
git: version control and collaboration

A. J. Roberts

February 26, 2016

The software package git empowers you to easily maintain a history of a project, so you can recover old information for
example, and additionally to collaborate with others on the project, so you can all work in parallel for example. These
two aspects are introduced separately: Section 2 introduces how to maintain a local history;1 and Section 3 introduces
collaboration over the internet. In this two column format, the left column is for general information and the command line
version, whereas the right column is for graphical user interfaces. Get more information via Scott Chacon’s surprisingly
comprehensible Pro Git [http://git-scm.com/book/].

Contents

1 Installation and initialisation 1

2 Manage your project locally 2
2.1 Start your project . 2
2.2 Work in small stages . 2
2.3 Review your work . 3
2.4 Example: a memory stick coordinates work on two computers . 3
2.5 Example: compare changes to earlier versions . 4

3 Collaborate over the internet 4
3.1 Clone a collaborative existing project . 5
3.2 Using ssh without passwords is best . 6
3.3 Create a new external repository . 6
3.4 Resolving conflicts with others . 7

1I base this introduction on Git for the lazy, http://www.spheredev.org/wiki/Git_for_the_lazy [Nov 2011].

1 Installation and initialisation

Download Perhaps download git from http://git-scm.

com/download To install on a Mac: download the dmg file;
double click to unpack; look in the Git ‘disk symbol’ on the
desktop; double click on the pkg file, and follow instructions.
This installs git software accessible as commands from any
terminal window.2

Introduce yourself to git Set some useful global pa-
rameters for git. In a terminal window type the following
commands3

git config --global user.name "Your Name"

git config --global user.email "youremail@place"

git config --global color.ui auto

git config --global color.interactive auto

git config --global core.editor "nano -w"

Review these settings, at any time, by executing in a terminal
window the command

2If the command git does not execute, then add the follow-
ing line to your home .profile or .bash profile file: export

PATH=/usr/local/git/bin:$PATH
3The first two commands establish your identity; the third and fourth

invoke some pretty colouring for the command interaction; and the last
changes the default editor for command interaction to something that
is generally easier to use (nano is a free version of pico).

Perhaps use a graphical user interface Many people
want a graphical user interface to git. The web has many
suggestions, and differing opinions.

I tentatively recommend using GitHub for the Mac (Win-
dows) (requires OS 10.6 or later), but use another gui if you
prefer. 2 Download GitHub from http://mac.github.com/

(http://windows.github.com/), and drag into your appli-
cation folder, and perhaps your Dock. 3

If not already done, you may introduce yourself to git
by running GitHub and entering your name and email in
the initialisation information box. But other configuration
commands have to be entered from a terminal window.

In this document, remember to distinguish between the
github gui software (most of the time), and the free but
public hosting service provided at github.com (sometimes).

Other gui software is SourceTree from the public git
hosting service https://bitbucket.org/

2Another gui is git gui which comes with git; type the command
git gui in a terminal window. Or perhaps use gitx.

3For some unknown reason GitHub once suddenly stopped work-
ing for me: it would not start-up. The solution was to upgrade to
MacOSX 10.6.8. I really like the software github—in any case the
command line always works.

1

git config --global --list

2 Manage your project locally

With git there are three places for storage of your files:

• your working area, directory/folder, where you work,
edit and refine files in your project as usual;

• a local store of the history of the project and all its
stages that is managed by git (hidden in .git/); and

• possibly an online repository, also managed by git,
where you and collaborators merge independent
progress on the project.

This second section only addresses the first two aspects of you
working alone, with git, in your local working and storage
area. Section 3 discusses collaboration over the internet.

Git also use the term “branch”. Git branches appear very
powerful. But for simplicity I ignore branches herein, and
recommend you do not do anything ‘branch’ related until
you are experienced with git.

2.1 Start your project

Make your working directory for the project as usual, say
called myproject. Then execute the following commands in
a terminal window.

cd myproject First change to the directory in which you
are going to work.

git init Tell git to start managing the history of selected
files in this directory.4

git add . Tell git to manage all the current files in the
directory; or instead of the dot, specify a list of specific
files.

git commit Stores the information that this (first) version
is an identifiable stage, a ‘milepost’, in the project. git
will request you type a message in the editor: make the
first line a one line overall summary, such as “Initial
version”, and optionally provide additional information
in subsequent lines.

