Dynamical system based macroscale models of multiphase materials

Chen Chen Supervisors: Tony Roberts, Judith Bunder and Tony Miller

> The University of Adelaide The School of Mathematical Sciences

6th December 2015

Chen Chen, The University of Adelaide

3

イロト 不得 トイヨト イヨト

Overview

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − つへ⊙

Overview

Chen Chen, The University of Adelaide

Wave equation in a two-strand material

$$\begin{split} \rho_{m,0} \frac{\partial^2 u_{m,0}}{\partial t^2} &= \kappa_{m-1,0} (u_{m-1,0} - u_{m,0}) + \kappa_{m,0} (u_{m+1,0} - u_{m,0}) + \kappa_m (u_{m,1} - u_{m,0}), \\ \rho_{m,1} \frac{\partial^2 u_{m,1}}{\partial t^2} &= \kappa_{m-1,1} (u_{m-1,1} - u_{m,1}) + \kappa_m (u_{m+1,1} - u_{m,1}) + \kappa_m (u_{m,0} - u_{m,1}). \end{split}$$

- spatial domain $m = 1, 2, \ldots, N 1$,
- ρ_m and κ_m are two periodic horizontally,
- with Dirichlet boundary conditions, i.e. specified $u_{0,i}$ and $u_{N,i}$.

(日) (同) (日) (日) (日)

Simulation

The domain is $0 \le x \le \pi$, $0 \le t \le 35$. The boundary values are $u_{0,0} = 0$, $u_{0,1} = 1$, $u_{N,0} = 5$ and $u_{N,1} = 10$. Initial values are $u_{m,0} = 0.5 - 2e^{-x^2/3}$ and $u_{m,1} = 0.3 - 3e^{-x/3}$.

Chen Chen, The University of Adelaide

Homogenization theory derives macroscale model

$$\bar{\rho}\frac{\partial^2 U(x,t)}{\partial t^2} = \bar{\kappa}\frac{\partial^2 U(x,t)}{\partial x^2}.$$

• Spatial domain [0, L], equivalent density is the arithmetic mean

$$\bar{
ho} = rac{1}{4} \sum_{i=0}^{1} \sum_{j=0}^{1}
ho_{i,j}$$

and equivalent spring constant is a kind of harmonic mean

$$\bar{\kappa} = \left[\kappa_0 \kappa_1 \left(\kappa_{0,1} + \kappa_{0,0}\right) \left(\kappa_{1,1} + \kappa_{1,0}\right) + \left(\kappa_0 + \kappa_1\right) \sum_{j=0}^1 \sum_{i=0}^1 \kappa_{0,0} \kappa_{0,1} \kappa_{1,0} \kappa_{1,1} / \kappa_{i,j} \right] / D$$

where

$$D = \kappa_1 \kappa_0 (\kappa_{0,0} + \kappa_{0,1} + \kappa_{1,0} + \kappa_{1,1}) + (\kappa_1 + \kappa_0) (\kappa_{1,1} + \kappa_{0,1}) (\kappa_{1,0} + \kappa_{0,0})$$

Chen Chen, The University of Adelaide

5/14

イロト 不得下 イヨト イヨト 二日

Homogenization theory derives macroscale model

$$ar{o}rac{\partial^2 U(x,t)}{\partial t^2} = ar{\kappa} rac{\partial^2 U(x,t)}{\partial x^2}.$$

• Spatial domain [0, L], equivalent density is the arithmetic mean

$$\bar{
ho} = rac{1}{4} \sum_{i=0}^{1} \sum_{j=0}^{1}
ho_{i,j}$$

and equivalent spring constant is a kind of harmonic mean

$$\bar{\kappa} = \left[\kappa_0 \kappa_1 \left(\kappa_{0,1} + \kappa_{0,0}\right) \left(\kappa_{1,1} + \kappa_{1,0}\right) + \left(\kappa_0 + \kappa_1\right) \sum_{j=0}^1 \sum_{i=0}^1 \kappa_{0,0} \kappa_{0,1} \kappa_{1,0} \kappa_{1,1} / \kappa_{i,j} \right] / D$$

where

$$D = \kappa_1 \kappa_0 (\kappa_{0,0} + \kappa_{0,1} + \kappa_{1,0} + \kappa_{1,1}) + (\kappa_1 + \kappa_0) (\kappa_{1,1} + \kappa_{0,1}) (\kappa_{1,0} + \kappa_{0,0})$$

