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Three people that motivated my talk

Phil Pollett (the reason we are all here today at Uluru), Charles Pearce
(who helped me to a deeper understanding of applied probability) and
Jon Borwein (a legend who inspired my interest in convex analysis).
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Problem description

Problem 1 Let N ∈ N be a natural number. For each subset S ⊆ N
write |S| to denote the number of elements in S. Consider all subsets

S ⊆ {1,2, . . . , N} that contain no 3-term arithmetic progression in the

form {p− q, p, p+ q}. What is the largest possible value for |S|? 2

This problem has not been solved. We will write ν(N) to denote

the size of the largest subset of {1,2, . . . , N} that contains no 3-term

arithmetic progression.
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George Szekeres (1911–2005)

George Szekeres received his degree in chemistry at the Technical
University of Budapest. He moved to Shanghai prior to WWII to
escape Nazi persecution of the Jews and later to Australia where he
is now recognised as one of our greatest mathematicians.
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The Szekeres conjecture

Conjecture 1 Let Nr = (3r + 1)/2 where r ∈ N. The largest subset

Sr ⊆ {1,2, . . . , Nr} which contains no three-term arithmetic progres-

sion has size |Sr| = 2r. 2

This conjecture is false but when you look at the supporting evidence

you may well be convinced (as I was at first) that it is true.
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Supporting evidence for the Szekeres conjecture—a
greedy algorithm

Write down the natural numbers in order but omit any terms that
form a 3-term arithmetic progression. We find that

S1 = {1,2}, S2 = {1,2,4,5}, S3 = {1,2,4,5,10,11,13,14},

S4 = {1,2,4,5,10,11,13,14,28,29,31,32,37,38,40,41}, . . .

which all looks so beautiful and convincing. Each set is symmetric
so the greedy algorithm here is not blatantly biassed. If we write
A−B = {a−b | a ∈ A, b ∈ B} then Sr+1 = Sr∪[{(3r+1+1)/2+1}−Sr]
for all r ∈ N. The Szekeres sets show that

ν((3r + 1)/2) ≥ 2r ⇒ ν(Nr)� N
1/ log2 3
r .
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Supporting evidence for the Szekeres
conjecture—the ternary expansion

Write down the non-negative integers in order using their ternary
expansions but omit terms that contain a 2. Then add 1. We obtain

{0,1, [2],10,11, [12], [20], [21], [22],100,101, [102],110,111, . . .}+ 1

which are the desired numbers. The powers (plus one) of the poly-
nomials

p1(z) = 1 + z, p4(z) = (1 + z)(1 + z3),

p13(z) = (1 + z)(1 + z3)(1 + z9), . . .

also generate these numbers and all the roots lie on the unit circle.

It all seems so neat—but the Szekeres conjecture is false! What could
possibly have gone wrong?
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Felix Behrend (1911–1962)

Felix Behrend was another Jewish refugee. He fled Nazi Germany to

Britain before WWII only to be detained in a Prisoner of War camp

in 1940. He was later released following representations by influential

mathematicians GH Hardy and JHC Whitehead but was transported

to Australia and interred once again. He taught higher mathematics

at Camp University to younger internees including future well-known

mathematicians Walter F Freiberger, FI Mautner and JRM Radok.

Textbooks were not provided but despite these difficulties the students

were successfully prepared for exams at Melbourne University. Felix

Behrend was released in 1942 and was subsequently appointed to a

position at Melbourne University.
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The Behrend construction—simple but elegant

Consider integers d, n, k ∈ Z with d ≥ 2, n ≥ 2 and 0 ≤ k ≤ n(d − 1)2

and let Sk(d, n) ⊆ Z be the set of all numbers in the form

a = a1 + a2(2d− 1) + a3(2d− 1)2 + · · ·+ an(2d− 1)n−1

where ai ∈ Z with 0 ≤ ai ≤ d− 1 for each i = 1,2, . . . , n and such that

a2
1 + a2

2 + · · ·+ a2
n = k.

