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PostScript-hased workflow, editing PostScript figures in
Adobe llustrator.

I produced a draft index for the articles that I
authored using BTgX indexing commands and the Make-
Index program. A professional indexer then expanded
the index to cover the whole hook.

The font used for this book is Lucida Bright, which
has a full set of mathematical symbols that work well
in TgX. It is from the same family as the Lucida Grande
sans serif font that was used throughout the Mac OS X
user interface up untit versicn 10.9.

Further Reading

Of the many good references on BIgX I recommend Grif-
fiths and D. J. Higham (1997) for a brief introduction
and Kopka and Daly {(2004) for a more comprehensive
treatment. Knuth (1986) continues to he worth read-
ing, even for those who use only KIfX. Various aspects
of workflow are covered in Higham (1 998), Version con-
trol is best explored with the many freely available Web
resources.

A good place to start looking for information about
TEX and ¥IEX is the Web site of the TgX Users Group,
htip://tug.org. A large collection of BIEX packages is
available at the Comprehensive TeX Archive Network
(CTAN), http://www.ctan.org.

Griffiths, D. F., and D. J. Higham. 1997. Learning BIEX.
Philadelphia, PA: SIAM.

Higham, N. J. 1998. Handbook of Writing for the Mathemat-
ical Sciences, 2nd edn. Philadelphia, PA: SIAM.

Knuth, D. E. 1986. The TgXbook. Reading, MA: Addison-
Wesley.

Kopka, H., and P. W. Daly. 2004. Guide t0 BT, 4th edn.
Boston, MA: Addison-Wesley.

VIIL.5 Reproducible Research in the
Mathematical Sciences

David L. Donoho and Victoria Stodden

1 Introduction

Traditionally, mathematical research was conducted
via mental abstraction and manual symbolic manipu-
lation. Mathematical journals published theorems and
completed proofs, while other sorts of evidence were
gathered privately and remained in the shadows. For
example, long after Riemann had passed away, his-
torians discovered that he had developed advanced
techniques for calculating the Riemann zeta function
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and that his formulation of the Riemann hypothesis—
often depicted as a triumph of pure thought—was actu-
ally based on painstaking mumerical work. In fact, Rie-
mann’s computational methods remained far ahead of
what was available to others for decades after his death.
This example shows that mathematical researchers
have been “covering their (computational} tracks” for
a long time.

Times have been changing. On the one hand, mathe-
maltics has grown into the so-called mathematical sci-
ences, and in this larger endeavor, proposing new com-
putational methods has taken center stage and doc-
umenting the behavior of proposed methods in test
cases has become an important part of research activ-
ity (witness current publications throughout the mathe-
maftical sciences, including statistics, optimization, and
computer science). On the other hand, even pure math-
ematics has been affected by the trend toward compu-
tational evidence; Tom Hales's brilliant article “Math-
ematics in the age of the Turing machine” points to
several examples of important mathematical regulari-
ties that were discovered empirically and have driven
much subsequent mathematical research, the Birch and
Swinnerton-Dyer conjecture being his lead example.
This conjecture posits deep relationships between the
zeta function of elliptic curves and the rank of elliptic
curves, and it was discovered by counting the number
of rational points on individual elliptic curves in the
early 1960s.

We can expect that, over time, an ever-increasing
fraction of what we know about mathematical struc-
tures will be based on computational experiments,
either because our work (in applied areas) is explicitly
about the behavior of computations or because (in pure
mathematics) the leading questions of the day concern
empirical regularities uncovered computationally.