• with Robin boundary conditions $U(0, t) + g_0 \frac{\partial U}{\partial x}\Big|_{x=0} = B_0 \text{ and } U(L, t) + g_L \frac{\partial U}{\partial x}\Big|_{x=L} = B_L, \quad \text{if } t \in \mathbb{C}$

Assuming quasi-steady state gives cell mapping

where

$$A = \begin{bmatrix} \kappa_{0,0} & 0 & -\kappa_{0,0} - \kappa_{1,0} - \kappa_{1} & \kappa_{1} \\ 0 & \kappa_{0,1} & \kappa_{1} & -\kappa_{0,1} - \kappa_{1,1} - \kappa_{1} \\ 0 & 0 & \kappa_{1,0} & 0 \\ 0 & 0 & 0 & \kappa_{1,1} \end{bmatrix},$$

$$B = \begin{bmatrix} \kappa_{1,0} & 0 & 0 & 0 \\ 0 & \kappa_{1,1} & 0 & 0 \\ -\kappa_{1,0} - \kappa_{0,0} - \kappa_{0} & \kappa_{0} & \kappa_{0,0} & 0 \\ \kappa_{0} & -\kappa_{1,1} - \kappa_{0,1} - \kappa_{0} & 0 & \kappa_{0,1} \end{bmatrix}.$$

Chen Chen, The University of Adelaide

イロト 不得下 イヨト イヨト 二日

Chen Chen, The University of Adelaide

7/14

3

$$\vec{u}_{\nu+1} = -B^{-1}A\vec{u}_{\nu},$$

$$\vec{u}_{0} = \underbrace{c_{1}\vec{v}_{1}}_{\mu_{1}<1} + \underbrace{c_{2}\vec{v}_{2}}_{\mu_{2}=1} + \underbrace{c_{3}\vec{v}_{3}}_{\mu_{3}=1} + \underbrace{c_{4}\vec{v}_{4}}_{\mu_{4}>1},$$

where $\vec{v_i}$ is the eigenvectors of mapping matrix $-B^{-1}A$.

イロト 不得 トイヨト イヨト

Cell mapping derives macroscale model and boundary conditions

- Write U and $\frac{\partial U}{\partial x}$ as a function of \vec{u}_{ν} .
- Boundary condition comes from considering the basis vector of the null space. イロト 不得下 イヨト イヨト 二日

Chen Chen, The University of Adelaide

Use Levenberg–Marquardt algorithm check the improved boundary conditions

- This method captures out of equilibrium.
- Require solve the full microscale problem once and solve the macroscale problem many times.

$$\min_{g_0,g_L} |\vec{v}_{macro} - \vec{v}_{micro}|^2$$

- The theory of Rayleigh quotient justifies eigenvectors are more sensitive.
- This algorithm verifies the derived boundary conditions. Chen Chen, The University of Adelaide
 9/14

Numerical results

Chen Chen, The University of Adelaide

10/14

Mapping methods generalise to more complicated problems

- Extend to any number of strands.
- Any periodicity.
- The method can be applied to non-linear problems.
- The algebraically complicated part of derivation can be done in Maple.

(日) (同) (日) (日) (日)

Other type of microscale boundary conditions

microscale boundary conditionsmacroscale boundary conditionsDirichlet,
$$u = 0$$
Robin, $U + g \frac{\partial U}{\partial x} = 0$ Neumann, $\frac{\partial u}{\partial x} = 0$ the same Neumann, $\frac{\partial U}{\partial x} = 0$ Robin, $u + g_1 \frac{\partial u}{\partial x} = 0$ a different Robin, $U + g_2 \frac{\partial U}{\partial x} = 0$

Chen Chen, The University of Adelaide

イロト 不得下 イヨト イヨト 二日

Non-linear problems

- Assume Quasi-equilibrium and regard the problem as a spatial evolution.
- Deduce centre, stable and unstable manifold.
- Set the coefficients of unstable model to zero.
- Project the boundary conditions from centre stable manifold to centre manifold.

イロト 不得 トイヨト イヨト 二日

Future research

- Consider highly oscillatory initial conditions.
- Extend to three-dimensional multiphase materials.
- Model near-periodic multiphase materials.

イロト 不得 トイヨト イヨト 二日