For convenience we will also write

S = S(d, n) =
⋃
k

Sk(d, n).
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The Behrend sets contain no arithmetic
progressions

If we use base 2d− 1 to write the elements a ∈ S in the form

a = anan−1 · · · a1

then the map a↔ v(a) between S ⊆ Z ⊆ R and T ⊆ Zn ⊆ Rn defined by
anan−1 · · · a1 ↔ (a1, a2, . . . , an) is a 1− 1 map. Because 0 ≤ ai ≤ d− 1
and 0 ≤ bi ≤ d−1 the 1−1 map extends to sums a+b↔ v(a)+v(b) and
averages (a+ b)/2↔ (v(a) + v(b))/2 provided (v(a) + v(b))/2 ∈ Zn.

If a, b ∈ Sk(d, n) we say v(a),v(b) ∈ Tk(d, n) and we note that v(a),v(b)
lie on the surface a sphere of radius

√
k. The convexity of the sphere

means (v(a)+v(b))/2 lies in the interior and not on the surface. Thus
(v(a) +v(b))/2 /∈ Tk(d, n). The 1−1 map implies (a+ b)/2 /∈ Sk(d, n).
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Typical size distributions for the Behrend sets
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Histograms for |Sk(d, n)| = |Tk(d, n)| for k ∈ [0, n(d− 1)2] in the cases

(d, n) = (4,4) with k ∈ [0,36] on the left and (d, n) = (16,4) with

k ∈ [0,900] on the right.
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Applying the pigeonhole principle

There are dn different vectors v(a) ∈ {0,1, . . . , d − 1}n but there are

only n(d−1)2+1 different values for k. Hence the pigeonhole principle

means there is some k = K with

|TK(d, n)| ≥ dn/[n(d− 1)2 + 1].

Since |SK(d, n)| = |TK(d, n)| and since all elements a ∈ SK(d, n) are

less than (2d− 1)n it follows that

ν[(2d− 1)n] ≥ dn/[n(d− 1)2 + 1] > dn−2/n.

The pigeonhole principle used here is our first encounter with applied

probability. It just so happens that in this case the probability is one.
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Estimating the lower bound

Let N be given. Choose n = b
√

2 log2Nc and d so that (2d − 1)n ≤
N < (2d+ 1)n. Then

ν(N) ≥ ν[(2d− 1)n] > dn−2/n > N1−2/n(1−N−1/n)n−2/(n2n−2)

from which it follows that for N sufficiently large we have

ν(N) > N1−2/n/(n2n−2)

= N1−2/n−log2 n/ log2N−(n−2)/ log2N

> N1−(2
√

2+ε)/
√

log2N

for any ε > 0.

This is bigger than the Szekeres lower bound if N > 259. So it pays
not to be greedy. The Behrend result was published in 1946 (in an
easy-to-read 2-page paper) and remained the best result until 2008.
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A new look at an old problem

Michael Elkin is a computer scientist and mathematician at Ben-
Gurion University. Ben Green is a pure mathematician extraordinaire
at the University of Oxford. Julia Wolf is a Reader in combinatorics
and number theory at the University of Bristol.
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Elkin’s improved lower bound

We note that N(2
√

2+ε)/
√

log2N = 2α gives α = (2
√

2 + ε)
√

log2N .

Thus Behrend’s bound can be rewritten as

ν(N)� N/2(2
√

2+ε)
√

log2N .

By careful analysis of the Behrend sets Elkin used the principles of

applied probability to find a marginally improved bound

ν(N)� (1/ log2N)1/4 ·N/22
√

2
√

log2N .

He then used a more elaborate analysis to find a further improvement

ν(N)� (log2N)1/4 ·N/22
√

2
√

log2N .

We use a brief note by Green and Wolf to explain Elkin’s bound.
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It is a brief note—but I never said it would be easy

Imagine that d is really large but because we are so far away the
hypercube {0,1, . . . ,2d − 1}n looks like a unit n-cube composed of
N = (2d)n uniformly distributed dots. Now we use applied probability.

Let Tn = Rn/Zn denote the n-dimensional torus and if θ,ϕ ∈ Tn let
Ψθ,ϕ : {1,2, . . . , N} → Tn be the map defined by p 7→ p θ+ϕ (mod 1).