Indeed, with the advent of cluster computing, cloud
computing, graphics processing unit boards, and other
computing innovations, it is now possible for a re-
searcher to direct overwhelming amounts of computa-
tional power at specific problems. With mathematical
programming environments like Mathematica, MAT-
LAB, and Sage, it is possible to easily prototype algo-
rithms that can then be guickly scaled up using the
cloud. Such direct access to computational power is an
irresistible force. Reflect for a moment on the fact that
the Birch and Swinnerton-Dyer conjecture was discov-
ered using the rudimentary computational resources of
the early 1960s. Research in the mathematical sciences
can now be dramatically more ambitious in scale and



VIIL5. Reproducible Research in the Mathematical Sciences 917

204

5_ "

log(number of lines of code)

1960 1958 1977 1986 1995 2003 2012

Figure 1 The number of lines of code published in ACM
Transactions on Mathematical Software, 1960-2012, on a
log scale. The proportion of articles that published code
remained roughly constant at about a third, with standard
errar of about 0.12, and the journal consistently published
around thirty-five articles each vear.

scope. This opens up very exciting possibilities for dis-
covery and exploration, as explained in EXPERIMENTAL
APPLIED MATHEMATICS [VHL6].

The expected scaling up of experimental and com-
putational mathematics is, at the same time, problem-
atic. Much of the knowledge currently being generated
using computers is not of the same quality as tra-
ditional mathematical knowledge. Mathematicians are
very strict and demanding when it comes to under-
standing the basis of a theorem, the assumptions used,
the prior theorems on which it depends, and the chain
of inference that establishes the theorem. As it stands,
the way in which evidence based on computations is
typically published leaves “a great deal to the imagi-
nation,” and computational evidence therefore simply
does not have the same epistemological status as a
rigorously proved theorem.

Algorithms are hecoming ever more complicated. Fig-
ure 1 shows the number of lines of code published in
the journal ACM Transactions on Mathematical Sofi-
ware from 1960 to 2012. The number of lines has
increased exponentially, from 875 in 1960 to nearly
5 million in 2012, including libraries. The number
of articles in the journal that contain code has been
roughly constant; individual algorithms are requiring
ever more code, even though modem languages are
EVer more expressive.

Algorithms are also being combined in increas-
ingly complicated processing pipelines, Individual aigo-
rithms of the kind that have traditionally been docu-
mented in journal articles increasingly represent only
a small fraction of the code making up a computational

science project. Scaling up projects to fully exploit
the potential of modern computing resources requires
complex workflows to pipeline together mumerous
algorithms, with problems broken into pieces and
farmed out to be run on numerous processors and
the results harvested and combined in project-specific
ways. As a result, a given computational project may
involve much infrastructure not explicitly described
in journal articles. In that environment, journal artj-
cles become simply advertisements: pointers to a com-
plex body of software development, experimental out-
comes, and analyses, in which there is really no hope
that “outsiders” can understand the full meaning of
those summaries.

The computational era seems to be thrusting the
mathematical sciences into a situation in which math-
ematical knowledge in the wide sense, also includ-
ing solidly based empirical discoveries, is broader and
more penetrating but far less transparent and far less
“conunon property” than ever. Individual researchers
report that over time they are becoming increasingly
uncertain about what other researchers have done and
about the strength of evidence underlying the results
those other researchers have published.

The phrase mathematical sciences contains a key to
improving the situation. The traditional laboratory sci-
ences evolved, over hundreds of years, a set of pro-
cedures for enabling the reproducibility of findings in
one laboratory by other laboratories. As the mathe-
matical sciences evolve toward ever-heavier reliance on
computation, they should likewise develop a discipline
for documenting and sharing algorithms and empirical
mathematical findings. Such a disciplined approach to
scholarly communication in the mathematical sciences
offers two advantages: it promotes scientific progress,
and it resolves uncertainties and controversies that
spread a “fog of uncertainty.”

2 Reproducible Research

We fully expect that in two decades there will be
widely accepted standards for communication of find-
ings in computational mathematics. Such standards are
needed so that computational mathematics research
can be used and believed by others.

The raw ingredients that could enable such standards
seem to already be in place today. Problem solving envi-
ronments (PSEs) like MATLAB, R, IPython, Sage, and
Mathematica, as well as open-source operating systems
and software, now enable researchers to share their
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code and data with others. While such sharing is not
nearly as common as it should be, we expect that it
soon will be.

