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Mathematics:
An Experimental Science
By Herbert S. Wilf

1 The Mathematician’s Telescope

Albert Einstein once said “You can confirm a the-
ory with experiment, but no path leads from exper-
iment to theory.” But that was before computers.
In mathematical research now, there’s a very clear
path of that kind. It begins with wondering what
a particular situation looks like in detail; it contin-
ues with some computer experiments to show the
structure of that situation for a selection of small
values of the parameters of the problem; and then
comes the human part: the mathematician gazes
at the computer output, attempting to see and to
codify some patterns. If this seems fruitful, then
the final step requires the mathematician to prove
that the apparent pattern is really there, and is not
a shimmering mirage above the desert sands.

A computer is used by a pure mathematician
in much the same way that a telescope is used
by a theoretical astronomer. It shows us “what’s
out there.” Neither the computer nor the telescope
can provide a theoretical explanation for what it
sees, but both of them extend the reach of the
mind by providing numerous examples that might
otherwise be hidden, and from which one has some
chance of perceiving, and then demonstrating, the
existence of patterns, or universal laws.

In this article I would like to show you some
examples of this process at work. Naturally the
focus will be on examples in which some degree of
success has been realized, rather than on the much
more numerous cases where no pattern could be
perceived, at least by my eyes. Since my work is
mainly in combinatorics and discrete mathemat-
ics, the focus will also be on those areas of math-
ematics. It should not be inferred that experimen-
tal methods are not used in other areas; only that I
don’t know those applications well enough to write
about them.

In one short article we cannot even begin do jus-
tice to the richly varied, broad, and deep achieve-
ments of experimental mathematics. For further
reading, see the journal Experimental Mathemat-
ics and the books by Borwein and Bailey (2003)
and Borwein, Bailey, and Girgensohn (2004).

In the following sections we give first a brief
description of some of the useful tools in the
armament of experimental mathematics, and then
some successful examples of the method, if it is a
method. The examples have been chosen subject
to fairly severe restrictions:

(1) the use of computer exploration was vital to
the success of the project; and

(2) the outcome of the effort was the discovery of
a new theorem in pure mathematics.

I must apologize for including several examples
from my own work, but those are the ones with
which I am most familiar.

2 Some of the Tools in the Toolbox

2.1 Computer Algebra Systems

The mathematician who enjoys using comput-
ers will find an enormous number of programs
and packages available, beginning with the two
major computer algebra systems (CASs), Maple
and Mathematica. These programs can provide so
much assistance to a working mathematician that
they must be regarded as essential pieces of one’s
professional armamentarium. They are extremely
user-friendly and capable.

Typically one uses a CAS in interactive mode,
meaning that you type in a one-line command and
the program responds with its output, then you
type in another line, etc. This modus operandi will
suffice for many purposes but for best results one
should learn the programming languages that are
embedded in these packages. With a little know-
ledge of programming, one can ask the computer
to look at larger and larger cases until something
nice happens, then take the result and use another
package to learn something else, and so forth.
Many are the times when I have written little pro-
grams in Mathematica or Maple and then gone
away for the weekend leaving the computer run-
ning and searching for interesting phenomena.

2.2 Neil Sloane’s Database of
Integer Sequences

Aside from a CAS, another indispensable tool for
experimentally inclined mathematicians, particu-
larly for combinatorialists, is Neil Sloane’s “On-
Line Encyclopedia of Integer Sequences,” which
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is on the web at 〈www.research.att.com/˜njas〉.
At present, this contains nearly 100000 integer
sequences and has full search capabilities. A great
deal of information is given for each sequence.

Suppose that for each positive integer n you have
an associated set of objects that you want to count.
You might, for example, be trying to determine the
number of sets of size n with some given property,
or you might wish to know how many prime divi-
sors n has (which is the same as counting the set of
these prime divisors). Suppose further that you’ve
found the answer for n = 1, 2, 3, . . . , 10, say, but
you haven’t been able to find any simple formula
for the general answer.

