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1 Introduction

This report proposes a Bayesian method which moderates the Raw School
Assessment using Examination Marks. The model simply finds a middle
point, so called change point, and connects this point to the top and bottom
scores.

The model was built a while ago, and it was found to be unstable to fit by
maximum likelihood. However, the recent purchase of the Beast makes a
Bayesian simulation of the model finishes in seconds.

2 Log odds of EM over MSA follows Laplace
distribution

Figure 1 shows that the log odds log EM
MSA follows a Laplace distribution with

mean zero and scale s = 0.01251. Hence I model the Moderated School
Assessment as

EM = MSAeε, (1)

where Laplacian noiseε has a density function

f(ε) =
1

2s
exp

(
−
|ε|

s

)
. (2)

Noiseε models the variation of students’ performance, depending on the
status on the Examination day. Taking logarithm of model (1) gives

ε = log EM− logMSA. (3)

1The s = 0.0125 is learned by Bayesian Monte Carlo model. Maximum likelihood
estimator of s is 0.0122. A mixture model gives s = 0.0121. These estimates are all
consistent and 0.0125is used from this point.
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Figure 1: The log odds of Examination Mark and Moderated School As-
sessment follows a Laplace distribution. The blue line is the density plot
for Laplace distribution with mean zero and scale 0.125. The boxes are
the histogram of the Log odds for all courses and all school in the years
2016 and 2017. This plot excludes all students who rank one in both Raw
School Assessment and Examination Markbecause they will have zero log
odds. Fitting with the Maximum likelihood method excludes these students.
When fitting Bayesian and Mixture models, the proportion of students who
have zero log odds were modelled as a parameter.

Chen Chen, 01/02/2019



3 Model MSA 4

3 Model MSA

I model the moderated school assessment by a linear function

MSA(SA) = a× SA+ b, a > 0. (4)

where intercept b models a shift from teacher’s marking scale to the examiner’s
making scale and slopea models a scaling factor (i.e. stretch or compress).
A very small scaling factor a reflect the teacher likes to give very extreme
Raw School Assessment, and large scaling factora reflect the teacher gives
students similar marks.

However, the same teacher may usually have different scales for capable and
poor students. Let i = 1, 2, . . . ,N to denote the student whose SA is the ith
highest. Define i = τ to be the cut-off between capable and poor. I propose
a change point model

MSA(SA) =

{
a1 × SA+ b1, SA < SAτ
a2 × SA+ b2, SA ≥ SAτ

. (5)

Due to political reasons, the student with highest Raw School Assessment
will have a Moderated School Assessment equals to the highest Examination
Mark in the group. Thus I set

b2 = maxEMi − a2SA1.

Also, to ensure continuity at i = τ, I set

b1 = b2 + (a2 − a1)SAτ.

4 Frequentist approach is unstable

The frequentist approach of fitting the change point model (5) is by maximum
likelihood. Multiplying density function (2), the likelihood is
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L(a1, a2, τ) =
1

2NsN
exp

(
−

∑N
i=1 |εi|

s

)
.

Substitute equation (3) into this likelihood

L(a1, a2, τ) =
1

2NsN
exp

(
−

∑N
i=1 |log EMi − logMSAi|

s

)
.

Substitute the change point model (5)

L(a1, a2, τ) =
1

2NsN
exp

(
−
1

s

τ−1∑
i=1

|log EMi − log (a1 × SAi + b1)|

)

× exp

(
−
1

s

N∑
i=τ

|log EMi − log (a2 × SAi + b2)|

)
. (6)

Finding the maximum of this likelihood function is equivalent to minimise
the loss function
τ−1∑
i=1

|log EMi − log (a1 × SAi + b1)|+
N∑
i=τ

|log EMi − log (a2 × SAi + b2)| .

This loss function is known as the mean absolute error loss. Minimising
this loss function by an optimisation package gives the maximum likelihood
estimator of parametersa1, a2 and τ.

Mean absolute error is known to be very robust to outliers, that is, students
performed atypically in the exam. It is robust because the corresponding
distribution, Laplace distribution, has fat tails. However, this loss function
tends unstable result because of the non-smoothness of absolute value. Un-
stableness means that a small variation in student marks may cause a large
jump in the parametersa1, a2 and τ, especially when the number of student
in a school group is small. This is not desired because the Moderated School
Assessment of one student should not depend heavily on another student.
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5 Bayesian Prior and model

To produce a more stable result, I use the Bayesian approach to simulate a
change point model (5).

A Bayesian approach requires us to supply Prior distributions for paramet-
ersa1,a2 and τ. Prior distributions can be informative and uninformative.
For example, for every school group, the change point τ can be at different
positions, depending on the teacher. Hence I specify change point τ to have
equal probability for all student

p(τ = i) =
1

N
for all i = 1, 2, . . . ,N. (7)

However, nesa has plenty of information about the slopes a1 and a2. Firstly,
on average, teacher’s scale should be similar to Examiner’s scale, so E(ai) ≈ 1
for i = 1, 2. Also, Dr. Bob proposed that a good model should avoid slope
smaller than 0.1. So p(ai < 0.1) should be close to zero.

More systematically, I calculate the prior distributions for the slopesa1 and
a2 from historical data by bootstrapping. Fitting 5000 different school groups
in the year of 2016 and 2017 with replacement, I estimate the prior for a1
and a2 as

log(a1) ∼ N(−0.01, 1.5) and log(a2) ∼ N(0.02, 1.5). (8)

For these two distributions, E(a1) ≈ 0.99 and E(a2) ≈ 1.02. Probabilities
p(a1 < 0.1) ≈ 0.0632 and p(a2 < 0.1) ≈ 0.0607. Prior distributions (7), (8)
and likelihood (6) fully specifies the Bayesian change point model. I implement
a Gibbs sampler to simulate this model by Openbugs.
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6 Bayes factor decides the number of change
points

I use Bayes factor to systematically assess whether such a point exists. The
idea is very straightforward: I calculate the Bayesian likelihood of the simple
linear model (4) and the change point model (5). I use the model with a larger
likelihood. I implement the same approach to assess whether a second change
point is required. Among over 100 simulations, I found no statistical evidence
for the second change point for any of the school groups.

7 Visualisation of Bayesian results

Examples included in the slides attached visualises the new moderation results.
To generate further examples, please run the code Bayesian_change_point_total_V1.R.
The code randomly selects a course and produce moderation result. Openbugs
is required. Also, one needs to install R packages BRugs,mrfDepth,outliers.
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