In a 2006 lecture, Randall J. LeVeque described well
the moment we are living through. On the one hand,
many computational mathematicians and computa-
tional scientists do not work reproducibly:

Even brilliant and well-intentioned computational sci-
entists often do a poor job of presenting their work
in a reproducible manner. The methods are often very
vaguely defined, and even if they are carefully defined
they would normally have to be implemented from
scratch by the reader in order to test them. Most mod-
ern algorithms are so complicated that there is little
hope of doing this properly.

On the other hand, LeVeque continues, the ingredients
exist:

The idea of “reproducible research” in scientific com-
puting is to archive and make publicly available all of
the codes used to create the figures or tables in a paper
in such a way that the reader can download the codes
and run them to reproduce the results. The program
can then be examined to see exactly what has heen
done. The development of very high level programming
langnages has made it easier to share codes and gen-
erate reproducible research.... These days many algo-
rithms can be written in languages such as MATLAB in
a way that is both easy for the reader to comprehend
and also executable, with alt details intact.

While the technology needed for reproducible re-
search exists today, mathematical scientists do not yet
agree on exactly how to use this technology in a dis-
ciplined way. At the time of writing, there is a great
deal of activity to define and promote standards for
reproducible research in computational mathematics.

A number of publications address reproducibility
and verification in computational mathematics; top-
ics covered include computational scale and proof
checking, probabilistic model checking, verification of
numerical solutions, standard methods in uncertainty
quantification, and reproducibility in computational
research. This is not an exhaustive account of the liter-
ature in these areas, of course, merely a starting point
for further investigation.

In this article we review some of the available tools
that can enable reproducible research and conclude
with a series of “best-practice” recommendations based
on modern examples and research methods.
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3 Script Sharing Based on PSEs
3.1 PSEs Offer Power and Simplicity

A key precondition for reproducible computational
research is the ability for researchers to run the
code that generated results in some published paper
of interest. Traditionally, this has been problematic.
Researchers were often unprepared or unwilling to
share code, and even if they did share it, the impact
was minimal as the code depended on a specific com-
putational environment (hardware, operating system,
compiler, etc.) that others could not access.

PSEs like R, Mathematica, and MATLAB have, over the
last decade, dramatically simplified and uniformized
much computational science.

Each PSE offers a high-level language for describing
computations, often a language that is very compat-
ible with standard mathematical notation. PSEs also
offer graphics capabilities that make it easy to pro-
duce often quite sophisticated figures for inclusion in
research papers. The researcher is gaining extreme ease
of access to fundamental capabilities like matrix alge-
bra, symbolic integration and optimization, and sta-
tistical model fitting; in many cases, a whole research
project, involving a complex series of variations on
some basic computation, can be encoded in a few
compact command scripts.

The popularity of this approach to computing is
impressive. Figure 2 shows that the PSEs with the
most impact on research (by number of citations) are
the commercial closed-source packages Mathematica
and MATLAB, which revolutionized technical comput-
ing in the 1980s and 1990s. However, these systems are
no longer rapidly growing in impact, while the recent
growth in popularity of R and Python is dramatic.

3.2 PSEs Facilitate Reproducibility

As LeVeque pointed out in the quote above, a side effect
of the power and compactness of coding in PSEs is that
reproducible research becomes particularly straight-
forward, as the original researcher can supply some
simple command scripts to interested researchers, who
can then rerun the experiment or variations of it pri-
vately in their own local instances of the relevant
PSE.

In some fields, authors of research papers are already
heavily committed to a standard of reproducing results
in published papers by sharing PSE scripts. In statistics,
for example, papers often seek to introduce new tools
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Figure 2 The total number of hits on Google Scholar for
each of the four search terms: {a) “R software”, (h) MATLAB,
(¢) Python, and (d) Mathematica. The search was carried out
for each year in the decade 2004-13. Note that the y-axes
are on different scales to show the increase or decrease
in software use over time. R and Python are open source,
whereas MATLAB and Mathematica are not.

