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1. Introduction

Over the past decade, the class of Oka manifolds has emerged from Gromov’s seminal

work on the Oka principle. Roughly speaking, Oka manifolds are complex manifolds

that are the target of “many” holomorphic maps from affine spaces. They are “dual”

to Stein manifolds and “opposite” to Kobayashi-hyperbolic manifolds. The prototypical

examples are complex homogeneous spaces, but there are many other examples: there

are many ways to construct new Oka manifolds from old. The class of Oka manifolds has

good formal properties, partly explained by a close connection with abstract homotopy
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theory. These notes are meant to give an accessible introduction, not to all of Oka

theory, but more specifically to Oka manifolds, how they arise and what we know about

them.

In this section, we will see two different ways to approach and motivate the concept

of an Oka manifold. First let us mention a few references. Modern Oka theory began

with Gromov’s 1989 paper [23]. There are three recent surveys, [19], [20], and [31], and

a very comprehensive monograph [18]. The notes [29] give an elementary introduction

to the notions of ellipticity and hyperbolicity in complex analysis.

1.1. How flexible are holomorphic maps? Let X and Y be complex manifolds (in

these notes always taken to be connected and second countable). Can every continuous

map X → Y be deformed to a holomorphic map? That is, does every homotopy class

of continuous maps X → Y contain a holomorphic map? Let us look at some examples.

• C∗ → D∗: every holomorphic map is constant (Liouville), so the only winding

number realised by holomorphic maps is 0. Here, D is the disc {z ∈ C : |z| < 1}.
• D∗ → D∗: holomorphic maps only realise nonnegative winding numbers.

• D \ {1
2
, 1

3
, 1

4
, . . . , 0} → D∗: there are uncountably many homotopy classes of

continuous maps, but only countably many classes of holomorphic maps.

In all three examples, if the target is C∗ instead of D∗, then every continuous map is

homotopic to a holomorphic map. More generally:

Theorem 1.1. Let X be a Stein manifold and f : X → C∗ be a continuous map. Then

f is homotopic to a holomorphic map.

More explicitly, the conclusion of the theorem is that there is a continuous map

F : X × I → C∗, where I = [0, 1], such that F (·, 0) = f and F (·, 1) is holomorphic.

We will discuss Stein manifolds in Section 2. If you are not familiar with Stein

manifolds, take X to be a domain of holomorphy in Cn, or an open Riemann surface,

or simply a domain in C.

The theorem is easily proved for domains in C whose fundamental group is finitely

generated. Let us only consider the example X = C \ {a1, . . . , an}, where a1, . . . , an are

distinct points. The homotopy class of a continuous map f : X → C∗ is determined by

how many times the image by f of a little circle around each puncture wraps around

the origin. If we denote this winding number for aj by kj ∈ Z, then f is homotopic to

the holomorphic map z 7→
n∏
j=1

(z − aj)kj .

Proof of Theorem 1.1. Each point of X has a neighbourhood on which f has a con-

tinuous logarithm, so there is an open cover (Uα) of X such that f = e2πiλα on

Uα for some continuous λα : Uα → C (we throw in the factor 2πi for convenience

and suppress the index set through which α runs). Then, for all α, β, the function

nαβ = λα − λβ : Uαβ = Uα ∩ Uβ → Z is locally constant because it is continuous and

takes values in Z. Clearly, nαβ + nβγ = nαγ on Uα ∩ Uβ ∩ Uγ (this is called a cocycle

condition).
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Suppose that we could find holomorphic functions µα : Uα → C such that nαβ =

µα − µβ on Uαβ for all α, β. (We already have such a splitting of the cocycle (nαβ) by

the continuous functions λα.) Then we would get a well-defined holomorphic function

g : X → C∗ by setting g = e2πiµα on Uα, and the formula

F (x, t) = exp
(
2πi
(
(1− t)λα(x) + tµα(x)

))
for (x, t) ∈ Uα × I

would define a continuous map F : X × I → C∗ with F (·, 0) = f and F (·, 1) = g, as

desired.

So how do we split the cocycle (nαβ) holomorphically? First we split it smoothly.

We choose a partition of unity (φα) subordinate to the open cover (Uα). This means

that for each α we have a smooth function φα : X → I such that:

• the support {x ∈ X : φα(x) 6= 0} of φα is contained in Uα,

• every point of X has a neighbourhood on which φα is identically zero for all but

finitely many α,

•
∑
α

φα = 1 on X.

For each α, γ, we note that nαγφγ is a well-defined smooth function on Uα, so the sum

να =
∑
γ

nαγφγ is a well-defined smooth function on Uα. Also, by the cocycle condition,

να − νβ =
∑
γ

(nαγ − nβγ)φγ =
∑
γ

nαβφγ = nαβ
∑
γ

φγ = nαβ on Uαβ.

From this smooth splitting we can obtain a holomorphic splitting. Namely, since nαβ is

locally constant, we have ∂̄να− ∂̄νβ = ∂̄nαβ = 0 on Uαβ, so we get a well-defined smooth

(0, 1)-form θ on X, defined as ∂̄να on Uα for each α. Since X is Stein, there is a smooth

function u : X → C with ∂̄u = θ. Finally, set µα = να − u. Then µα is holomorphic on

Uα and µα − µβ = (να − u)− (νβ − u) = nαβ on Uαβ. �

We used the exponential map C → C∗ to linearise the problem. The exponential

map allowed us to reduce the problem to solving the linear equation ∂̄u = θ, which we

can do on a Stein manifold.

If Y is a complex manifold and every continuous map from a Stein manifold into Y

is homotopic to a holomorphic map, then we say that Y satisfies the basic Oka property,

abbreviated BOP. Theorem 1.1 thus says that C∗ satisfies BOP.

1.2. Approximation and interpolation problems. Here are two well-known theo-

rems from 19th century complex analysis, concerning a domain X in C.

Weierstrass theorem. If S is a discrete subset of X, then every function S → C extends

to a holomorphic function X → C.

Runge approximation theorem. If K is a compact subset of X with no holes in X,1 then

every holomorphic function K → C can be uniformly approximated on K by holomor-

phic functions X → C. (By a holomorphic function K → C we mean a holomorphic

function on some neighbourhood of K.)

1By a hole of K in X we mean a connected component of X \K that is relatively compact in X.
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In the formative years of modern complex analysis, in the mid-20th century, these

theorems were extended to Stein manifolds X of arbitrary dimension. The Cartan

extension theorem generalises S to a closed analytic subvariety of X and says that every

holomorphic function S → C extends to a holomorphic function X → C. The Oka-Weil

approximation theorem replaces the topological condition that K have no holes in X

with the subtle, non-topological condition that K be holomorphically convex in X or

O(X)-convex. This means that for every x ∈ X \K, there is a holomorphic function f

on X with |f(x)| > maxK |f |.
We usually consider these theorems as results about Stein manifolds, and of course

they are, but we can also view them as expressing properties of the target C. We can

then formulate them for a general target. We need to keep in mind that there may be

topological obstructions to solving approximation and interpolation problems. There is

no point in asking for an analytic solution if there is no continuous solution.

Let us say that a complex manifold Y satisfies the interpolation property (IP) if

for every Stein manifold X with a subvariety S, a holomorphic map S → Y has a

holomorphic extension X → Y if it has a continuous extension.

Say that Y satisfies the approximation property2 (AP) if for every Stein manifold X

with a holomorphically convex compact subset K, a continuous map X → Y that is

holomorphic on K can be uniformly approximated on K by holomorphic maps X → Y .

We can formulate ostensibly much weaker versions of these properties, for very special

X, S, and K.

We say that Y satisfies the convex interpolation property3 (CIP) if, whenever S is a

contractible subvariety of Cm for some m, every holomorphic map S → Y extends to a

holomorphic map Cm → Y .

We say that Y satisfies the convex approximation property4 (CAP) if, whenever K

is a convex compact subset of Cm for some m, every holomorphic map K → Y can be

uniformly approximated on K by holomorphic maps Cm → Y .

So which manifolds satisfy these generalised Cartan and Oka-Weil theorems? Are

there any examples besides C, C2, C3, . . . ? The following theorem is the only reasonably

easy result in this direction.

Theorem 1.2. Every complex Lie group satisfies CAP.

Proof. (Following [18, Proposition 5.5.1].) Let G be a complex Lie group. The exponen-

tial map exp : g = TeG→ G is a local biholomorphism at the origin in g. Let f : U → G

be a holomorphic map, where U is a convex neighbourhood of a convex compact subset

K of Cm.

If f(K) lies close enough to e, then there is a holomorphic map h : V → g, defined

on a smaller neighbourhood V of K, such that f = exph. Approximating h uniformly

on K by a holomorphic map h̃ : Cm → g using Oka-Weil gives the approximation

exp h̃ : Cm → G of f .

2The terms IP and AP are not standard, although they are very natural.
3For the reason for using the word “convex” here, see [32, §4], where this property was introduced.
4This property was introduced by Forstnerič in [15].
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In general, we may assume that 0 ∈ K and write ft(z) = f(tz) for t ∈ I and z ∈ U .

Then f1 = f and f0 is constant. For n ∈ N, use the group structure of G to write

f = f1 · (fn−1
n

)−1 · fn−1
n
· (fn−2

n
)−1 · · · f 1

n
· (f0)−1 · f0.

