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Poisson process

• Negative exponentially distributed inter-arrival times.
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• Negative exponentially distributed inter-arrival times.

• A point process where the distribution of time between
points is a simple phase type distribution having a single
phase.
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Poisson process

• Negative exponentially distributed inter-arrival times.

• A point process where the distribution of time between
points is a simple phase type distribution having a single
phase.

0

X1 X2 X3 X4 X5

Time

where, the Xi ∼ I.I.D. negative exponential

with some parameter λ.
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Poisson process

• Negative exponentially distributed inter-arrival times.

• A point process where the distribution of time between
points is a simple phase type distribution having a single
phase.

0

X1 X2 X3 X4 X5

Time

what if the Xi ∼ I.I.D. phase type

with description (α, T )?
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Phase renewal process

• Infinitesimal generator or Q-matrix description.
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Phase renewal process

• Infinitesimal generator or Q-matrix description.

Consider first the Poisson process

Q =









−λ λ 0 · · ·

0 −λ λ 0

0 0 −λ λ 0
...

. . . . . . . . . . . .









.
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Phase renewal process

• Infinitesimal generator or Q-matrix description.

Consider first the Poisson process

Q =









−λ λ 0 · · ·

0 −λ λ 0

0 0 −λ λ 0
...

. . . . . . . . . . . .









,

where λ is the arrival rate from the single phase.
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Phase renewal process

• Infinitesimal generator or Q-matrix description.

Then the more general phase type renewal process

Q =










T T 0α 0 0 · · ·

0 T T 0α 0 · · ·

0 0 T T 0α
. . .

...
. . . . . . . . .










,

where T 0 is a column of rates corresponding to the arrival rate

out of each phase of the matrix T .
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Phase renewal process

• Infinitesimal generator or Q-matrix description.

Then the more general phase type renewal process

Q =










T T 0α 0 0 · · ·

0 T T 0α 0 · · ·

0 0 T T 0α
. . .

...
. . . . . . . . .










,

where T 0 is a column of rates corresponding to the arrival rate

out of each phase of the matrix T . More formally T 0 = −Te,

where e is a column of ones of the appropriate dimension.
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Markovian Arrival Process Notation
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Markovian Arrival Process Notation
It is convenient to describe such an arrival process as follows.
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Markovian Arrival Process Notation
It is convenient to describe such an arrival process as follows.

• Let D0 be the m × m matrix which governs those
transitions which do not correspond to an arrival.

MASCOS Tutorial Workshop on Matrix-Analytic Methods in Stochastic Modelling – p.4/30



Markovian Arrival Process Notation
It is convenient to describe such an arrival process as follows.

• Let D0 be the m × m matrix which governs those
transitions which do not correspond to an arrival.

• Let D1 be the m × m matrix which governs those
transitions which do correspond to an arrival.
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Markovian Arrival Process Notation
It is convenient to describe such an arrival process as follows.

• Let D0 be the m × m matrix which governs those
transitions which do not correspond to an arrival.

• Let D1 be the m × m matrix which governs those
transitions which do correspond to an arrival.

This gives us a complete description from which we can write

Q =










D0 D1 0 0 · · ·

0 D0 D1 0 · · ·

0 0 D0 D1
. . .

...
. . . . . . . . .










.
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Markovian Arrival Process Notation
It is convenient to describe such an arrival process as follows.

• Let D0 be the m × m matrix which governs those
transitions which do not correspond to an arrival.

• Let D1 be the m × m matrix which governs those
transitions which do correspond to an arrival.

This gives us a complete description from which we can write

Q =










D0 D1 0 0 · · ·

0 D0 D1 0 · · ·

0 0 D0 D1
. . .

...
. . . . . . . . .










.

This is MAP notation, where D0 = T and D1 = T 0α.
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MAPs

• The phase renewal processes form an important
sub-class of MAPs.
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MAPs

• The phase renewal processes form an important
sub-class of MAPs.

• With a little thought, one can imagine much more
general processes than renewal processes as having a
MAP description.
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MAPs

• The phase renewal processes form an important
sub-class of MAPs.

• With a little thought, one can imagine much more
general processes than renewal processes as having a
MAP description.

• The following properties of the MAP are considered
from this more general sense.
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MAPs
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sub-class of MAPs.

• With a little thought, one can imagine much more
general processes than renewal processes as having a
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from this more general sense.

• The matrices D0 and D1 have the following properties.
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MAPs

• The phase renewal processes form an important
sub-class of MAPs.

• With a little thought, one can imagine much more
general processes than renewal processes as having a
MAP description.

• The following properties of the MAP are considered
from this more general sense.

• The matrices D0 and D1 have the following properties.

[D0]ii < 0 for all i,
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MAPs

• The phase renewal processes form an important
sub-class of MAPs.

• With a little thought, one can imagine much more
general processes than renewal processes as having a
MAP description.

• The following properties of the MAP are considered
from this more general sense.

• The matrices D0 and D1 have the following properties.

[D0]ii < 0 for all i,

[D0]ij ≥ 0 for all i 6= j
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MAPs

• The phase renewal processes form an important
sub-class of MAPs.