that scientists can apply to their data. Many authors
would like to increase the visibility and impact of such
methodological papers and are persuaded that a good
way to do this is to make it as easy as possible for users
to try the newly proposed tools. Traditional theoretical
statistics journal papers might be able to expect cita-
tions in the single or low double digits; there are numer-
ous recent examples of articles that were supplemented
by easy access to code and that obtained hundreds

of readers and citations. It became very standard for
authors in statistics to offer access to code using pack-
ages in one specific PSE, R. To build such a package,
authors document their work in a standard BIgX for-
mat and bundle up the R code and documentation in
a defined package structure. They post their package
on CRAN, the Comprehensive R Archive Network. All
R users can access the code from within R by simple
invocations {require("package_name™))} that direct
R 10 locate, download, and install the package from
CRAN. This process takes only seconds. Consequently,
all that a user needs to know today to begin applying
a new methodology is the name of the package. CRAN
offered 5519 packages as of May 8, 2014. A side effect
of authors making their methodology available in order
to attract readers is, of course, that results in their
original articles may become easily reproducible.!

3.3 Notebooks for Sharing Results

A notebook interface to a PSE stores compuier instruc-
tions alongside accompanying narrative, which can
include mathematical expressions, and allows the user
to execute the code and store the output, including fig-
ures, all in one document. Because all the steps leading
to the results are saved in a single file, notebooks can
be shared online, which provides a way to communicate
reproducible computational results.

The Jupyter Notebook (formerly known as the IPy-
thon Notebook), provides an interface to back-end com-
putations, for example in Python or R, that displays
code and output, including figures, with BIEX used to
typeset mathematical notation (see figure 3). A Jupyter
Notebook permits the researcher to track and docu-
ment the computational steps that generate results and
can he shared with others online using nbviewer (see
http://nbviewer.ipython.org).

4 QOpen-Source Software: A Key Enabler

PSEs and notebook interfaces are having a very substan-
tial effect in promoting reproducibility, but they have
their limits. They make many research computations

1. In fields like statistics, code alone is not sufficient to reproduce
published results, Computations are performed on data sets from spe-
cific scientific projects; the data may result from experiments, surveys,
or costly measurements. Increasingly, data repositories are being used
by researchers to share such data across the Internet. Since 2010, arXiv
has partnered with Data Conservancy to facilitate external hosting of
data associated with publications uploaded to arXiv (see, for example,
http:/arxiv.org/abs/1110.3649v1, where the data files are accessible
from the paper's arXiv page). Such practices are not yet widespread,
but they are occurring with increasing frequency.
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Figure 3 A snapshot of the interactive Jupyter Notehook.

convenient and easy to share with others, bur ambi-
tious computations often demand more capability than
they can offer. Historically, this would have meant that
ambitious projects had to be idiosyncratically coded
and difficult to export to new computing environmnents.

The open-source revolution has largely changed this.
Today, it is often possible to develop all of an ambitious
computational project using code that is freely avail-
able to others. Moreover, this code can be hosted on an
open-source operating system (Linux) and run within a
standard virtual machine that hides hardware details.
The open-source “spirit” also makes researchers more
open to sharing code; attribution-only open-source
licenses may also allow them to do this while retain-
ing some assurance that the shared code will not be
misappropriated.

Several broad classes of software are now being
shared in ways that we describe in this section. These
various classes of software are becoming, or have
already become, part of the standard approaches to
reproducible research.

4.1 Fundamental Algorithms and Packages

In table 1 we consider some of the fundamental prob-
lems that underly modern computational mathemat-
ics, such as FAST FOURIER TRANSFORMS [IL10], LIn-
EAR EQUATIONS [IV.10], and NONLINEAR OPTIMIZATION
[Iv.11], and we give examples of some of the many
families of open-source codes that have become avail-
able for enabling high-guality mathematical computa-
tion. The table includes the packages' inception dates,

VIII. Final Perspectives

their current release numbers, and the total numbers of
citations that the packages have garnered since incep-
tion.? The different packages within each section of the
table may offer very different approaches to the same
underlying problem. As the reader can see, a stagger-
ing amount of basic functionality is being developed
worldwide by many teams and authors in particular
subdemains, and it is being made available for broad
use. The citation figures in the table testify to the sig-
nificant impact these enablers are having on published
research.