If n is sufficiently large, then each quotient f k
n
· (f k−1

n
)−1, k = 1, . . . , n, is close enough

to e on K that it admits a holomorphic logarithm hk : K → g. Approximating each hk
uniformly on K by a holomorphic map h̃k : Cm → g gives the approximation

exp h̃n · · · exp h̃1 · f0 : Cm → G

of f . �

Again we used the exponential map to linearise the problem. A similar but somewhat

more elaborate proof works for homogeneous manifolds. Gromov’s main innovation in

[23] was a more general linearisation method that allows us to establish CAP for a

considerably larger class of manifolds, the so-called elliptic manifolds (see Section 3).

What about relationships between the properties we have defined? There is a short

proof that interpolation implies approximation [28]. (This is not to say that the Cartan

extension theorem implies the Oka-Weil approximation theorem: the proof that IP

implies AP uses the Oka-Weil theorem.)

Theorem 1.3. If a complex manifold satisfies IP, then it also satisfies AP.

Similarly, CIP implies CAP.

Proof. Suppose Y satisfies IP. Let X be a Stein manifold, K ⊂ X be compact and

holomorphically convex, and f : X → Y be continuous, and holomorphic on a Stein

neighbourhood U of K. (A holomorphically convex compact subset of a Stein manifold

has a Stein neighbourhood basis.) Let φ : U → Cn be a holomorphic embedding (see

Theorem 2.1; by an embedding we always mean a proper embedding). The inclusion

i : U ↪→ X factors through the Stein manifold M = X × Cn as U
j→ M

π→ X, where

j = (i, φ) is an embedding and π is the projection.

Now f ◦ π : M → Y is continuous, and holomorphic on j(U). Since Y satisfies IP,

there is a holomorphic extension h : M → Y of f ◦ π|j(U). Since K is holomorphically

convex in X, by Oka-Weil we can approximate φ : U → Cn uniformly on K by a

holomorphic map ψ : X → Cn. Then h ◦ (idX , ψ) : X → Y is holomorphic and

approximates f uniformly on K. �

In fact, the converse is true—AP implies IP—but this is not easy to see. It is a major

theorem of Forstnerič that CAP implies IP, so CAP, CIP, AP, and IP are equivalent,

and that CAP implies BOP (see Section 4). In fact, Forstnerič proved that CAP implies

a property that is stronger than both IP and BOP and is defined as follows.

We say that a complex manifold Y satisfies the basic Oka property with approximation

and interpolation (BOPAI) if for every Stein manifold X with a subvariety S and a

holomorphically convex compact subset K, a continuous map f : X → Y that is

holomorphic on S and on K can be deformed to a holomorphic map, keeping it fixed
5



on S and almost fixed on K. More precisely, for every ε > 0, there is a continuous map

F : X × I → Y such that:

• F (·, 0) = f ,

• F (·, 1) is holomorphic,

• F (x, t) = f(x) for all x ∈ S and t ∈ I,

• d(F (x, t), f(x)) < ε for all x ∈ K and t ∈ I.

Here, d is any metric defining the topology of Y .

We now define an Oka manifold to be a complex manifold satisfying the equivalent

properties CAP, CIP, AP, IP, and BOPAI.5

By Theorem 1.2, every complex Lie group (and every homogeneous manifold) is Oka.

More generally, every elliptic manifold is Oka (Corollary 3.6).

Note that BOP is BOPAI with S and K empty.

Exercise 1.4. Show that the disc D satisfies BOP but is not Oka.

2. Stein manifolds

It follows easily from the Weierstrass theorem that every domain in C is a domain

of holomorphy: it carries a holomorphic function that does not extend to any larger

domain (even as a multivalued function). This is far from true in higher dimensions.

For example, every holomorphic function f on C2\{0} extends to a holomorphic function

on C2 (Hurwitz 1897). Namely, the function C× D→ C defined by

(z, w) 7→ 1

2πi

∫
|ζ|=1

f(z, ζ)

ζ − w
dζ

is holomorphic and agrees with f on C∗×D by Cauchy’s formula, so it agrees with f on

C×D\{0}. By a more elaborate, but still elementary, application of Cauchy’s formula,

one can show that if K is a compact subset of a domain Ω in Cn, n ≥ 2, such that

Ω\K is connected, then every holomorphic function on Ω\K extends to a holomorphic

function on Ω [40].

In higher dimensions, the notion of a domain of holomorphy is quite subtle and is

indeed the central concept of classical several complex variables. The notion of a Stein

manifold, introduced by Stein in 1951, generalises domains of holomorphy to the setting

of complex manifolds.

A complex manifold X is said to be Stein if it satisfies the following three conditions.

(a) Holomorphic functions on X separate points, that is, if x, y ∈ X, x 6= y, then

there is f ∈ O(X) such that f(x) 6= f(y). Here, O(X) denotes the algebra of

holomorphic functions on X.

(b) Holomorphic functions on X separate directions, that is, for every x ∈ X, there

are f1, . . . , fn ∈ O(X) that give coordinates at x (so n = dimX).

5Oka manifolds were first defined in [16] and [27, §16]. The concept of an Oka manifold is unusual

in that a big theorem is needed in order to define it in a satisfactory manner.
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(c) X is holomorphically convex, that is, if K ⊂ X is compact, then its O(X)-hull

K̂ = {x ∈ X : |f(x)| ≤ max
K
|f | for all f ∈ O(X)}

is also compact. Equivalently, if E ⊂ X is not relatively compact, then there is

f ∈ O(X) such that f |E is unbounded.

There is some redundancy among these properties. It may be shown that (a) follows

from (b) and (c), and that (b) follows from (a) and (c).

Just as every domain in C is a domain of holomorphy, every open Riemann surface

is Stein.

As befits a notion of fundamental importance, there are several alternative charac-

terisations of the Stein property.

Theorem 2.1. For a complex manifold X, the following are equivalent.

(i) X is Stein.

(ii) X is biholomorphic to a closed complex submanifold of Cm for some m.

(iii) X is strictly pseudoconvex, that is, there is a smooth strictly plurisubharmonic

function ψ : X → R that is an exhaustion in the sense that for every c ∈ R, the

sublevel set {x ∈ X : ψ(x) < c} is relatively compact in X. The closure of each

sublevel set is then holomorphically convex.

(iv) Hp(X,F ) = 0 for every coherent analytic sheaf F on X and every p ≥ 1.

The implication (i) ⇒ (ii) (with m = 2 dimX + 1) is the embedding theorem of

Remmert, Bishop, and Narasimhan. The implication (i)⇒ (iv) is Cartan’s Theorem B.

Brief comments on proofs. (i) ⇒ (ii): Hörmander’s account in [24, §5.3] has not been

improved upon.

(ii) ⇒ (iii): This is easy: let ψ(x) = ‖x‖2, where ‖·‖ is the Euclidean norm on Cm.

(iii) ⇒ (iv): This is a major theorem. A proof using the L2 method of Hörmander

and of Andreotti and Vesentini is given in [7, Corollary IX.4.11] and [24, Theorem 7.4.3].

For a very readable introduction to the L2 method in complex analytic and differential

geometry, see [3].

(iv) ⇒ (i): To verify (a), for example, let I be the sheaf of holomorphic functions

on open subsets of X that vanish at x and y. Then I is a coherent sheaf of ideals in

the structure sheaf O of X. The quotient O/I is a “skyscraper sheaf” with stalk C at

x and y and zero elsewhere. The short exact sequence 0→ I → O → O/I → 0 gives

the long exact sequence · · · → O(X) → C2 → H1(X,I ) → · · · . By (iv), O(X) → C2

is surjective, so we can prescribe the values of holomorphic functions on X at x and y.

The proof of (b) and (c) is similar. �

It is natural to ask for the smallest m that works in (ii). Forster conjectured that if

n = dimX ≥ 2, then the smallest possible m is [3n/2] + 1. He showed by examples that

for each n ≥ 2, no smaller value of m works in general. Forster’s conjecture was proved

in the early 1990s by Eliashberg and Gromov and by Schürmann. The proof relies on

Gromov’s Oka principle. It is still a wide open question whether every open Riemann

surface embeds in C2.
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Cartan’s Theorem B is a very powerful result. For example, it implies the Cartan

extension theorem (that is, IP for C) as soon as we know that the sheaf of holomorphic

functions that vanish on the subvariety S is coherent (this is a fairly deep theorem of

local analytic geometry). Here is another consequence that will be useful later.

Proposition 2.2. (a) Every short exact sequence of holomorphic vector bundles on a

Stein manifold splits.

(b) Every holomorphic vector bundle on a Stein manifold is a direct summand in a

trivial vector bundle.

Proof. (a) That a short exact sequence 0 → K → F → E → 0 of vector bundles on a

Stein manifold X splits follows from the long exact sequence

· · · → Hom(E,F )→ Hom(E,E)→ H1(X,Hom(E,K)) = 0→ · · · .

(b) Let E be a vector bundle on X. Then E is a quotient of a trivial bundle F . In

other words, there are finitely many sections of E that generate E at each point. The

proof is similar to the proof that (iv) ⇒ (i) in Theorem 2.1 above. Now apply (a). �

For a proof of the Oka-Weil approximation theorem (that is, AP for C) using the L2

method, see [24, Corollary 5.2.9]. By Proposition 2.2(b), Oka-Weil approximation holds

for sections of vector bundles over Stein manifolds (and so does Cartan extension).