• With a little thought, one can imagine much more
general processes than renewal processes as having a
MAP description.

• The following properties of the MAP are considered
from this more general sense.

• The matrices D0 and D1 have the following properties.

[D0]ii < 0 for all i,

[D0]ij ≥ 0 for all i 6= j ,

[D1]ij ≥ 0 for all i, j
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MAPs

• The phase renewal processes form an important
sub-class of MAPs.

• With a little thought, one can imagine much more
general processes than renewal processes as having a
MAP description.

• The following properties of the MAP are considered
from this more general sense.

• The matrices D0 and D1 have the following properties.

[D0]ii < 0 for all i,

[D0]ij ≥ 0 for all i 6= j ,

[D1]ij ≥ 0 for all i, j

and De = (D0 + D1)e = 0 .
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The matrix D0
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The matrix D0

• has strictly negative diagonal entries
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The matrix D0

• has strictly negative diagonal entries

• has non-negative off-diagonal entries
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The matrix D0

• has strictly negative diagonal entries

• has non-negative off-diagonal entries

• Row sums less than or equal to 0
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The matrix D0

• has strictly negative diagonal entries

• has non-negative off-diagonal entries

• Row sums less than or equal to 0

• is non-singular
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The matrix D0

• has strictly negative diagonal entries

• has non-negative off-diagonal entries

• Row sums less than or equal to 0

• is non-singular

• so that
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The matrix D0

• has strictly negative diagonal entries

• has non-negative off-diagonal entries

• Row sums less than or equal to 0

• is non-singular

• so that

• all of it’s eigenvalues have negative real parts :
(Bellman)
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The matrix D0

• has strictly negative diagonal entries

• has non-negative off-diagonal entries

• Row sums less than or equal to 0

• is non-singular

• so that

• all of it’s eigenvalues have negative real parts :
(Bellman)

• inter-arrival times are finite with probability one :
(Neuts)
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The matrix D0

• has strictly negative diagonal entries

• has non-negative off-diagonal entries

• Row sums less than or equal to 0

• is non-singular

• so that

• all of it’s eigenvalues have negative real parts :
(Bellman)

• inter-arrival times are finite with probability one :
(Neuts)

• the process does not terminate.
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The generator matrix or Q-matrix D
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The generator matrix or Q-matrix D

• The matrix D is the generator matrix of the MAP phase
process.
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The generator matrix or Q-matrix D

• The matrix D is the generator matrix of the MAP phase
process.

• It has an associated vector π such that πD = 0 and
πe = 1 with [π]i ≥ 0 for all i.
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The generator matrix or Q-matrix D

• The matrix D is the generator matrix of the MAP phase
process.

• It has an associated vector π such that πD = 0 and
πe = 1 with [π]i ≥ 0 for all i.

• This vector is known as the stationary distribution of
phase of the MAP .
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The generator matrix or Q-matrix D

• The matrix D is the generator matrix of the MAP phase
process.

• It has an associated vector π such that πD = 0 and
πe = 1 with [π]i ≥ 0 for all i.

• This vector is known as the stationary distribution of
phase of the MAP .

• Recalling that the matrix D1 governs those transitions
which correspond to arrivals,
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The generator matrix or Q-matrix D

• The matrix D is the generator matrix of the MAP phase
process.

• It has an associated vector π such that πD = 0 and
πe = 1 with [π]i ≥ 0 for all i.

• This vector is known as the stationary distribution of
phase of the MAP .

• Recalling that the matrix D1 governs those transitions
which correspond to arrivals,
• in light of the information given by the vector π,
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The generator matrix or Q-matrix D

• The matrix D is the generator matrix of the MAP phase
process.

• It has an associated vector π such that πD = 0 and
πe = 1 with [π]i ≥ 0 for all i.

• This vector is known as the stationary distribution of
phase of the MAP .

• Recalling that the matrix D1 governs those transitions
which correspond to arrivals,
• in light of the information given by the vector π,
• the process of arrivals has the following fundamental

arrival rate

λ = πD1e .
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The two dimensional representation
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The two dimensional representation

• Consider an m-dimensional matrix pair D0 and D1

MASCOS Tutorial Workshop on Matrix-Analytic Methods in Stochastic Modelling – p.8/30



The two dimensional representation

• Consider an m-dimensional matrix pair D0 and D1

• If we consider the Q-matrix for the evolution of the
MAP , essentially we have a two-dimensional Markov
process {Nt, Jt}.
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The two dimensional representation

• Consider an m-dimensional matrix pair D0 and D1

• If we consider the Q-matrix for the evolution of the
MAP , essentially we have a two-dimensional Markov
process {Nt, Jt}.
• where, the {Nt} process keeps track of the number

of arrivals (The level); in particular, Nt denotes the
number of arrivals during the interval (0, t].
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The two dimensional representation

• Consider an m-dimensional matrix pair D0 and D1

• If we consider the Q-matrix for the evolution of the
MAP , essentially we have a two-dimensional Markov
process {Nt, Jt}.
• where, the {Nt} process keeps track of the number

of arrivals (The level); in particular, Nt denotes the
number of arrivals during the interval (0, t].