4.2 Specialized Systems

The packages tabulated in table 1 are broadly useful
in computational mathematics; it is perhaps not sur-
prising that developers would rise to the challenge of
creating such broadly useful tools. We have been sur-
prised to see the rise of systems that attack very spe-
cific problem areas and offer extremely powerful envi-
ronments to formulate and solve problems in those
narrow domains. We give three examples.

4.2.1 Hyperbolic Partial Differential Equations (PDEs)

Clawpack is an open-source software package designed
10 compute numerical sohutions to hyperbolic PDEs
using a wave propagation approach. According to the
systemt’s lead author, Randall J. LeVeque, “the devel-
opment and use of the Clawpack software implement-
ing [high-resclution finite-volume methods for solving
hyperbolic PDEs] serves as a case study for a more gen-
eral discussion of mathematical aspects of software
development and the need for more reproducibility in
computational research.”

The package has been used in the creation of repro-
ducible mathematical research. For example, the fig-
ures for LeVeque's book Finite Volume Methods for
Hyperbolic Problerns were generated using Clawpack;
instructions are provided for recreating those figures.

Clawpack is now a framework that offers numerous
extensions including PyClaw (with a Python interface to
anumber of advanced capabilities) and GeoClaw (devel-
oped for TSUNAMI MODELING {V.19] and the modeling
of other geophysical flows). Open-source software prac-
tices have apparently enabled not only reproducibility
but also code extension and expansion into new areas.

2. The data for citation counts was collected via Google Scholar in
August 201 3. Note that widely used packages such as LAPACK, FFTW,
ARPACK, and Suitesparse are built into other software (e.g., MATLAB),
which do not generate citations for them directly.
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Table 1 Software for some fundamental problems
underlying modern computational mathematics.

Year of Current
Package inception release  Citations
Dense linear algebra
LAPACK 1992 3.4.2 7600
JAMA 1998 1.0.3 129
IT++ 2006 4.2 14
Armadillo 2010 3.900.7 105
EJML 2010 0.23 22
Elemental 2010 0.81 51
Sparse-direct solvers
SuperlU 1997 4.3 317
MUMPS 1999 4.10.0 2029
Amesos 2004 114 104
PaStiX 2006 5.2.1 114
Cligue 2010 0.81 12
Krvilov-subspace eigensolbvers
ARPACK 1998 3.1.3 2624
SLEPc 2002 34.1 293
Anasazi 2004 11.4 2422
PRIMME 2006 1.1 61
Fourier-like transforms
FFTW 1897 3.3.3 1478
P3DFFT 2007 2.6.1 14
DIGPUFFT 2011 2.4 17
DistButterfly 2013 27
PNFFT 2013 215
Fast multipole methods
KIFMM3d 2003 1780
Puma-EM 2007 0.5.7 32
PetFMM 2009 29
GemsFMM 2010 16
ExaFMM 2011 28
PDE frameworks
PETSc 1997 3.4 2695
Cactus 1998 4.2.0 669
deal.ll 1999 8.0 576
Clawpack 2001 4.6.3 131
Hypre 2001 29.0 384
libMesh 2003 0.9.2.1 260
Trilinos 2003 114 3483
Feel++ 2005 0.93.0 405
Lis 2005 1.4.11 29
Finite-element analysis
Code Aster 11.4.03 48
CalculiX 1998 2.6 69
deal.ll 1999 8.0 576
DUNE 2002 2.3 325
Elmer 2005 6.2 97
FEniCS Project 2009 1.2.0 418
FEBio 2010 1.6.0 32

Table 1 (Contired.)