In the setting of Proposition 2.2(a), a splitting morphism E → F over an open subset

of X is a section of an affine bundle, which has a section over X and is thus a vector

bundle. Hence Oka-Weil approximation holds for splitting morphisms.

3. Gromov’s linearisation method

In his seminal paper of 1989 [23], Gromov introduced a useful geometric structure that

generalises the exponential map of a complex Lie group and allows us to establish the

convex approximation property.

3.1. Elliptic manifolds. A spray on a complex manifold Y is a holomorphic map

s : E → Y defined on the total space of a holomorphic vector bundle E over Y such

that s(0y) = y for all y ∈ Y . The spray is said to be dominating at y ∈ Y if s|Ey → Y

is a submersion at 0y. The spray is said to be dominating if it is dominating at every

point of Y . Finally, Y is said to be elliptic if it admits a dominating spray.

Example 3.1. (a) If Y is homogeneous, that is, there is a transitive holomorphic action

of a complex Lie group G on Y , then Y is elliptic. The map Y × g → Y , (y, v) 7→
exp(v) · y, where g is the Lie algebra of G, is a dominating spray defined on a trivial

vector bundle over Y . In particular, a complex Lie group is elliptic.

(b) More generally, if Y carries finitely many C-complete holomorphic vector fields

v1, . . . , vk that span TyY at each y ∈ Y , then the map s : Y × Ck → Y ,

s(y, t1, . . . , tk) = φtkk ◦ · · · ◦ φ
t1
1 (y),
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where φtj is the flow of vj, is a dominating spray on Y . Note that

∂

∂tj
s(y, 0) = vj(y), y ∈ Y.

(c) [23, 0.5.B(iii)] If A is an algebraic subvariety of Cn of codimension at least 2,

then Y = Cn \ A is as in (b). Namely, we take the vector fields v1, . . . , vk to be of the

form v(z) = f(π(z))b, where:

• b ∈ Cn \ {0},
• π : Cn → Cn−1 is a linear projection with π(b) = 0 such that π|A is proper,

• f : Cn−1 → C is a polynomial that vanishes on the subvariety π(A).

Exercise 3.2. Show that the flow of v is given by φt(z) = z + tf(π(z))b. In particular,

v is C-complete. The flow fixes A pointwise, so it restricts to a complete flow on Y .

Show that there is enough freedom to choose b, π, and f that finitely many vector fields

of this form span the tangent space TzCn at every point z ∈ Y .

We say that Y is algebraically elliptic because the dominating spray that we have

produced is algebraic. (It is of course unusual for the flow of a C-complete algebraic

vector field to be algebraic.)

This example plays a key role in the proof of Forster’s conjecture.

The assumption that A is algebraic cannot be removed (although it can be relaxed

to A being a tame6 analytic subvariety [18, Proposition 5.5.14]). Rosay and Rudin

showed that if n ≥ 2, then there is a closed discrete set in Cn which is unavoidable by

nondegenerate holomorphic maps from Cn to Cn [38, Theorem 4.5].

(d) Hypersurfaces

{(z1, . . . , zn, u, v) ∈ Cn+2 : uv = f(z1, . . . , zn)}

in Cn+2, where f ∈ O(Cn) has df 6= 0 at every point of f−1(0), are are as in (b) [25,

Theorem 2]. These hypersurfaces are of interest because of their relevance to some deep

open questions [25, §4].

Clearly, the examples in (c) and (d) are only homogeneous in exceptional cases.

Exercise 3.3. Show that a Riemann surface is elliptic if and only if it is not covered

by D.

Known ways to produce new elliptic manifolds from old are very limited.

Proposition 3.4. (a) If Y1 and Y2 are elliptic, then so is Y1 × Y2.

(b) If X → Y is an unbranched holomorphic covering map and Y is elliptic, then X

is elliptic.

Proof. (a) Let πj : Y1 × Y2 → Yj, j = 1, 2, be the projections. If sj : Ej → Yj is a

dominating spray, then

π∗1E1 ⊕ π∗2E2 → Y1 × Y2, (v1, v2) 7→ (s1(v1), s2(v2)),

6This means that there is an automorphism Φ of Cn such that Φ(A) does not accumulate at every

point of the hyperplane at infinity.
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is a dominating spray.

(b) Let p : X → Y be a covering map and s : E → Y be a dominating spray. Let

p∗E → X be the pullback by p of the spray bundle E → Y . We obtain a dominating

spray on X with spray bundle p∗E as a lifting in the following square.

X� _

��

X

p

��
p∗E

=={
{

{
{

// Y

The left vertical map is the inclusion of the zero section x 7→ (x, 0p(x)). The bottom

map is (x, v) 7→ s(v). �

There are weaker properties called subellipticity and weak subellipticity. Subelliptic-

ity of Y requires finitely many sprays that together dominate at each point of Y . Weak

subellipticity requires countably many sprays that together dominate at each point.

There are many examples of subelliptic and weakly subelliptic manifolds that are not

known to be elliptic [18, §5.5, §6.4].

3.2. Ellipticity implies CAP. We will now explain the workings of Gromov’s lineari-

sation method. The idea is to represent maps by sections of vector bundles and use the

Oka-Weil approximation theorem for such sections.7

Let Ω be a Stein domain in a Stein manifold X. Let ρXΩ : O(X) → O(Ω) be the

restriction map. We say that Ω is Runge if the image of ρXΩ is dense in O(Ω) (with

respect to the compact-open topology). Equivalently, Ω can be exhausted by compact

subsets that are O(X)-convex (and not merely O(Ω)-convex). For example, if Ω is a

sublevel set of a smooth strictly plurisubharmonic exhaustion of X, then Ω is Runge.

Theorem 3.5. Let Y be an elliptic manifold and let Ω be a Runge domain in a Stein

manifold X. Let ρXΩ : O(X, Y ) → O(Ω, Y ) be the restriction map. The closure of the

image of ρXΩ is the union of some of the path components of O(Ω, Y ).

Loosely speaking, in the setting of the theorem, approximability is deformation-

invariant.

Corollary 3.6. An elliptic manifold is Oka.

Proof. Suppose Y is elliptic. Let K be a convex compact subset of Cm, and f : U → Y

be a holomorphic map defined on a neighbourhood U of K. We may assume that U

is convex, so U is a Runge domain in Cm, and that 0 ∈ K. Considering the path

t 7→ ft : U → Y , where ft(z) = f(tz), we see that f = f1 lies in the same path com-

ponent of O(U, Y ) as the constant map f0. Thus, by Theorem 3.5, f can be uniformly

approximated on K by holomorphic maps Cm → Y . �

7That ellipticity implies CAP is usually proved by showing that an elliptic manifold satisfies the

homotopy Runge property (see e.g. [19, Theorem 2.22]). We present a variant of this property, because

we find the variant attractive and also to offer something not contained in other references.
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More generally, Theorem 3.5 shows that ρXΩ O(X, Y ) is dense in O(Ω, Y ) if O(Ω, Y )

is path connected. If either Ω or Y is holomorphically contractible, meaning that the

identity map can be deformed through holomorphic maps to a constant map, then

O(Ω, Y ) is path connected.

Proof of Theorem 3.5. Let π : E → Y be a vector bundle with a dominating spray

s : E → Y . Let X and Ω be as above. Let Z = X × Y and let p : Z → X and

q : Z → Y be the projections. Maps X → Y correspond to sections of p. We pull E

back to a bundle q∗π : q∗E → Z, and obtain a map σ : q∗E → Z, ((x, y), v) 7→ (x, s(v)),

where v ∈ Ey, called a fibre-dominating spray. The word fibre refers to the fibres of p.

The map σ takes the fibre of q∗E over (x, y) ∈ Z nondegenerately into the fibre p−1(x)

in Z.

The domination property of s means that Ds : KerDπ|Y → TY is an epimorphism

of bundles over Y , that is, fibrewise surjective. Here, KerDπ|Y is the vertical subbundle

of the tangent bundle of E, restricted to its zero section, which we identify with Y , so

KerDπ|Y is naturally identified with E itself. Therefore, Dσ : KerDq∗π|Z → KerDp

is an epimorphism of bundles over Z.

Let f ∈ O(S, Y ), where S is a Stein domain in X, and let h : x 7→ (x, f(x))

be the corresponding section of p over S. By Siu’s Stein neighbourhood theorem [7,

Theorem IX.2.13], the Stein submanifold h(S) of S × Y has a Stein neighbourhood W

in S×Y . Over W , viewed as a Stein open subset of Z, there is a holomorphic subbundle

F of KerDq∗π|Z such that KerDq∗π|Z = KerDσ ⊕ F and Dσ : F → KerDp is an

isomorphism (Proposition 2.2(a)). Since KerDq∗π|Z is naturally identified with q∗E,

we may view F as a subbundle of q∗E. By the inverse function theorem, σ maps a

neighbourhood of the zero section in F |h(S) biholomorphically onto a neighbourhood

of h(S) in Z.