Here’s a concrete example. Suppose you’re work-
ing on such a problem, and the answers that you
get for n = 1, 2, . . . , 10 are 1, 1, 1, 1, 2, 3, 6, 11,
23, 47. The next step should be to look online
to see if the human race has encountered your
sequence before. You might find nothing at all, or
you might find that the result that you’d been hop-
ing for has long since been known, or you might
find that your sequence is mysteriously the same
as another sequence that arose in quite a different
context. In the latter case, an example of which is
described below in Section 3, something interest-
ing will surely happen next. If you haven’t tried
this before, do look up the little example sequence
above, and see what it represents.

2.3 Krattenthaler’s package Rate

A very helpful Mathematica package for guessing
the form of hypergeometric sequences has been
written by Christian Krattenthaler and is available
from his website. The name of the package is Rate
(rot’-eh), which is the German word for “guess.”

To say what a hypergeometric sequence is let’s
first recall that a rational function of n is a quotient
of two polynomials in n, like (3n2 + 1)/(n3 + 4). A
hypergeometric sequence {tn}n�0 is one in which
the ratio tn+1/tn is a rational function of the
index n. For example, if tn =

(
n
7

)
then tn+1/tn

works out to be (n + 1)/(n − 6), which is a rational
function of n, so {tn}n�0 is a hypergeometric
sequence. Other examples are

n!, (7n + 3)!,
(

n

7

)
tn,

(3n + 4)!(2n − 3)!
4nn!4

,

all of which are hypergeometric sequences.

If you input the first several members of the
unknown sequence, Rate will look for a hyper-
geometric sequence that takes those values. It
will also look for a hyper-hypergeometric sequence
(i.e. one in which the ratio of consecutive terms
is hypergeometric), and a hyper-hyper-hypergeo-
metric sequence, etc.

For example, the line

Rate[1, 1/4, 1/4, 9/16, 9/4, 225/16]

elicits the (somewhat inscrutable) output

{41−i0(−1 + i0)!2}.

Here i0 is the running index of Rate, so we would
normally write that answer as, say,

(n − 1)!2

4n−1 (n = 1, 2, 3, 4, 5, 6),

which fits the input sequence perfectly. Rate is
a part of the Superseeker front end to the Inte-
ger Sequences database, discussed in Section 2.2
above.

2.4 Identification of Numbers

Suppose that, in the course of your work,
you encountered a number, let’s call it β,
which, as nearly as you could calculate it, was
1.218041583332573. It might be that β is related
to other famous mathematical constants, like π, e,√

2, and so forth, or it might not. But you’d like
to know.

The general problem that is posed here is the
following. We are given k numbers, α1, . . . , αk (the
basis), and a target number α. We want to find
integers m, m1, . . . , mk such that the linear combi-
nation

mα + m1α1 + m2α2 + · · · + mkαk (2.1)

is an extremely close numerical approximation
to 0. For, suppose we had a computer pro-
gram that could find such integers, how would
we use it to identify the mystery constant β =
1.218041583332573?

We would take the αi to be a list of the loga-
rithms of various well-known universal constants
and prime numbers, and we would take α = log β.
For example, we might use

{log π, 1, log 2, log 3} (2.2)
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as our basis. If we then find integers m, m1, . . . , m4

such that

m log β+m1 log π+m2 +m3 log 2+m4 log 3 (2.3)

is extremely close to 0, then we will have found
that our mystery number β is extremely close to

β = π−m1/me−m2/m2−m3/m3−m4/m. (2.4)

At this point we will have a judgment to make.
If the integers mi seem rather large, then the pre-
sumed evaluation (2.4) is suspect. Indeed for any
target α and basis {αi} we can always find huge
integers {mi} such that the linear combination
(2.1) is exactly 0, to the limits of machine preci-
sion. The real trick is to find that the linear com-
bination is extraordinarily close to 0, while using
only “small” integers m, mi, and that is a mat-
ter of judgment. If the judgment is that the rela-
tion found is real, rather than spurious, then there
remains the little job of proving that the suspected
evaluation of α is correct, but that task is beyond
our scope here. For a nice survey of this subject
see Bailey and Plouffe (1997).