Year of Current
Package inception rtelease  Citations

Optimization

MINUTT/MINUIT2 2001 94.1 2336
CUTFEr 2002 rl52 1368
POPT 2002 3.11.2 1517
CONDOR 2005 1.11 1019
OpenOpt 2007 0.50.0 24
ADMB 2009 111 175
Graph partitioning
Scotch 1992 6.0.0 435
ParMeTIS 1997 4.0.3 4349
kMeTIS 1998 1.5.3 3449
Zoltan-HG 2008 r362 125
KaHIP 2011 0.52 71
Adaptive mesh refinement
AMRClaw 1994 4.6.3 4800
PARAMESH 1999 4.1 409
SAMRAI 1998 185
Carpet 2001 4 579
BoxLib 2000 155
Chombo 2000 31 198
AMROC 2003 1.1 342
pdest 2007 0.3.4.1 227

4.2.2 Parabelic and Elliptic PDEs: DUNE

The Distributed and Unified Numerics Envirenment
(DUNE) is an open-source modular software toolbox
for solving PDEs using grid-based methods. It was
developed by Mario Ohlberger and other contributors
and supports the implementation of methods such as
finite elements, finite volumes, finite differences, and
discontinuous Galerkin methods.

DUNE was envisioned to permit the integrated use
of both legacy libraries and new ones. The software
uses modern C++ programming techniques to enable
very different implementations of the same concepts
(i.e., grids, solvers, linear algebra, etc.) using a com-
mon interface with low overhead, meaning that DUNE
prioritizes efficiency in scientific computations and
supports high-performance computing applications.
DUNE has a variety of downloadable modules including
varicous grid implementations, lnear algebra solvers,
quadrature formulas, shape functions, and discretiza-
tion modules.

DUNE is based on several main principles: the separa-
tion of data structures and algorithms by abstract inter-
faces, the efficient implementation of these interfaces
using generic programming techniques, and reuse of
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existing finite-element packages with a large body of
functionality. The finite-element codes UG, ALBERTA,
and ALUGrid have been adapted to the DUNE frame-
work, showing the value of open-source development
not only for reproducibility but for acceleration of
discovery through code reuse.’

4.2.3 Computer-Aided Theorem Proving

COMPUTER-AIDED THEOREM PROVING [VIL3] has made
extremely impressive strides in the last decade. This
progress ultimately rests on the underlying computa-
tional tools that are openly available and that a whole
community of researchers is contributing to and using.
Indeed, one can only have justified belief in a compu-
tationally enabled proof with transparent access to the
underlying technology and broad discussion.

There are, hroadly speaking, two approaches to
computer-aided thecrem-proving 10o0ls in experimen-
tal mathematics. The first type encompasses machine-
human collaborative proof assistants and interactive
theorem-proving systems to verify mathematics and
computation, while the second type includes automatic
proof checking, which occurs when the machine verifies
previously completed human proofs or conjectures.

Interactive theorem-proving systems include coq,
Mizar, HOL4, HOL Light, Isabelle, LEGO, ACL2, Veritas,
NuPRL, and PVS. Such systems have been used to verify
the four-color theorem and to reprove important clas-
sical mathematical results. Thomas Hales’s Flyspeck
project is currently producing a formal proof of the
Kepler conjecture, using HOL Light and Isabelle. The
software produces machine-readable code that can be
reused and repurposed into other proof efforts. Exam-
ples of open-source software for automatic theorem
proving include E and Prover9/Mace 4.

5 Scientific Workflows

Highly ambiticus computations today often go beyond
single algorithms to combine different pieces of soft-
ware in complex pipelines. Moreover, modern reseaich
often considers a whole pipeline as a single object
of study and makes experiments varying the pipeline
itself. Experiments involving many moving parts that
must be combined to produce a complete result are
often called workflows.

Kepler is an open-source project structured around
scientific workflows: “an executable representation of

3. Seealso FEniCS (http:/fenicsproject.org) for another example of
an open-source finite-element package.
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Figure 4 An example of the Kepler interface, showing a
workflow solving the classic Lotka-Volterra predator-prey
dynamics model.

the steps reaquired to generate results,” or the capture
of experimental details that permit others to repro-
duce computational findings. Kepler provides a graphi-
cal interface that allows users to create and share these
workflows. An example of a Kepler workflow is given
in figure 4, solving a model of two coupled differen-
tial equations and plotiing the outpul. Kepler main-
tains a component repository where workflows can
be uploaded, downloaded, searched, and shared with
the community or designated users, and it contains a
searchable library with more than 350 processing com-
ponents. Xepler operates on data stored in a variety of
formats, locally and over the Internet, and can merge
software from different sources such as R scripts and
compiled C code by linking in their inputs and ocutputs
to perform the desired overall task.