Now let I → O(Ω, Y ), t 7→ ft, be a continuous path such that f0 ∈ ρXΩ O(X, Y ). Let

ht : x 7→ (x, ft(x)) be the corresponding sections of p. Let K ⊂ Ω be compact. We need

to show that f1 can be uniformly approximated on K by holomorphic maps X → Y .

A Runge domain in a Stein manifold can be exhausted by relatively compact Runge

subdomains (for example by analytic polyhedra). Choose a Runge domain U0 with

K ⊂ U0 b Ω. There is a partition 0 = t0 < t1 < · · · < tk = 1 of I such that for each

j = 0, . . . , k − 1 and each t ∈ [tj, tj+1], ht(U0) lies in a neighbourhood of htj(U0) that is

a biholomorphic image by σ of a neighbourhood of the zero section in Fj|htj(U0). Here,

Fj is the bundle F obtained as above with S = Ω and h = htj . Hence ht|U0 lifts to a

holomorphic section ξ of Fj|htj(U0) with σ ◦ ξ ◦ htj = ht on U0.

Choose Runge domains U1, . . . , Uk and V0, . . . , Vk−1 such that

K ⊂ Uk b Vk−1 b Uk−1 b · · · b U1 b V0 b U0 b Ω.

By assumption, h0 can be uniformly approximated on U0 by a holomorphic section g0 of

p defined on all of X. If the approximation is close enough, then F0 is defined on g0(U0)

and ht1|U0 lifts to a section ξ of F0|g0(U0) with σ ◦ ξ ◦ g0 = ht1 on U0. By Oka-Weil

for splitting morphisms (see the remarks following the proof of Proposition 2.2), there

is a bundle F obtained as above with S = X and h = g0 that approximates F0 closely
11



enough on g0(V0) that ht1|V0 lifts to a section ξ of F |g0(V0) with σ ◦ ξ ◦ g0 = ht1 on V0.

By Oka-Weil for sections of F |g0(X), ξ can be uniformly approximated on g0(U1) by

global sections of F |g0(X). Thus, ht1 can be uniformly approximated on U1 by global

sections of p.

Continuing in this way, we see that h1 can be uniformly approximated on Uk by

global sections of p. Hence, f1 can be uniformly approximated on K by holomorphic

maps X → Y . �

Theorem 3.5 also holds for weakly subelliptic manifolds, but a more involved proof,

using Gromov’s technique of composed sprays, is required. Thus, weakly subelliptic

manifolds are Oka [18, Corollary 5.5.12].

4. Forstnerič’s theorem

Forstnerič’s proof that CAP implies not only BOPAI but also a stronger property called

POPAI (see Section 5) appeared in three papers in 2005–2009 ([14], [15], [16]). The proof

is presented in detail in [18, Chapter 5]. There is a brief summary of the proof in the

survey [20] and a more detailed overview in the survey [19]. Here we will highlight two

key ingredients in the proof, exhaustion by convex bumps and gluing of thick sections.

These key ingredients are already present in the proof that CAP implies AP.

Let Y be a manifold satisfying CAP. Let X be a Stein manifold and f : X → Y

be a continuous map which is holomorphic on a neighbourhood U of a holomorphically

convex compact subset K of X. We want to show that f can be uniformly approximated

on K by holomorphic maps X → Y .

An approximant is constructed by modifying f step by step. At each step, we make

f holomorphic on a slightly larger set, obtained by adding a “bump” to the set where

f was already holomorphic, keeping f almost unchanged on the latter set. The bumps

gradually fill out the sublevel sets of a smooth strictly plurisubharmonic exhaustion

ψ : X → R with ψ < 0 on K and ψ > 0 on X \ U . Away from the critical points of ψ,

the bumps have a very simple geometric shape, as we will explain in a moment. Near

a critical point, the geometry is more complicated and the procedure is different. This

is where topological obstructions could arise, but they are ruled out by f being defined

on all of X as a continuous map. We will not discuss the critical case (see [19, §3.5]).

At the start of each step, away from the critical points of ψ, f is holomorphic on

the closure A of a relatively compact strictly pseudoconvex domain in X. Near each of

its boundary points, A is defined by the inequality ρ ≤ 0, where ρ is a smooth strictly

plurisubharmonic function. Then A with the next bump B added to it is defined by

the inequality ρ ≤ εχ, where χ is a smooth bump function with small support, and

ε > 0 is small enough that ρ− εχ is strictly plurisubharmonic. It may be arranged that

A \B ∩ B \ A = ∅. (Think of A as a large rectangle and B as a small rectangle such

that A ∩B and A ∪B are also rectangles.)

The following lemma shows that there are holomorphic coordinates on a neighbour-

hood U of B in which B, A∩B, and (A∪B)∩U are strictly convex. This is the reason
12



why approximation on convex sets (CAP) is enough to give approximation on arbitrary

holomorphically convex sets (AP).

Lemma 4.1 (Narasimhan’s lemma). Let u be a smooth strictly plurisubharmonic func-

tion on a neighbourhood of the origin 0 in Cn. If 0 is not a critical point of u, then there

are holomorphic coordinates on a neighbourhood of 0 in which u is strictly convex.

Proof. Take n = 1; the proof of the general case is no more difficult. The second-order

Taylor expansion of u at 0 is

u(w) = u(0) + uz(0)w + 1
2
uzz(0)w2 + uz̄(0)w̄ + 1

2
uz̄z̄(0)w̄2 + uzz̄(0)ww̄ + o(|w|2)

= u(0) + 2 Re
[
uz(0)w + 1

2
uzz(0)w2

]
+ uzz̄(0)ww̄ + o(|w|2).

Say uz(0) = 1. Take a new coordinate w′ = w+ 1
2
uzz(0)w2 near 0. In this new coordinate,

u(w′) = u(0) + 2 Rew′ + uzz̄(0)w′w̄′ + o(|w′|2)

is strictly convex near 0. �

It remains to explain how holomorphicity of a map is extended from A to the convex

bump B. We need to show that a holomorphic map f : A → Y can be uniformly

approximated on A by holomorphic maps A ∪ B → Y . This is done in three steps. As

in the proof of Theorem 3.5, it is now convenient to view maps X → Y as sections of

the projection p : Z = X × Y → X.

Step 1: Thickening. Let V b V0 be Stein neighbourhoods of A such that f is defined

on V0. The Stein submanifold f(V0) of V0 × Y has a Stein neighbourhood Ω in Z. By

Proposition 2.2, there are holomorphic vector fields v1, . . . , vk on Ω that are tangent to

the fibres of p and span the vertical subbundle KerDp of the tangent bundle TZ at

every point of Ω. Let φtj be the flow of vj. Define a holomorphic map F : V ×W → Z,

where W is a small enough neighbourhood of the origin in Ck, by the formula

F (x,w1, . . . , wk) = φwkk ◦ · · · ◦ φ
w1
1 ◦ f(x).

For every w ∈ W , F (·, w) is a section of p. We call F a thick section of p over V or a

holomorphic spray of sections of p over V with core section F (·, 0) = f . Since

∂wjF (x,w)
∣∣
w=0

= vj(f(x)),

the derivative

∂wF (x,w)
∣∣
w=0

: Ck → (KerDp)f(x)

is surjective for all x ∈ V , so we say that F is dominating over V (or simply dominating).

Step 2: Approximation. Let D be a closed ball in W centred at 0. Write C = A ∩ B.

Since Y satisfies CAP, we can uniformly approximate F on C × D by a holomorphic

thick section G : B × D → Z of p. This is the one place in Forstnerič’s proof where

CAP is invoked. (In fact, the approximation needs to be done on a neighbourhood of

C ×D, but we ignore such details here and in the following.)

Step 3: Gluing. Next we “glue” F and G together into a holomorphic thick section over

A ∪B, whose core section will be our desired approximant.
13



The kernel of the epimorphism

∂wF (·, w)
∣∣
w=0

: C × Ck → KerDp|f(C)

has a complement E in the trivial bundle C × Ck over C, such that

∂wF (·, w)
∣∣
w=0

: E → KerDp|f(C)

is an isomorphism. Hence, F maps a neighbourhood of the zero section of E biholomor-

phically onto a neighbourhood of f(C) in Z. Therefore, if the approximation in Step 2 is

good enough, and after shrinking W , we obtain a holomorphic map γ : C×W → C×Ck

of the form γ(x,w) = (x, γ2(x,w)), close to the inclusion, such that F ◦ γ = G.

The closer G is to F on C × D, the closer γ will be to the inclusion. If γ is close

enough to the inclusion and we shrink W again, Forstnerič’s splitting lemma provides

holomorphic maps α : A×W → A×Ck and β : B ×W → B ×Ck of the same form as

γ, close to the respective inclusions, such that γ ◦β = α on C×W . Then F ◦α = G ◦β
on C ×W , so F ◦ α and G ◦ β define a thick section over A ∪ B, whose core section is

the desired approximant.

The splitting lemma first appeared in [13, §4]. It may be viewed as a nonlinear

analogue of Cartan’s classical Heftungslemma. It is a powerful tool. In addition to the

application described here, it has been used to construct proper holomorphic maps from

complex curves to certain complex spaces [10], to extend the Poletsky theory of disc

functionals from manifolds to singular spaces [11], and to expose boundary points of

strictly pseudoconvex domains [8].