• and the {Jt} process keeps track of the phase of the
MAP . (The phase)
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The two dimensional representation

• Consider an m-dimensional matrix pair D0 and D1

• If we consider the Q-matrix for the evolution of the
MAP , essentially we have a two-dimensional Markov
process {Nt, Jt}.
• where, the {Nt} process keeps track of the number

of arrivals (The level); in particular, Nt denotes the
number of arrivals during the interval (0, t].

• and the {Jt} process keeps track of the phase of the
MAP . (The phase)

This has state space

{(0, 1), (0, 2), . . . , (0,m), (1, 1), (1, 2), . . . , (1,m), . . .}.
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The two dimensional representation

• Consider an m-dimensional matrix pair D0 and D1

• If we consider the Q-matrix for the evolution of the
MAP , essentially we have a two-dimensional Markov
process {Nt, Jt}.
• where, the {Nt} process keeps track of the number

of arrivals (The level); in particular, Nt denotes the
number of arrivals during the interval (0, t].

• and the {Jt} process keeps track of the phase of the
MAP . (The phase)

This has state space

{(0, 1), (0, 2), . . . , (0,m)
︸ ︷︷ ︸

, (1, 1), (1, 2), . . . , (1,m), . . .}.

Level zero
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The two dimensional representation

• Consider an m-dimensional matrix pair D0 and D1

• If we consider the Q-matrix for the evolution of the
MAP , essentially we have a two-dimensional Markov
process {Nt, Jt}.
• where, the {Nt} process keeps track of the number

of arrivals (The level); in particular, Nt denotes the
number of arrivals during the interval (0, t].

• and the {Jt} process keeps track of the phase of the
MAP . (The phase)

This has state space

{(0, 1), (0, 2), . . . , (0,m), (1, 1), (1, 2), . . . , (1,m)
︸ ︷︷ ︸

, . . .}.

Level one
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Poisson process

• Negative exponentially distributed inter-arrival times.
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Poisson process

• Negative exponentially distributed inter-arrival times.

• F (t) = 1 − e−λt, where

T = −λ and α = 1.
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Poisson process

• Negative exponentially distributed inter-arrival times.

• F (t) = 1 − e−λt, where

T = −λ and α = 1.

• What does it look like?
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Poisson process

• Negative exponentially distributed inter-arrival times.

• F (t) = 1 − e−λt, where

T = −λ and α = 1.

• What does it look like?

Point process of 100 arrivals
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Erlang distributed inter-arrival times
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Erlang distributed inter-arrival times

• En distributed inter-arrival times.
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Erlang distributed inter-arrival times

• En distributed inter-arrival times.

• F (t) =
∫ t

x=0 λe−λx (λx)n−1

(n−1)! dx.
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Erlang distributed inter-arrival times

• En distributed inter-arrival times.

• F (t) =
∫ t

x=0 λe−λx (λx)n−1

(n−1)! dx.

T =









−λ λ 0

0 −λ
. . .

...
. . . λ

0 0 −λ









and α = (1, 0, . . . , 0) .
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Erlang distributed inter-arrival times

• En distributed inter-arrival times.

• F (t) =
∫ t

x=0 λe−λx (λx)n−1

(n−1)! dx.

T =









−λ λ 0

0 −λ
. . .

...
. . . λ

0 0 −λ









and α = (1, 0, . . . , 0) .

• What does this look like?
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Erlang distributed inter-arrival times

• En distributed inter-arrival times.

• F (t) =
∫ t

x=0 λe−λx (λx)n−1

(n−1)! dx.

T =









−λ λ 0

0 −λ
. . .

...
. . . λ

0 0 −λ









and α = (1, 0, . . . , 0) .

• What does this look like?

Point process of 100 arrivals for E50
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Hyper-exponentially distributed
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Hyper-exponentially distributed

• Inter-arrival times ∼ F (t) =
∑n

j=1 αj

(
1 − e−λjt

)
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Hyper-exponentially distributed

• Inter-arrival times ∼ F (t) =
∑n

j=1 αj

(
1 − e−λjt

)

T =









−λ1 0 . . . 0

0 −λ2
...

...
. . . 0

0 −λn









and α = (α1, . . . , αn) .
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Hyper-exponentially distributed

• Inter-arrival times ∼ F (t) =
∑n

j=1 αj

(
1 − e−λjt

)

T =









−λ1 0 . . . 0

0 −λ2
...

...
. . . 0

0 −λn









and α = (α1, . . . , αn) .

• What does this look like?
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Hyper-exponentially distributed

• Inter-arrival times ∼ F (t) =
∑n

j=1 αj

(
1 − e−λjt

)

T =









−λ1 0 . . . 0

0 −λ2
...

...
. . . 0

0 −λn









and α = (α1, . . . , αn) .

• What does this look like?

Point process of 100 arrivals for H2 :

F (t) = 10
11(1 − e−10t) + 1

11(1 − e−t)
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Non-renewal processes
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Non-renewal processes

• We alluded to more general MAPs while describing
renewal processes as MAPs .
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Non-renewal processes

• We alluded to more general MAPs while describing
renewal processes as MAPs .