There are two major tools that can be used to
discover linear dependencies such as (2.1) among
the members of a set of real numbers. They are the
algorithms PSLQ, of Ferguson and Forcade (1979),
and LLL, of Lenstra, Lenstra, and Lovász (1982),
which uses their lattice basis reduction algorithm.
For the working mathematician, the good news
is that these tools are available in CASs. For
example, Maple has a package, IntegerRelations
[LinearDependency], which places the PSLQ and
the LLL algorithms at the immediate disposal of
the user. Similarly there are Mathematica pack-
ages on the web that can be freely downloaded and
which perform the same functions.

An application of these methods will be given
below in Section 7. For a quick illustration,
though, let us try to recognize the mystery num-
ber β = 1.218041583332573. We use as a basis
the list in (2.2) above, and we put this list,
augmented by log 1.218041583332573, into the
IntegerRelations[LinearDependency] package.
The output is the integer vector [2,−6, 0, 3, 4],
which tells us that β = π3

√
2/36, to the number

of decimal places carried.

2.5 Solving Partial Differential Equations

I had occasion recently to need the solution to
a certain partial differential equation (PDE) that
arose in connection with a research problem that
was posed by Graham, Knuth, and Patashnik
(1989). It was a first-order linear PDE, so in prin-
ciple the method of characteristics gives the solu-
tion. As those who have tried that method know, it
can be fraught with technical difficulties relating to
the solution of the associated ordinary differential
equations.

However, some extremely intelligent packages
are available for solving PDEs. I used the Maple
command pdsolve to handle the equation

(1 − αx − α′y)
∂u(x, y)

∂x

= y(β + β′y)
∂u(x, y)

∂y
+ (γ + (β′ + γ′)y)u(x, y)

with u(0, y) = 1. pdsolve found that

u(x, y)=
(1 − αx)−γ/α

(1 + (β′/β)y(1 − (1 − αx)−β/α))1+γ′/β′

is the solution, and that enabled me to find explicit
formulas for certain combinatorial quantities, with
much less work and fewer errors than would other-
wise have been possible.

3 Thinking rationally

The following problem appeared in the Septem-
ber/October 1997 issue of Quantum (and was cho-
sen by Stan Wagon for the Problem of the Week
archive).

How many ways can 90316 be written as

a + 2b + 4c + 8d + 16e + 32f + · · · ,

where the coefficients can be any of 0, 1,
or 2?

In standard combinatorial terminology, the ques-
tion asks for the number of partitions of the inte-
ger 90316 into powers of 2, where the multiplicity
of each part is at most 2.

Let’s define b(n) to be the number of partitions
of n, subject to the same restrictions. Thus b(5) =
2 and the two relevant partitions are 5 = 4 + 1
and 5 = 2 + 2 + 1. Then it is easy to see that
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b(n) satisfies the recurrences b(2n + 1) = b(n) and
b(2n+2) = b(n)+ b(n+1), for n = 0, 1, 2 . . . , with
b(0) = 1.

It is now easy to calculate particular values of
b(n). This can be done directly from the recur-
rence, which is quite fast for computational pur-
poses. Alternatively, it can be shown quite eas-
ily that our sequence {b(n)}∞

0 has the generating
function

∞∑
n=0

b(n)xn =
∞∏

j=0

(1 + x2j

+ x2·2j

).

(For more information on generating functions, see
algebraic and enumerative combinatorics ,
or see Wilf (1994).) This helps us to avoid much
programming when working with the sequence,
because we can use the built-in series-expansion
instructions in Mathematica or Maple to show us
a large number of terms in this series quite rapidly.
Returning to the original question from Quantum,
it is a simple matter to compute b(90316) = 843
from the recurrence. But let’s try to learn more
about the sequence {b(n)} in general. To do that
we open up our telescope, and calculate the first
95 members of the sequence, i.e. {b(n)}94

0 , which
are shown in Table 1.1 below. The question is
now, as it always is in the mathematics labo-
ratory, what patterns do you see in these num-
bers?

