form on Y with compact support, then∫
X

f∗ω =

∫
Y

ω.

We conclude this chapter with a closer examination of the notion of orientation. A

volume form on an n-dimensional manifold X is a nowhere-vanishing n-form on X. Note

that since Λn(T ∗aX) is one-dimensional for every a ∈ X, if ω and η are volume forms on

X, there is a unique smooth function f on X with no zeros such that ω = fη. Thus, for

example, the volume forms on Rn are precisely the forms fdx1 ∧ · · · ∧ dxn, where f is a

smooth function on Rn that is everywhere positive or everywhere negative.

Proposition 5.1. A manifold is orientable if and only if it has a volume form.
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Proof. (This is a sketch: fill in the details!) ⇒: Let (φi : Ui → U ′i)i∈I be an oriented

atlas for an orientable manifold X and (ρi) be a partition of unity subordinate to the

open cover (Ui) of X. Then

ω =
∑
i∈I

ρiφ
∗
i (dx1 ∧ · · · ∧ dxn)

is a volume form on X.

⇐: Let (φi : Ui → U ′i)i∈I be any atlas on a manifold X with a volume form ω.

We may assume that Ui are all connected (why?). If φ∗i (dx1 ∧ · · · ∧ dxn) is a negative

multiple of ω on Ui, replace φ1 by its negative −φ1. This yields an atlas (φi) such that

φ∗i (dx1 ∧ · · · ∧ dxn) is a positive multiple of ω for all i. Such an atlas is oriented. �

Let us call two volume forms ω and η on X equivalent if there is a positive function f

with ω = fη. This defines an equivalence relation on the set of all volume forms on X. If

this set is not empty and X is connected, then there are precisely two equivalence classes,

one containing all positive multiples of any volume form ω, and the other containing all

negative multiples of ω.

Proposition 5.2. There is a bijection between orientations of a manifold X and equiv-

alence classes of volume forms on X. If X is connected and orientable, then X has

precisely two orientations.

Proof. (Sketch again.) The formula in the first half of the previous proof gives a well-

defined map taking orientations on X to equivalence classes of volume forms on X. The

second half of the proof describes the inverse of this map. �

Finally, convince yourself that the integral of an n-form over a connected orientable

n-dimensional manifold with respect to one of the orientations of the manifold is the

negative of the integral with respect to the other.

6. Stokes’ theorem

6.1. Manifolds with boundary. A manifold with boundary is locally modelled on the

half-space Hn = {(x1, . . . , xn) ∈ Rn : x1 ≤ 0} with its boundary ∂Hn = {(x1, . . . , xn) ∈
Rn : x1 = 0} in the same way that a manifold is locally modelled on Rn. We endow Hn

with the subspace topology induced from Rn, so a subset U of Hn is open if and only if

U = V ∩Hn for some open subset V of Rn. We say that a function f : U → R is smooth

if there is a smooth function g : V → R on some such V with g|U = f .

Let X be a second countable Hausdorff space with a closed subset (possibly empty)

denoted ∂X. A chart on (X, ∂X) is a homeomorphism φ : U → U ′, where U is an open

subset of X and U ′ is an open subset of the half-space Hn for some n, such that

φ(U ∩ ∂X) = U ′ ∩ ∂Hn.

Charts φ : U → U ′ and ψ : V → V ′ are compatible if ψ◦φ−1 is smooth on the open subset

φ(U ∩ V ) of Hn (with the notion of smoothness defined in the previous paragraph). As

before, an atlas on (X, ∂X) is defined to be a set of mutually compatible charts whose

domains cover X, every atlas is contained in a unique maximal atlas, and a maximal

atlas is called a smooth structure on (X, ∂X). The pair (X, ∂X) endowed with a smooth

structure is called a smooth manifold with boundary. For brevity, we often write X for

(X, ∂X) and refer to X as a manifold with boundary. The subset ∂X is called the
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boundary of X. If the number n ≥ 1 above is the same for all charts (as is the case if

X is connected), then we call it the dimension of X. The open subset X \ ∂X, called

the interior of X, is a manifold in the ordinary sense with an atlas consisting of all the

charts φ : U → U ′ on (X, ∂X) with U ∩ ∂X = ∅.

If dimX ≥ 2, then ∂X is an (n − 1)-dimensional manifold in its own right with an

atlas consisting of a map (φ2, . . . , φn) : U ∩∂X → U ′∩∂Hn for each chart φ : U → U ′ on

(X, ∂X) with U ∩ ∂X 6= ∅ (check this, noting that ∂Hn may be identified with Rn−1).

If dimX = 1, then ∂X is a discrete subset of X, so we can consider it as a 0-dimensional

manifold.

Note that the concept of a manifold with boundary generalises the concept of a

manifold (as defined in section 3.1). A manifold is a manifold with boundary whose

boundary is empty. We will continue to reserve the word “manifold” for the notion

defined in section 3.1, and be careful to say “manifold with boundary” whenever a

nonempty boundary is allowed.

So far we have implicitly assumed that our manifolds had dimension at least 1, al-

though most of what we have said makes sense, usually in a completely trivial way, for

0-dimensional manifolds, which, as noted in section 3.1, are nothing but countable sets

with the discrete topology. Now, though, 0-dimensional manifolds have become impor-

tant as boundaries of 1-dimensional manifolds. A connected manifold Y of dimension

n = 0 is nothing but a one-point set {a}. An n-form, that is, a 0-form, on Y is a function

ω : Y → R, that is, just a real number ω(a). An orientation of Y simply determines

whether the integral
∫
Y
ω is ω(a) or −ω(a). Let us call the first choice the positive

orientation of Y and the second the negative orientation.

Examples of manifolds with boundary are provided by products X × Y , where X is

a manifold with boundary and Y is a manifold (without boundary). Then ∂(X × Y ) =

∂X × Y . More examples are given by Propositions 6.1 and 6.2 below. The product of

two manifolds with nonempty boundaries is not a manifold with boundary in a natural

way: rather, it is something called a manifold with corners; we will not discuss this

concept.

The theory of manifolds, as developed in these notes so far, can now be extended

to manifolds with boundary. This is mostly straightforward, but still a fair amount of

work to do in detail. The remainder of this section touches on some aspects of this.

Let (X, ∂X) be a manifold with boundary. The tangent space TaX for a ∈ X \ ∂X
is defined as before; so is Ta∂X for a ∈ ∂X. There are two equivalent ways to define

TaX for a ∈ ∂X. We can talk about smooth functions on open neighbourhoods of a in

X, define the R-algebra C∞X,a of germs of these as before, and take TaX to be the vector

space of derivations on C∞X,a. Alternatively, we can use smooth paths γ : [0, ε) → X or

γ : (−ε, 0]→ X, ε > 0, with γ(0) = a. To say that γ is smooth at a means that in some

(or, equivalently, every) chart (U, φ) on (X, ∂X) at a, φ ◦ γ extends smoothly to (−δ, ε)
or (−ε, δ), as the case may be, for some δ > 0. As before, we call two such paths γ1
and γ2 equivalent if (φ ◦ γ1)′(0) = (φ ◦ γ2)′(0), and define the tangent space TaX to be

the set of equivalence classes. The class of a path [0, ε)→ X is called an inward vector,

while the class of a path (−ε, 0] → X is called an outward vector. It may be verified

that the tangent space Ta∂X is in a natural way embedded as a linear subspace of TaX

of codimension 1 (exercise). As such, Ta∂X consists of those tangent vectors to X at a

that are both inward and outward.
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The following results are analogous to Theorem 3.1 and can be proved in a similar

way, using the rank theorem.

Proposition 6.1. Let X be a manifold, f : X → R be smooth, and c ∈ R be a regular

value of f . Then f−1((−∞, c]) is a submanifold of X with boundary f−1(c).

Taking f = ‖ · ‖2 : Rn → R, we see that the closed ball {x ∈ Rn : ‖x‖ ≤ 1} is a

manifold with boundary Sn−1 = {x ∈ Rn : ‖x‖ = 1}.