• The feature of the renewal processes is that every time
an arrival occurs, the process immediately restarts with
the exact same distribution of phase.
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Non-renewal processes

• We alluded to more general MAPs while describing
renewal processes as MAPs .

• The feature of the renewal processes is that every time
an arrival occurs, the process immediately restarts with
the exact same distribution of phase.

• The non-renewal MAPs will be introduced by way of an
important example.
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Non-renewal processes

• We alluded to more general MAPs while describing
renewal processes as MAPs .

• The feature of the renewal processes is that every time
an arrival occurs, the process immediately restarts with
the exact same distribution of phase.

• The non-renewal MAPs will be introduced by way of an
important example.

• Furthermore MAPs as we will also see are a sub-class of
what are known as Batch Markovian Arrival Processes
(BMAPs).
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Markov modulated Poisson process.
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Markov modulated Poisson process.

• Let’s now consider an m state (phase) continuous time
Markov process {Jt}, with Q-matrix R.
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Markov modulated Poisson process.

• Let’s now consider an m state (phase) continuous time
Markov process {Jt}, with Q-matrix R.

• Arrivals are“modulated” in such a way that during a
time period in which the process is in state k, customers
may arrive according to a Poisson process with rate λk,
k ∈ {1, . . . ,m}, independent of everything else.
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Markov modulated Poisson process.

• Let’s now consider an m state (phase) continuous time
Markov process {Jt}, with Q-matrix R.

• Arrivals are“modulated” in such a way that during a
time period in which the process is in state k, customers
may arrive according to a Poisson process with rate λk,
k ∈ {1, . . . ,m}, independent of everything else.

• The corresponding arrival process {Nt} is called a
Markov modulated Poisson process (MMPP).
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Markov modulated Poisson process.

• Let’s now consider an m state (phase) continuous time
Markov process {Jt}, with Q-matrix R.

• Arrivals are“modulated” in such a way that during a
time period in which the process is in state k, customers
may arrive according to a Poisson process with rate λk,
k ∈ {1, . . . ,m}, independent of everything else.

• The corresponding arrival process {Nt} is called a
Markov modulated Poisson process (MMPP).

• Immediately after an arrival in this case we do not
restart the process with a fixed distribution of phase α,
but remain in the same phase from which the arrival
occurred.
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Markov modulated Poisson process.

• Let’s now consider an m state (phase) continuous time
Markov process {Jt}, with Q-matrix R.

• Arrivals are“modulated” in such a way that during a
time period in which the process is in state k, customers
may arrive according to a Poisson process with rate λk,
k ∈ {1, . . . ,m}, independent of everything else.

• The corresponding arrival process {Nt} is called a
Markov modulated Poisson process (MMPP).

• Immediately after an arrival in this case we do not
restart the process with a fixed distribution of phase α,
but remain in the same phase from which the arrival
occurred.

• Hence in general we do not have a renewal process.
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MAP notation for the MMPP .
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be written using the matrices
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MAP notation for the MMPP .

• The corresponding Q-matrix for the arrival process may
be written using the matrices
• D0 = R − Λ
• and D1 = Λ,
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MAP notation for the MMPP .

• The corresponding Q-matrix for the arrival process may
be written using the matrices
• D0 = R − Λ
• and D1 = Λ,

• where R is the Q-matrix of {Jt}, and
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MAP notation for the MMPP .

• The corresponding Q-matrix for the arrival process may
be written using the matrices
• D0 = R − Λ
• and D1 = Λ,

• where R is the Q-matrix of {Jt}, and

Λ =









λ1 0 · · · 0

0 λ2
. . .

...
. . . . . .

0 λm









.
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A special MMPP .
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A special MMPP .

• An Interrupted (or switched) Poisson Process (IPP)
essentially has a switch which jumps between ON and
OFF, staying ON (OFF) for a exponentially distributed
time with parameter γ(ω).
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A special MMPP .

• An Interrupted (or switched) Poisson Process (IPP)
essentially has a switch which jumps between ON and
OFF, staying ON (OFF) for a exponentially distributed
time with parameter γ(ω).

• While the switch is ON, a Poisson process of arrivals
(rate τ) occurs, but this stream is interrupted when the
switch moves to OFF.
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OFF, staying ON (OFF) for a exponentially distributed
time with parameter γ(ω).

• While the switch is ON, a Poisson process of arrivals
(rate τ) occurs, but this stream is interrupted when the
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• If Nt denotes the number of arrivals in (0, t], then {Nt}
is an MMPP of the form described before with
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A special MMPP .

• An Interrupted (or switched) Poisson Process (IPP)
essentially has a switch which jumps between ON and
OFF, staying ON (OFF) for a exponentially distributed
time with parameter γ(ω).

• While the switch is ON, a Poisson process of arrivals
(rate τ) occurs, but this stream is interrupted when the
switch moves to OFF.