Just for instance, one might notice that when n
is 1 less than a power of 2, it seems that b(n) = 1.
The reader who is fond of such puzzles is invited to
cease reading here for the moment (without peek-
ing at the next paragraph), and look at Figure 1.1
to spend some time finding whatever interesting
patterns seem to be there. Computations up to
n = 94 aren’t as helpful for a quest like this as
computations up to n = 1000 or so might be, so
the reader is also invited to compute a much longer
table of values of b(n), using the above recurrence
formulas, and to study it carefully for fruitful pat-
terns.

OK, did you notice that if n = 2a then b(n)
appears to be a + 1? How about this one: in the
block of values of n between 2a and 2a+1−1, inclu-
sive, the largest value of b(n) that seems to occur
is the Fibonacci number Fa+2. There are many
intriguing things going on in this sequence, but the
one that was of crucial importance in understand-

ing it was the observation that consecutive values
of b(n) seem always to be relatively prime.1

It was totally unexpected to find a property of
the values of this sequence that involved the mul-
tiplicative structure of the positive integers, rather
than their additive structure, which would have
been quite natural. This is because the theory of
partitions of integers belongs to the additive the-
ory of numbers, and multiplicative properties of
partitions are rare and always cherished.

Once this relative primality is noticed, the proof
is easy. If m is the smallest n for which b(n),
b(n + 1) fail to be relatively prime, then suppose
p > 1 divides both of them. If m = 2k + 1 is odd,
then the recurrence implies that p divides b(k) and
b(k + 1), contradicting the minimality, whereas if
m = 2k is even, the recurrence again gives that
result, finishing the proof.

Why was it so interesting that consecutive values
appeared to be relatively prime? Well, at once that
raised the question of whether every possible rel-
atively prime pair (r, s) of positive integers occurs
as a pair of consecutive values of this sequence, and
if so, whether every such pair occurs once and only
once. Both of those possibilities are supported by
the table of values above, and upon further investi-
gation both turned out to be true. See Calkin and
Wilf (2000) for details.

The bottom line here is that every positive
rational number occurs once and only once, and in
reduced form, among the members of the sequence
{b(n)/b(n + 1)}∞

0 . Hence the partition function
b(n) induces an enumeration of the rational num-
bers, a result which was found by gazing at a com-
puter screen and looking for patterns.

Moral: be sure to spend many hours each day gaz-
ing at your computer screen and looking for pat-
terns.

4 An Unexpected Factorization

One of the great strengths of computer algebra
systems is that they are very good at factoring.
They can factor very large integers and very com-
plicated expressions. Whenever you run into some
large expression as the answer to a problem that
interests you, it is good practice to ask your CAS

1Two positive integers are relatively prime if they have
no common factor.
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Table 1.1. The first 95 values of b(n).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 1 2 1 3 2 3 1 4 3 5 2 5 3 4 1 5 4 7

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
3 8 5 7 2 7 5 8 3 7 4 5 1 6 5 9 4 11 7

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
10 3 11 8 13 5 12 7 9 2 9 7 12 5 13 8 11 3 10
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
7 11 4 9 5 6 1 7 6 11 5 14 9 13 4 15 11 18 7

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
17 10 13 3 14 11 19 8 21 13 18 5 17 12 19 7 16 9 11

Figure 1.1. The Ferrers board.

to factor it for you. Sometimes the results will sur-
prise you. This is one such story.

The theory of Young tableaux forms an impor-
tant part of modern combinatorics. To create a
Young tableau we choose a positive integer n and a
partition n = a1+a2+· · ·+ak of that integer. We’ll
use the integer n = 6 and the partition 6 = 3+2+1
as an example. Next we draw the Ferrers board of
the partition, which is a truncated chessboard that
has a1 squares in its first row, a2 in its second row,
etc., the rows being left-justified. In our example,
the Ferrers board is as shown in Figure 1.1.