2.2 Work in small stages

It is best to work in small stages: remember, if you cannot
summarise the work of the last stage in a one line sentence,
then you have gone too long without committing. Typically
work according to the following cycle, repeat as much as you
like but ensure you end with the add and commit.

Working Work, edit and refine files in your project as usual.

git status Optional, checks which files you have changed.

git diff Optional, check what the actual changes were.

4git creates an invisible sub-directory called .git in which is stored
the history of the stages in your project. Do not meddle with this
sub-directory.

Equivalent GitHub GUI

• Initialise an existing directory for git by dragging the
folder icon onto the GitHub application or its window.
Click Yes.

• In Repositories view, double click on the entry for
myproject.

• Click on Settings in the left-hand tabs: then type
lines .DS Store into the Ignored files window and
click Save Changes on bottom-right.4

• To add files to be managed, click on the Changes tab
on the left: by default GitHub adds all files to manage-
ment, change if you wish; files managed but unchanged
are not shown; the contents of shown files are displayed
in the right-hand pane.

• To commit: enter a message such as “Initial version” in
the single line in the top-left, and enter more detail if
you wish just below; and finally click Commit Changes

button near top-left.

Equivalent GitHub GUI

• Work, edit and refine files in your project as usual.

• Start GitHub and double-click the project directory
from the list in the Repositories window.

• Managed files you have edited will be listed; unmanaged
files are also listed; managed files that have not changed
are not listed.

• Optional, click on the file name in the left-pane to see,

4You may also want to ignore other files including *.aux, *.log,
*.out, *.synctex.gz, *.blg, *.toc, *.trc, *.xref, *.stc*, *.mtc*,
*.maf, and *~. The asterisk matches all files with that extension.

2

git add file1 file2 Essential, nominates the files (and
perhaps new files and new directories) whose updates
are to be saved as the new version at this stage.

git commit Essential, commits the current version of your
nominated files as an identifiable stage in your project;
enter and save your commit message (of at least a one
line summary).

2.3 Review your work

git log To overview history so far of the project.

git log --pretty=oneline Lists the one line summaries.

git commit --amend Changes the message of the last com-
mit.

git reset --hard If you have not committed, but realised
that you have messed up your local files, then use this
to recover the files as at the last commit.

git checkout filename Just recovers the named file as at
the last commit.

git mv oldname newname Version control requires a little
discipline. One is that files under version control must
only be renamed/moved via git using this command.

git rm filename Similarly delete/remove files under ver-
sion control only via git using this command.

git reset --hard HEAD^^ If you have mistakenly
pushed/synced a couple of commits to a repository
and need to revert to an earlier version on the
repository, then do this command—for the specific
case of removing the last two commits, use more or
less carets ^ for other cases. Then to permanently
remove from the repository you also have to execute
git push --force (and presumably get everyone to
also reset their versions).

2.4 Example: a memory stick coordinates work on two computers

Suppose you have a home computer and a work computer,
and that you want to work on a project on both computers.
One solution is to use a memory stick to transfer information,
and git to manage the merging of developments and changes.

Suppose you have the current version of the project in di-
rectory/folder myproject on one computer. Do the following
setup via terminal windows.

Memory stick

cd /Volumes/YourStick to go to the memory stick in
Mac OSX, or do similar on other systems.

mkdir myproject.git

cd myproject.git to go inside the directory.

git init --bare to initialise it as an empty git repository.

in the right pane, the differences between the current
version and the last commit.

• By default, all new files (even in a new directory) and
all changed files will get committed; change if you wish.

• To commit: enter a message such as “Initial version”
in the single line in the top-left, and more detail if
you wish just below; and finally click Commit Changes

button near top-left.

When you have two or more Git projects, change between
them in GitHub by choosing Repositories from either the
View menu or top-left of the bar, and then double clicking
on the one for action.

Github: just click on the History tab on the top-left.

Github: In GitHub’s history view, click Rollback to

this commit button.

Github: allows one to be undisciplined in moving and
deleting files.