• If Nt denotes the number of arrivals in (0, t], then {Nt}
is an MMPP of the form described before with

R =

[

−ω ω

γ −γ

]

and Λ =

[

0 0

0 τ

]

.
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A special renewal process.
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A special renewal process.
• The previous interrupted (or switched) Poisson Process

(IPP) is also a phase type renewal process, with
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A special renewal process.
• The previous interrupted (or switched) Poisson Process

(IPP) is also a phase type renewal process, with

T =

[

−ω ω

γ −γ − τ

]

and α = (0, 1),
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A special renewal process.
• The previous interrupted (or switched) Poisson Process

(IPP) is also a phase type renewal process, with

T =

[

−ω ω

γ −γ − τ

]

and α = (0, 1),

since we only have arrivals from one state.
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A special renewal process.
• The previous interrupted (or switched) Poisson Process

(IPP) is also a phase type renewal process, with

T =

[

−ω ω

γ −γ − τ

]

and α = (0, 1),

since we only have arrivals from one state.

• What does it look like with ω = 1, γ = 1 and τ = 9?
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A special renewal process.
• The previous interrupted (or switched) Poisson Process

(IPP) is also a phase type renewal process, with

T =

[

−ω ω

γ −γ − τ

]

and α = (0, 1),

since we only have arrivals from one state.

• What does it look like with ω = 1, γ = 1 and τ = 9?

Point process of 100 arrivals for the IPP
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A special renewal process.
• The previous interrupted (or switched) Poisson Process

(IPP) is also a phase type renewal process, with

T =

[

−ω ω

γ −γ − τ

]

and α = (0, 1),

since we only have arrivals from one state.

• What does it look like with ω = 1, γ = 1 and τ = 9?

Point process of 100 arrivals for the IPP

• In general MMPPs are not renewal processes.
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A bursty non-renewal MMPP .
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A bursty non-renewal MMPP .
• Consider the following non-renewal MMPP
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A bursty non-renewal MMPP .
• Consider the following non-renewal MMPP

R =

[

−1 1

1 −1

]

and Λ =

[

9 0

0 1

]

.
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• What does this look like?
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MASCOS Tutorial Workshop on Matrix-Analytic Methods in Stochastic Modelling – p.17/30



A bursty non-renewal MMPP .
• Consider the following non-renewal MMPP

R =

[

−1 1

1 −1

]

and Λ =

[

9 0

0 1

]

.

• What does this look like?

Point process of 100 arrivals for the MMPP

• MMPPs have been used for modelling such things as
packetised voice. (Heffes and Lucantoni)
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A comparison of forms.

The Poisson process (random).
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A comparison of forms.

Erlang inter-arrival time distribution (regular).
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A comparison of forms.

hyper-exponential inter-arrival time distribution (bursty).
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A comparison of forms.

IPP renewal process (very bursty).
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A comparison of forms.

MMPP non-renewal process (very bursty).
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The last two bursty processes

MASCOS Tutorial Workshop on Matrix-Analytic Methods in Stochastic Modelling – p.19/30



The last two bursty processes
• The last two processes appear similar as would be

expected by their MMPP description.
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The last two bursty processes
• The last two processes appear similar as would be

expected by their MMPP description.

• The essential difference is that the IPP is a renewal
process and so we have for example that the length of a
burst can be shown to be geometrically distributed.
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The last two bursty processes
• The last two processes appear similar as would be

expected by their MMPP description.

• The essential difference is that the IPP is a renewal
process and so we have for example that the length of a
burst can be shown to be geometrically distributed.

• That is, upon entering the ON state from whence
arrivals occur,
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The last two bursty processes
• The last two processes appear similar as would be

expected by their MMPP description.

• The essential difference is that the IPP is a renewal
process and so we have for example that the length of a
burst can be shown to be geometrically distributed.

• That is, upon entering the ON state from whence
arrivals occur,
• we then can have an arrival with probability 0.9 and

immediately re-enter the ON state
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The last two bursty processes
• The last two processes appear similar as would be

expected by their MMPP description.

• The essential difference is that the IPP is a renewal
process and so we have for example that the length of a
burst can be shown to be geometrically distributed.

• That is, upon entering the ON state from whence
arrivals occur,
• we then can have an arrival with probability 0.9 and

immediately re-enter the ON state
• or the burst concludes with probability 0.1 and we

enter the OFF state.
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The last two bursty processes
• The last two processes appear similar as would be

expected by their MMPP description.

• The essential difference is that the IPP is a renewal
process and so we have for example that the length of a
burst can be shown to be geometrically distributed.

• That is, upon entering the ON state from whence
arrivals occur,
• we then can have an arrival with probability 0.9 and

immediately re-enter the ON state
• or the burst concludes with probability 0.1 and we

enter the OFF state.

• Hence the probability of a burst of length n is given by
p(n) = 0.1(0.9)n for n ∈ {0, 1, 2, . . .}.
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The last two bursty processes
• The last two processes appear similar as would be

expected by their MMPP description.

• The essential difference is that the IPP is a renewal
process and so we have for example that the length of a
burst can be shown to be geometrically distributed.