To make a tableau, we insert the labels
1, 2, . . . , n into the n cells of the board in such
a way that the labels increase from left to right
across each row and increase from top to bottom
down every column. With our example, one way to
do this is as shown in Figure 1.2.

One of the important properties of tableaux is
that there is a one-to-one correspondence, known
as the Robinson–Schensted–Knuth (RSK) corre-
spondence, which assigns to every permutation of
n letters a pair of tableaux of the same shape. One
use of the RSK correspondence is to find the length

1

3

4

5

6

2

Figure 1.2. A Young tableau.

of the longest increasing subsequence in the vector
of values of a given permutation. It turns out that
this length is the same as the length of the first
row of either of the tableaux to which the permu-
tation corresponds under the RSK mapping. This
fact gives us a good way, algorithmically speaking,
of finding the length of the longest increasing sub-
sequence of a given permutation.

Now suppose that uk(n) is the number of per-
mutations of n letters that have no increasing sub-
sequence of length greater than k. A spectacular
theorem of Gessel (1990) states that

∑
n�0

uk(n)
n!2

x2n = det(I|i−j|(2x))i,j=1,...,k, (4.1)

in which Iν(t) is (the modified Bessel function)

Iν(t) def=
∞∑

j=0

( 1
2 t)2j+ν

j!(j + ν)!
.

At any rate, it seems fairly “spectacular” to me
that when you place various infinite series such
as the above into a k × k determinant and then
expand the determinant, you should find that the
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coefficient of x2n, when multiplied by n!2, is exactly
the number of permutations of n letters with no
increasing subsequence longer than k.

Let’s evaluate one of these determinants, say the
one with k = 2. We find that

det(I|i−j|(2x))i,j=1,2 = I2
0 − I2

1 ,

which of course factors as (I0 + I1)(I0 − I1). The
arguments of the Iν are all 2x and have been omit-
ted.

When k = 3, no such factorization occurs. If you
ask your CAS for this determinant when k = 4, it
will show you

I4
0 − 3I2

0I2
1 + I4

1 + 4I0I
2
1I2

− 2I2
0I2

2 − 2I2
1I2

2 + I4
2 − 2I3

1I3

+ 4I0I1I2I3 − 2I1I
2
2I3 − I2

0I2
3 + I2

1I2
3 ,

where now we have abbreviated Iν(2x) simply by
Iν . If we ask our CAS to factor this last expression,
it (surprisingly) replies with

(I2
0 − I0I1 − I2

1 + 2I1I2 − I2
2 − I0I3 + I1I3)

× (I2
0 + I0I1 − I2

1 − 2I1I2 − I2
2 + I0I3 + I1I3),

which is actually of the form (A + B)(A − B), as
a quick inspection will reveal.

We have now observed, experimentally, that for
k = 2 and k = 4 Gessel’s k × k determinant has a
nontrivial factorization of the form (A+B)(A−B),
in which A and B are certain polynomials of degree
k/2 in the Bessel functions. Such a factorization of
a large expression in terms of formal Bessel func-
tions simply cannot be ignored. It demands expla-
nation. Does this factorization extend to all even
values of k? It does. Can we say anything in general
about what the factors mean? We can.

The key point, as it turns out, is that in Ges-
sel’s determinant (4.1), the matrix entries depend
only on |i − j| (such a matrix is called a Toeplitz
matrix). The determinants of such matrices have
a natural factorization, as follows. If a0, a1, . . . is
some sequence, and a−i = ai, then we have

det(ai−j)2m
i,j=1

= det(ai−j + ai+j−1)m
i,j=1 det(ai−j − ai+j−1)m

i,j=1.

When we apply this fact to the present situation
it correctly reproduces the above factorizations for
k = 2, 4, and generalizes them to all even k, as
follows.

Let yk(n) be the number of Young tableaux of n
cells whose first row is of length at most k, and let

Uk(x) =
∑
n�0

uk(n)
n!2

x2n,

Yk(x) =
∑
n�0

yk(n)
n!

xn.