Proposition 6.2. Let X be a manifold with boundary, Y be a manifold, and f : X → Y

be a smooth map. If c ∈ Y is a regular value of f and a regular value of f |∂X : ∂X → Y ,

then f−1(c) is a submanifold of X with boundary ∂(f−1(c)) = f−1(c) ∩ ∂X.

An orientation of a manifold X with boundary ∂X is defined as before by a volume

form. If n = dimX ≥ 2, then an orientation can also be defined by an oriented atlas

(the reader should look into why this is problematic when dimX = 1).

If n = dimX ≥ 2 and A is an oriented atlas on (X, ∂X), then the atlas A′ on ∂X

consisting of all the maps φ̃ = (φ2, . . . , φn) : U ∩∂X → U ′∩∂Hn, where φ : U → U ′ is in

A with U∩∂X 6= ∅, is oriented. To see this, let φ : U → U ′ and ψ : V → V ′ be two charts

in A, and suppose a ∈ U ∩V ∩∂X. Consider the diffeomorphism g = ψ ◦φ−1 : W →W ′

between the open sets W = φ(U ∩ V ) = U ′ ∩ φ(V ) and W ′ = ψ(U ∩ V ) = V ′ ∩ ψ(U)

in Hn. We have g(W ∩ ∂Hn) = W ′ ∩ ∂Hn, so g1 = 0 on W ∩ ∂Hn. Also, g1 ≤ 0, so

∂g1/∂x1 ≥ 0 on W ∩ ∂Hn. Setting g̃ = ψ̃ ◦ φ̃−1 : W ∩ ∂Hn → W ′ ∩ ∂Hn, the Jacobian

matrix of g at φ(a) is

J(g) =

[
∂g1/∂x1 0

∗ J(g̃)

]
.

Since det J(g) and ∂g1/∂x1 are positive, so is det J(g̃). This shows that A′ is oriented;

in particular, ∂X is orientable. We endow ∂X with the orientation defined by A′ and

call it the induced orientation on ∂X.

If (X, ∂X) is 1-dimensional with orientation defined by a volume form ω, then the

induced orientation on a point a ∈ ∂X is defined to be positive if ω(v) ≥ 0 for every

outward tangent vector v ∈ TaX and negative otherwise.

6.2. Statement and proof of Stokes’ theorem. We can now state and prove the

vast generalisation of the fundamental theorem of calculus known as Stokes’ theorem.

Theorem 6.1 (Stokes’ theorem). Let X be an oriented n-dimensional manifold with

boundary ∂X with the induced orientation. Let ω be a smooth differential form on X of

degree n− 1 with compact support. Then∫
X

dω =

∫
∂X

ω.

The right-hand side really means
∫
∂X

i∗ω, where i : ∂X ↪→ X is the inclusion. When

∂X = ∅, we interpret the right-hand side as zero.

Proof. Let (ρi) be a partition of unity subordinate to an open cover (Ui) of X by

coordinate neighbourhoods.2 Then∫
X

dω =
∑
i

∫
X

ρi dω =
∑
i

∫
Ui

d(ρiω),

2The proof of existence of partitions of unity is easily adapted to manifolds with boundary.
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the reason for the second equality being that
∑
i dρi = 0 since

∑
i ρi = 1. Also,∫

∂X

ω =
∑
i

∫
∂X

ρiω =
∑
i

∫
Ui∩∂X

ρiω.

Thus we only need to prove Stokes’ theorem for forms with support in a coordinate

neighbourhood, that is, we only need to prove Stokes’ theorem for differential forms

with compact support in Hn with its standard orientation, which induces the standard

orientation on the boundary ∂Hn viewed as Rn−1.

Assume then that ω is an (n−1)-form with compact support in Hn. Remember that

this means that ω is the restriction to Hn of a smooth (n − 1)-form on an open set in

Rn containing Hn.

The case n = 1 follows directly from the fundamental theorem of calculus: ω is a

smooth function of compact support on (−∞, 0], and∫
H1

dω =

∫ 0

−∞
ω′(x) dx = ω(0) =

∫
∂H1

ω.

When n ≥ 2, write

ω =

n∑
i=1

fi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

with smooth functions f1, . . . , fn, where the hat marks a missing term. Then

dω =

n∑
i=1

(−1)i+1 ∂fi
∂xi

dx1 ∧ · · · ∧ dxn.

For i ≥ 2, since fi has compact support in Hn, for every c1, . . . , ci−1, ci+1, . . . , cn ∈ R
with c1 ≤ 0, ∫

R

∂fi
∂xi

(c1, . . . , ci−1, t, ci+1, . . . , cn) dt = 0

by the fundamental theorem of calculus, so∫
Hn

∂fi
∂xi

dx1 . . . dxn = 0.

The pullback of ω by the inclusion i : ∂Hn ↪→ Hn is i∗ω = f1 dx2 ∧ · · · ∧ dxn, so∫
Hn

dω =

∫
Hn

∂f1
∂x1

dx1 . . . dxn =

∫
Rn−1

(∫ 0

−∞

∂f1
∂x1

dx1

)
dx2 . . . dxn

=

∫
Rn−1

f1(0, x2, . . . , xn) dx2 . . . dxn =

∫
∂Hn

ω,

once again using the fundamental theorem of calculus. �

Note that in the above proof we invoked Fubini’s theorem twice. One of its versions,

sufficient for our purposes, states that the integral of a compactly supported continuous

function on a product of intervals can be computed as an iterated integral and the order

of integration does not matter.

Corollary 6.1. Let X be an oriented n-dimensional manifold (without boundary). If ω

is a compactly supported (n− 1)-form on X, then∫
X

dω = 0.
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As mention in the introduction, Green’s theorem and Gauss’ theorem (a.k.a. the

divergence theorem) from multivariable calculus are special cases of Stokes’ theorem. Let

us look at the former and leave the latter as an exercise. Suppose X is a 2-dimensional

manifold embedded in R2 with the standard orientation, with boundary ∂X endowed

with the induced orientation, which is the counterclockwise orientation with X to the

left as ∂X is traversed in the positive direction. For example, by Proposition 6.1, we

could take X = f−1((−∞, c]) and ∂X = f−1(c), where c ∈ R is a regular value of a

smooth function f : R2 → R. Let ω = g dx + h dy be a smooth 1-form on X. This

means that g and h are smooth functions on an open neighbourhood of X. Then Stokes’

theorem implies that∫
∂X

g dx+ h dy =

∫
X

dω =

∫
X

(
∂h

∂x
− ∂g

∂y

)
dx ∧ dy.

6.3. Topological applications of Stokes’ theorem. 3 Stokes’ theorem is a powerful

tool in differential topology. This section illustrates its usefulness.

Suppose M is an (n+ 1)-dimensional manifold with boundary ∂M = X, so X is an

n-dimensional manifold, and Y is another n-dimensional manifold. Further, let all three

manifolds be compact and oriented such that X has the orientation induced from M . If

f : X → Y is a smooth map, let us ask whether f extends to a smooth map F : M → Y .

Suppose it does. If ω is an n-form on Y , then dω = 0, being an (n + 1)-form on the

n-dimensional manifold Y , so by Stokes’ theorem,∫
X

f∗ω =

∫
∂M

F ∗ω =

∫
M

d(F ∗ω) =

∫
M

F ∗(dω) = 0.

In particular, consider the case when X = Y and f is the identity idX . Then F : M → X

is a smooth map with F |X = idX . We call such a map F a smooth retraction of M onto

its boundary X. If F exists, we conclude that
∫
X
ω = 0 for all n-forms ω on X, which

is absurd (why?). We have proved the following result.

Proposition 6.3. If M is a compact orientable manifold with boundary ∂M , then there

is no smooth retraction M → ∂M .

From this we obtain a famous theorem.

Theorem 6.2 (Brouwer’s fixed point theorem, smooth version). Let Bn be the closed

unit ball {x ∈ Rn : ‖x‖ ≤ 1} in Rn. Every smooth map Bn → Bn has a fixed point.