• That is, upon entering the ON state from whence
arrivals occur,
• we then can have an arrival with probability 0.9 and

immediately re-enter the ON state
• or the burst concludes with probability 0.1 and we

enter the OFF state.

• Hence the probability of a burst of length n is given by
p(n) = 0.1(0.9)n for n ∈ {0, 1, 2, . . .}.

• The MMPP does not have this property.
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Another example
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Another example

• Consider three phase type distributions
(α, T ), (β, S) and (γ, R).
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Another example

• Consider three phase type distributions
(α, T ), (β, S) and (γ, R).

• Assume that we choose successive inter-arrival times
according to a Markov chain P ,
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Another example

• Consider three phase type distributions
(α, T ), (β, S) and (γ, R).

• Assume that we choose successive inter-arrival times
according to a Markov chain P ,

• Then in MAP notation we have
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Another example

• Consider three phase type distributions
(α, T ), (β, S) and (γ, R).

• Assume that we choose successive inter-arrival times
according to a Markov chain P ,

• Then in MAP notation we have

D0 =






T 0 0

0 S 0

0 0 R





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Another example

• Consider three phase type distributions
(α, T ), (β, S) and (γ, R).

• Assume that we choose successive inter-arrival times
according to a Markov chain P ,

• Then in MAP notation we have

D0 =






T 0 0

0 S 0

0 0 R




 , D1 =






p1,1T
0α p1,2T

0β p1,3T
0γ

p2,1S
0α p2,2S

0β p2,3S
0γ

p3,1R
0α p3,2R

0β p3,3R
0γ





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Another example

• Consider three phase type distributions
(α, T ), (β, S) and (γ, R).

• Assume that we choose successive inter-arrival times
according to a Markov chain P ,

• Then in MAP notation we have

D0 =






T 0 0

0 S 0

0 0 R




 , D1 =






p1,1T
0α p1,2T

0β p1,3T
0γ

p2,1S
0α p2,2S

0β p2,3S
0γ

p3,1R
0α p3,2R

0β p3,3R
0γ






• This could be a renewal process or otherwise depending
on the form of the phase type distributions and the
matrix P .
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What does this look like?
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What does this look like?

• Consider

(α, T ) = (1,−100), (β, S) =

(

(1, 0),

[

−2 2

0 −2

])

and

(γ, R) =

(

(0.25, 0.75),

[

−0.4 0.2

0.3 −0.6

])

.
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What does this look like?

• Consider

(α, T ) = (1,−100), (β, S) =

(

(1, 0),

[

−2 2

0 −2

])

and

(γ, R) =

(

(0.25, 0.75),

[

−0.4 0.2

0.3 −0.6

])

.

• P =






0.8 0.1 0.1

0.1 0.8 0.1

0.1 0.1 0.8




,

MASCOS Tutorial Workshop on Matrix-Analytic Methods in Stochastic Modelling – p.21/30



What does this look like?

• Consider

(α, T ) = (1,−100), (β, S) =

(

(1, 0),

[

−2 2

0 −2

])

and

(γ, R) =

(

(0.25, 0.75),

[

−0.4 0.2

0.3 −0.6

])

.

• P =






0.8 0.1 0.1

0.1 0.8 0.1

0.1 0.1 0.8




,

• Then we have
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What does this look like?

• Consider

(α, T ) = (1,−100), (β, S) =

(

(1, 0),

[

−2 2

0 −2

])

and

(γ, R) =

(

(0.25, 0.75),

[

−0.4 0.2

0.3 −0.6

])

.

• P =






0.8 0.1 0.1

0.1 0.8 0.1

0.1 0.1 0.8




,

• Then we have
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What does this tell us?
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What does this tell us?
• We have used simple intrinsically non-bursty processes to

yield what appears to be a very bursty process.
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What does this tell us?
• We have used simple intrinsically non-bursty processes to

yield what appears to be a very bursty process.

• We have demonstrated a MAP , which can clearly
represent different behaviour over different time scales.
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What does this tell us?
• We have used simple intrinsically non-bursty processes to

yield what appears to be a very bursty process.

• We have demonstrated a MAP , which can clearly
represent different behaviour over different time scales.

• MAPs are a highly tractable modelling tool as will be
shown in the following sessions.

MASCOS Tutorial Workshop on Matrix-Analytic Methods in Stochastic Modelling – p.22/30



What does this tell us?
• We have used simple intrinsically non-bursty processes to

yield what appears to be a very bursty process.

• We have demonstrated a MAP , which can clearly
represent different behaviour over different time scales.

• MAPs are a highly tractable modelling tool as will be
shown in the following sessions.

• They are therefore highly desirable for modelling.
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What does this tell us?
• We have used simple intrinsically non-bursty processes to

yield what appears to be a very bursty process.

• We have demonstrated a MAP , which can clearly
represent different behaviour over different time scales.

• MAPs are a highly tractable modelling tool as will be
shown in the following sessions.

• They are therefore highly desirable for modelling.

• There exist some fitting mechanisms such as those
talked about in the previous session, which fit phase type
distributions to data sets that can be used as renewal
approximations to the empirical data.
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What does this tell us?
• We have used simple intrinsically non-bursty processes to

yield what appears to be a very bursty process.