Lemma 1 Fix p, q ∈ N with p 6= q. The variable Ψθ,ϕ(p) is uniformly
distributed on Tn and (Ψθ,ϕ(p),Ψθ,ϕ(q)) is uniformly distributed on
Tn × Tn as θ,ϕ vary uniformly and independently over Tn. 2

I know a little about two dimensional tori (doughnuts) but I know
nothing about n-dimensional tori when n > 2. Do you? Anyway I
decided to teach myself!
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A concrete approach to high-dimensional tori (I)

Wikipedia says that the n-dimensional torus is the cartesian product
of n circles. We should remember this.

When a circle is embedded in R2 the parametric equations are

x1 = r1 cos 2πθ1, x2 = r1 sin 2πθ1

where r1 > 0 for θ1 ∈ [0,1). This is T1 ⊆ R2. When a doughnut is
embedded in R3 we can write the parametric equations in the form

x1 = (r1 + r2 cos 2πθ2) cos 2πθ1,

x2 = (r1 + r2 cos 2πθ2) sin 2πθ1, x3 = r2 sin 2πθ2

where r1 > r2 > 0 for θ = (θ1, θ2) ∈ [0,1)2. This is T2 = T1×T1 ⊆ R3.

Eureka! I can see a pattern emerging already.
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A concrete approach to high-dimensional tori (II)

So I’m going to guess that the parametric equations for T3 ⊆ R4 are

x1 = (r1 + (r2 + r3 cos 2πθ3) cos 2πθ2) cos 2πθ1

x2 = (r1 + (r2 + r3 cos 2πθ3) cos 2πθ2) sin 2πθ1

x3 = (r2 + r3 cos 2πθ3) sin 2πθ2

x4 = r3 sin 2πθ3

where r1 > r2 > r3 > 0 for θ = (θ1, θ2, θ3) ∈ [0,1)3; · · ·
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A concrete approach to high-dimensional tori (III)

· · · and that for T4 ⊆ R5 the equations are

x1 = (r1 + (r2 + (r3 + r4 cos 2πθ4) cos 2πθ3) cos 2πθ2) cos 2πθ1

x2 = (r1 + (r2 + (r3 + r4 cos 2πθ4) cos 2πθ3) cos 2πθ2) sin 2πθ1

x3 = (r2 + (r3 + r4 cos 2πθ4) cos 2πθ3) sin 2πθ2

x4 = (r3 + r4 cos 2πθ4) sin 2πθ3

x5 = r4 sin 2πθ4

where r1 > r2 > r3 > r4 > 0 for θ = (θ1, θ2, θ3, θ4) ∈ [0,1)4; · · ·

See—that didn’t hurt too much did it! We needn’t bother about
higher dimensions because now it is dead easy. We need to be careful
though—embedding Tn into Rn+1 has everything to do with us and
nothing much to do with the torus.
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A concrete approach to high-dimensional tori (IV)

What about the (n+ 1)-surface area or more correctly the n-volume
of Tn? Well—if x = (x1, . . . xn+1) then the set ∂x/∂θ1, . . . , ∂x/∂θn is
an orthogonal set (you can check this from the parametric equations
if you like or just hope it is—like me). Thus, for instance, we have

V3(T3) =
∫

[0,1]3

∥∥∥∥∥ ∂x∂θ1

∥∥∥∥∥
∥∥∥∥∥ ∂x∂θ2

∥∥∥∥∥
∥∥∥∥∥ ∂x∂θ3

∥∥∥∥∥ dθ
= (2π)3

∫
[0,1]3

[r1 + (r2 + r3 cos 2πθ3) cos 2πθ2]

[r2 + r3 cos 2πθ3] r3 dθ

= (2π)3r1r2r3,

The (2π)3 is just a scale factor. So we could say V3(T3) = r1r2r3.
Come to think of it r1, r2 and r3 are scale factors too. This n-torus
is starting to look a bit like an n-cube.
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A concrete approach to high-dimensional tori (V)

What have we achieved?

