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Abstract
Homogenization and other multiscale modelling techniques allow us to build efficient mathematical model for simulat-

ing systems such as materials with complicated microstructure. But the modelling rarely addresses systematical method
to derive boundary conditions for macroscale model. In this paper, we build a smooth macroscale model for a two-layer
one-dimensional diffusion system with rapidly varying diffusivity and finite scale separation. I will discuss how to derive
macroscopic boundary conditions for some one dimensional discrete diffusion problems. The result can be applied to a range
of multiscale modelling problems including wave equations.

The microscale diffusion problem
We have the a discrete diffusion system to model as show in the following graph.
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x Figure 1: The discrete diffusion has a periodicity of two.

The associated microscale equations are

h2∂un,0
∂t

= an−1,0(un−1,0 − un,0) + an,0(un+1,0 − un,0) + an(un,1 − un,0),

h2∂un,1
∂t

= an−1,1(un−1,1 − un,1) + an,1(un+1,1 − un,1) + an(un,0 − un,1),

with Dirichlet boundary condition u0,0, u0,1, uN,0 and uN,1.

• uij are the temperature at position (i, j).

• h are the distance between two adjacent nodes.

• aij are the lateral diffusivities and ak are the cross diffusivities. These diffusivities are all a two-periodic.

We need more accurate macroscale model and boundary conditions
which allow infinitesimally small scale separation
Our objectives are the following:

1. Create a macroscale model ∂U∂t = A∂
2U
∂x2

of the original microscale dynamics for ’mean’ U(x, t).

2. Propose a Macroscale boundary condition in the form of U +B∂U
∂x = C(t) at the left and right boundaries.

We provide a systematic way to derive constant coefficientB and spatial constant C(t) which can be carried
to a more complicated problem such as wave equations. We proved coefficient B is inO(h) and C(t) at one
end is a weighted average of two boundary conditions at that end.

3. The model and boundary conditions are valid for finite scale separation. The microscale periodicity cannot
be infinitesimally small because of computationally feasibility. If our methodology requires scale separa-
tion to be infinitesimally small, then the domain has to be infinitely long [1]. But we have a finite domain in
the boundary value problem. So methods which require infinitesimally small is not helping our boundary
value problem.

4. Compare our result with the boundary conditions other researchers generally used. We showed that our
model is better for problems with finite inter nodes distance h.
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Figure 2: We derive a macroscale model and its corresponding macroscale boundary conditions.

Systematic methods provide a framework for complex problems
Although the diffusion problem is relatively simple, we want our methodology to be general and systematic
so that we have use a similar approach to more complicated problems. To have a macroscale model, we need
macroscale equations corresponding to the microscale diffusion equations and macroscale boundary condi-
tions. We define macroscale variable as the average of every four adjacent nodes in a cell as shown below.
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Figure 3: Macroscale variable U is chosen to be the average of a cell.

Centre manifold theory provides a iterative scheme to derive macroscale evolution

We applied Fourier Transform to discretise the eigenspectrum of the diffusion system, and then we are able
to use centre manifold theory to create a macroscale model for the diffusion system. We showed the diffusion
system has a eigenvalue of zero, which corresponding to the slow manifold. We proved that all the other
eigenvalues are real and negative providing all the diffusivities constants are positive. These real and nega-
tive eigenvalues are corresponding to the centre stable manifold, and they are decaying to the slow manifold
exponentially quickly. Centre manifold theory gives a time evolution of macroscale model as

∂U

∂t
=
a0a1

(
a0,1 + a0,0

) (
a1,1 + a1,0

)
+ (a0 + a1)

∑1
j=0

∑1
i=0 a0,0a0,1a1,0a1,1/ai,j

a1a0(a0,0 + a0,1 + a1,0 + a1,1) + (a1 + a0)(a1,1 + a0,1)(a1,0 + a0,0)

∂2U

∂x2
.

Local analysis by spatial evolution deliver sound macroscale boundary conditions

I applied a method of spatial evolution adopted by Roberts [2] to propose the macroscale boundary conditions.
I defined the spatial evolution mapping T as the mapping from the four nodes from nth cell ~un to the four
nodes in (n + 1)th cell ~un+1 for arbitrary non-negative integer n as shown below.
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Figure 4: Mapping T maps nth cell ~un to (n + 1)th cell ~un+1.

Computation of this mapping T involves considering equilibrium equations at four interior nodes within two
adjacent cells. Let v1, v2, v3 and v4 be the eigenvectors of mapping T with corresponding eigenvalues µ1 < 1
(decaying mode), µ4 > 1 (growing mode) and µ2 = µ3 = 1. It turns out v3 is a generalised eigenvector. Then
I write the nodes in first cell as a linear combination of the eigenvectors ~u0 = c1v1 + c2v2 + c3v3 + c4v4.
But c4 = 0 because otherwise the right boundary will be exponentially large. So the second cell is
~u1 = c1v1 + c2v2 + c3(v2 + v3).

We force that macroscale variables should only know the global behaviour and do not recognise the bound-
ary layers. So the macroscale variable should not have any component in the direction of decay mode v1. With
this knowledge, we write macroscale variables at the very left boundary as a weighted sum of the mean of
eigenvector v̄2 and mean of generalised eigenvector v̄3. Let vij be the jth component of vector vi and adjoin
the two microscale boundary conditions with the macroscale equations

v11 v21 v31
v12 v22 v32

0 v̄2 (v̄3 − 1
4v̄2)

0 0 1
2hv̄2


c1
c2
c3

 =


u00
u01

U(x = 0)
∂U
∂x

∣∣∣
x=0

 . (1)

Let G be the left hand side 4 × 3 matrix in systems of equations (1). Compute the basis vector ~z =
(z1, z2, 1, z4) for null space of GT and pre-multiply ~zT to system of equations (1), we have the macroscale
boundary condition

U + z4
∂U

∂x
= −z1u00 − z2u01.

Numerically we find z4 is significant when the internode spacing h is not too small and we verify this by
showing z4 ∼ h. We also showed z3 + z4 = 1, which means the right hand side of boundary condition () is a
weighted average of the microscale boundary conditions.

We use a similar approach to derive the boundary conditions at the right end by setting up a different coordi-
nate system looking from right to left.

Numerical results verify analysis
We ran numerous numerical example to verify our analytical result and they agree well. I will show one exam-
ple with the domain from 0 to 2π and internodes distance h = 2π/25. The lateral diffusivities in this example
are a0,0 = 0.2061, a0,1 = 0.2969, a1,0 = 0.9456 and a1,1 = 1.1463. The cross diffusivities are a0 = 0.1209
and a1 = 0.1255. The microscale boundary conditions are u0,0 = 1.0224, u0,1 = 0, uN,0 = 3.1921 and
uN,1 = 1.5643.
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Figure 5: Comparison between macroscale and microscale solution

Figure 5 illustrates a pair of accurate macroscale boundary conditions. The red crosses are the temperatures
u at the top layer and the blue crosses are those at the bottom layer. The green curve is the microscale solution
to the diffusion problem and the blue curve are our macroscale model. The macroscale solution fits the global
behaviour well while ignoring the boundary layers, which is the desired outcome.

The methodology is valid for more complicated problems such as waves
We would like to see the possibility of extend our methodology to higher dimensions and other problems. We
are currently extend this methodology to wave equations. Another particular area we would like to consider
afterwards is beams.
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