Proof. Suppose f : Bn → Bn is a smooth map without a fixed point. For each x ∈ Bn,

draw a ray from f(x) through x and let g(x) be the point where the ray hits the

boundary ∂Bn = Sn−1. The ray is well defined because f(x) 6= x. This defines a map

g : Bn → Sn−1 with g(x) = x for x ∈ Sn−1. Derive a formula for g and convince yourself

that g is smooth. By Proposition 6.3, such a map cannot exist. �

Let X and Y be manifolds. We say that smooth maps g, h : X → Y are smoothly

homotopic if there is a smooth map f : I×X → Y , where I = [0, 1], such that f(0, ·) = g

and f(1, ·) = h. Then f is called a smooth homotopy from g to h, or between g and h.

A map homotopic to a constant map is called null-homotopic. A manifold X is called

contractible if idX is null-homotopic. A contractible manifold is connected (exercise).

3This section is mostly borrowed from notes from a course given by Robert J. Zimmer at the

University of Chicago in autumn 1987.
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As an example, Rn is contractible with a homotopy from a constant map to the

identity map given by the formula (t, x) 7→ tx. More generally, an open subset X of Rn

is called star-shaped if there is a point a ∈ X such that X contains the line segment

from a to x for every x ∈ X. Then (x, t) 7→ ta+ (1− t)x defines a homotopy from idX
to the constant map a. Clearly, if X is convex, then X is star-shaped. For examples of

non-contractible manifolds, see Corollary 6.2.

Suppose X is oriented and let I have the standard orientation. Then I × X is an

oriented manifold with boundary ∂(I ×X), which is the disjoint union of X0 and X1,

where we write Xt = {t} ×X for t ∈ I. With the induced orientation on the boundary,

X1 has the same orientation as X, and X0 has the opposite orientation.

Smooth maps g, h : X → Y yield a smooth map f = g∪h : X0∪X1 = ∂(I×X)→ Y .

We see that g and h are homotopic if and only if f extends to a smooth map I×X → Y .

If Y is oriented and X and Y are compact of the same dimension n, then we know from

our considerations above that if this happens, then for every n-form ω on Y we have

0 =

∫
∂(I×X)

f∗ω =

∫
X0∪X1

f∗ω = −
∫
X

g∗ω +

∫
X

h∗ω.

Let us record this result.

Proposition 6.4. Let X and Y be compact oriented n-dimensional manifolds and g, h :

X → Y be smooth maps. If g and h are smoothly homotopic, then∫
X

g∗ω =

∫
X

h∗ω

for every n-form ω on Y .

Corollary 6.2. A compact orientable manifold X (with dimX ≥ 1 and without bound-

ary) is not contractible.

Proof. Suppose X is contractible, that is, idX is homotopic to a constant map c : X →
X. Then ∫

X

ω =

∫
X

id∗Xω =

∫
X

c∗ω = 0

for every n-form ω on X, which is absurd. �

We conclude this section by proving the fundamental theorem of algebra. We identify

the complex plane C with R2 via the map x+iy 7→ (x, y). Let p be a complex polynomial

of degree n ≥ 1, viewed as a map C → C. We will show that p has a zero. We may

asume that p is monic. Write

p(z) = zn + an−1z
n−1 + · · ·+ a0.

For t ∈ I, let

ft(z) = zn + t

n−1∑
j=0

ajz
j ,

so f0(z) = zn and f1 = p. As an exercise, show that for r sufficiently large, ft does

not vanish on S(r) = {z ∈ C : |z| = r} for any t ∈ I (the proof of this elementary

fact requires no complex analysis). Then gt = ft/|ft| gives a homotopy of smooth maps

S(r)→ S1, so by Proposition 6.4,∫
S(r)

g∗0ω =

∫
S(r)

g∗1ω
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for every 1-form ω on S1. Here we endow S(r) with one of the two possible orientations;

which one does not matter.

If p has no zeros, then g1 = p/|p| extends to a smooth map h1 : D(r)→ S1, defined

by the same formula, where D(r) denotes the closed disc {z ∈ C : |z| ≤ r} with boundary

S(r). Thus, by our considerations at the beginning of this section,∫
S(r)

g∗0ω =

∫
S(r)

g∗1ω = 0

for every 1-form ω on S1. Take

ω = Im
dz

z
=
x dy − y dx
x2 + y2

or, to be precise, let ω be the pullback of this form by the inclusion S1 ↪→ C\{0} (using

complex notation for differential forms is too tempting to resist). Why do you think this

form is usually denoted dθ? Now g0(z) = zn/rn, so

g∗0ω = Im
d(zn/rn)

zn/rn
= Im

nzn−1dz

zn
= n Im

dz

z

and ∫
S(r)

Im
dz

z
= 0.

The final step is to calculate this integral. We do that with the help of the smooth map

γ : [0, 2π]→ S(r), γ(t) = reit. We have

γ∗ Im
dz

z
= Im

d(reit)

reit
= Im

ieitdt

eit
= dt.

Since γ restricts to a diffeomorphism (0, 2π)→ S(r)\{r}, which we may assume preserves

orientation, we get

0 =

∫
S(r)

Im
dz

z
=

∫
[0,2π]

dt = 2π,

which is absurd. Thus, the fundamental theorem of algebra is proved.

7. Cohomology

7.1. De Rham cohomology. In homological algebra, a complex of modules over a ring

R is a sequence of R-modules and R-linear maps

. . .
d−2 // E−1

d−1 // E0
d0 // E1

d1 // E2
d2 // . . .

such that dk ◦ dk−1 = 0 for every k ∈ Z. Then Im dk−1 ⊂ Ker dk, so we can form the

quotient module

Hk(E, d) = Ker dk/Im dk−1,

called the k-th homology group of the complex.

We have already seen an example of a complex. Let X be an n-dimensional manifold

(with or without boundary). As before, let Ωk(X) be the real vector space of smooth

differential forms of degree k on X. For k > n, this is the trivial vector space; also for

k < 0 by convention. The complex

. . . // 0 // Ω0(X)
d // Ω1(X)

d // . . .
d // Ωn(X) // 0 // . . .
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is called the de Rham complex of X. Forms in the kernel of the exterior derivative d are

called closed, and forms in the image of d are called exact. The k-th homology group of

the de Rham complex of X,

Hk
dR(X) = {closed k-forms on X}/{exact k-forms on X},

is called the k-th de Rham cohomology group of X. The vector spaces Hk
dR(X) for

k = 0, . . . , n (they are trivial for other values of k) contain much useful information

about the manifold X in a relatively accessible algebraic format. (It is traditional to call

these vector spaces groups; they are of course abelian groups with respect to addition.)

The 0-th de Rham cohomology group H0
dR(X) is easily understood. It consists of all

closed 0-forms on X, that is, all smooth functions u : X → R such that du = 0. These

are the locally constant functions on X, that is, the functions that are constant on each

connected component of X. Thus, H0
dR(X) ∼= Rm, where m is the number of connected

components of X (possibly infinite).

Moving to degree 1, it is easy to see that H1
dR(I) = 0 for every interval I ⊂ R.

Namely, every 1-form on I is closed and of the form fdx, where f is a smooth function

on I. The fundamental theorem of calculus provides a smooth antiderivative F for f on

I, and fdx = dF is exact.

Proposition 7.1. Let X be a compact orientable manifold (without boundary) of di-

mension n. Then Hn
dR(X) 6= 0.

Proof. We may assume that X is connected (why, and where is this assumption used

in this proof?). Fix an orientation on X. If η is an (n − 1)-form on X, then
∫
X
dη =∫

∂X
η = 0 by Stokes’ theorem, since ∂X = ∅. Hence, we have a well-defined linear map

Hn
dR(X)→ R, [ω] 7→

∫
X

ω.

If ω is a volume form on X for the chosen orientation, then
∫
X
ω 6= 0, so this is not the

zero map. �

Now let X and Y be manifolds and f : X → Y be a smooth map. The pullback map

f∗ : Ω(Y )→ Ω(X) gives a morphism of complexes

. . . // Ωk(Y )
d //

f∗

��

Ωk+1(Y ) //

f∗

��

. . .

