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String theory in a background flux

e (Super) string theory is a candidate for the Theory of
Everything, in which strings are the fundamental objects.

(Super) string theory does not currently have a complete
definition. What we have instead are a set of partial definitions.

¢ 1 five manifestations of (super) string theories + SUGRA:
type I, type Il (A, B), heterotic (E8 x E8, SO(32)), SUGRA;
A question naturally arises given this state of affairs.

@ Is each partial definition consistent with the others, via
string dualities? J

We will be concerned with 2 of the 6 known manifestations of
(super) string theory, viz. type IIA and type |IB string theories.
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The idea of T-duality

Symmetries are critically important to physical modelling
because they relate the outcomes of experiments for different
observers, and constrain the number of possible models one
can write down.

The mathematical modelling of symmetries have led to many
important advances, e.g. the theory of groups and algebras.

Apart from the familiar symmetries such as Lorentz invariance,
which relates observers in different reference frames, string
theory has some peculiar symmetries known as dualities.

These are less well understood and their description requires
new mathematics to study global aspects of a particular duality,
known as Target space duality or T-duality.



T-duality - The case of circle bundles

In [BEM], we isolated the geometry in the case when E is a
principal T-bundle over M

T — E

di (1)

M

classified by its first Chern class ¢;(E) € H3(M,Z), with H-flux
H e H3(E,Z).



T-duality - The case of circle bundles

In [BEM], we isolated the geometry in the case when E is a
principal T-bundle over M

T — E

di (1)

M

classified by its first Chern class ¢;(E) € H?3(M,Z), with H-flux
H e H3(E, 7).
The T-dual is another principal T-bundle over M, denoted by E,

T —— E
l (@)
M

which has first Chern class ¢;(E) = m.H.
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The Gysin sequence for E enables us to define a T-dual H-flux
H e H3(E, 7), satisfying

ci(E)=#.H, (3)\

N.B. H is not fixed by this data, since any integer degree 3
cohomology class on M that is pulled back to £ also satisfies
(3). However, [FI] is determined uniquely upon imposing the
condition [H] = [H] on the correspondence space E xy E.

Thus a slogan for T-duality for circle bundles is the exchange,

\ background H-flux < Chern class J

The surprising new phenomenon that we discovered is that
there is a change in topology when either the background
H-flux, or the Chern class is topologically nontrivial.



T-duality in a background flux - isomorphism of

charges

Remark

It turns out that T-duality gives rise to a map inducing
degree-shifting isomorphisms between the H-twisted
cohomology of E and H-twisted cohomology of E and also
between their twisted K-theories, where charges of RR-fields
live.

It is a vast generalization of the smooth analog of the
Fourier-Mukai transform = a geometric Fourier transform.

If the T-duality map is assumed to be an isometry, then it also
takes radius R to radius 1/R, a salient feature of T-duality.
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T-duality in a background flux - Examples

Lens space L(p,1) = S®/Zp, where
S ={(21,22) € C2: |22 + |2]2 = 1} & Zp acts on S® by

exp(2nik/p).(z1,22) = (21, exp(2nik/p)z), k=0,1,...,p—1.

L(p, 1) is the total space of the circle bundle overS? with Chern
class equal to p times the generator of H?(S?,Z) = Z.

Then L(p, 1) is never homeomorphic to L(q, 1) whenever p # q.
Nevertheless

(L(p, 1), H =q) and (L(gq.1),H=p).

are T-dual pairs! Thus T-duality is the interchange

p<=q




T-duality in a background flux - Examples

Since L(1,1) = S2 & L(0,1) = S? x S', we get the T-dual pairs:
(xS H=1) and (S® H=0) )

A picture (suppressing one dimension) illustrating this is the
doughnut universe (H = 1) & the spherical universe (H = 0)

(-auality




Preliminaries

Dixmier-Douady theory asserts that isomorphism classes of
locally trivial algebra bundles KCp with fiber the algebra of
compact operators K and structure group PU = U/T over a
manifold X are in bijective correspondence with H3(X, Z).
Moreover since K ® K = I, such algebra bundles form a group
the infinite Brauer group, Br(X) (isomorphic to H3(X,Z).)
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Dixmier-Douady theory asserts that isomorphism classes of
locally trivial algebra bundles KCp with fiber the algebra of
compact operators K and structure group PU = U/T over a
manifold X are in bijective correspondence with H3(X, Z).
Moreover since K ® K = I, such algebra bundles form a group
the infinite Brauer group, Br(X) (isomorphic to H3(X,Z).)
This is proved by noticing that U is contactible in the weak
operator topology so PU is a BT = K(Z,2) since T = K(Z, 1).
Therefore BPU = K(Z, 3). Therefore principal PU bundles P
are classified up to isomorphism by

[X, BPU] = [X,K(Z,3)] = H3(X, Z).

Then the associated bundle £p = (P x K)/PU and
H = DD(Kp) € H3(X,Z) is its Dixmier-Douady invariant.
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Equivalently, o is a representation of the Heisenberg group H in
this context, i.e. the central extension,

1—-U1)—->H—-U)XZ—1.

So P xx X x, PGL(L2(U(1)) is a principal PU(L2(U(1))-bundle
over X with DD invariant o U .