In terms of these two generating functions, the gen-
eral factorization theorem states that

Uk(x) = Yk(x)Yk(−x) (k = 2, 4, 6, . . . ).

Why is it useful to have such factorizations? For
one thing we can equate the coefficients of like pow-
ers of x on both sides of this factorization (try it!).
We then find an interesting explicit formula that
relates the number of Young tableaux of n cells
whose first row is of length at most k, on the one
hand, and the number of permutations of n let-
ters that have no increasing subsequence of length
greater than k, on the other. No more direct proof
of this relationship is known. For more details and
some further consequences, see Wilf (1992).

Moral: cherchez les factorisations!

5 A Score for Sloane’s Database

Here is a case study in which, as it happens, not
only was Sloane’s database utilized, but Sloane
himself was one of the authors of the ensuing
research paper.

Eric Weisstein, the creator of the invaluable web
resource MathWorld, became interested in the enu-
meration of 0–1 matrices whose eigenvalues are all
positive real numbers. If f(n) is the number of
n × n matrices whose entries are all 0s and 1s and
whose eigenvalues are all real and positive, then by
computation, Weisstein found for f(n) the values

1, 3, 25, 543, 29281 (for n = 1, 2, . . . , 5).

Upon looking up this sequence in Sloane’s data-
base, Weisstein found, interestingly, that this
sequence is identical, as far as it goes, with
sequence A003024 in the database. The latter
sequence counts vertex-labeled acyclic directed
graphs (“digraphs”) of n vertices, and so Weis-
stein’s conjecture was born:
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the number of vertex-labeled acyclic
digraphs of n vertices is equal to the num-
ber of n × n 0–1 matrices whose eigenval-
ues are all real and positive.

This conjecture was proved in McKay et al. (2003).
Enroute to the proof of the result, the following
somewhat surprising fact was shown.

Theorem 1.1. If a 0–1 matrix A has only real
positive eigenvalues, then those eigenvalues are all
equal to 1.

To prove this, let {λi}n
i=1 be the eigenvalues of

A. Then

1 � 1
n

trace(A) (since all Ai,i � 1)

=
1
n

(λ1 + λ2 + · · · + λn)

� (λ1λ2 · · ·λn)1/n

= (detA)1/n

� 1,

in which the third line uses the arithmetic–
geometric mean inequality, and the last line uses
the fact that detA is a positive integer. Since the
arithmetic and geometric means of the eigenvalues
are equal, the eigenvalues are all equal, and in fact
all λi(A) = 1.

The proof of the conjecture itself works by find-
ing an explicit bijection between the two sets that
are being counted. Indeed, let A be an n × n matrix
of 0s and 1s with positive eigenvalues only. Then
those eigenvalues are all 1s, so the diagonal of A is
all 1s, whence the matrix A − I also has solely 0s
and 1s as its entries. Regard A − I as the vertex
adjacency matrix of a digraph G. Then (it turns
out that) G is acyclic.

Conversely, if G is such a digraph, let B be its
vertex adjacency matrix. By renumbering the ver-
tices of G, if necessary, B can be brought to trian-
gular form with zero diagonal. Then A = I +B is a
0–1 matrix with positive real eigenvalues only. But
then the same must have been true for the matrix
I + B before simultaneously renumbering its rows
and columns. For more details and more corollaries
see McKay et al. (2003).

Moral: look for your sequence in the online ency-
clopedia!

6 The 21-Stage Rocket

Now we’ll describe a successful attack that was
carried out by Andrews (1998) on the problem
of evaluating the Mills–Robbins–Rumsey determi-
nant, which is the determinant of the n × n matrix

Mn(µ) =
((

i + j + µ

2j − i

))
0�i,j�n−1

. (6.1)

This problem arose (Mills, Robbins, and Rumsey
1987) in connection with the study of plane parti-
tions. A plane partition of an integer n is an (infi-
nite) array ni,j of nonnegative integers whose sum
is n, subject to the restriction that the entries ni,j

are nonincreasing across each row, and also down
each column.