We conclude this section with a rough sketch of the proof of the splitting lemma,

following [18, §5.8]. Let C be the Banach space of holomorphic maps C ×W → Ck

with finite supremum norm. Similarly define the Banach spaces A and B for A and B,

respectively.

First we seek bounded linear operators L : C → A and M : C → B such that

c = Lc − Mc for all c ∈ C . Since A \B ∩ B \ A = ∅, there is a smooth function

χ : X → [0, 1] such that χ = 0 near A \B and χ = 1 near B \ A. For every c ∈ C ,

χ(x)c(x,w) extends to a continuous map on A ×W that vanishes on A \B ×W , and

(χ(x)− 1)c(x,w) extends to a continuous map on B ×W that vanishes on B \ A×W .

Also, ∂̄(χc) = ∂̄((χ − 1)c) = c∂̄χ is a smooth (0, 1)-form on (A ∪ B) ×W , supported

in C ×W , and depending holomorphically on w ∈ W . Using a bounded linear integral

operator T to solve the ∂̄-equation on A ∪B, we define

Lc(x,w) = χ(x)c(x,w)− T (c(·, w)∂̄χ)(x),

Mc(x,w) = (χ(x)− 1)c(x,w)− T (c(·, w)∂̄χ)(x).

It is easily verified that L and M have the desired properties.

Now let E be the Banach space of holomorphic maps η : C ×W → Ck such that

both η and ∂wη have finite supremum norm. For η ∈ E near η0 : (x,w) 7→ w and c ∈ C
near 0, let

Φ(η, c)(x,w) = w + Lc(x,w)− η(x,w +Mc(x,w))
14



for x ∈ C and w ∈ W . This defines a smooth map Φ from a neighbourhood of (η0, 0) in

the Banach space E × C to the Banach space C . For all c ∈ C ,

Φ(η0, c) = Lc−Mc = c,

so ∂cΦ(η0, 0) = idC . By the implicit function theorem for Banach spaces, there is

a smooth map h to C from a neighbourhood of η0 in E , such that h(η0) = 0 and

Φ(η, h(η)) = 0 for all η in this neighbourhood. Finally, let

α(x,w) = (x,w + Lh(γ2)(x,w)),

β(x,w) = (x,w +Mh(γ2)(x,w)).

Then Φ(γ2, h(γ2)) = 0 means that γ ◦ β = α.

5. Oka manifolds

Recall that a complex manifold is defined to be Oka if it satisfies the equivalent properties

CAP, CIP, AP, IP, and BOPAI. In Section 3, we proved that elliptic manifolds are Oka

and we saw some examples of elliptic manifolds.

5.1. Properties of Oka manifolds. We begin with three exercises.

Exercise 5.1. Let Y be an Oka manifold. Prove the following.

(a) Y is strongly dominable, meaning that for every y ∈ Y , there is a holomorphic

map f : CdimY → Y such that f(0) = y and f is a local biholomorphism at 0. (If such

a map exists for some y ∈ Y , then Y is called dominable.)

(b) Y is C-connected, meaning that any two points of Y can be joined by a holomor-

phic image of C.

(c) The Kobayashi pseudodistance on Y vanishes identically.8

(d) If a plurisubharmonic function on Y is bounded above, then it is constant.

(This holds for Y = Cn because if u is plurisubharmonic on Cn, then the function

r 7→ sup
|z|=er

u(z) is convex and increasing.)

Exercise 5.2. Show that a Riemann surface is Oka if and only if it is not covered by D.

Exercise 5.3. In Section 3, we mentioned the result of Rosay and Rudin that if n ≥ 2,

then there is a closed discrete set D ⊂ Cn which is unavoidable by nondegenerate

holomorphic maps Cn → Cn. Thus Cn \D is not dominable and hence not Oka. Show

that Cn \D is C-connected.

Recall that an Oka manifold Y satisfies BOP, meaning that every continuous map f

from a Stein manifold X to Y can be deformed to a holomorphic map. In other words,

the inclusion O(X, Y ) ↪→ C (X, Y ) is a surjection on path components. (These spaces

are always endowed with the compact-open topology. Note that O(X, Y ) is closed in

C (X, Y ).)

8The Kobayashi pseudodistance on Y is the largest pseudodistance d on Y such that d(f(z), f(w)) ≤
δ(z, w) for all holomorphic maps f : D → X, where δ denotes the Poincaré distance on D. It is a

nontrivial but rather easy fact that there is a largest such pseudodistance.
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More is true. If f belongs to a family of maps depending continuously on a parameter

in a “nice” parameter space P , then the deformation can be made to depend continuously

on the parameter. Furthermore, if the maps parametrised by a closed subspace Q of

P are holomorphic to begin with, then they can be left fixed during the deformation.

More precisely, Y satisfies the parametric Oka property (POP), defined as follows.

LetX be a Stein manifold andQ ⊂ P be compact subsets of Rn. For every continuous

map f : X × P → Y such that f(·, q) : X → Y is holomorphic for every q ∈ Q, there is

a continuous map F : X × P × I → Y such that:

• F (·, ·, 0) = f ,

• F (·, q, t) = f(·, q) for every q ∈ Q and t ∈ I,

• F (·, p, 1) is holomorphic for every p ∈ P .

As mentioned earlier, Forstnerič has shown that Oka manifolds satisfy a stronger prop-

erty, a parametric version of BOPAI called the parametric Oka property with approxi-

mation and interpolation (POPAI).

Exercise 5.4. (a) Use POP to show that if X is Stein and Y is Oka, and holomorphic

maps f, g : X → Y are homotopic through continuous maps, then f and g are homotopic

through holomorphic maps.

(b) Apply POP with the parameter space pairs ∅ ↪→ ∗, {0, 1} ↪→ [0, 1], ∗ ↪→ Sk,

and Sk ↪→ Bk+1 for k ≥ 1, where Bk+1 denotes the closed (k + 1)-dimensional ball

and Sk = ∂Bk+1 is the k-dimensional sphere, to show that if X is Stein and Y is Oka,

then the inclusion O(X, Y ) ↪→ C (X, Y ) is a weak homotopy equivalence with respect

to the compact-open topology, that is, it induces a bijection of path components and

isomorphisms of all homotopy groups.

It is natural to ask whether O(X, Y ) ↪→ C (X, Y ) is a homotopy equivalence. The

usual way to show that a weak equivalence is a homotopy equivalence is to apply White-

head’s theorem [36, §10.3], which requires the source and the target to be CW com-

plexes. In our case, O(X, Y ) and C (X, Y ) carry CW structures only in trivial cases:

they are metrisable, but a metrisable CW complex is locally compact. Using more ad-

vanced topological methods, it was recently shown that if X is affine algebraic, then

O(X, Y ) ↪→ C (X, Y ) is a homotopy equivalence. Moreover, O(X, Y ) is a deformation

retract of C (X, Y ) [34]. We will discuss this in more detail in Section 7.

5.2. New Oka manifolds from old. In Proposition 3.4, we noted the limited known

ways to produce new elliptic manifolds from old. There are many more ways to construct

new Oka manifolds from old. We start with the following result.

Proposition 5.5. Let p : Y → Z be a holomorphic covering map. Then Y is Oka if

and only if Z is Oka.

Proof. Let us formulate the Oka property as CIP. Let S be a contractible subvariety of

Cm. Suppose Z is Oka and let f : S → Y be holomorphic. Then p ◦ f : S → Z extends

to a holomorphic map h : Cm → Z. Since S ↪→ Cm is acyclic and p is a covering map,
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we obtain a holomorphic lifting Cm → Y in the square below, extending f .

S
f //

� _

��

Y

p
��

Cm

==|
|

|
|
h // Z

Now suppose Y is Oka and let f : S → Z be holomorphic. Since S is contractible

and p is a covering map, f lifts to a holomorphic map g : S → Y . Then g extends to a

holomorphic map h : Cm → Y , and p ◦ h extends f . �

The proposition provides examples of Oka manifolds that are not known to be elliptic.

Example 5.6. (a) A Hopf manifold is a compact manifold with universal covering space

Cn \ {0}, n ≥ 2. By Example 3.1(c), Cn \ {0} is elliptic and hence Oka. Thus every

Hopf manifold is Oka.

(b) Let Γ be a lattice in Cn, n ≥ 2, and T = Cn/Γ be the corresponding torus. Let

F ⊂ T be finite. The preimage E of F in Cn is the union of finitely many translates

of Γ. It may be shown that E is tame [5, Proposition 4.1], so the universal covering

Cn \ E of T \ F is elliptic [18, Proposition 5.5.14]. Hence, T \ F is Oka.

Exercise 5.7. (a) Show that the product of two Oka manifolds is an Oka manifold.

(b) Show that if a complex manifold Y is exhausted by Oka domains Ω1 ⊂ Ω2 ⊂
Ω3 ⊂ · · · , then Y is Oka.

This property was used to prove that minimal Enoki surfaces are Oka (see Section

8). It also shows that a long Cn (a manifold that is an increasing union of domains that

are biholomorphic to Cn) is Oka. A long C2 need not be Stein [42].

(c) Show that a retract of an Oka manifold is Oka. More explicitly, if Z is a sub-

manifold of an Oka manifold Y and there is a holomorphic map r : Y → Z such that

r ◦ i = idZ , where i : Z ↪→ Y is the inclusion, then Z is Oka.