The associated bundle of compact operators over X is
P x x X % ag(o) K(L2(U(1)) with DD invariant o U S.



Preliminaries

Twisted K-theory. Consider the C*-algebra of continuous
sections, C(X, Kp) - we will also denote this algebra by

CT(X, H), where H= DD(Kp). By fiat, this algebra is locally
Morita equivalent to C(X) (i.e. locally physically equivalent) but
not globally Morita equivalent to it if [H] # 0.

Thus CT(X, H) is a mildly noncommutative spacetime
algebra in the presence of an H-flux.



Preliminaries

Twisted K-theory. Consider the C*-algebra of continuous
sections, C(X, Kp) - we will also denote this algebra by

CT(X, H), where H= DD(Kp). By fiat, this algebra is locally
Morita equivalent to C(X) (i.e. locally physically equivalent) but
not globally Morita equivalent to it if [H] # 0.

Thus CT(X, H) is a mildly noncommutative spacetime
algebra in the presence of an H-flux.

Twisted K-theory, denoted by K*(X, H), was defined by J.
Rosenberg as the K-theory of CT(X, H). K*(X, H) is a module
over K°(X) and possesses many nice functorial properties.



Preliminaries

Twisted K-theory. Consider the C*-algebra of continuous
sections, C(X, Kp) - we will also denote this algebra by

CT(X, H), where H= DD(Kp). By fiat, this algebra is locally
Morita equivalent to C(X) (i.e. locally physically equivalent) but
not globally Morita equivalent to it if [H] # 0.

Thus CT(X, H) is a mildly noncommutative spacetime
algebra in the presence of an H-flux.

Twisted K-theory, denoted by K*(X, H), was defined by J.
Rosenberg as the K-theory of CT(X, H). K*(X, H) is a module
over K°(X) and possesses many nice functorial properties.

Charges of RR-fields in an H-flux lie in the K-theory of
CT(X, H), iein twisted K-theory K*(X, H).
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Let A be a C*-algebra, and « an action of a locally compact
group G on A. Then the crossed product A x, G is the norm
completion of C¢(G, A) with product given by the convolution
product on G and the formal relation (taking into account the
action of G on A)

gag '=ag(a), gc GacA

If G is abelian, then on the crossed product A x,, G, there is an
action & of the Pontryagin dual group G given by multiplication
by G on functions on G, with formal relations:-

va=ay v.gy ' =(y,g)gforallyc G,ge G,acA. )




3 basic principles from C*-algebras

@ Let G be alocally compact group and K, H are normal
subgroups of G. Then the Rieffel-Green theorem states
that the following algebras are Morita equivalent.

C(K\G) x H, and C(G/H) x K |
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3 basic principles from C*-algebras

@ Let G be alocally compact group and K, H are normal
subgroups of G. Then the Rieffel-Green theorem states
that the following algebras are Morita equivalent.

C(K\G) x H, and C(G/H) x K |

@ If Gis a vector group acting on A, then
Connes-Thom isomorphism theorem states that

K*(Ax G) = K**(A), |

where r = dim(G).
© If Gis an abelian group acting on A, then Takai duality
says that there is a canonical isomorphism,

ANQGN&G%AQQIC. J
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Let A belong to some class € of C*-algebras, and A — T(A) be
a covariant functor on € satisfying the following properties:

Q (A T(A)) are KK-equivalent.

@ (A, T(T(A))) are Morita equivalent.

Then we call T(A) an abstract T-dual of A.

eg. Let Abe a G-C*-algebra, where G=R". Set T(A) = Ax G.
Then T(A) is an abstract T-dual of A.
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Comnsider the principal circle bundle

T —— E

d

and H a closed, integral 3-form on E.

Then there is a continuous trace C*-algebra CT(E, H) with
spectrum equal to E and Dixmier-Douady invariant equal to
[H] € H3(E, Z).

Using a connection on the associated principal PU bundle, the
R action on E lifts to an R action on CT(E, H) (uniquely up to
exterior equivalence, cf. Raeburn-Rosenberg), and one has a
commutative diagram,



spec(CT(E, H) x R)

spec(CT(E, H))



spec(CT(E,H) x Z)

0

spec(CT(E, H)) spec(CT(E, H) x R) (4)

%

spec(CT(E, H))/R

\/

That is, Raeburn-Rosenberg show that the C*-algebras
CT(E,H) x Z and CT(E, H) x R are also continuous trace
C*-algebras with spec(CT(E, H) x R) = E a circle bundle over
M = spec(CT(E, H))/R, such that 01( ) = m«[H] and the
Dixmier-Douady invariant of CT(E, H) x R is [H] € H3(E, Z),
such that ¢;(E) = #,[H], and spec(CT(E,H) x Z) = E xy E is
the correspondence space.
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in this case can be a purely noncommutative manifold, as will
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This recasts T-duality for principal circle bundles completely in
terms of noncommutative geometry.

This reformulation turns out to be essential when considering
T-duality of higher rank torus bundles with H-flux, as the T-dual
in this case can be a purely noncommutative manifold, as will
be discussed later i.e. it is possible that there can be no
commutative spacetime with flux that is a T-dual in the higher
rank case.

However the tools of noncommutative geometry that were
discussed earlier can however be used to determine the T-dual.