• We have demonstrated a MAP , which can clearly
represent different behaviour over different time scales.

• MAPs are a highly tractable modelling tool as will be
shown in the following sessions.

• They are therefore highly desirable for modelling.

• There exist some fitting mechanisms such as those
talked about in the previous session, which fit phase type
distributions to data sets that can be used as renewal
approximations to the empirical data.

• The MAP however can enable much more than that, as
it allows dependencies to exist between successive
arrivals.
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Even more capability: the BMAP

MASCOS Tutorial Workshop on Matrix-Analytic Methods in Stochastic Modelling – p.23/30



Even more capability: the BMAP
• The MAP is a sub-class of the batch Markovian arrival

process or BMAP .
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Even more capability: the BMAP
• The MAP is a sub-class of the batch Markovian arrival

process or BMAP .

• However, it is convenient here to describe the BMAP as
an extension of the MAP , which allows batch arrivals at
an arrival epoch rather than just single arrivals.
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• The MAP is a sub-class of the batch Markovian arrival

process or BMAP .

• However, it is convenient here to describe the BMAP as
an extension of the MAP , which allows batch arrivals at
an arrival epoch rather than just single arrivals.

• The BMAP is essentially characterised by matrices
D0, D1, D2, . . . Dk, . . ., with the following properties
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Even more capability: the BMAP
• The MAP is a sub-class of the batch Markovian arrival

process or BMAP .

• However, it is convenient here to describe the BMAP as
an extension of the MAP , which allows batch arrivals at
an arrival epoch rather than just single arrivals.

• The BMAP is essentially characterised by matrices
D0, D1, D2, . . . Dk, . . ., with the following properties

[D0]ii < 0 for all i,
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Even more capability: the BMAP
• The MAP is a sub-class of the batch Markovian arrival

process or BMAP .

• However, it is convenient here to describe the BMAP as
an extension of the MAP , which allows batch arrivals at
an arrival epoch rather than just single arrivals.

• The BMAP is essentially characterised by matrices
D0, D1, D2, . . . Dk, . . ., with the following properties

[D0]ii < 0 for all i,

[D0]ij ≥ 0 for all i 6= j
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Even more capability: the BMAP
• The MAP is a sub-class of the batch Markovian arrival

process or BMAP .

• However, it is convenient here to describe the BMAP as
an extension of the MAP , which allows batch arrivals at
an arrival epoch rather than just single arrivals.

• The BMAP is essentially characterised by matrices
D0, D1, D2, . . . Dk, . . ., with the following properties

[D0]ii < 0 for all i,

[D0]ij ≥ 0 for all i 6= j ,

[Dk]ij ≥ 0 for all i, j, k
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Even more capability: the BMAP
• The MAP is a sub-class of the batch Markovian arrival

process or BMAP .

• However, it is convenient here to describe the BMAP as
an extension of the MAP , which allows batch arrivals at
an arrival epoch rather than just single arrivals.

• The BMAP is essentially characterised by matrices
D0, D1, D2, . . . Dk, . . ., with the following properties

[D0]ii < 0 for all i,

[D0]ij ≥ 0 for all i 6= j ,

[Dk]ij ≥ 0 for all i, j, k

and De = (
∑

k

Dk)e = 0 .
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Even more capability: the BMAP
• The MAP is a sub-class of the batch Markovian arrival

process or BMAP .

• However, it is convenient here to describe the BMAP as
an extension of the MAP , which allows batch arrivals at
an arrival epoch rather than just single arrivals.

• The BMAP is essentially characterised by matrices
D0, D1, D2, . . . Dk, . . ., with the following properties

[D0]ii < 0 for all i,

[D0]ij ≥ 0 for all i 6= j ,

[Dk]ij ≥ 0 for all i, j, k

and De = (
∑

k

Dk)e = 0 .

Note: the matrix Dk governs those arrivals of batch size k.
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Q-matrix for the BMAP
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Q-matrix for the BMAP

• The evolution of a BMAP can be modelled by the
following Q-matrix
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Q-matrix for the BMAP

• The evolution of a BMAP can be modelled by the
following Q-matrix

Q =










D0 D1 D2 D3 · · ·

0 D0 D1 D2 · · ·

0 0 D0 D1
. . .

...
. . . . . . . . .










.
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Q-matrix for the BMAP

• The evolution of a BMAP can be modelled by the
following Q-matrix

Q =










D0 D1 D2 D3 · · ·

0 D0 D1 D2 · · ·

0 0 D0 D1
. . .

...
. . . . . . . . .










.

• The MAP is then trivially a BMAP with Dk ≡ 0 for all
k ≥ 2.
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The Batch Poisson process
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The Batch Poisson process
• Negative exponentially distributed inter-arrival times

between batches as for the Poisson process.
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The Batch Poisson process
• Negative exponentially distributed inter-arrival times

between batches as for the Poisson process.

• Successive batch sizes have probability mass function
{pk, k ≥ 1}
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The Batch Poisson process
• Negative exponentially distributed inter-arrival times

between batches as for the Poisson process.