The most powerful method for constructing new Oka manifolds from old is a gen-

eralisation of Proposition 5.5, in which covering maps are replaced by a much larger

class of maps, called Oka maps. What should it mean for a holomorphic map to be

Oka? First, it means that the map satisfies POPAI suitably formulated for maps, so

that Y → ∗ satisfies POPAI as a map if and only if Y does as a manifold. As above,

in the case of manifolds, let us formulate the simpler POP (without approximation and

interpolation).

A holomorphic map π : Y → Z satisfies POP if whenever:

• X is a Stein manifold,

• Q ⊂ P are compact subsets of Rn,

• f : X × P → Z is continuous and f(·, p) is holomorphic for all p ∈ P ,

• g0 : X × P → Y is a continuous lifting of f by π (so π ◦ g0 = f) and g0(·, q) is

holomorphic for all q ∈ Q,

there is a continuous deformation gt : X × P → Y of g0 such that for all t ∈ I,

• π ◦ gt = f ,
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• gt = g0 on X ×Q,

• g1(·, p) is holomorphic for all p ∈ P .

X ×Q //
� _

��

Y

π

��
X × P

gt

;;xxxxxxxxx f // Z

When P is a singleton and Q is empty, POP simply says that if X is Stein and

f : X → Z is holomorphic, then every continuous lifting X → Y of f by π can be

deformed through such liftings to a holomorphic lifting. In particular, if Z is Stein,

every continuous section of π can be deformed to a holomorphic section.

The class of holomorphic maps satisfying POPAI is not closed under composition, as

demonstrated by the simple example D ↪→ C → ∗. Homotopy-theoretic considerations

show that it is natural and gives a much better-behaved property to define a holomorphic

map to be Oka if it satisfies POPAI and is a topological fibration.9

By a topological fibration, we mean a Serre fibration or a Hurewicz fibration [36,

Chapter 7]: in our case, the two notions are equivalent [1, Theorem 5.1]. A continuous

map Y → Z is a Hurewicz fibration if it satisfies the covering homotopy property,

meaning that every commuting square of continuous maps

A //

i0
��

Y

��
A× I //

<<x
x

x
x

Z

where A is any topological space and i0(a) = (a, 0), has a continuous lifting. The notion

of a Serre fibration restricts A to be a cube, or a polyhedron, or a CW complex: these

three choices all define the same property. The most important example of a topological

fibration is a fibre bundle, that is, a continuous map that is locally trivial over the base

(at least if the base is paracompact).

Exercise 5.8. Prove the following. Feel free to work with POP instead of POPAI, that

is, to take an Oka map to be a holomorphic map that is a topological fibration and

satisfies POP. You might even take P to be a singleton and Q to be empty.

(a) A manifold Y is Oka if and only if the map from Y to a point is Oka.

(b) A holomorphic covering map is Oka.

(c) The class of Oka maps is closed under composition.

(d) The pullback of an Oka map by an arbitrary holomorphic map is Oka.

(e) A retract of an Oka map is Oka.

(f) An Oka map is a submersion. (Here you need to formulate and apply the basic

Oka property with interpolation for an Oka map, with the Stein manifold X being a

ball and the subvariety of X being its centre.)

(g) The connected components of the fibres of an Oka map are Oka manifolds.

(h) A globally trivial bundle Z × F → Z is Oka if and only if the fibre F is Oka.

9Oka maps were first defined in [27, §16]. See also [17].
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The theory of Oka manifolds and Oka maps fits into an abstract homotopy-theoretic

framework in a rigorous way [19, Appendix]. Properties (c), (d), and (e) of Oka maps

reflect the fact that Oka maps are fibrations in a certain homotopy-theoretic structure

[27, §20].

Here is our generalisation of Proposition 5.5.

Theorem 5.9. Let Y → Z be a surjective Oka map. Then Y is Oka if and only if Z is

Oka.

Proof. The proof is similar to the proof of Proposition 5.5 and is left as an exercise. �

The image of a topological fibration is a union of path components of the target.

Since in these notes we take a complex manifold to be connected by definition, the

surjectivity assumption in the theorem is in fact superfluous.

Clearly, the next question is how to recognise Oka maps. A major theorem of

Forstnerič provides the best available answer [17, Corollary 1.3]. The following is a

simple version of the theorem, originating from [23, §3.3.C’]. It combines a twisted ver-

sion of POPAI for maps from a Stein manifold to an Oka manifold with the basic fact

that a fibre bundle is a topological fibration.

Theorem 5.10. The projection of a holomorphic fibre bundle with Oka fibres is an Oka

map.

Here are two classes of Oka manifolds obtained by using Theorems 5.9 and 5.10.

Example 5.11. (a) A rational surface is a compact complex surface that is birationally

equivalent to the projective plane P2. Rational surfaces form one of the classes in the

Enriques-Kodaira classification of compact complex surfaces [2]. A minimal rational

surface is either P2 itself or a Hirzebruch surface, which is a holomorphic fibre bundle

over P1 with fibre P1. Being homogeneous, Pn is elliptic and hence Oka for all n ≥ 1.

Thus all minimal rational surfaces are Oka.

It is a fundamental problem to determine which compact complex surfaces are Oka.

For an up-to-date account of what is known, see [21].

(b) Toric varieties have a rich combinatorial structure and are the subject of very

active research [6]. One way to define a toric variety is to say that it is a normal algebraic

variety Y containing a torus T = (C∗)n as a Zariski-open subset, such that the action

of T on itself extends to an algebraic action on Y . I showed that every smooth toric

variety Y is Oka [19, Theorem 2.17].

The proof goes as follows. By the structure theory of toric varieties and a little

geometric invariant theory, Y is of the form Y0 × (C∗)k, where Y0 carries a holomorphic

fibre bundle Cm \ A, whose fibre is a complex Lie group, where A is a finite union of

linear subspaces of Cm of codimension at least 2.

Exercise 5.12. Based on this information, explain why Y is Oka.

The Oka principle first appeared in Oka’s 1939 result that a second Cousin problem

on a domain of holomorphy can be solved by holomorphic functions if it can be solved
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by continuous functions. In other words, a holomorphic line bundle over a domain of

holomorphy, or more generally over a Stein manifold, is holomorphically trivial if it is

topologically trivial. In 1958, Grauert extended Oka’s theorem to vector bundles (and

some more general fibre bundles). We can now establish Grauert’s result as follows.

Let E be a holomorphic vector bundle of rank n over a Stein manifold X. The frame

bundle F of E is a holomorphic fibre bundle over X whose fibre is the complex Lie

group GL(n,C), so the projection F → X is an Oka map by Theorem 5.10. Hence

every continuous section of F can be deformed to a holomorphic section. Since E is

topologically trivial if and only if F has a continuous section, and holomorphically trivial

if and only if F has a holomorphic section, it follows that E is holomorphically trivial

if it is topologically trivial.

Example 5.13. A holomorphic submersion with Oka fibres need not be an Oka map,

even if it is smoothly locally trivial. Here is an example [20, Example 6.6]. Let g : D→ C
be a smooth function. Let π : Eg = D×C\Γg → D be the projection, where Γg denotes

the graph of g. Clearly, π is smoothly trivial and each fibre π−1(z) ∼= C \ {g(z)} ∼= C∗ is

an Oka manifold. However, if π is an Oka map, then g is holomorphic. Namely, if π is

Oka, then the smooth lifting f : D×C∗ → Eg, (z, w) 7→ (z, w+ g(z)), of the projection

p : D× C∗ → D by π can be deformed to a holomorphic lifting h : D× C∗ → Eg.

Eg

π

��
D× C∗

f
;;wwwwwwwww h

;;wwwwwwwww

p
// D

For each z ∈ D, g(z) is the missing value in the range of the holomorphic map h(z, ·) :

C∗ → C. A deep theorem of Eremenko [12] now implies that g is holomorphic.

We have seen that the class of Oka manifolds is much more flexible than the class of

elliptic manifolds. Oka manifolds are our primary objects of interest. We view ellipticity

as an auxiliary property, a useful geometric sufficient condition for the Oka property to

hold. However, no Oka manifolds are known not to be elliptic. Gromov observed that

Stein Oka manifolds are elliptic [23, §3.2.A].

6. Affine simplices in Oka manifolds

The homotopy type of a CW complex, for example a manifold, or more generally the

weak homotopy type of an arbitrary topological space X, is encoded in the singular set

sX of X. The singular set of X consists of a sequence sX0, sX1, sX2, . . . of sets, where

sXn is the set of n-simplices in X, that is, the set of all continuous maps into X from

the standard n-simplex

Tn = {(t0, . . . , tn) ∈ Rn+1 : t0 + · · ·+ tn = 1, t0, . . . , tn ≥ 0},

along with face maps dj : sXn → sXn−1 and degeneracy maps sj : sXn → sXn+1 for

j = 0, . . . , n. A face map acts by restricting an n-simplex to one of the faces of Tn,

whereas a degeneracy map acts by precomposing an n-simplex by a map that collapses

Tn+1 onto one of its faces. The face maps and degeneracy maps satisfy several identities,
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for example disj = sj−1di for i < j. This kind of structure is called a simplicial set. For

an introduction to simplicial sets, see [22] or [35].