We know how to take cartesian products of circles; we know that Tn

is an n-dimensional object; we understand the parametric equations

that embed Tn into Rn+1 and we know that the key gradient vectors

defining the local curvilinear coordinates are mutually orthogonal; we

can see that Tm+n ∼= Tm × Tn; and we have also convinced ourselves

that the volumes satisfy Vm+n(Tm+n) = Vm(Tm)× Vn(Tn).

There’s really not much else we need to know about tori. So now I’m

hoping I don’t have to explain Lemma 1.
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The pigeonhole principle revisited

We identify Tn with [0,1)n in the obvious way. Let δ > 0 be a suitably
small fixed parameter. For each r ≤ n/4 let

Sδ(r) = {x ∈ [0,1/2]n | r − δ ≤ ‖x‖2 ≤ r}.

Lemma 2 For each C > 1 there exists some value r = r0 ≤ n/4 such
that Vn[Sδ(r0)] ≥ c δ2−n/

√
n where c = 3

√
5(1− 1/C2)/C > 0. 2

If x ∈ [0,1/2]n is uniformly distributed the Chebyshev inequality gives

E

[
|‖x‖2 − n/12| ≤ C ·

√
n/180

]
≥ 1− 1/C2.

Now probability is proportional to volume and we note that there are
approximately 2C ·

√
n/180 ·(1/δ) sets Sδ(r) making up a total volume

of (1− 1/C2)2−n. The pigeonhole principle does the rest.
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An application of the parallelogram law

Let Sδ = Sδ(r0). Suppose x− y, x, x+ y all lie in Sδ. Since 2‖x‖2 +

2‖y‖2 = ‖x − y‖2 + ‖x + y‖2 we must have ‖y‖2 ≤ δ. Thus y ∈
Bn(
√
δ) ⊆ Tn where Bn = Bn(

√
δ) denotes the ball of radius

√
δ.

Stirling’s approximation gives

Vn(Bn) = πn/2δn/2/Γ(n/2 + 1) ≤ (Cδ/n)n/2

where C = 2πe > 1. Now (x,y) ∈ Sδ ×Bn ⊆ Tn × Tn and so

V2n(Sδ ×Bn) ≤ Vn(Sδ)(Cδ/n)n/2.

Ultimately the known constant C = 2πe > 1 obtained here will be

used to define the constants in Lemma 2.
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Using applied probability to count the dots

Lemma 3 Suppose N ∈ N is even. Define Aθ,ϕ = {p ∈ {1, . . . , N} |
Ψθ,ϕ(p) ∈ Sδ}. Then the expected size of Aθ,ϕ is

Eθ,ϕ

[
|Aθ,ϕ|

]
= N · Vn(Sδ)

and the expected number of 3-term arithmetic expressions in Aθ,ϕ is

Eθ,ϕ

[
T (Aθ,ϕ)

]
= N(N − 2)/4 · V2n(Sδ ×Bn).

2

Because the points are uniformly distributed the number of points in
each set is proportional to the volume of the set. Counting the total
number of 3-term arithmetic progressions is easy. For instance

{1, . . . ,8} ⊇ {123,234,345,456,567,678; 135,246,357,468; 147,258}.
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Completing the argument

If we choose δ = nN−2/n/C then for sufficiently large N we have

Vn(Sδ)/3 ≥ (N − 2)V2n(Sδ ×Bn)/4

from which it follows that

Eθ,ϕ

[
2|Aθ,ϕ|/3− T (Aθ,ϕ)

]
≥ NVn(Sδ)/3.

Hence there is at least one set A = Aθ,ϕ such that |A| ≥ NVn(Sδ)/2
and T (A) ≤ 2|A|/3. This means we can remove all 3-term arithmetic
progressions from A by deleting at most 2|A|/3 elements. We are left
with a set A# for which

|A#| ≥ NVn(Sδ)/6 = (c/6) δ 2−n/
√
n = (c/6C)

√
n2−nN1−2/n.

When N is large we can maximize the right-hand side and obtain the
desired bound by setting n = b

√
2 log2Nc.
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