pgfplots generates beautiful simple graphs

Tony Roberts
University of Adelaide
http://orcid.org/0000-0001-8930-1552

May 17, 2018

For research, lecture notes, tutorials, examinations, and online quizzes we often need to simply generate high quality graphs. The \LaTeX{} package pgfplots does a beautiful and flexible job such as the following. This document concisely summarises some useful basics of 2D pgfplots (3D is available but not addressed here).
Contents

1 Basic figure template
2 Graph formulas
3 Options
4 Extras
5 Further examples
6 3D graphics
7 matlab2tikz is powerful but requires care

1 Basic figure template

Enable with

\usepackage{pgfplots}
\pgfplotsset{compat=newest}

in the preamble of any regular \LaTeX{} document. I prefer to first draft a graph interactively using the application LaTeXiT. The general format for drawing a figure (often within a center environment) is

for a single curve use

\begin{tikzpicture}
\begin{axis}[axis-options]
\addplot+ formula;
\end{axis}
\end{tikzpicture}

for multiple curves use

\begin{tikzpicture}
\begin{axis}[axis-options]
\addplot+[plot-options] formula;
\addlegendentry{label}
\addplot+[plot-options] formula;
\addlegendentry{label}
\addplot+[plot-options] formula;
\addlegendentry{label}
\end{axis}

\end{tikzpicture}

\section{Graph formulas}

\textbf{function plot} To plot a curve where the vertical coordinate is a function of the horizontal coordinate, just give the function formula in terms of x within braces. For example

\begin{verbatim}
\addplot+ {-4+x^2-x^4/32};
\end{verbatim}

Trigonometric functions assume degrees, so invoke as $\sin(\deg(x))$ for example, and convert arc-functions as in $\atan(x)/\deg(1)$.

The “+” in \addplot+ means that a different line style/colour is used for each successive plot.

\textbf{parametric plot} For a parametric plot give the horizontal and vertical formulas in terms of ‘x’ within braces, comma separated, within parentheses. For example, to plot $y = \sqrt{2x-4}$ one could do

\begin{verbatim}
\addplot+ ({x^2/2+2},{x});
\end{verbatim}

\textbf{given data} In place of \textit{formula}, use \texttt{coordinates\{point-list\}} where the point-list has the form $(x_1,y_1)(x_2,y_2)\ldots(x_n,y_n)$ for the numerical data point coordinates (no commas between the parentheses). For example, to draw the absolute value function one could do

\begin{verbatim}
\addplot+ coordinates{(-2,2)(0,0)(2,2)}
\end{verbatim}

\textbf{Legend?} specify {\addlegendentry{...}} immediately after the curve plot.

Tony Roberts, May 17, 2018
3 Options

Annotation? specifying `\node at (axis cs:x1,y1) {text};` annotates a plot with the text centered at the location (x1,y1) in the plot coordinate system.

For example the following draws the figure shown at the start of this document, and using some of the options explained next.

```
\begin{tikzpicture}
\begin{axis}[
    xlabel={$x$},
    ylabel={$y$},
    axis lines=middle,
    samples=41, grid, thick,
    domain=-4:4,
    legend pos=outer north east,
]
\addplot+[no marks] {-4+x^2-x^4/32};
\addlegendentry{$f$}
\addplot+[no marks] {13/4-(x+1)^2/4};
\addlegendentry{$g$}
\addplot+[mark=*,mark repeat=5]
    {-4+(13/4-(x+1)^2/4)^2-(13/4-(x+1)^2/4)^4/32};
\addlegendentry{$f\circ g$}
\end{axis}
\end{tikzpicture}
```

3 Options

The options for the axis-options and the plot-options are largely the same: it is just that the plot-options override corresponding attributes set in the axis-options.

Multiple options need to be comma separated, and may span many lines. All options are optional, but some are usual.

- **axis lines=middle** pgfplot graphics normally are boxed, but for many purposes we want axes through the origin, so often invoke this.
3 Options

- **xlabel={x}** defines horizontal axis label.
- **ylabel={y}** defines vertical axis label; sometimes useful for labelling the plotted function as in ylabel={$y=\sin x$}.
- **title={...}** defines a title to go across the top of the plot when necessary.
- **samples=41** The pgfplot default is to use a distressingly few points to approximate a curve; overriding it, to say 41, is common.
- **smooth** Draws a smooth curve between data points (is an alternative to samples), especially useful for plots from specified coordinate points.
- **thick** specifies the curves are drawn a bit thicker, which usually seems good to do.
- **grid** for some plots we want a grid drawn.
- **legend pos=...** specifies the position of the legend in a multi-curve figure: can be one of outer north east (safely outside the plotted area), north east, south east, north west, south west.
- **domain=a:b** usually desirable and specifies the domain $[a,b]$ for the variable x in the formula; if not a parametric plot, then this will also be the horizontal extent of the plot.
- **xmin=a, xmax=b, ymin=c, ymax=d** any or all of these specify the horizontal and vertical domains of the plot; any curve or data point outside these ranges are clipped out of the plot; needed sometimes.
- **colour?** To specify colour just write the corresponding word from blue, red, brown, green, cyan, magenta, yellow, black, gray, white, darkgray, lightgray, lime, olive, orange, pink, purple, teal, violet.
- **dashed** plots the curve dashed; there is also solid, dotted, dashdotted and dashdotdotted.
- **no marks** the default is to mark every ‘data point’ (even if a formulaic curve); usually omit such marks.

Tony Roberts, May 17, 2018
Whereas only marks omits the line joining the data points.

- **mark=...** to override the default mark; choose from * (discs), x, +, or more via \usetikzlibrary{plotmarks} in the preamble.