. . . // Ωk(X)
d // Ωk+1(X) // . . .

from the de Rham complex of Y to that of X. This means that the vertical arrows

are linear maps and all the squares commute, that is, d ◦ f∗ = f∗ ◦ d, as we know from

section 5.3. A morphism of complexes always induces linear maps between the homology

groups of the complexes. In our case, we see that if ω is a closed form on Y , then the

pullback f∗ω on X is also closed, and if ω is exact, then f∗ω is also exact (check). Thus,

pullback by f induces a linear map

f∗ : Hk
dR(Y )→ Hk

dR(X)

for each k ∈ Z. If g : Y → Z is another smooth map, then it is easily checked that

(g ◦ f)∗ = f∗ ◦ g∗. Also, the identity map of X clearly induces the identity map of

Hk
dR(X). These facts can be summarised by saying that for each k, the assignment to
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a manifold X of its k-th de Rham cohomology group Hk
dR(X) and to a smooth map

f : X → Y of the induced map f∗ : Hk
dR(Y ) → Hk

dR(X) is a functor from the category

of smooth manifolds and smooth maps to the category of real vector spaces and linear

maps. It is a contravariant functor, meaning that it reverses the direction of arrows:

this is why the homology groups of the de Rham complex are called cohomology groups.

It follows that if f : X → Y is a diffeomorphism with inverse g : Y → X, then each

map f∗ : Hk
dR(Y ) → Hk

dR(Y ) is a linear isomorphism with inverse g∗, since f∗ ◦ g∗ =

(g ◦ f)∗ = id∗X = idHk
dR(X) and similarly, g∗ ◦ f∗ = idHk

dR(Y ). Thus, the de Rham

cohomology groups of a manifold X are diffeomorphism invariants of X. Later we will

learn that they are in fact topological invariants.

7.2. Cohomology calculations. There are many intricate methods for calculating de

Rham cohomology groups of manifolds, so as to obtain topological and differential-

geometric information about them. In this section we consider some fairly simple but

important examples. The following theorem is fundamental and has many interesting

consequences, as we shall see. We will use its proof as an opportunity to present some

further ideas from homological algebra.

Theorem 7.1. Let X be a manifold and I ⊂ R be a nonempty interval. The projection

p : X × I → X induces an isomorphism p∗ : Hk
dR(X) → Hk

dR(X × I) for each k ≥ 0.

For every s ∈ I, the map is : X → X × I, x 7→ (x, s), induces the same map i∗s :

Hk
dR(X × I)→ Hk

dR(X), and this map is the inverse of p∗.

Proof. This is clear for k = 0, since p induces a bijection between the connected com-

ponents of X × I and those of X, and is induces the inverse bijection regardless of the

choice of s.

Assume k ≥ 1. Fix s ∈ I and let i = is. Then p ◦ i = idX , so i∗ ◦ p∗ is the identity

on Hk
dR(X). We need to show that p∗ ◦ i∗ is the identity on Hk

dR(X × I).

A common method for showing that two morphisms of complexes induce the same

map of homology groups is to establish a homotopy between the morphisms. Here, a

homotopy consists of linear maps hk : Ωk(X × I) → Ωk−1(X × I) for each k, as shown

in the following diagram

. . . // Ωk−1(X × I)
d //

p∗◦i∗

��
id

��

Ωk(X × I)
d //

p∗◦i∗

��
id

��hkwwooo
ooo

ooo
oo

Ωk+1(X × I) //

p∗◦i∗

��
id

��hk+1wwooo
ooo

ooo
oo

. . .

. . . // Ωk−1(X × I)
d // Ωk(X × I)

d // Ωk+1(X × I) // . . .

such that

id− p∗ ◦ i∗ = d ◦ hk + hk+1 ◦ d

on Ωk(X × I). If we have such a homotopy and ω ∈ Ωk(X × I) is closed, then

ω − p∗i∗ω = dhk(ω) + hk+1(dω) = dhk(ω),

so ω and p∗i∗ω differ by an exact form and represent the same element of Hk
dR(X × I).

It remains to construct the linear maps hk : Ωk(X × I)→ Ωk−1(X × I). Every form

ω ∈ Ωk(X×I) can be decomposed in a unique way as ω1+dt∧ω0, where ω1 ∈ Ωk(X×I)

and ω0 ∈ Ωk−1(X×I) do not involve dt (first uniquely decompose ω in a chart; then use
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a partition of unity to get a global decomposition). Here, t is the standard coordinate

on I. Note that p∗i∗ω = ω1(x, s). Define

hk(ω)(x, t) =

∫ t

s

ω0(x, r) dr.

More precisely, in a chart on X, write ω0 as a sum of forms f(x, t)dxi1 ∧· · ·∧dxik−1
and

replace f(x, t) by
∫ t
s
f(x, r) dr.

Split the exterior derivative d on X × I as d = dX + dI , where dX involves differenti-

ation with respect to coordinates on X only and dI is differentiation with respect to t.

Then dIω = dt∧ ∂tω, where ∂tω is obtained by differentiating the coefficients of ω with

respect to t, and

dω = dXω + dt ∧ ∂tω = dXω1 − dt ∧ dXω0 + dt ∧ ∂tω1

= dXω1 + dt ∧ (∂tω1 − dXω0).

Thus,

dhk(ω) + hk+1(dω) = d

∫ t

s

ω0(x, r) dr +

∫ t

s

(
∂rω1(x, r)− dXω0(x, r)

)
dr

=

∫ t

s

dXω0(x, r) dr + dt ∧ ω0(x, t)

+ω1(x, t)− ω1(x, s)− dX
∫ t

s

ω0(x, r) dr

= ω − ω1(x, s) = ω − p∗i∗ω,

and the proof is complete. �

Repeated applications of this result, together with our observations in the previous

section about the de Rham cohomology of intervals and about de Rham cohomology

being a diffeomorphism invariant, give the following corollary.

Corollary 7.1. Let X be a manifold diffeomorphic to Rn. Then

Hk
dR(X) =

{
R if k = 0,

0 if k 6= 0.

Hence, every closed form on X of degree at least 1 is exact.

Every point in a manifold X has a neighbourhood U diffeomorphic to an open ball

in Rn, which in turn is diffeomorphic to Rn itself. Therefore, if ω is a closed form on

X of degree at least 1, then the restriction ω|U is exact. This yields one version of the

famous Poincaré lemma.

Corollary 7.2 (Poincaré lemma). A differential form of degree at least 1 is closed if

and only if it is locally exact.

The next consequence of Theorem 7.1 is that de Rham cohomology does not distin-

guish homotopic maps.

Corollary 7.3. Let X and Y be manifolds and f, g : X → Y be smooth maps. If f and

g are smoothly homotopic, then f∗ = g∗ : Hk
dR(Y )→ Hk

dR(X) for all k.
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Proof. By definition, if f and g are smoothly homotopic, then there is a smooth map

F : X × [0, 1] → Y such that f = F ◦ i0 and g = F ◦ i1, where is : X → X × [0, 1],

x 7→ (x, s). By Theorem 7.1, i∗0 = i∗1 : Hk
dR(X × [0, 1]) → Hk

dR(X), so f∗ = i∗0 ◦ F ∗ =

i∗1 ◦ F = g∗. �

A smooth map f : X → Y is called a smooth homotopy equivalence if it has a ho-

motopy inverse, that is, there is a smooth map g : Y → X such that g ◦ f is homotopic

to idX , and f ◦ g is homotopic to idY . Clearly, a diffeomorphism is a homotopy equiva-

lence. It follows from Corollary 7.3 that to induce isomorphisms of de Rham cohomology

groups, f only needs a homotopy inverse, not an actual inverse. We leave the proof as

an exercise.

Corollary 7.4. If f : X → Y is a smooth homotopy equivalence between manifolds,

then the induced linear maps f∗ : Hk
dR(Y )→ Hk

dR(X) are isomorphisms for all k.