6 Dissemination Platforms

Dissemination platforms are Web sites that serve spe-
cialized content to iterested visitors. They offer an
interesting method for facilitating reproducibility; we
describe here the Image Processing OnLine (IPOL)
project and ResearchCompendia.org.

TPOL is an open-source journal infrastructure de-
veloped in Python that publishes relevant image-pro-
cessing and image-analysis algorithms. The journal
peer reviews article contributions, including code, and
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Figure 5 An example IPOL publication. The three panels from left to right include the
manuscript, the cloud-executable demo, and the archive of all previous executions.

publishes accepted papers in a standardized format
that includes

» a manuscript containing a detailed description of
the algorithm, its bibliography, and documented
examples;

« a downloadable software implementation of the
algorithm;

« an online demo, where the algorithim can be tested
on data sets, for example images, uploaded by the
users; and

« an archive containing a history of the online exper-
iments.

Figure 5 displays these components for a sample IPOL
publication.

ResearchCompendia, which one of the authors is
developing, is an open-source platform designed to link
the published article with the code and data that gen-
erated the results. The idea is based on the notion of
a “research compendium": a bundle including the arti-
cle and the code and data needed to recreate the find-
ings. For a published paper, a Web page is created that
links to the article and provides access to code and data
as well as metadata, descriptions, and documentation,
and code and data citation suggestions. Figure 6 shows
an example compendium page.

ResearchCompendia assigns a Digital Object Iden-
tifier (DOD to all citable objects (code, data, com-
pendium page) in such a way as to erable bidirectional
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Figure 6 An example compendium page on Research-
Compendia.org. The page links to a published article and
provides access to the code and data that generated the
published results.

linking between related digital scholarly objects, such
as the publication and the data and code that gen-
erated its results (see www.stm-assoc.org/2012_06_
14_STM_DataCite_Joint_Statement.pdf). DOIs are well-
established and widely used unique persistent identi-
fiers for digital scholarly objects. There are other PSE-
independent methods of sharing such as via GitHub
(which can now assign DOIs to code: htips://guides.git
hub.com/activities/citable-code) and via supplemen-
tary materials on journal Web sites. ADOI is affixed to a
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certain version of software or data that generates a cer-
tain set of results. For this reason, among others, VER-
SION CONTROL [VIIL4 §4] for scientific codes and data
is important for reproducibility.*

7 Best Practices for Reproducible
Computational Mathematics

Best practices for communicating computational math-
ematics have not yet hecome standardized. The work-
shop “Reproducibility in Computational and Experi-
mental Mathematics”, held at the Institute for Com-
putational and Experimental Research in Mathematics
(ICERM} at Brown University in 2012, recommended the
following for every paper in computational mathemat-
ics.

s A precise statement of assertions made in the
paper.

+ A statement of the computational approach and
why it constitutes a rigorous test of the hypothe-
sized assertions.

+ Complete statemenis of, or references to, every
algorithm employed.

+ Salient details of auxiliary software (both research
and commercial software) used in the computation.

s Salient dertails of the test environment, including
hardware, system software, and the number of
processors utilized.

» Salient details of data-reduction and statistical-
analysis methods.

» Discussion of the adequacy of parameters such as
precision level and grid resolution.

» A full statement (or at least a valid summary) of
experimental results.

« Verification and validation tests performed by the
author(s).

« Availability of computer code, input data, and out-
put data, with some reasonable level of documen-
tation.

» Curation. Where are code and data available? With
what expected persistence and longevity? Is there
a site for future updates, e.g., a version control
repository of the code base?

» Instructions for repeating computational experi-
ments described in the paper.

4, Other reasons inchide good coding practices enabling reuse,
assigning explicit credit for bug fixing and code extensions or applica-
tions, efficiency in code organization and development, and the ability
to join collaborative coding communities such as GitHub.
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+ Terms of use and licensing. Ideally code and data
“default to open,” i.e., a permissive reuse license, if
nothing opposes it.