It turns out that detMn(µ) can be expressed
neatly as a product, namely as

det Mn(µ) = 2−n
n−1∏
k=0

∆k(2µ), (6.2)

in which

∆2j(µ) =
(µ + 2j + 2)j( 1

2µ + 2j + 3
2 )j−1

(j)j( 1
2µ + j + 3

2 )j−1
,

and (x)j is the rising factorial x(x+1) · · · (x+j−1).
The strategy of Andrews’s proof is elegant in

conception and difficult in execution: we are going
to find an upper triangular matrix En(µ), whose
diagonal entries are all 1s, such that

Mn(µ)En(µ) def= Ln(µ) (6.3)

is a lower triangular matrix, with the numbers
{ 1

2∆2j(2µ)}n−1
j=0 on its diagonal. Of course, if we

can do this, then from (6.3), since detEn(µ) = 1,
we will have proved the theorem (6.2), since the
determinant of the product of two matrices is the
product of their determinants, and the determi-
nant of a triangular matrix (i.e. of a matrix all of
whose entries below the diagonal are 0s) is simply
the product of its diagonal entries.

But how shall we find this matrix En(µ)? By
holding tightly to the hand of our computer and
letting it guide us there. More precisely,

(1) we will look at the matrix En(µ) for various
small values of n, and from those data we will
conjecture the formula for the general (i, j)
entry of the matrix; and then
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(2) we will (well actually, “we” won’t, but
Andrews did) prove that the conjectured
entries of the matrix are correct.

It was in step (2) above that an extraordi-
nary 21-stage event occurred which was success-
fully managed by Andrews. What he did was to
set up a system of 21 propositions, each of them a
fairly technical hypergeometric identity. Next, he
carried out a simultaneous induction on these 21
propositions. That is to say, he showed that if, say,
the 13th proposition was true for a certain value
of n, then so was the 14th, etc., and if they were
all true for that value of n, then the first proposi-
tion was true for n + 1. The reader should be sure
to look at Andrews (1998) to gain more of the fla-
vor and substance of what was done than can be
conveyed in this short summary.

Here we will confine ourselves to a few comments
about step (1) of the program above. So, let’s look
at the matrix En(µ) for some small values of n.
The condition that En(µ) is upper triangular with
1s on the diagonal means that

j−1∑
k=0

(Mn)i,kek,j = −(Mn)i,j ,

for 0 � i � j −1 and 1 � j � n−1. We can regard
these as

(
n
2

)
equations in the

(
n
2

)
above-diagonal

entries of En(µ) and we can ask our CAS to find
those entries, for some small values of n. Here is
E4(µ):⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 − 1
µ + 2

6(5 + µ)
(µ + 2)(µ + 3)(2µ + 11)

0 0 1 − 6(µ + 5)
(µ + 3)(2µ + 11)

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

At this point the news is all good. While it is
true that the matrix entries are fairly complicated,
the fact that leaps off the page and warms the
heart of the experimental mathematician is that
all of the polynomials in µ factor into linear fac-
tors with pleasant-looking integer coefficients. So
there is hope for conjecturing a general form of the
E matrix. Will this benign situation persist when
n = 5? A further computation reveals that E5(µ) is
as shown in Figure 1.3. Now it is a “certainty” that
some nice formulas exist for the entries of the gen-
eral matrix En(µ). The Rate package, described in

Section 2.3, would certainly facilitate the next step,
which is to find general formulas for the entries of
the E matrix. The final result is that the (i, j) entry
of En(µ) is 0 if i > j and

(−1)j−i(i)2(j−i)(2µ + 2j + i + 2)j−i

4j−i(j − i)!(µ + i + 1)j−i(µ + j + i + 1
2 )j−i

otherwise.
After divining that the E matrix has the above

form, Andrews now faced the task of proving that
it works, i.e. that MnEn(µ) is lower triangular and
has the diagonal entries specified above. It was
in this part of the work that the 21-fold induc-
tion was unleashed. Another proof of the evalua-
tion of the Mills–Robbins–Rumsey determinant is
in Petkovšek and Wilf (1996). That proof begins
with Andrews’s discovery of the above form of the
En(µ) matrix, and then uses the machinery of the
so-called WZ method (Petkovšek, Wilf, and Zeil-
berger 1996), instead of a 21-stage induction, to
prove that the matrix performs the desired trian-
gulation (6.3).