Since a constant map between manifolds induces the zero map on de Rham cohomol-

ogy in degree at least 1, we obtain one more corollary.

Corollary 7.5. Let X be a contractible manifold. Then

Hk
dR(X) =

{
R if k = 0,

0 if k 6= 0.

It should be mentioned that a contractible manifold of dimension n need not be dif-

feomorphic to Rn. Examples of this are not easy to construct. There are 3-dimensional

examples (noncompact, without boundary) called Whitehead manifolds. They are com-

plements in the 3-sphere of certain complicated closed sets. There are no examples in

dimension 2.

We do need to see some non-contractible examples. We conclude this section by

computing the de Rham cohomology of the spheres Sn = {x ∈ Rn+1 : ‖x‖ = 1}, n ≥ 1.

This is a fair bit of work. First we consider the circle S1. Of course it is only H1
dR(S1)

that is in question. Consider the map from the proof of Proposition 7.1,

H1
dR(S1)→ R, [ω] 7→

∫
S1

ω,

where S1 is given the usual counterclockwise orientation. As explained in that proof,

this map is not the zero map, so it is surjective. We will show that it is also injective,

from which we can conclude not only that

H1
dR(S1) ∼= R,

but also that a 1-form ω on S1 is exact if and only if
∫
S1 ω = 0.

So suppose ω is a 1-form on S1 with
∫
S1 ω = 0. Consider the map f : R → S1,

t 7→ (cos t, sin t). (If you have studied covering spaces, you will recognise f as the

universal covering map of S1.) Now f∗ω is exact, so there is a smooth function g on R
with f∗ω = dg. For each x ∈ R, f restricts to an orientation-preserving diffeomorphism

(x, x+ 2π)→ S1 \ {f(x)}, so

g(x+ 2π)− g(x) =

∫ x+2π

x

dg =

∫ x+2π

x

f∗ω =

∫
S1

ω = 0.

This shows that g is periodic with period 2π, so there is a smooth function h on S1 with

g = h ◦ f . Then f∗ω = dg = df∗h = f∗dh. Since f is a local diffeomorphism, this yields

ω = dh, so ω is exact.
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Now we outline the case of the n-dimensional sphere Sn, n ≥ 2, using a different

method, leaving the verifications of various claims as exercises. The complement in Sn

of a single point is diffeomorphic to Rn. The complement of two points in Sn is dif-

feomorphic to Rn \ {0}, which in turn is diffeomorphic to Sn−1 × R and in particular

connected (this fails for n = 1). Write Sn = U1 ∪ U2, where U1 and U2 are the comple-

ments of the “north pole” (0, . . . , 0, 1) and the “south pole” (0, . . . , 0,−1) respectively.

Then V = U1 ∩U2 is diffeomorphic to Sn−1×R, where Sn−1 may be identified with the

“equator” {x ∈ Sn : xn+1 = 0} ⊂ V .

Let ω be a closed k-form on Sn, k ≥ 1. On each Ui, ω is exact, say ω|Ui = dηi,

where ηi is a (k − 1)-form on Ui. Then d(η1 − η2) = 0 on V . Suppose k = 1. Then

η1− η2 is a 0-form, that is, a smooth function on V with vanishing differential. Since V

is connected, η1−η2 = c on V for some constant c. Then we have a well-defined smooth

function η on Sn defined as η1 on U1 and η2 + c on U2, and dη = ω, so ω is exact. This

shows that H1
dR(Sn) = 0 for n ≥ 2.

Now suppose k ≥ 2. Since the difference η1 − η2 is closed on V , and hence on Sn−1,

it represents a class in Hk−1
dR (Sn−1). This class is independent of the choice of η1 and

η2. Moreover, if ω is exact, say ω = dη for some (k− 1)-form η on Sn, then we can take

ηj = η|Uj , so η1 − η2 is zero on V and represents the zero class in Hk−1
dR (Sn−1). Thus

we have a map

Hk
dR(Sn)→ Hk−1

dR (Sn−1),

which is easily seen to be linear. We claim that this map is an isomorphism. As for

injectivity, suppose the map takes the class of ω to zero. This means that the form

η1 − η2 is exact on Sn−1. By Theorem 7.1, it is also exact on V , say η1 − η2 = dξ for a

(k − 2)-form ξ on V . Let ρi, i = 1, 2, form a partition of unity subordinate to the open

cover {U1, U2} of Sn and set ξ1 = ρ2ξ, ξ2 = −ρ1ξ. Then ξ1, ξ2 are smooth (k− 2)-forms

on U1 and U2 respectively, and ξ = (ρ1 + ρ2)ξ = ξ1− ξ2 on V . Since η1− dξ1 = η2− dξ2
on V , we obtain a well-defined (k− 1)-form η on Sn with η|Ui = ηi− dξi. Then dη = ω,

so ω is exact.

As for surjectivity, suppose θ is a closed (k − 1)-form on Sn−1. Pull it back to V

and, using a partition of unity as above, find (k − 1)-forms θi on Ui, i = 1, 2, such that

θ = θ1 − θ2 on V . We obtain a well-defined closed k-form on Sn defined as dθi on Ui,

whose class in Hk
dR(Sn) maps to the class of θ in Hk−1

dR (Sn−1).

We now have the following facts about the de Rham groups of spheres.

(1) Since Sn is connected, H0
dR(Sn) = R for n ≥ 1.

(2) H1
dR(S1) = R.

(3) Hk
dR(Sn) is isomorphic to Hk−1

dR (Sn−1) for k ≥ 2 and n ≥ 2.

(4) H1
dR(Sn) = 0 for n ≥ 2.

Putting all this information together, we obtain the following result.

Proposition 7.2. The de Rham cohomology groups of the n-dimensional sphere Sn,

n ≥ 1, are:

Hk
dR(Sn) =

{
R if k = 0 or k = n,

0 otherwise.

Some textbooks prove this proposition using the so-called Mayer-Vietoris sequence,

which is a much-used tool for calculating cohomology groups (see e.g. Conlon).
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We can now verify that, as mentioned in the introduction, the 2-sphere S2 and the 2-

torus T 2 are not diffeomorphic. Since H1
dR(S2) = 0, it suffices to show that H1

dR(T 2) 6= 0.

The proof illustrates the power of the very general idea of functoriality.

Let us accept that T 2 is diffeomorphic to S1 × S1. Consider the smooth maps

i : S1 → S1 × S1, x 7→ (x, s), for some fixed s ∈ S1, and p : S1 × S1, (x, y) 7→ x. They

induce maps

H1
dR(S1)

p∗ // H1
dR(S1 × S1)

i∗ // H1
dR(S1).

Now p ◦ i = idS1 , so i∗ ◦ p∗ = (p ◦ i)∗ is the identity on H1
dR(S1) = R. Hence, the

cohomology group in the middle cannot be zero. (In fact, H1
dR(T 2) = R2, as can be

shown using the Mayer-Vietoris sequence.)

If we are not willing to accept that T 2 is diffeomorphic to S1×S1, then we can work

explicitly with the particular torus

T 2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 + 3 = 4
√
x2 + y2}

from the introduction, and use the maps i : S1 → T 2, (u, v) 7→ (u, v, 0), and p : T 2 → S1,

(x, y, z) 7→ (x, y)/‖(x, y)‖.

7.3. Čech cohomology and de Rham’s theorem. Let ω be a closed 1-form on a

manifold X. By the Poincaré lemma, ω is locally exact, so there is an open cover U =

(Ui)i∈I of X and smooth functions fi on Ui such that ω|Ui = dfi for each i ∈ I. On each

intersection Ui0i1 = Ui0 ∩ Ui1 , we have d(fi0 − fi1) = 0, so the function ai0i1 = fi0 − fi1
is locally constant. On each triple intersection Ui0i1i2 = Ui0 ∩ Ui1 ∩ Ui2 , we have

ai0i1 + ai1i2 = (fi0 − fi1) + (fi1 − fi2) = fi0 − fi2 = ai0i2 .