« Avenues of exploration examined throughout de-
velopment, including information about negative
findings.

« Proper citation of all code and data used, including
that generated by the authors.

These guidelines can, and should, be adapted to dif-
ferent research contexts, but the goal is to provide
readers with the information (such as metadata includ-
ing parameter settings and workflow documentation),
data, and code they require to independently verify
computational findings.

8 The Outlook

The recommendations of the ICERM workshop listed in
the previous section are the least we would hope for
today. They commendably propose that authors give
enough information for readers to understand at some
high level what was done.

They do not actually require sharing of all code and
data in a form that allows precise reexecution and
reproduction of results, and as such, the recommenda-
tions are very far from where we hope to be in twenty
vears. _

One can envision a day when every published re-
search document will be truly reproducible in a deep
sense, where others can repeat published computations
utterly mechanically. The reader of such areproducible
research article would be able to deeply study any spe-
cific figure, for example, viewing the source code and
data that underlie a figure, recreating the original figure
from scratch, examining input parameters that define
this particular figure, and even changing their settings
in order to study the effect on the resulting figure.

Reproducibility at this ambitious level would enable
more than just individual understanding; it would
enable metaresearch. Consider the “dream applica-
tions” mentioned in Gavish and Donoho (2012), where
robots automatically crawl through, reproduce, and
vary research results. Reproducible work can be auto-
matically extended and generalized; it can be opti-
mized, differentiated, extrapolated, and interpolated.
A reproducible data analysis can be statistically boot-
strapped to automatically place confidence statements
on the whole analysis.

Coming back down to earth, what is likely to happen
in the near future? We confidently predict increasing
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computational transparency and increasing computa-
tional reproducibility in coming years. We imagine that
PSEs will continue to be very popular and that authors
will increasingly share their scripts and data, if only
to attract readership. Specialized platforms like Claw-
pack and DUNE will come to be seen as standard plat-
forms for whole research communities, who will nat-
urally then be able to reproduce work in those areas.
We expect that as the use of cloud computing grows
and workflows become more complex, researchers will
increasingly document and share the workflows that
produce their most ambitious results. We expect that
code will be developed on common platforms and will
be stored in the cloud, enabling the code to run for
many years after publication.

We expect that over the next two decades such prac-
tices will become standard and will be based on tools
of the kind discussed in this article. The direction of
increasing transparency and increasing sharing seem
clear, but it is still unclear which combinations of tools
and approaches will come to be standard.
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VIII.6 Experimental Applied
Mathematics
David H. Bailey and
Jonathan M. Borwein

1 Introduction

“Experimental applied mathematics” is the name given
to the use of modern computer technology as an active
agent of research. It is used for gaining insight and intu-
ition, for discovering new patterns and relationships,
for testing conjectures, and for confirming analytically
derived results, in much the same spirit that labora-
tory experimentation is employed in the physical sci-
ences. It is closely related to what is known as “exper-
imental mathematics” in pure mathematics, as has
been described elsewhere, including in The Princeton
Companion to Mathematics.

In one sense, most applied mathematicians have for
decades aggressively integrated computer technology
into their research. What is meant here is computa-
tionally assisted applied mathematical research that
features one or more of the following characteristics:

(i) computation for exploration and discovery,
(ii) symbolic computing;
(iii) high-precision arithmetic;
(iv) integer relation algorithms;
{v) graphics and visualization;
{vi) connections with nontraditional mathematics.

Depending on the context, the role of rigorous proof
in experimental applied mathematics may be either
much reduced or unchanged from that of its pure
sister. There are many complex applied problems for
which there is little point in proving the validity of a
minor component rather than finding strong evidence
for the appropriateness of the general method.

High-Precision Arithmetic

Most work in scientific or engineering computing relies
on either 32-bhit IFEE FLOATING-POINT ARITHMETIC
[II.13] (roughty 7-decimal-digit precision) or 64-bit IEEE