• Successive batch sizes have probability mass function
{pk, k ≥ 1}

• Hence we have the following Q-matrix
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The Batch Poisson process
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• where λ is the arrival rate of batches.
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An MMPP with i.i.d. batch arrivals
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D0 =






−4.0 1.0 0.2

0.12 −0.25 0.005

0.7 0.3 −5.0




 , D1 =





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0 0.125 0

0 0 4.0
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with i.i.d. batch arrivals governed by probability vector
(0.1, 0.2, 0.1, 0.2, 0.15, 0.25)
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
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




2.8 0 0

0 0.125 0

0 0 4.0




 ,

with i.i.d. batch arrivals governed by probability vector
(0.1, 0.2, 0.1, 0.2, 0.15, 0.25)

Hence the Q-matrix looks like







D0 0.1D1 0.2D1 0.1D1 0.2D1 0.15D1 0.25D1 0 . . .

0 D0 0.1D1 0.2D1 0.1D1 0.2D1 0.15D1 0.25D1
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What does it look like?

The arrival epochs.
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the ith independent BMAP , for each k ≥ 0. (Note that
any number of these matrices could be identically zero.)
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Some other notes
• The BMAP is closed under superposition.

• That is, the superposition of n independent BMAPs is
also a BMAP .

If Dk(i) is the matrix governing the batches of size k for

the ith independent BMAP , for each k ≥ 0. (Note that
any number of these matrices could be identically zero.)

Then the Dk matrix for the superposition is given by

Dk = Dk(1) ⊕ Dk(2) ⊕ Dk(3) ⊕ · · · ⊕ Dk(n), for k ≥ 0 ,

where ⊕ is the Kronecker sum.

• This construction could for instance be used to model
multiplexed traffic streams.(Choudhury,Lucantoni and
Whitt)
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Some different considerations
• We have only considered processes homogeneous in the

level.

• That is, the MAP descriptors are unchanged as {N(t)}
changes.

• It is also possible to have a non-homogeneous process,
where there exists a dependency on the level.

• The simplest case here would be the non-homogeneous
Poisson process.

That is,

Q =









−λ1 λ1 0 · · ·

0 −λ2 λ2 0

0 0 −λ3 λ3 0
...

. . . . . . . . . . . .









,

where λi is the arrival rate at level i.
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• Also as in the case of phase type distributions, MAPs

can similarly have a variety of representations.
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• For example the following three MAPs are just complex
representations of a Poisson process of rate 1 under
stationary conditions.
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The uniqueness of representation
• Also as in the case of phase type distributions, MAPs

can similarly have a variety of representations.

• For example the following three MAPs are just complex
representations of a Poisson process of rate 1 under
stationary conditions.

D0 =






−2 1
2

1
2

1 −4 1
1
2 1 −2




 , D1 =






1
2 0 1

2

1 1 0

0 0 1
2





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The uniqueness of representation
• Also as in the case of phase type distributions, MAPs

can similarly have a variety of representations.

• For example the following three MAPs are just complex
representations of a Poisson process of rate 1 under
stationary conditions.

D0 =






−4 2 1

5 −8 2

1 2 −4




 , D1 =






1 0 0

0 0 1

0 0 1





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The uniqueness of representation
• Also as in the case of phase type distributions, MAPs

can similarly have a variety of representations.

• For example the following three MAPs are just complex
representations of a Poisson process of rate 1 under
stationary conditions.

D0 =






−3 3 0

0 −6 4

0 0 −1




 , D1 =






0 0 0

1 1 0

(1
2) (1

2) 0





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The uniqueness of representation
• Also as in the case of phase type distributions, MAPs

can similarly have a variety of representations.

• For example the following three MAPs are just complex
representations of a Poisson process of rate 1 under
stationary conditions.

D0 =






−3 3 0

0 −6 4

0 0 −1




 , D1 =






0 0 0

1 1 0
1
2

1
2 0






• This adds another dimension to the fitting of MAPs ,
and adds to the reasons as to why it is a potentially
difficult exercise. Particularly when it comes to
minimising the order of representation.

MASCOS Tutorial Workshop on Matrix-Analytic Methods in Stochastic Modelling – p.30/30


	Markovian Point Processes
	Poisson process
	Phase renewal process
	Markovian Arrival Process Notation
	MAPs 
	The matrix $D_0$
	The generator matrix or Q-matrix $D$
	The two dimensional representation
	Poisson process
	Erlang distributed inter-arrival times
	Hyper-exponentially distributed 
	Non-renewal processes
	Markov modulated Poisson process.
	MAP / notation for the MMPP /.
	A special MMPP /.
	A special renewal process.
	A bursty non-renewal MMPP /.
	A comparison of forms.
	The last two bursty processes
	Another example
	What does this look like?
	What does this tell us?
	Even more capability: the BMAP 
	Q-matrix for the BMAP 
	The Batch Poisson process
	An MMPP / with i.i.d. batch arrivals
	What does it look like?
	Some other notes
	Some different considerations
	The uniqueness of representation