(Note that if Ui0i1i2 = ∅, then this condition is trivially satisfied and imposes no restric-

tion.) A family (ai0i1)i0,i1∈I of locally constant functions ai0i1 : Ui0i1 → R satisfying

ai0i1 + ai1i2 = ai0i2 on Ui0i1i2 for all i0, i1, i2 ∈ I is called a 1-cocycle of locally constant

real-valued functions with respect to the open cover U . These cocycles form a real vector

space Z1(U ,R). If ω is exact, say ω = df where f : X → R is smooth, and we take

fi = f |Ui, then (ai0i1) is the zero vector in Z1(U ,R).

Let us note two simple properties of a cocycle (ai0i1). Taking i0 = i1, we obtain

ai0i0 + ai0i2 = ai0i2 on Ui0i2 for all i0, i2 ∈ I. Hence, aii = 0 on Ui for all i ∈ I.

Therefore, taking i0 = i2, we get ai0i1 + ai1i0 = ai0i0 = 0 on Ui0i1 , so ai0i1 = −ai1i0 .

Let us next investigate the dependence of (ai0i1) on the choice of the open cover U and

the functions fi. Suppose we take another open cover V = (Vj)j∈J of X and functions

gj on Vj with ω|Vj = dgj for each j ∈ J , and let bj0j1 = gj0 − gj1 on Vj0j1 = Vj0 ∩ Vj1 .

Take a common refinement W of U and V, that is, an open cover W = (Wk)k∈K of X

with maps σ : K → I and τ : K → J such that Wk ⊂ Uσ(k) and Wk ⊂ Vτ(k) for every

k ∈ K. For example, we could take K = I × J and W(i,j) = Ui ∩ Vj . There is a linear

map σ∗ : Z1(U ,R) → Z1(W,R) taking (ai0i1)i0,i1∈I to (aσ(k0)σ(k1)|Wk0k1)k0,k1∈K , and

a similarly defined map τ∗ : Z1(V,R)→ Z1(W,R).

On Wk ⊂ Uσ(k)∩Vτ(k), we have d(fσ(k)−gτ(k)) = ω−ω = 0, so ck = fσ(k)−gτ(k)|Wk

is a locally constant function. The family (ck)k∈K is called a 0-cochain of locally constant

real-valued functions with respect toW. Clearly, it yields a 1-cocycle (ck0k1) with ck0k1 =

ck0 − ck1 . Cocycles obtained in this way from 0-cochains are called 1-coboundaries, and

they form a subspace B1(W,R) of Z1(W,R). (More explicitly, a 1-coboundary with
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respect to W is a 1-cocycle of the special form (ck0 − ck1)k0,k1∈K , where each ck is a

locally constant function Wk → R.) Now

aσ(k0)σ(k1) − bτ(k0)τ(k1) = fσ(k0) − fσ(k1) − gτ(k0) + gτ(k1) = ck0 − ck1 = ck0k1 ,

on Wk0k1 , so

σ∗(a)− τ∗(b) ∈ B1(W,R).

Thus, the cocycles a and b obtained from ω through different choices of an open cover and

anti-derivatives are equal modulo coboundaries after passing to a common refinement of

the covers.

This motivates the following definitions. If U is an open cover of X, then the quotient

space

Ȟ1(U ,R) = Z1(U ,R)/B1(U ,R)

is called the first Čech cohomology group of X with respect to U with real coefficients.

If W = (Wk)k∈K is a refinement of U = (Ui)i∈I with σ : K → I such that Wk ⊂ Uσ(k)
for all k ∈ K, then σ∗ : Z1(U ,R) → Z1(W,R) takes coboundaries to coboundaries and

therefore induces a map

σ∗ : Ȟ1(U ,R)→ Ȟ1(W,R).

This map only depends on U and W. Any map σ : K → I with Wk ⊂ Uσ(k) for all

k ∈ K induces the same map σ∗ : Ȟ1(U ,R)→ Ȟ1(W,R) (exercise).

Let U = (Ui)i∈I and V = (Vj)j∈J be open covers of X. We say that classes

α ∈ Ȟ1(U ,R) and β ∈ Ȟ1(V,R) are equivalent if there is a common refinement

W = (Wk)k∈K of U and V with maps σ : K → I and τ : K → J such that

σ∗α = τ∗β. This defines an equivalence relation on the union of the Čech cohomol-

ogy groups Ȟ1(U ,R) for all open covers U of X. The set of equivalence classes is called

the first Čech cohomology group of X with coefficients in R, denoted Ȟ1(X,R). This set

is, in a natural way, a real vector space: the vector space structure is uniquely determined

by the requirement that the restriction of the quotient map to Ȟ1(U ,R) → Ȟ1(X,R)

be linear for every open cover U of X.

With these definitions, we have a well-defined map Φ : H1
dR(X)→ Ȟ1(X,R), which

is easily seen to be linear.

Theorem 7.2 (De Rham’s theorem). Let X be a manifold. The map

Φ : H1
dR(X)→ Ȟ1(X,R)

is a linear isomorphism.

Proof. Remember how Φ acts. Take a class α in H1
dR(X), find a closed 1-form ω rep-

resenting α, and choose an open cover (Ui)i∈I of X and antiderivatives fi for ω on Ui.

Then Φ(α) is the class in Ȟ1(X,R) represented by the 1-cocycle (aij) ∈ Z1(U ,R) with

aij = fi − fj on Ui ∩ Uj .
To define a map Ψ in the other direction, we take a class β in Ȟ1(X,R) and represent

it by a 1-cocycle (aij) ∈ Z1(U ,R) with respect to some open cover (Ui)i∈I of X. Find

a partition of unity (ρi) subordinate to (Ui). Then

fi =
∑
ν∈I

aiνρν
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is a well-defined smooth function on Ui with

fi − fj =
∑
ν∈I

(aiν − ajν)ρν =
∑
ν∈I

aijρν = aij
∑
ν∈I

ρν = aij

on Uij . Also,

dfi − dfj =
∑
ν∈I

(aiν − ajν)dρν = aij
∑
ν∈I

dρν = aij d
∑
ν∈I

ρν = 0

on Uij , so there is a well-defined smooth 1-form ω on X with ω|Ui = dfi. We take Ψ(β)

to be the class of ω in H1
dR(X). It is now easily verified that Ψ is well defined and that

Φ and Ψ are inverse to each other. �

The definition of the first Čech cohomology group of X did not refer to the smooth

structure of X in any way. It only used open covers of X and locally constant functions

on open subsets of X. These are of course determined by the topology of X (indeed,

our definition of Čech cohomology applies to arbitrary topological spaces). It follows

that a homeomorphism between manifolds induces an isomorphism of their first Čech

cohomology groups. Hence, by de Rham’s theorem, their first de Rham cohomology

groups will be isomorphic as well.

Corollary 7.6. The first de Rham cohomology group of a manifold is a topological

invariant.

Higher Čech cohomology groups can be defined and shown to be isomorphic to the

corresponding de Rham cohomology groups, so homeomorphic manifolds in fact have

isomorphic de Rham cohomology groups in every degree.

8. Exercises

In addition to the exercises in this section, the notes leave numerous details to be checked

by the reader and should be read with paper and pencil at hand. More exercises can be

found in the references.

2.1. Define f : R2 → R by

f(x, y) =


xy√
x2 + y2

if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).

Show that:

(a) f is continuous at (0,0),

(b) both partial derivatives D1f and D2f exist at (0,0), but

(c) f is not differentiable at (0,0).

(d) Thus, f cannot be continuously differentiable. Verify this directly.

2.2. Let f : Rn → Rm be a differentiable map with f(tx) = tf(x) for every x ∈ Rn and

every t ∈ R. Show that f is linear. Hint. Use the definition of differentiability.

2.3. Define a function f : R→ R by

f(x) =

{
e−1/x if x > 0,

0 if x ≤ 0.
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Prove that f is infinitely differentiable at 0 with f (n)(0) = 0 for all n ∈ N. Do this in

all detail, using L’Hôpital’s rule. Here, f (n) denotes the n-th derivative of f (and f (0) is

understood to be f itself). It follows that f is not equal to the sum of its Taylor series

at 0, so f is not real-analytic.