Given a simplicial set S, we can construct a CW complex |S|, called the geometric

realisation of S, by gluing together all the simplicies in S using the face and degeneracy

maps. The realisation functor is left adjoint to the singular functor, meaning that there

is a natural bijection

Hom(|S|, X) ∼= Hom(S, sX)

for every singular set S and topological space X. Here, on the left we have continuous

maps between topological spaces, and on the right morphisms of singular sets. It can

be shown that the natural map |sX| → X is a weak homotopy equivalence, so it is a

homotopy equivalence if X is a CW complex.

The affine singular set eX of a complex manifold X is the simplicial set whose

n-simplices for each n ≥ 0 are the holomorphic maps into X from the affine n-simplex

An = {(t0, . . . , tn) ∈ Cn+1 : t0 + · · ·+ tn = 1},

viewed as a complex manifold biholomorphic to Cn, with the obvious face maps and

degeneracy maps. If X is Brody hyperbolic (meaning that every holomorphic map

C → X is constant), then eX is discrete and carries no topological information about

X. On the other hand, when X is Oka, eX is “large”.

A holomorphic map An → X is determined by its restriction to Tn ⊂ An, so we

have a monomorphism eX ↪→ sX of simplical sets. When X is Oka, eX, which is of

course much smaller than sX, carries the homotopy type of X. More precisely, the

monomorphism eX ↪→ sX is the inclusion of a deformation retract [30, Theorem 1]. In

particular, we have the following result.

Theorem 6.1. An Oka manifold X is homotopy equivalent to the CW complex |eX|,
which is constructed from entire maps into X.

Even for complex Lie groups, this result was not previously known. The proof is

short, but technical, so we refer those who are interested to [30].

7. The space of holomorphic maps from a Stein manifold to an Oka

manifold

Recall that an Oka manifold Y satisfies BOP, meaning that every continuous map f

from a Stein manifold X to Y can be deformed to a holomorphic map. It is natural

to ask whether this can be done for all f at once, in a way that depends continuously

on f and leaves f fixed if it is holomorphic to begin with. In other words, is O(X, Y )

a deformation retract of C (X, Y )?10 Equivalently, we are asking whether Y satisfies

10A subspace B of a topological space A is a deformation retract of A if there is a continuous map

h : A × I → A such that h(a, 0) = a, h(b, t) = b, and h(a, 1) ∈ B for all a ∈ A, b ∈ B, and t ∈ I.

(The term strong deformation retract is sometimes used, especially in the older literature.) We call h

a deformation of A onto B. Then h(·, 1) : A → B is a homotopy inverse for the inclusion B ↪→ A. In

particular, A and B are homotopy equivalent.
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POP for every pair of parameter spaces Q ↪→ P , or simply for the universal pair

O(X, Y ) ↪→ C (X, Y ).11

Our starting point is the fact that if X is Stein and Y is Oka, then the inclusion

O(X, Y ) ↪→ C (X, Y ) is a weak homotopy equivalence (Exercise 5.4(b)). We want to

upgrade the inclusion, not only to a homotopy equivalence, but to the inclusion of

a deformation retract. The commonly used sufficient condition that C (X, Y ) is a CW

complex and O(X, Y ) is a subcomplex of C (X, Y ) does not apply. As already mentioned,

O(X, Y ) and C (X, Y ) are metrisable, but a metrisable CW complex is locally compact.

The only applicable sufficient condition known to me is that O(X, Y ) and C (X, Y )

are absolute neighbourhood retracts (ANRs). For the algebraic topology behind these

statements,12 see [34] and the references there.

So what are absolute neighbourhood retracts? And how can we show that O(X, Y )

and C (X, Y ) are absolute neighbourhood retracts?

Absolute neighbourhood retracts are metric spaces (or rather, metrisable spaces)

with some very nice properties and an interesting relationship with CW complexes.

A finite-dimensional metric space is an ANR if and only if it is locally contractible,

meaning that every neighbourhood U of each point contains a neighbourhood which

is contractible in U . For infinite-dimensional spaces, the notion is stronger and more

subtle. A metrisable spaceX is an ANR if it satisfies the following nontrivially equivalent

conditions.

• If X is homeomorphically embedded as a closed subspace of a metric space Y ,

then some neighbourhood of X in Y retracts onto X. (This explains the name

ANR.)

• X is homeomorphic to a closed subset of a convex subset C of a Banach space,

and X has a neighbourhood in C that retracts onto X. (Every metric space

X is homeomorphic to a closed subset of a convex set in the Banach space of

bounded continuous functions X → R.)

• For every metric space A with a closed subspace B, every continuous map B → X

can be extended to a neighbourhood of B in A (depending on the map).

• X is locally contractible, and for every metric space A with a closed subspace

B, the inclusion B ↪→ A has the homotopy extension property with respect to

continuous maps into X.13

• Every open subset of X has the homotopy type of a CW complex.14

11One motivation for asking this question is the desire to clean up what is known about the pairs

of parameter spaces Q ↪→ P for which POP holds. As already mentioned, Oka manifolds satisfy POP

when P and Q are compact subsets of Rn. They also satisfy POP for a subcomplex Q of a CW complex

P , as well as for more general cellular complexes [27, Section 16]. And elliptic manifolds satisfy POP

when P and Q are arbitrary compact spaces [18, Theorem 6.2.2].
12It includes, among older theory, the mixed model structure on the category of topological spaces,

introduced by Cole in 2006. The best reference on ANRs is [41].
13If X was an arbitrary topological space, then B ↪→ A would have to be a cofibration for the homo-

topy extension property to hold, that is, B would have to be a deformation retract of a neighbourhood

in A.
14This remarkable characterisation is due to Cauty. The basic theory of ANRs dates back to the

mid-20th century. Cauty’s result, published in 1994, is an example of a deep result on ANRs proved
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• Every open cover U ofX has a refinement V such that if S is a simplicial complex

(with the weak topology) with a subcomplex T containing all the vertices of S,

then every continuous map φ0 : T → X such that for each simplex σ of S,

φ0(σ ∩ T ) ⊂ V for some V ∈ V , extends to a continuous map φ : S → X such

that for each simplex σ of S, φ(σ) ⊂ U for some U ∈ U .

The last condition is called the Dugundji-Lefschetz property. It is a little complicated to

state, but of the six conditions, it is the one that is most likely to be possible to verify

in practice.

Exercise 7.1. What does the Dugundji-Lefschetz property say when S = [0, 1] and

T = {0, 1}?

Here are some further properties of ANRs.

• An open subset of an ANR is an ANR.

• A metric space with an open cover by ANRs is an ANR. Thus being an ANR is

a local topological property.

• A CW complex is an ANR if and only if it is metrisable = locally finite = first

countable = locally compact.

• A topological space has the homotopy type of an ANR if and only if it has the

homotopy type of a CW complex.15

Whether C (X, Y ) is an ANR is of course a topological question. What is probably

the optimal answer may be deduced from recent work of Smrekar and Yamashita [39].

Proposition 7.2. Let X be a finitely dominated countable CW complex and let Y be a

locally finite countable CW complex. Then C (X, Y ) is an ANR.

A CW complex X is finitely dominated if it has the homotopy type of a compact

space. Equivalently, idX is homotopic to a map with relatively compact image. This is

strictly weaker than having the homotopy type of a finite CW complex.

The surprise in [34] is the discovery that if X is a “well-behaved” Stein manifold

and Y is an Oka manifold, then the parametric Oka property with approximation with

respect to parameter spaces that are finite polyhedra can be used to show that O(X, Y )

has the Dugundji-Lefschetz property. The proof is direct and does not rely on C (X, Y )

being an ANR.

Theorem 7.3. Let X be a Stein manifold with a strictly plurisubharmonic Morse ex-

haustion with finitely many critical points, and let Y be an Oka manifold. Then O(X, Y )

is an ANR.

The assumption on X is satisfied if X is affine algebraic. Namely, algebraically

embed X into Cn for some n. For a generic choice of a ∈ Cn, the smooth strictly

plurisubharmonic exhaustion X → [0,∞), z 7→ ‖z−a‖2, is a Morse function with finitely

many critical points. And then X has the homotopy type of a finite CW complex.

more recently. ANRs are not much in the spotlight nowadays, although they do appear in substantial

recent work in geometric group theory and geometric topology.
15As an amusing consequence, if every open subset of a metric space X has the homotopy type of

an ANR, then every open subset of X is an ANR.
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Corollary 7.4. Let X be an affine algebraic manifold and Y be an Oka manifold. Then

O(X, Y ) is a deformation retract of C (X, Y ).

The assumptions on X can be relaxed. For example, O(C \ N,C∗) is a deformation

retract of C (C \ N,C∗), even though C \ N is not affine algebraic and not even finitely

dominated.

Finally, recall that if X is Stein and Y is Oka, then every path in C (X, Y ) joining

two points in O(X, Y ) can be deformed, keeping the end points fixed, to a path in

O(X, Y ) (Exercise 5.4(a)). When X is affine algebraic, Corollary 7.4 provides a local

or a controlled version of this property. Namely, every neighbourhood U in C (X, Y ) of

a point in O(X, Y ) contains a neighbourhood V such that every path in V joining two

points in O(X, Y ) can be deformed within U , keeping the end points fixed, to a path in

O(X, Y ).