- **mark repeat=n** instead of marking every data point, this marks every nth data point (starting with the first); sometimes useful with specified number of samples.

- **axis equal image** make the axes of equal scaling, and trim width or height to suit.

- **small, footnotesize, tiny** use one of these to make the figure smaller, or even smaller still, or (as it says) tiny, respectively. You may also want to include font=\small or font=\footnotesize to correspondingly change the size of any annotations.

- **ybar interval,black,fill=pink** will form a (vertical) bar plot with black rectangles and filled with pink. Similarly for xbar interval.

- **xtick={-2,...,8}** will force x-axis labels and grids to be drawn at every integer between −2 and 8. Whereas xtick={a,c,...,b} puts x-axis labels and grids at a : δ : b where δ = c − a. Analogously for ytick.

- **xticklabels={list}** will label each x-axis tick with specified information. For example, xtick={1,3,4} and xticklabels={a,x,b} specifies three ticks at these locations but labels them a, x and b respectively. Analogously for yticklabels.

4 Extras

- **\pgfplotsset{options}** Sets global options so they do not have to be repeated. For example, make all plots small by \pgfplotsset{small}.

- The function **rand** generates a random number for each invocation in a function at each data point; the random numbers are uniform over $[-1,1]$.

Tony Roberts, May 17, 2018
• Inequalities provide the step function: for example, \((x>0.5)\) is the function which is zero for \(x \leq 0.5\) and one for \(x > 0.5\).

\[
\text{\node[pin=45:{e}] at (axis cs:2.71828,0) {}; \ Add plot ...; annotates a plot with a pin and a marker at the given location.}
\]

\[
\text{\node[circle,fill=blue,scale=0.5,pin=135:{$(3,24)$}] at (axis cs:3,24){}; additionally draws a circular marker there as well.}
\]

• You can mix colours: for example, \texttt{teal!50!white} gives a pale teal.

• Option \texttt{opacity=\textit{fraction}} makes something somewhat transparent; for example, \texttt{fill opacity=0.5} makes a fill 50% transparent.

• \texttt{\addplot[...] \closedcycle;} is useful for shading regions as it draws end-lines and fills-in down to the horizontal axis.

• \texttt{hide y axis} does precisely what it says.

• One can add explanatory text to a legend with

\[
\text{\addlegendimage{empty legend}}
\]

\[
\text{\addlegendentry[text width=9em,text depth=] \{The quick brown fox jumps over the lazy dog.\}}
\]

It is typeset ragged-right.

• Contours? Drawing contours is possible, but currently requires tricky interfacing with external software. Instead, if the contours can be parametrised, then use the \texttt{\foreach} command to draw all the curves. For example, to draw six circles centred on the origin one might code, via angle parameter \(x\) and radius parameter \(r\),

\[
\text{\foreach \r in {0.5,1,...,3} { }
\text{\addplot+[no marks,domain=0:360,forget plot]}
\text{\{(r*cos(x)),\{r*sin(x)\}\};
\text{}}\]

The + increments the line style, but the \texttt{forget plot} says to forget that it used the line style, with the combined effect that all curves are
Further examples

drawn with the same line style.

- Drawing the graphs is computationally expensive: if it gets too slow you can get them drawn to a pdf file once and then seamlessly read back in thereafter. In modern systems, the graphs are redrawn automatically when their code is changed (but not in old systems).
 - Invoke this drawing to file by placing in the LaTeX preamble
 \usepgfplotslibrary{external}
 \tikzexternalize
 - \texttt{\tikzsetnextfilename{Figs/filename}} It is best to identify precisely what the pdf file is to be called so invoke this command immediately before each and every \texttt{\begin{tikzpicture}}. The filename should include a folder, such as Figs, because pgfplots generates four files per graph.
 - I like to put the plot source into the file Figs/filename.tex (with \texttt{\tikzsetnextfilename{Figs/filename}} as its first line), and then invoke in the LaTeX with \texttt{\input{Figs/filename}}.
 - Delete a .md5 file to force the corresponding plot to be redrawn, or invoke \texttt{\tikzset{external/force remake}} to force a redraw of all the pgfplots if necessary or when desirable.

5 Further examples

Christian Feuersanger provides many examples, including these.
Further examples

\begin{tikzpicture}
\begin{axis}[
axis equal, title={$\textbf{Basic Plot}$},
xlabel={x axis}, ylabel={y label}$\]
\addplot+[smooth,mark=*] plot coordinates
{ (0,2) (2,3) (3,1) };
\addlegendentry{Case 1}
\addplot+[smooth,mark=x] plot coordinates
{ (0,0) (1,1) (2,1) (3,2) };
\addlegendentry{Case 2}
\end{axis}
\end{tikzpicture}
5 Further examples

\begin{tikzpicture}
\begin{loglogaxis}[title={\textbf{Log-log Plot}},
xlabel=\textsc{dof}, ylabel={L_2 error}]
\addplot plot coordinates {
(5, 8.312e-02)
(17, 2.547e-02)
(49, 7.407e-03)
(129, 2.102e-03)
(321, 5.874e-04)
(769, 1.623e-04)
(1793, 4.442e-05)
(4097, 1.207e-05)
(9217, 3.261e-06)
};
\addplot plot coordinates {
(7, 8.472e-02)
(31, 3.044e-02)
(111, 1.022e-02)
};
\end{loglogaxis}
\end{tikzpicture}
6 3D graphics

The simplest plots, such as the one below, are of surfaces expressed as $z = f(x, y)$. Invoke \addplot3 and express the surface as a function of x and y.

Tony Roberts, May 17, 2018
matlab2tikz is powerful but requires care

TBA
matlab2tikz is powerful but requires care