2.4. Let f : R2 → R be a continuously differentiable function. Show that f is not

injective. Hint. Think about the statement: it seems intuitively obvious, but it isn’t

trivial to prove. Say D1f is nowhere zero on some open disc D (what if it isn’t?). Apply

the inverse function theorem to the map g : D → R2, g(x, y) = (f(x, y), y).

2.5. Let U be a connected open set in Rn and f : U → U be a continuously differentiable

map with f ◦ f = f . Show that f has constant rank on f(U).

3.1. Let A be an atlas on a topological space X. Let B be the set of those charts on X

that are compatible with every chart in A. Show that:

(a) A ⊂ B.

(b) B is an atlas on X.

(c) B is the largest atlas containing A, that is, if C is an atlas on X and A ⊂ C, then

C ⊂ B.

(d) B is a maximal atlas, that is, if C is an atlas on X and B ⊂ C, then B = C.
(e) B is the unique maximal atlas containing A.

3.2. Consider the n-sphere Sn = {x ∈ Rn+1 : ‖x‖ = 1}. Since Rn is a second countable

Hausdorff space, so is Sn with the induced topology. We turn Sn into an n-dimensional

manifold by defining an atlas A on it with 2n + 2 charts (U±i , h
±
i ), i = 1, . . . , n + 1,

where

U+
i = {x ∈ Sn : xi > 0}, U−i = {x ∈ Sn : xi < 0},

and h±i : U±i → D = {y ∈ Rn : ‖y‖ < 1} takes x to (x1, . . . , x̂i, . . . , xn+1), where the

hat means that xi is omitted. (Draw a picture for S1 and S2!)

Prove that A really is an atlas on Sn, that is:

(a) the maps h±i are homeomorphisms,

(b) the domains of the charts in A cover Sn, and

(c) any two of the charts in A are compatible.

This is the standard smooth structure on Sn. It is a deep and remarkable result of John

Milnor, published in 1956, that S7, viewed as a topological space, has other smooth

structures, not diffeomorphic to the standard one. Much research has been done since

on such questions.

3.3. Let A be the standard maximal atlas on R containing the atlas {idR} and A′ be

the maximal atlas containing the atlas {φ}, where φ is the homeomorphism R → R,

x 7→ x3. Show that A and A′ are not the same smooth structure, but that they are

diffeomorphic.

3.4. Show that an open ball in Rn is diffeomorphic to Rn itself.

3.5. Let X and Y be manifolds such that X is compact and Y is connected. Show that

any submersion X → Y is surjective. Hint. Start by using the rank theorem to show

that a submersion is open, that is, maps an open set onto an open set.
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3.6. Let X be a compact manifold and f : X → R be a smooth function. Show that f

has at least two critical points.

3.7. Show that the torus

T 2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 + 3 = 4
√
x2 + y2}

is a submanifold of R3, using the theorem about the inverse image of a regular value.

3.8. Show that the set

{(x, y, z) ∈ R3 : x2 + y2 + x3y4 = z2 + 1}

is a 2-dimensional submanifold of R3.

3.9. Give an example to show that if f : X → Y is a smooth map and c ∈ Y is a critical

value of f , then the preimage f−1(c) need not be a submanifold of X.

3.10. Show that if f : Rn → Rm is a smooth map, then the graph {(x, y) ∈ Rn × Rm :

y = f(x)} is an n-dimensional submanifold of Rn+m.

3.11. Let U and V be open subsets of a manifold X with U ⊂ V . Show that if f : V → R
is a smooth function, then there is a smooth function g : X → R such that g = f on U .

Hint. Use partitions of unity.

3.12. Let Y be a closed submanifold of a manifold X. Let f : Y → R be a smooth

function. Show that f extends to a smooth function on X, that is, there is a smooth

function g : X → R such that g|Y = f . Hint. Use partitions of unity.

3.13. Let X be a manifold. Show that there exists a smooth function f : X → [0,∞)

which is proper, meaning that f−1[0, c] is compact in X for every c > 0. Hint. Use

partitions of unity.

3.14. Let a1, . . . , am be distinct points in a manifold X. Let c1, . . . , cm be real numbers.

Show that there exists a smooth function f : X → R such that f(ai) = ci for i =

1, . . . ,m.

3.15. Recall that an ideal in a ring R (commutative and with a unity) is an additive

subgroup a of R such that if r ∈ R and a ∈ a, then ra ∈ a. An ideal a is maximal if

a 6= R and the only ideal properly containing a is R itself. Equivalently, the quotient

ring R/a is a field.

(a) Let X be a manifold. Show that for every a ∈ X, the set

ma = {f ∈ C∞(X) : f(a) = 0}

is a maximal ideal in C∞(X).

(b) Let M be the set of all maximal ideals in C∞(X). By (a), there is a well-defined

map

µ : X →M, a 7→ ma.

Show that µ is injective. Assuming X is compact, show that µ is bijective.

So we can recover a compact manifold (at least as a set) from the algebraic structure of

its ring of smooth functions!

3.16. Show that if X and Y are manifolds and f : X → Y is a map, not assumed to be

continuous, such that h ◦ f is smooth on X for every smooth function h on Y , then f is

smooth. Hint. Use Whitney’s embedding theorem.
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3.17. (Challenge problem.) Classify all 1-dimensional manifolds (up to diffeomorphism).

Hint. See Conlon, section 1.6.

4.1. Let X and Y be manifolds such that X is connected. Show that if f : X → Y is a

smooth map and daf = 0 for all a ∈ X, then f is constant.

4.2. Consider the R-algebra C∞0 of germs of smooth functions at the origin in Rn, n ≥ 1.

Define m = {f ∈ C∞0 : f(0) = 0}. Show that m is the unique maximal ideal in C∞0 .

4.3. Let f : R→ R be a smooth function such that f(0) = f ′(0) = · · · = f (n−1)(0) = 0

and f (n)(0) 6= 0. Show that there is ε > 0 and a smooth function h : (−ε, ε) → R \ {0}
such that f(x) = xnh(x) for |x| < ε.

4.4. Let X be an n-dimensional manifold and a ∈ X. Show that the R-algebras C∞X,a
and C∞Rn,0 are isomorphic. Thus there is really only one algebra of germs of smooth

functions in each dimension.

4.5. Recall that a zero divisor in a ring is an element a 6= 0 such that ab = 0 for some

b 6= 0. A ring is called an integral domain if it has no zero divisors. Is C∞Rn,0 an integral

domain?

4.6. Let X be a manifold and f : X → R be a smooth function. We have given two

descriptions of the derivative daf of f at a point a ∈ X, as the linear map d1af : TaX → R
that acts on derivations by D 7→ D(fa), and as the linear map d2af : TaX → Tf(a)R that

acts on derivations by D 7→ D ◦ f∗. Show that these two descriptions are equivalent in

the sense that d1af = ι ◦ d2af , where ι is the isomorphism Tf(a)R→ R, [γ] 7→ γ′(0).

5.1. The ordered bases (dx, dy, dz) for Ω1(R3), (dy ∧ dz, dz ∧ dx, dx ∧ dy) for Ω2(R3),

and dx ∧ dy ∧ dz for Ω3(R3), viewed as modules over the ring A = C∞(R3) = Ω0(R3),

yield linear isomorphisms Ψk : Ark → Ωk(R3), r1 = r2 = 3, r3 = 1.

Show that under these isomorphisms, the exterior derivative corresponds to the differ-

ential operators grad, curl, and div from multivariable calculus. More precisely, for a

function f , a 1-form η, and a 2-form ω,

df = Ψ1(grad f), dη = Ψ2(curl(Ψ−11 η)), dω = Ψ3(div(Ψ−12 ω)).

Recall that (with subscripts denoting partial derivatives)

grad f = (fx, fy, fz), curl(f, g, h) = (hy− gz, fz−hx, gx− fy),div(f, g, h) = fx+ gy +hz.