3

Computer with current version

cd myproject or whatever you need to get to the directory
with your project.

git init if not already under git management

git add *

git commit -m "initialise"

git remote add origin /Volumes/YourStick/myproject.git

git push -u origin master

The memory stick now has a git copy of your project, the
current version, and you have linked the local copy to the
one on the memory stick.

The other computer Move the existing version of your
work somewhere else as a precaution.

cd Documents or to wherever you want the myproject di-
rectory to reside.

git clone /Volumes/YourStick/myproject.git

This creates a new local copy of the current version of the
project information on the memory stick, in a directory called
myproject, and links the local copy to that on the stick.

Work as normal After this initialissation, work and com-
mit as normal as described in previous subsections. The
extra ingredient is to git push, git pull, or GitHub Sync

from your computers to the memory stick as appropriate in
order to synchronise information on each of your computers
and the memory stick.

2.5 Example: compare changes to earlier versions

Download git-latexdiff from https://gitlab.com/

git-latexdiff and execute make install (or otherwise
place a copy of git-latexdiff into /usr/bin with all the
other git executables).

Then in a terminal window in any git repository you can
execute something like

git latexdiff --main file.tex HEAD~1

to generate a difference file of the source that has been typeset
into pdf with all the differences marked: old material in red;
new material in blue. (Although it does fail for some.)

Use HEAD~n to compare changes since the nth previous
commit.

3 Collaborate over the internet

To share and collaborate we need an information store on
the internet. Although git is completely egalitarian in that
no repository has any distinguished status, nonetheless, most
collaborative projects invoke one repository to be the ‘main’
repository. I describe two alternatives: one is via an open
service on the web by github; and the other is to use our
Maths web server.

All except the fourth git command here could be done with
GitHub. The fourth has to be done with a terminal window.

Create a account with GitHub.com The company
GitHub provides some free storage (as well as a commercial
service). Go to https://github.com/plans and click on
Create a free account. Follow the instructions which in-
volves: registering; generating an ssh key to give to GitHub;
saving the api-token from GitHub into your git preference;
and setting git config. GitHub’s instructions lead you through
the process.

The advantage of GitHub is that you can collaborate with
anybody, and the security of their storage. The disadvantage

4

Ensure ssh access to server Ensure you have an account
on our server5. Then configure, using public key cryptogra-
phy, so that you can ssh to the server without entering your
password. Section describes one way to setup ssh to do so.

3.1 Clone a collaborative existing project

Using our Maths server Assume that a collab-
orator, say username, has established a repository,
say ourproject.git (they must have configured it for shar-
ing).

• Perhaps the simplest is to issue the command

git clone a1234567@www.maths.adelaide.edu.au:\

/home/username/ourproject.git

where a1234567 is your username on the server.

– Within your current local directory/folder, this
command creates a new folder called ourproject

(the .git gets dropped) which is a ‘copy’ of the
repository.

– Further, in the local git configuration it stores the
location information about the remote repository.
The remote repository then is the default.

• Alternatively, manage via a terminal window.

– git pull gets any updates your collaborators
have uploaded to the repository—conflicts will
need to be resolved.

– Work and commit as in Sections 2.2–2.3.

5Currently www.maths.adelaide.edu.au

of GitHub is that the world can read your project (in minute
detail).

Using GitHub.com server Assume a collaborator,
username, established a repository, say ourproject: they
must give you collaboration rights by web browsing to the
repository, clicking Admin, clicking Collaborators on the
left menu, then entering your GitHub name and Adding.

• Web browse to GitHub https://github.com, and lo-
gin (top-right).

• Find the project (somehow): for example, just go to
https://github.com/username/ourproject

• On the left-side beneath “username/ourproject” and
beneath “Code”, you should see and click on Clone in

Mac.

• Click OK and then choose a location on your computer
for the repository folder to be created and material
copied.

• On your computer, drag that new folder onto GitHub
for GitHub to manage the local repository.

• Thereafter, work and commit as in Sections 2.2–2.3,
but additionally occasionally Click the Sync button on
the Changes window.

• Checking and downloading, ‘pulling’, any changes by
your collaborators is one additional step you should
do before starting work each session: from menu
Repository select Pull; alternatively, from the very
right of the top menu bar, click on Branch in Sync.