Moral: never give up, even when defeat seems cer-
tain.

7 The computation of π

In 1997, a remarkable formula for π was found
(Bailey, Borwein, and Plouffe 1997). This formula
permits the computation of just a single hexadeci-
mal digit of π, if desired, using minimal space and
time. For example, we might compute the trillionth
digit of π, without ever having to deal with any of
the earlier ones, in a time that is faster than what
we might attain if we had to calculate all of the
first trillion digits. For example, Bailey, Borwein,
and Plouffe found that in the hexadecimal expan-
sion of π, the block of 14 digits in positions 1010

through 1010 + 13 are 921C73C6838FB2. The for-
mula is

π =
∞∑

i=0

1
16i

(
4

8i + 1
− 2

8i + 4
− 1

8i + 5
− 1

8i + 6

)
.

(7.1)
In our discussion here we will limit ourselves to

describing how we might have found the specific
expansion (7.1) once we had decided that an inter-
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 1 − 1
µ + 2

6(5 + µ)
(µ + 2)(µ + 3)(2µ + 11)

− 30(µ + 6)
(µ + 2)(µ + 3)(µ + 4)(2µ + 15)

0 0 1 − 6(µ + 5)
(µ + 3)(2µ + 11)

30(µ + 6)
(µ + 3)(µ + 4)(2µ + 15)

0 0 0 1 − 6(2µ + 13)
(µ + 4)(2µ + 15)

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 1.3. The upper triangular matrix E5(µ).

esting expansion of the form

π =
∞∑

i=0

1
ci

b−1∑
k=1

ak

bi + k
. (7.2)

might exist. This, of course, leaves open the ques-
tion of how the discovery of the form (7.2) was
singled out in the first place.

The strategy will be to use the linear dependency
algorithm, described above in Section 2.4. More
precisely, we want to find a nontrivial integer linear
combination of π and the seven numbers

αk =
∞∑

i=0

1
(8i + k)16i

(k = 1, . . . , 7)

that sums to 0. As in equation (2.3), we now com-
pute the seven numbers αj and we look for a rela-
tion

mπ+m1α1+m2α2+ · · ·+m7α7 = 0 (m, mi ∈ Z)

using, for example, the Maple IntegerRelations
package. The output vector,

(m, m1, m2, . . . , m7) = (1,−4, 0, 0, 2, 1, 1, 0),

yields the identity (7.1). You should do this cal-
culation for yourself, then prove that the apparent
identity is in fact true, and, finally, look for some-
thing similar that uses powers of 64 instead of 16.
Good luck!
Moral: even as late as the year AD 1997, some-
thing new and interesting was said about the num-
ber π.

8 Conclusions

When computers first appeared in mathemati-
cians’ environments the almost universal reaction

was that they would never be useful for proving
theorems since a computer can never investigate
infinitely many cases, no matter how fast it is. But
computers are useful for proving theorems despite
that handicap. We have seen several examples of
how a mathematician can act in concert with a
computer to explore a world within mathemat-
ics. From such explorations there can grow under-
standing, and conjectures, and roads to proofs, and
phenomena that would not have been imaginable
in the pre-computer era. This role of computation
within pure mathematics seems destined only to
expand over the coming years and to be imbued
into our students along with Euclid’s axioms and
other staples of mathematical education.

At the other end of the rainbow there may lie a
more far-reaching role for computers. Perhaps one
day we will be able to input some hypotheses and
a desired conclusion, press the “Enter” key, and
get a printout of a proof. There are a few fields
of mathematics in which we can do such things,
notably in the proofs of identities (Petkovšek, Wilf,
and Zeilberger 1996; Greene and Wilf 2005), but in
general the road to that brave new world remains
long and uncharted.
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