5.2. Recall how we defined the exterior derivative of a differential form on an open set

U in Rn. For a smooth function f on U , we defined

df =

n∑
i=1

Dif dxi and d(fdxi1 ∧ · · · ∧ dxik) = df ∧ dxi1 ∧ · · · ∧ dxik .

The second equation uniquely determines the linear map d : Ωk(U) → Ωk+1(U), k =

1, . . . , n. Prove the following three properties of d.

(1) If ω is a p-form and η is a q-form, then

d(ω ∧ η) = dω ∧ η + (−1)pω ∧ dη.

(2) For every form ω, we have d(dω) = 0. Briefly, d2 = 0.
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(3) If U is open in Rn, V is open in Rm, f : U → V is smooth, and ω is a differential

form on V , then

f∗(dω) = d(f∗ω).

5.3. Recall how we extended the definition of the exterior derivative from open sets in

Euclidean space to arbitrary manifolds. If ω is a k-form on a manifold X and (U, φ) is

a chart on X, we defined

dω|U = φ∗d(φ−1)∗(ω|U).

(a) Show that this definition is independent of the chart φ, so we have a well-defined

map d : Ωk(U)→ Ωk+1(U) for k = 0, . . . , n.

(b) Show that d is linear and satisfies properties (1) and (2) in exercise 5.2.

(c) Show that for k = 0, d as defined here is equal to d as defined previously (in section

4.1 of the lectures).

(d) Show that f∗(dω) = d(f∗ω) whenever ω is a differential form on the target of the

smooth map f .

5.4. Find a smooth 2-form ω on R4 such that ω ∧ ω 6= 0.

5.5. Let f : Rn → Rn be a smooth map. Show that

f∗(dx1 ∧ · · · ∧ dxn) = det(Df) dx1 ∧ · · · ∧ dxn.

5.6. Show that if X and Y are n-dimensional oriented manifolds, f : X → Y is a

diffeomorphism preserving orientation, and ω is an n-form on Y with compact support,

then
∫
X
f∗ω =

∫
Y
ω.

5.7. Let X be a manifold covered by two orientable open subsets whose intersection is

connected. Show that X is orientable.

5.8. Show that the n-sphere Sn is orientable. (See exercise 3.2 or 5.7.)

6.1. View the compact interval [0, 1] as a manifold with boundary embedded in R with

the standard smooth structure. Show that [0, 1] carries no oriented atlas. (Still, [0, 1]

has a volume form, such as dx, so it is orientable; this is the anomaly mentioned in

section 6.1.)

6.2. Let X be a manifold with nonempty boundary ∂X. Show that there is a smooth

function f : X → [0,∞) such that ∂X = f−1(0).

6.3. If f and g are smooth functions on a compact interval [a, b], then the formula for

integration by parts states that∫ b

a

f ′(x)g(x) dx = f(b)g(b)− f(a)g(a)−
∫ b

a

f(x)g′(x) dx.

State and prove a generalisation of this formula to differential forms on a manifold with

boundary.

6.4. Let X be a manifold, γ : [a, b] → X be a smooth path in X, and ω be a smooth

1-form on X. We define the path integral of ω along γ by the formula∫
γ

ω =

∫
[a,b]

γ∗ω.

Here we endow [a, b] with the standard orientation defined by the volume form dx.
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(a) Prove that if ψ : [a, b] → [a, b] is an orientation-preserving diffeomorphism — what

does this mean in concrete terms? — then∫
γ◦ψ

ω =

∫
γ

ω.

(b) Prove that if f is a smooth function on X, then∫
γ

df = f(γ(b))− f(γ(a)).

6.5. Show that a contractible manifold is connected.

6.6. Let X and Y be manifolds. We have defined smooth maps f, g : X → Y to be

smoothly homotopic if there is a smooth map F : [0, 1] ×X → Y with F (0, ·) = f and

F (1, ·) = g. Prove that this defines an equivalence relation on the set of all smooth

maps X → Y . Transitivity is subtle! Start by proving that there is a smooth map

G : [0, 1]×X → Y and ε > 0 with G(t, ·) = f for t ≤ ε and G(t, ·) = g for t ≥ 1− ε.

6.7. Suppose f, g : X → Y are smoothly homotopic smooth maps. Show that if

h : W → X is a smooth map, then f ◦ h and g ◦ h are smoothly homotopic. Show that

if k : Y → Z is a smooth map, then k ◦ f and k ◦ g are smoothly homotopic.

6.8. Suppose X and Y are manifolds such that either Y is contractible, or X is con-

tractible and Y is connected. Show that any two smooth maps X → Y are smoothly

homotopic.

6.9. Let X be a compact connected orientable manifold. Let f : X → X be a smooth

map. Show that if f is smoothly homotopic to the identity, then f is surjective.

7.1. Show that:

(a) if differential forms ω and η are closed, then ω ∧ η is closed.

(b) if one of ω and η is closed and the other is exact, then ω ∧ η is exact.

(c) the pullback by a smooth map of a closed form is closed.

(d) the pullback by a smooth map of an exact form is exact.

7.2. Let U be an open subset of R2. Formulate a necessary and sufficient condition

in terms of de Rham cohomology for every smooth map f = (f1, f2) : U → R2 with

∂f1/∂x2 = ∂f2/∂x1 to be the gradient of a smooth function on U .

7.3. Let B2 = {x ∈ R2 : ‖x‖ ≤ 1} be the closed unit disc in R2 viewed as a manifold with

boundary S1 = {x ∈ R2 : ‖x‖ = 1}. Let the circle S1 have the usual counterclockwise

orientation. Let X be a manifold. A loop in X is a smooth map γ : S1 → X. Say γ is

contractible if it extends to a smooth map B2 → X. The loop integral of a 1-form ω on

X along γ is ∫
γ

ω =

∫
S1

γ∗ω.

Prove that
∫
γ
ω = 0 for every exact 1-form ω on X. Prove that if γ is contractible, then∫

γ
ω = 0 for every closed 1-form ω on X.

7.4. Let X be a compact orientable submanifold of Rn, which is not just a single point.

Show that there is no smooth retraction Rn → X.
41



7.5. Let X be an n-dimensional compact oriented manifold. Show that the map

Hk
dR(X)×Hn−k

dR (X)→ R, ([ω], [η]) 7→
∫
X

ω ∧ η,

is well defined for k = 0, . . . , n.

The map is clearly bilinear and thus induces a linear map Hk
dR(X) → Hn−k

dR (X)∗. The

Poincaré duality theorem states that this map is an isomorphism.

7.6. Let f : X → Y be a smooth homotopy equivalence between manifolds. Prove that

the induced maps f∗ : Hk
dR(Y )→ Hk

dR(X) are isomorphisms for all k.

7.7. Calculate the de Rham cohomology groups of Rn \ {0} for each n ≥ 1.

7.8. Let X and Y be manifolds. Show that for every k,

dimHk
dR(X) ≤ dimHk

dR(X × Y ).

7.9. For a manifold X, let Ωkc (X) be the vector space of smooth k-forms on X with

compact support. The k-th de Rham cohomology group of X with compact supports is

the quotient space

Hk
c (X) =

{ω ∈ Ωkc (X) : dω = 0}
dΩk−1c (X)

.

(Here we take Ω−1c (X) = 0.) Calculate Hk
c (R) for k = 0, 1.

7.10. Consider the open cover U of the n-sphere Sn, n ≥ 1, consisting of the complement

of the north pole and the complement of the south pole. Calculate the Čech cohomology

group Ȟ1(U ,R). Compare it with the de Rham cohomology group H1
dR(Sn).

7.11. Let U = (Ui)i∈I and W = (Wk)k∈K be open covers of a topological space, such

that W refines U , meaning that for every k ∈ K, there is i ∈ I with Wk ⊂ Ui. By

the Axiom of Choice, there is a map σ : K → I such that Wk ⊂ Uσ(k) for all k ∈ K.

Suppose ρ : K → I is another such map. Show that ρ∗ = σ∗ : Ȟ1(U ,R)→ Ȟ1(W,R).
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