• To use the GitHub application to manage the local and
remote storage, just drag your clone of ourproject

onto GitHub. Thereafter, work and commit as in
Sections 2.2–2.3, but additionally occasionally Click the
Sync button on the Changes window. Before starting
work each session get any changes by your collaborators:
from menu Repository select Pull; alternatively, from
the very right of the top menu bar, click on Branch in

Sync.

5

– git push puts your commits onto the remote
repository for others to get.

• In any event, one can inspect what is in the maths
server repository by the following.6

– ssh -X www.maths.adelaide.edu.au to login
to the server with X-windows enabled.

– Navigate to the git directory.

– git instaweb --httpd=webrick will start up a
browser (firefox) view of the contents and history
of the repository (and any others that it finds).

3.2 Using ssh without passwords is best

The aim is to be empower ssh access to our server without
having to enter in your password every time. This means
GitHub, for example, will be able to invoke git protocols
without the password.

On your computer Execute the following in a terminal
window.

• Make an ssh directory. First check: type cd ~, then
ls -la|grep ssh and if it lists a directory .ssh then
skip the rest of this step. Execute mkdir .ssh

• Ensure suitable permissions. Again execute
ls -la|grep ssh and it should only be rwx for you
alone. If others have any permissions, then get rid of
them by chmod go-rwx .ssh

• Check for keys. Execute cd .ssh and then ls: if you
see two files id_rsa and id_rsa.pub, then skip the
next step.

• Create keys. Execute
ssh-keygen -t rsa -C "email" and just type
Return/Enter when it asks for a file and for
passphrases (although it is more secure with a
passphrase). Two files id_rsa and id_rsa.pub should
appear.

Although id_rsa.pub is intended for others, you must
keep the contents of id_rsa secret to yourself only.

On the server Open another terminal window and ssh to
the server (entering your password for the last time!).

• Make an ssh directory. First check: type cd ~, then
ls -la|grep ssh and if it lists a directory .ssh then
skip the rest of this step. Execute mkdir .ssh

• Copy your key. Execute cd .ssh. Then
copy the contents of the file id_rsa.pub

into the file authorized_keys with perhaps
cat >> authorized_keys.

Use ls -l to check authorized_keys has permissions
rw-r--r--

On your computer Execute ssh to the server and you
should be able to do it without a password. If so, success.

6Currently git is installed in my home directory so you will have
to execute the command ln -s /home/a1184615/bin in your home
directory, logout, and then login again with ssh.

6

3.3 Create a new external repository

Given a local git repository, you want to also place the
repository somewhere on the internet, perhaps for backup,
but mainly for collaboration.

Establish a repository on the Maths server One cre-
ates an empty repository, and then fills it with information.7

• Login to the maths server.

• mkdir ourproject.git

• cd ourproject.git

• git init --bare --shared for access and modifica-
tion only by those in your unix Group. Alterna-
tively, git init --bare --shared=0666 for access
and modification by all who can login to the server.

• Then check to remove group and other write permis-
sions from your home directory /home/a1234567 (so
that ssh will permit public key access).

Back on your own computer:

• clone the empty repository as in Section 3.1;

• then into the folder that is created, drag the content
you want to be managed by git, then add, commit,
push/pull as needed.

Already locally exists However, if the content is already
in a folder locally managed by git, then do the following.
From within the local git folder,

git remote add a1234567@www.maths.adelaide.\

edu.au:/home/username/ourproject.git

Then push and pull as needed.

3.4 Resolving conflicts with others

Mostly git will successfully merge edits by multiple people
on the one file. However, if the edits are in the same region,
then git is likely to flag the edits as conflicting and require
you to resolve the conflict.

As yet the details are unclear.

7Currently git is installed in my home directory so you will have
to execute the command ln -s /home/a1184615/bin in your home
directory, logout, and then login again with ssh.

Using the free service of GitHub.com Ensure you
have, and with a web browser login to, a GitHub account as
described above.

• Click on either Create a repository or New

repository in the web interface to github.com.

• Follow the route flagged Existing Git Repository

and connect the web storage to your existing local git
folder.

• Thereafter work as described previously.

Github GUI Go to the repository managing
in GitHub, click on Settings, enter into the
Primary remote repository box the remote address

a1234567@www.maths.adelaide.edu.au:\

/home/username/ourproject.git

Then push/pull/sync.

7