8. Deformations of Oka manifolds

To determine how the Oka property behaves with respect to deformations of compact

complex manifolds is a problem of fundamental importance. Let π : X → B be a

family of compact complex manifolds, that is, a proper holomorphic submersion, and

therefore a smooth fibre bundle, from a complex manifold X onto a complex manifold

B. Since the fibres of π are mutually diffeomorphic, we may view π as giving a variation

of complex structure on a fixed compact smooth manifold. Write Xt for the compact

complex manifold π−1(t), t ∈ B. We would like to say as much as possible about the

set Oπ of those t ∈ B for which Xt is Oka. Here is what is known.

Theorem 8.1. Let π : X → B be a family of compact complex manifolds. Let Oπ be

the set of t ∈ B for which π−1(t) is Oka. Then:

(a) Oπ is Gδ.

(b) Oπ need not be closed.

Part (a) is [33, Corollary 8]. Part (b) is [21, Corollary 5]. It is an open question

whether Oπ is open, that is, whether the Oka property is stable.

By comparison, the set of t ∈ B for which Xt is Kobayashi hyperbolic16 is open [26,

Theorem 3.11.1], but not necessarily closed [4].

In the remainder of this section, we sketch a proof of Theorem 8.1. First, let Y be

a compact complex manifold. We fix a Hermitian metric ω on Y . We use it to filter

sets of holomorphic maps by normal families. For our purposes, the choice of filtration

is immaterial. To get a quantitative handle on the Oka property of Y , we introduce the

following definition.

16A complex manifold X is Kobayashi hyperbolic if there is a metric (a nondegenerate distance

function) d on X such that d(f(z), f(w)) ≤ δ(z, w) for all holomorphic maps f : D → X. Here,

δ denotes the Poincaré distance on D. If X is Kobayashi hyperbolic, then X is Brody hyperbolic,

meaning that every holomorphic map C → X is constant. The converse holds if X is compact. The

theory of Kobayashi hyperbolicity is a rich subfield of complex geometry. See [26]. We can think of the

Oka property as an “anti-hyperbolicity” property. The only manifold that is both Oka and Kobayashi

hyperbolic is the point.
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By a quintuple we mean a quintuple (K,U, V, r, ε), where K is a nonempty compact

subset of Ck, k ≥ 1, U ⊂ V b Ck are neighbourhoods of K, r > 0, and ε > 0. Note that

U and V are assumed to be relatively compact in Ck. For every quintuple (K,U, V, r, ε),

let

σ(K,U, V, r, ε)(Y ) = sup
f :U→Y hol.
‖f∗ω‖U≤r

inf
g:V→Y hol.
d(f,g)<ε on K

‖g∗ω‖V ∈ [0,∞].

Here, ‖·‖ denotes the supremum norm with respect to the Euclidean metric on Ck, and

the distance d(f, g) is with respect to ω.

Clearly, σ(K,U, V, r, ε)(Y ) increases as r increases, ε decreases, U shrinks, and V

expands. Also, σ(K,U, V, r, ε)(Y ) is finite if and only if there is R > 0 such that every

holomorphic map f : U → Y with ‖f ∗ω‖U ≤ r can be approximated to within ε on

K by a holomorphic map g : V → Y with ‖g∗ω‖V ≤ R. Since Y is compact, whether

σ(K,U, V, r, ε)(Y ) is finite for all r and ε with K, U , and V fixed is independent of the

choice of a Hermitian metric on Y .

Proposition 8.2. The compact manifold Y is Oka if and only if σ(K,U, V, r, ε)(Y ) is

finite for every quintuple (K,U, V, r, ε) such that K is convex.

Proof. ⇐ This is easy (and does not require compactness of Y ).

⇒ Suppose σ(K,U, V, r, ε)(Y ) =∞ for some quintuple (K,U, V, r, ε) with K convex.

This means that for every n ∈ N, there is a holomorphic map fn : U → Y with

‖f ∗nω‖U ≤ r, such that every holomorphic map g : V → Y with d(fn, g) < ε on K

(there may be none) has ‖g∗ω‖V > n. Since the family {fn : n ∈ N} is equicontinuous,

by passing to a subsequence, we may assume that (fn) converges locally uniformly on

U to a holomorphic map f : U → Y . Find n0 such that d(f, fn) < ε/2 on K for all

n ≥ n0. If Y was Oka, we could find a holomorphic map g : Ck → Y with d(f, g) < ε/2

on K. Then d(fn, g) < ε on K for n ≥ n0, and ‖g∗ω‖V ≤ n for n large enough: a

contradiction. �

Now let π : X → B be a family of compact complex manifolds and set Xt = π−1(t),

t ∈ B. Take a Hermitian metric ω on X. For a quintuple (K,U, V, r, ε), write σU,V (t)

for σ(K,U, V, r, ε)(Xt), defined using the metric ω|Xt.

The following semicontinuity result [33, Theorem 7] is the key to Theorem 8.1(a).

We omit the proof.

Theorem 8.3. Let (K,U, Vj, r, ε), j = 1, 2, be quintuples such that V1 b V2 and V2 is

Stein. For every t0 ∈ B,

lim sup
t→t0

σU,V1(t) ≤ σU,V2(t0).

To prove Theorem 8.1(a), note that σ is finite for all quintuples (K,U, V, r, ε) with K

convex if and only if σ is finite for a suitable countable set of such quintuples. Namely,

we can take r and 1/ε to be integers, V to be a ball of integer radius centred at the

origin, and in between any compact convex K and a neighbourhood U of K we can fit

the convex hull of a finite set of points with rational coordinates and the interior of a

larger such hull.
25



Fix K,U, r, ε and take an increasing sequence V1 b V2 b · · · b Ck of Stein neigh-

bourhoods of U . Write σn for σU,Vn . It suffices to show that
⋂
{σn < ∞} is Gδ. This

holds since by Theorem 8.3, {σn < ∞} is a neighbourhood of {σn+1 < ∞}. In other

words, for each n ≥ 1, there is an open set Wn with

{σn+1 <∞} ⊂ Wn ⊂ {σn <∞},

so
⋂
{σn <∞} =

⋂
Wn is Gδ.

We now turn to Theorem 8.1(b). The required example comes from the theory

of surfaces of class VII and shows that compact complex surfaces that are Oka can

degenerate to a surface that is far from being Oka.

Class VII in the Enriques-Kodaira classification comprises the non-algebraic compact

complex surfaces of Kodaira dimension κ = −∞. They all have first Betti number

b1 = 1, so they are not Kähler. Minimal surfaces of class VII fall into five mutually

disjoint classes. For second Betti number b2 = 0, we have Hopf surfaces (see Example

5.6(a)) and Inoue surfaces. For b2 ≥ 1, there are Enoki surfaces, Inoue-Hirzebruch

surfaces, and intermediate surfaces; together they form the class of Kato surfaces.17 By

the global spherical shell conjecture, currently proved only for b2 = 1, every minimal

surface of class VII with b2 ≥ 1 is a Kato surface.

In [9, Section 4.3.2], Dloussky constructed a family X → D of compact complex

manifolds such that the central fibre X0 is an Inoue-Hirzebruch surface and the other

fibres Xt, t ∈ D \ {0}, are minimal Enoki surfaces. It may shown that a minimal Enoki

surface is Oka, whereas the universal covering space of an Inoue-Hirzebruch surface

carries a nonconstant negative plurisubharmonic function [21, Section 4].

Exercise 8.4. We say that a complex manifold Y is strongly Liouville if the universal

covering space of Y carries no nonconstant negative plurisubharmonic functions. Show

that if Y is either dominable or C-connected, then Y is strongly Liouville.

It follows that an Inoue-Hirzebruch surface is neither dominable nor C-connected,

and is therefore not Oka.

Thus Dloussky’s example shows that the following properties are in general not closed

in families of compact complex manifolds.

• The Oka property.

• Strong dominability.

• Dominability.

17The only published survey on surfaces of class VII is [37]. In the following, take all surfaces to be

minimal. Hopf surfaces have universal covering space C2 \{0}, so they are Oka, as already noted. Inoue

surfaces have universal covering space C× D, so they are not Oka. The three classes of Kato surfaces

are quite small. Each can be defined by its own rather involved construction that we shall not describe

here. A different construction of Kato produces all of them. Blow up the open ball B in C2 at a point

to obtain an exceptional curve C1. Choose a point p1 on C1, blow up, and obtain an exceptional curve

C2. Do this n ≥ 1 times. Choose a point pn on Cn and a small open ball D centred at pn. Choose

a biholomorphism f of a neighbourhood of ∂B onto a neighbourhood of ∂D that maps ∂B onto ∂D.

Use f to identify ∂B and ∂D in the n-times blown-up B with D removed. This yields a Kato surface

with b2 = n. All Kato surfaces can be constructed in this way. The choices made determine to which

of the three classes the surface belongs.
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• C-connectedness.

• Strong Liouvilleness.

It may be that the only interesting closed anti-hyperbolicity property is the weakest

anti-hyperbolicity property, the property of not being Kobayashi hyperbolic.

Dloussky’s example also shows that the Brody reparametrisation lemma that is used

to show that Kobayashi hyperbolicity is open in families of compact complex manifolds

has no higher-dimensional version that could be used to similarly prove that being the

target of a nondegenerate holomorphic map from C2 is closed in families.
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